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Multiplicities of classical varieties

Jack Jeffries, Jonathan Montaño and Matteo Varbaro

Abstract

The j-multiplicity plays an important role in the intersection theory of Stückrad–Vogel cycles,
while recent developments confirm the connections between the ε-multiplicity and equisingularity
theory. In this paper, we establish, under some constraints, a relationship between the
j-multiplicity of an ideal and the degree of its fiber cone. As a consequence, we are able to
compute the j-multiplicity of all the ideals defining rational normal scrolls. By using the standard
monomial theory, we can also compute the j- and ε-multiplicity of ideals defining determinantal
varieties: The found quantities are integrals which, quite surprisingly, are central in random
matrix theory.

1. Introduction

For a long time, the development of the theory of multiplicities in local rings has been supplying
essential techniques for the study of local algebra, intersection theory and singularity theory
in algebraic geometry. The Hilbert–Samuel multiplicity is defined for m-primary ideals I in a
noetherian local or graded ring (R,m) as

e(I) = lim
s→∞

(d − 1)!
sd−1

λ(Is/Is+1)

= lim
s→∞

d!
sd

λ(R/Is+1).

Also, the degree e(R) of R is defined as e(m). Classically, the Hilbert–Samuel multiplicity is
used to define the intersection numbers for varieties. Other significant applications include Rees’
criterion for integral dependence, and depth conditions for the associated graded algebras [35–
37]. However, the restriction to m-primary ideals is a strong limit on the applicability of the
techniques provided by the Hilbert–Samuel multiplicity.

This led, in the 1993 paper [3] of Achilles and Manaresi, to the introduction of the j-
multiplicity j(I) of an ideal I (not necessarily m-primary) of a noetherian local ring (R,m). This
multiplicity provides a local algebraic foundation to the intersection theory of Stückrad–Vogel
cycles. Using j-multiplicity, many key results have had generalizations to all ideals including a
numerical criterion for integral dependence [23], and depth conditions on the associated graded
algebra [32, 34].

However, there is still an evident lack of examples of ideals whose j-multiplicity is known. The
main tool to compute this invariant is a formula interpreting the j-multiplicity as the length
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of a suitable R-module, proved in various forms and levels of generality in [3, 24, 45]. Such a
length formula allowed Nishida and Ulrich to compute, in [33], the j-multiplicity of the ideals
defining the rational normal curve of degree 4 in P

4 and the rational normal scroll P(2, 3) ⊆ P
7.

There are two major limitations to this approach: the suitable R-module is defined in terms of
‘sufficiently general’ elements in I, a condition which cannot be verified directly and dissolves
any extra (for example, combinatorial) structure that I might have. Also, determining lengths
by computational methods such as computing Gröbner bases can be quite slow. An exception
is monomial ideals of a polynomial ring (or normal affine toric ring) in d variables. In this
case, the first two authors of this paper could recently show in [30] that the j-multiplicity
is the volume of a suitable polytopal complex in R

d, which is much more amenable to quick
computation than the length formula.

Another related multiplicity for an arbitrary ideal is the ε-multiplicity of an ideal I ⊆ R,
which was first introduced by Ulrich and Validashti [44] as a generalization of the Buchsbaum–
Rim multiplicity. This multiplicity has close connections to volume of divisors and has found
applications in equisingularity theory (see the forthcoming paper Principle of specialization
of integral dependence, by Kleiman, Ulrich and Validashti). This invariant exhibits more
mysterious behavior than j-multiplicity, and little is known about calculating it.

The main results of the present paper are:

(i) Theorem 3.1(iii): If I is a homogeneous ideal of a standard graded domain A, such that
I has maximal analytic spread (= dim(A)), is generated in a single degree t and all its sth
powers are saturated in degrees � st, then j(I) is equal to the degree of the fiber cone of I
multiplied by t.

(ii) Theorem 3.3: A closed formula for the j-multiplicity of the ideals defining any rational
normal scroll V , depending only on the dimension and the codimension of V .

(iii) Theorem 6.1: A computation of the j-multiplicity of It(X), the ε-multiplicity of It(X),
and the degree of the fiber cone of It(X), where It(X) denotes the ideal generated by the
t-minors of a generic m × n-matrix X. To give an idea, j(It(X)) is the integral of a symmetric
polynomial over a hypersimplex in R

min{m,n}. Surprisingly, such a quantity has a precise
meaning in random matrix theory. Similar results are provided for minors (respectively,
pfaffians) of generic symmetric (respectively, skew-symmetric) matrices, see Theorems 6.2
and 6.3.

Given an ideal I in a d-dimensional noetherian local ring (R,m), its j-multiplicity is
defined as

j(I) = lim
s→∞

(d − 1)!
sd−1

λ(H0
m(Is/Is+1)).

This number is a non-negative integer that agrees with the Hilbert–Samuel multiplicity when I
is m-primary (in which case Is/Is+1 is already m-torsion). However, one can show that j(I) �= 0
if and only if the analytic spread of I is maximal, and this is the case in a much larger variety
of situations than the m-primary case. The ε-multiplicity of an ideal I ⊆ R is defined as

ε(I) = lim
s→∞

d!
sd

λ(H0
m(R/Is+1)).

The ε-multiplicity has recently been shown by Cutkosky [15] to exist for any ideal in an
analytically unramified ring; however, there are examples, for example, [16], in which the ε-
multiplicity is irrational. Of course, these two multiplicities can be defined for any homogeneous
ideal I in a graded ring R =

⊕
k�0 Rk, where (R0,m0) is local and the role of m is played by

m0 ⊕ (
⊕

k>0 Rk) (in general, we have to define the ε-multiplicity as a lim sup).
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After a preliminary section recalling the basic facts about these multiplicities, in Section 3
we prove Theorem 3.1. Firstly, we show that, if I is an ideal with maximal analytic spread,
generated in a single degree t, of a standard graded domain A, then j(I) = k · e(F(I)) for
some integer k � t, where F(I) denotes the fiber cone of I. In general, k may be bigger than
t, however, we prove that, if

[(Is)sat]r = [Is]r for all s � 0 and r � st, (†)

then j(I) = t · e(F(I)). Property (†) is rather strong; however, there are interesting classes of
ideals satisfying it. For example, by using a result in [10], ideals defining rational normal scrolls
satisfy (†). Furthermore, the degree of the fiber cone of such ideals can be computed combining
results in [10, 14], so we are able to compute, in Theorem 3.3, j(I) for every ideal defining a
rational normal scroll.

Other ideals satisfying (†) are ideals generated by the t-minors It(X) of the m × n generic
matrix X. Theorem 3.1 applies, so one could deduce j(It(X)) from e(F(It(X))). The problem
is that F(It(X)) is the algebra of minors, denoted by At in [9], which is a quite subtle algebra;
for example, to describe its defining equations is a very difficult open problem (see [11]). Also,
e(At) is unknown (problem (b) at the end of the introduction in [9]), therefore Theorem 3.1 is
not decisive at this time (apart from special cases, for example, if t = m − 1 = n − 1, then At

is a polynomial ring, so j(It(X)) = t in this case). We note that the analytic spread of such
ideals is maximal if and only if t < min{m,n}: see Remark 6.5 for details.

We therefore aim to compute simultaneously the j-multiplicity and the ε-multiplicity
of It(X), exploiting the standard monomial theory and the description of the primary
decomposition of the (integral closure of the) powers of It(X). These facts are gathered in
Section 4, where the analog statements concerning symmetric and skew-symmetric matrices
are also treated. In Section 5, by capitalizing on the hook-length formula, we express the
number of standard tableaux in a fixed alphabet of a given shape (Young diagram) (a1, . . . , ap)
as a polynomial function in ri = |{j : aj = i}| (see Proposition 5.5). This allows us to express
j(It(X)) as an integral of a polynomial over a hypersimplex (which is a well-studied polytope,
see for example [41]). Precisely (assuming that m � n):

j(It(X)) = ct

∫
[0,1]m∑

zi=t

(z1 · · · zm)n−m
∏

1�i<j�m

(zj − zi)2 dν, (1.1)

where c = (nm − 1)!/(n − 1)! · · · (n − m)!m! · · · 1! (see Theorem 6.1(i)). Analogous formulas
are obtained for the ε-multiplicity and for the degree of the algebra of minors (Theorem 6.1(ii)
and (iii)).

The integral in (1.1) is surprisingly related to quantities in random matrix theory, as
explained in Section 7. When t = 1, the exact value of the integral in (1.1) is known by
unpublished work of Selberg (see [25] for a detailed account). However, since I1(X) is the
irrelevant ideal, we knew a priori that j(I1(X)) = 1. On the other hand, if t > 1, at the moment
a closed formula for the exact value of the integral in (1.1) is unknown; at least, however, it is
possible to get a N -variate power series whose coefficients are the values of the integrals over a
simplex of the products of N fixed linear forms (see [5]). The integrand in (1.1) is a product of
linear forms, and the region over which we integrate is a hypersimplex, which has many well-
known triangulations (for example, see [41, 42]). We can therefore apply the method of [5].
When t = m − 1 our region is already a simplex, so in this case the situation is simpler. These
aspects are discussed in Section 7.

The analogs of the above results are also reported for t-minors of a generic symmetric matrix
and 2t-pfaffians of a generic skew-symmetric matrix.
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2. Preliminaries

In this section, R will be a noetherian local ring and m its unique maximal ideal, or an N-graded
noetherian ring

⊕
i�0 Ri with (R0,m0) local and m = m0 ⊕ (

⊕
i>0 Ri). Given an ideal I ⊆ R

(homogeneous if R is graded), we will use throughout the following notation:

(i) R(I) =
⊕

s�0 Is, the Rees ring;
(ii) G(I) =

⊕
s�0 Is/Is+1 = R(I)/IR(I), the associated graded ring;

(iii) F(I) =
⊕

s�0 Is/mIs = R(I)/mR(I) = G(I)/mG(I), the fiber cone.

The j-multiplicity of I can also be computed using the normal filtration {Is}s�0, which we
will use to deal with the cases in which R has an exceptional characteristic with respect to the
ideal I. For a proof of this statement, we will use the notion of j-multiplicity of an R-module
M (in the graded setting).

The j-multiplicity of M with respect to I is defined as

j(I,M) = lim
s→∞

(d − 1)!
sd−1

λ(H0
m(IsM/Is+1M))

and it is additive on short exact sequences; that is, if

0 −→ M ′ −→ M −→ M ′′ −→ 0,

then j(I,M) = j(I,M ′) + j(I,M ′′), see for example [33, Theorem 3.11].

Proposition 2.1. If R is analytically unramified and dim(R) > 0, then

(a) j(I) = lims→∞((d − 1)!/sd−1)λ(((Is+1)sat ∩ Is)/Is+1) and
(b) ε(I) = lims→∞(d!/sd)λ((Is+1)sat/Is+1).

Proof. By [43, Corollary 9.2.1], there exists an integer l � 1 such that In+l is equal to InI l

for every n � 0.

(a) Here, the conclusion follows from the additivity of j-multiplicity in the short exact
sequence

0 −→ I l −→ R −→ R/I l −→ 0,

and by noting that j(I,R/I l) = 0.
(b) This argument is similar to the one in [30, Theorem 5.1 part (b)]. We have the following

two short exact sequences for every s � l:

0 −→ Is/Is −→ R/Is −→ R/Is −→ 0,

0 −→ Is−l/Is −→ R/Is −→ R/Is−l −→ 0.

Since λR(H0
m(−)) is subadditive on short exact sequences, we obtain the following

inequalities:

λR(H0
m(R/Is)) � λR(H0

m(Is/Is)) + λR(H0
m(R/Is))

� λR(H0
m(Is/Is)) + λR(H0

m(R/Is−l)) + λR(H0
m(Is−l/Is)). (2.1)

Observe that

λR(H0
m(Is/Is)) � λR(H0

m(Is−l/Is)) �
l−1∑
i=0

λR(H0
m(Is−l+i/Is−l+i+1)).

It follows that

lim sup
s→∞

d!
sd

λR(H0
m(Is/Is)) �

l−1∑
i=0

lim sup
s→∞

d!
sd

λR(H0
m(Is−l+i/Is−l+i+1)) = 0,
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where the last equality holds by the definition of j-multiplicity. Therefore,
limn→∞(d!/sd)λR(H0

m(Is/Is)) = 0. Similarly, we can conclude using part (a) that
limn→∞(d!/sd)λR(H0

m(Is−l/Is)) = 0. Using these two limits in the two inequalities of
(2.1), we obtain

lim inf
s→∞

d!
sd

λR(H0
m(R/Is)) � lim inf

s→∞
d!
sd

λR(H0
m(R/Is))

� lim sup
s→∞

d!
sd

λR(H0
m(R/Is))

� lim sup
s→∞

d!
sd

λR(H0
m(R/Is)). (2.2)

Then, by [15, Corollary 6.3], the first lim inf and last lim sup in (2.2) agree (that is, the
ε-multiplicity of I exists as a limit), so equality holds throughout.

The following lemma will be crucial to show the results in Section 6.

Lemma 2.2 (Integration lemma). Let f be a polynomial in R[s, x1, . . . , xd] of degree e and
write

f(s, x) = fe(s, x) + fe−1(s, x) + · · · + f0(s, x)

as a sum of homogeneous forms. Fix a positive integer k, a d × k matrix with real entries (aij)ij ,
a vector (bi)i ∈ R

d, two vectors (pj)j , (qj)j ∈ Z
k, and three natural numbers r < t < m. For

any s ∈ N, let

G(s) =
{

x ∈ Z
d | ∀j = 1, . . . , k,

∑
aijxi � pjs + qj ,

∑
bixi ≡ ts + r (mod m)

}
.

Then, denoting by P the region in R
d given by

∑
aijxi � pj for j = 1, . . . , k,

lim
s→∞

m

sd+e

∑
x∈G(s)

f(s, x1, . . . , xd) =
∫
P

fe(1, x1, . . . , xd) dx.

Proof. Let Δ be a fundamental domain for the lattice L ⊆ R
d defined as {x ∈ Z

d :
∑

bixi ≡
0 (mod m)}, and for all s ∈ N put

Ps =
{

x ∈ R
d | ∀j = 1, . . . , k,

∑
aijxi � pjs + qj

}
.

Pick some arbitrary α ∈ G(s), so that G(s) = Ps ∩ (L + α). Clearly, 1
sΔ is a fundamental

domain for (1/s)L with an associated tiling

1
s
(L + Δ) =

{
1
s
(l + Δ) | l ∈ L

}
.

This tiling intersected (element-by-element) with the region P forms a partition of P such that
each non-empty element not intersecting the boundary of P contains exactly one element of
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1
sG(s). Then,

lim
s→∞

m

sd+e

∑
x∈G(s)

f(s, x)

= lim
s→∞

m

sd+e

∑
x∈G(s)

(sefe(1, x/s) + se−1fe−1(1, x/s) + · · · + f0(1, x/s))

= lim
s→∞

m

sd

∑
x∈(1/s)G(s)

(fe(1, x) + s−1fe−1(1, x) + · · · + s−ef0(1, x))

= lim
s→∞

m

sd

∑
x∈(1/s)Ps∩(1/s)(L+α)

(fe(1, x) + s−1fe−1(1, x) + · · · + s−ef0(1, x))

= lim
s→∞

m

sd

∑
x∈P∩(1/s)(L+α)

(fe(1, x) + s−1fe−1(1, x) + · · · + s−ef0(1, x))

= lim
s→∞

m

sd

∑
x∈P∩(1/s)(L+α)

fe(1, x)

= lim
s→∞

∑
x∈P∩(1/s)(L+α)

fe(1, x) vol
(

1
s
Δ
)

=
∫
P

fe(1, x) dx,

where the last equality follows from noting that∑
x∈P∩ 1

s (L+α)

fe(1, x) vol
(

1
s
Δ
)

is a Riemann sum for fe(1, x) on P with mesh equal to diam(1
sΔ).

3. j-Multiplicity and degree of the fiber

This section includes a crucial result (Theorem 3.1) relating j(I) and the degree of the fiber
cone e(F(I)) for particular ideals I. As a consequence, we compute the j-multiplicity of any
ideal defining a rational normal scroll.

Theorem 3.1. Let A =
⊕

k�0 Ak be a standard graded noetherian domain over a field
K = A0, m =

⊕
k>0 Ak, and I an ideal generated in a single degree t � 1 such that �(I) =

dim A. Then:

(i) j(I) is a positive integer multiple of e(F(I));
(ii) j(I) � t · e(F(I)), with equality if and only if R(I)mR(I) is a discrete valuation ring

(DVR).
(iii) If [(Is)sat]r = [Is]r for all s � 0 and all r � st, then

j(I) = t · e(F(I)).

Proof. While showing (ii) we will show also (i). Let R = R(I), G = G(I) and F = F(I)
denote, respectively, the Rees algebra, the associated graded ring and the fiber cone of I. Let
a1, . . . , an be the minimal homogeneous generators of I. Then the fiber cone F is isomorphic
to K[a1, . . . , an] ⊂ K[At] and hence a domain. Therefore, mG is a prime ideal of G such that
GmG is Artinian. Hence, for u � 0 we have that H0

mG(G) = 0 :G muG and muGmG = 0. This
implies that we have an isomorphism of GmG-modules:

H0
mG(G)mG

∼= H0
mGmG

(GmG) ∼= GmG. (3.1)
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Thus we obtain from the additivity formula for the multiplicity that

j(I) = e(H0
mG(G)) = e(F )λ(H0

mG(G)mG) = e(F )λ(GmG).

The above equality yields (i). In order to get (ii), we need to show that λ(GmG) =
λ(RmR/IRmR) � t. For this consider the filtration

GmG ⊃ mGmG ⊃ m2GmG ⊃ · · · .

By Nakayama’s lemma, two consecutive ideals of this sequence are distinct unless equal to 0.
Now, if mt−1GmG = mt−1(RmR/IRmR) = 0, then there is an element f in R \ mR such that
fmt−1R ⊂ IR. Since R has a bigraded structure, we can assume f is homogeneous in this
bigrading. By introducing an auxiliary variable z, write R as

⊕
k�0 Ikzk. In this notation,

there exists n � 0 such that f = azn for some a ∈ In \ mIn. Then aznmt−1 ⊂ In+1zn, which
implies amt−1 ⊂ In+1. This is a contradiction since amt−1 has non-zero elements in degree
nt + (t − 1) < (n + 1)t. It follows that muGmG = mu(RmR/IRmR) �= 0 for u < t. Hence,

λ(GmG) =
∞∑

i=0

λ(miGmG/mi+1GmG)

�
t−1∑
i=0

λ(miGmG/mi+1GmG) � t,

which shows the inequality.
If RmR is a DVR, then λ(miGmG/mi+1GmG) = 1 for every 0 � i < t. Since e(mRmR) = 1 it

follows from [31, Theorem 5.3] that Quot(F ) = Quot(K[At]), that is, every minimal generator
of mt is a fraction of elements of F . The latter is equivalent to the existence of an integer
n � 0 and an element g ∈ In \ mIn such that gmt ⊂ In+1, that is, mtGmG = 0. Hence the
equality in (ii) holds. Conversely, the equality forces mtGmG = 0 and likewise this implies
Quot(F ) = Quot(K[At]) and e(mRmR) = 1. Since ht I > 0, we have dim R = dim A + 1. It
follows dim RmR = 1 and then RmR is a DVR.

To show (iii), we already have j(I) � te(F ), so we only need to show the other inequality.
Let V (I, s) be the K-vector space ((Is+1)sat ∩ Is)/Is+1. The graded component in degree r of
V (I, s) is 0 for all r < st. If s is big enough, by assumption we also have

V (I, s)r = 0 ∀r � (s + 1)t.

Then V (I, s) can be non-zero only in the t degrees ts, ts + 1, . . . , ts + t − 1. In these degrees,
we have

V (I, s)r = [(Is+1)sat ∩ Is]r ⊂ Ar,

so that, for an element x of A of degree 1, multiplication by x maps V (I, s)r injectively into
V (I, s)r+1 for all r = ts, . . . , ts + t − 2. We then have the following chain of inequalities:

rankK(V (I, s)ts) � rankK(V (I, s)ts+1) � · · · � rankK(V (I, s)ts+t−1).

Moreover, x multiplies V (I, s)ts+t−1 injectively into [Is+1](s+1)t. This implies that

rankK(V (I, s)ts+t−1) � rankK [Is+1](s+1)t = rankK(Fs+1),

the latter being equal to the Hilbert function of F evaluated at s + 1. Taking the suitable
limits, this implies at once that j(I) � t · e(F ), as desired.
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Related formulas expressing e(F(I)) in terms of multiplicities of I can be found in [39,
Section 6; 45, Section 5]. The assumption [(Is)sat]r = [Is]r in (iii) is rather strong, but essential
for the theorem as observed in the following example.

Example 3.2. Let A = K[x, y] and I = (x2, y2). We have F(I) = K[x2, y2], so e(F(I)) =
1. Then t · e(F(I)) = 2, but j(I) = e(I) = 4. Note that for all s we have xy2s−1 ∈ [(Is)sat]2s \
[Is]2s.

We will see throughout the rest of the paper that the third point of the above theorem is a
very powerful tool, as some good classes of ideals satisfy the hypotheses. In particular, if I has
linear powers (that is, each power of I has a linear resolution), then I satisfies the condition
of (iii), since reg(R/Is) = st − 1, so

[(Is)sat/Is]�st = [H0
m(R/Is)]�st = 0.

Examples of classes of ideals having linear powers are:

(i) Ideals of maximal minors of a sufficiently general matrix with linear entries [10,
Theorem 3.7].

(ii) Ideals defining varieties of minimal degree [10].
(iii) Edge ideals of graphs whose compliment is chordal [26, Theorem 3.2].
(iv) Ideals generated by monomials corresponding to the bases of a matroid [13,

Theorems 5.2, 5.3].
(v) Stable ideals generated in one degree [13].

3.1. The j-multiplicity of rational normal scrolls

Given positive integers a1 � · · · � ad, the associated d-dimensional rational normal scroll is the
projective subvariety of P

N , where N =
∑d

i=1 ai + d − 1, defined by the ideal

I = I(a1, . . . , ad) ⊆ K[xi,j : i = 1, . . . , d; j = 1, . . . , ai + 1]

generated by the 2-minors of the matrix(
x1,1 · · · x1,a1 x2,1 · · · x2,a2 · · · xd,1 · · · xd,ad

x1,2 · · · x1,a1+1 x2,2 · · · x2,a2+1 · · · xd,2 · · · xd,ad+1

)
.

In [10, Corollary 3.9], it has been proved that for all positive integers s and a1 � · · · � ad, the
ideals Is have a 2s-linear free resolution. It follows, as noted above, that

[(Is)sat]r = [Is]r ∀r � 2s.

Furthermore, [10, Theorem 3.7(2)] implies that the Betti numbers βi(Is) depend only on d,
the sum

∑d
i=1 ai = c, and s. In particular, the Hilbert function of the fiber cone

rankK(F(I)s) = β0(Is)

depends only on d and c. For fixed values of these invariants, there is a unique rational normal
scroll associated to b1 � · · · � bd, where

∑d
i=1 bi = c and bd � b1 + 1 (such a rational normal

scroll is called balanced). The ideal I(b1, . . . , bd) can be expressed as the ideal generated by the
2-minors of a 2 × c extended Hankel matrix of pace d and this fact allowed the authors of [14]
to find a quadratic Gröbner basis for the ideal defining F(I(b1, . . . , bd)). As a consequence, they
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computed the dimension and the degree of the fiber cone of I(b1, . . . , bd) in [14, Corollary 4.2,
Corollary 4.5]. Concluding, we infer:

Theorem 3.3. Let a1 � · · · � ad be positive integers and put c =
∑d

i=1 ai. Then the j-
multiplicity of I(a1, . . . , ad) is⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if c < d + 3,

2 ·
((

2c − 4
c − 2

)
−
(

2c − 4
c − 1

))
if c = d + 3,

2 ·
⎛
⎝c−d−1∑

j=2

(
c + d − 1

c − j

)
−
(

c + d − 1
c − 1

)
(c − d − 2)

⎞
⎠ if c > d + 3.

Example 3.4. From the theorem above, we have that

j(I(4)) = j

(
I2

(
x1 x2 x3 x4

x2 x3 x4 x5

))
= 4

and

j(I(3, 2)) = j

(
I2

(
x1 x2 x3 x5 x6

x2 x3 x4 x6 x7

))
= 10.

Our values agree with those of Nishida and Ulrich in [33, Example 4.8], computed there for
the same ideals by using the length formula.

4. Standard monomial theory

In the rest of the paper, we will focus on the computation of the discussed multiplicities for
determinantal ideals I. Such ideals satisfy the property of the third point in Theorem 3.1, but
this time this is useless: the fiber cone of I is the algebra of minors discussed in [9], and it is quite
subtle (for example, to determine its defining equations seems a very difficult problem [11]).
Also the degree of this algebra is unknown, as stated at the end of the introduction in [9].
For these reasons, we will develop a technique allowing us to compute simultaneously the j-
multiplicity and the ε-multiplicity of such ideals (thereby we will also get the degree of the
algebras of minors).

In this section, we are going to provide the necessary information on the structure of powers
of the ideals generated by the minors or by the pfaffians of the following matrices:

(i) an m × n matrix of indeterminates X;
(ii) an n × n symmetric matrix of indeterminates Y ;
(iii) an n × n skew-symmetric matrix of indeterminates Z.

The first proofs of the results, we are going to summarize, were given in characteristic 0, where
representation theoretic tools are available (see [17] for (i), [1] for (ii) and [2] for (iii)). For
arbitrary fields one has to find new proofs, reformulating the statements in terms of standard
monomials, which form a particular K-basis of the polynomial rings containing the above ideals.
That the standard monomials form a K-basis was proved in [22] for (i), and in [19] for (ii)
and (iii); how to use these tools to understand the powers of the ideals that we are interested
in (regardless to the characteristic of the base field) was explained in [6] for (i) and in [21] for
(iii). For (ii), we could not find any reference; however, this case is completely analogous to (i),
and we will indicate the essential steps to prove the needed statements. Two excellent sources
for the standard monomial theory are [8, 18].
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4.1. The generic case

Let X = (xij) be an m × n-matrix whose entries are indeterminates over K. A k-minor is the
determinant of a k × k-submatrix of X, and the usual notation for it is

[i1, . . . , ik|j1, . . . , jk] := det

⎛
⎜⎝

xi1,j1 . . . xi1,jk

...
...

xik,j1 . . . xik,jk

⎞
⎟⎠ ∈ K[X],

so that i1, . . . , ik denote the rows of the minor and j1, . . . , jk the columns of the minor. For
t � min{m,n}, the algebraic variety of A

mn
K consisting of the m × n matrices of rank at most

t − 1 is cut out by the prime ideal It(X) ⊆ K[X] generated by the t-minors of X. To study
these ideals, it is convenient to consider the set of minors (of any size) with the following partial
order:

[i1, . . . , ik|j1, . . . , jk] � [u1, . . . , uh|v1, . . . , vh] ⇐⇒ k � h, iq � uq, jq � vq ∀ q ∈ {1, . . . , h}.
A standard monomial is a product of minors δ1 · · · δp such that δ1 � · · · � δp. It turns out that
the standard monomials form a K-basis for K[X]. If Δ is the product of minors δ1 · · · δp, where
δi is an ai-minor, then the vector (a1, . . . , ap) ∈ N

p is referred to be the shape of Δ.
It is customary to associate to a standard monomial a pair of tableaux. Recall that a Young

diagram is a collection of boxes aligned in rows and columns, starting from the left in each row,
such that the number of boxes in row i is not less than the number of boxes in row i + 1. A
Young tableau (on n) is a Young diagram filled in with numbers in {1, . . . , n}. A Young tableau
is called standard if the filling is such that the entries in each row are strictly increasing and
the entries in each column are non-decreasing. The shape of a tableau or diagram is the list
(a1, . . . , ap), where ai is the number of boxes in row i. We assign to each standard monomial
Δ = δ1 · · · δp a pair of tableaux as follows: for the diagram of each, use the diagram with the
same shape as Δ. In the first diagram, in row i, list the rows of δi. In the second diagram, in
row i, list the columns of δi. For example,(

,
)

431
3

2 3 5
2

↔ [1, 3, 4|2, 3, 5] · [3|2].

The condition that the product of minors Δ is a standard monomial is equivalent to the labeling
of the diagrams to form standard tableaux.

The good news is that to detect if Δ belongs to the symbolic powers or to (the integral
closure of) the ordinary powers of It(X) it is enough to look at the shape of Δ. Precisely,
by [8, Theorem 10.4] we have the following.

Proposition 4.1. With the above notation:

Δ ∈ It(X)(r) ⇐⇒ ai � min{m,n} ∀ i and

p∑
i=1

max{0, ai − t + 1} � r.

Furthermore, by [6, Theorems 1.1 and 1.3]:

Theorem 4.2. If char(K) = 0 or > min{t,m − t, n − t}, then It(X)s has primary
decomposition:

It(X)s =
t⋂

j=1

Ij(X)((t−j+1)s).
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In arbitrary characteristic such a decomposition holds true for integral closures:

It(X)s =
t⋂

j=1

Ij(X)((t−j+1)s).

4.2. The symmetric case

Let Y = (yij) be an n × n symmetric matrix (meaning yij = yji) whose entries are indetermi-
nates over K. A standard monomial theory is available also in this situation, and is useful for
studying the prime ideal It(Y ) ⊆ K[Y ] defining the locus of symmetric matrices of rank at most
t − 1: The minors are denoted as before. A minor [i1, . . . , ik|j1, . . . , jk] is called a doset minor
if iq � jq for all q = 1, . . . , k. In the symmetric case the doset minors are the only relevant ones
(the doset minors of size t are already enough to generate It(Y )), and they naturally form a
poset by the following order:

[i1, . . . , ik|j1, . . . , jk] � [u1, . . . , uh|v1, . . . , vh] ⇐⇒ k � h, jq � uq ∀ q ∈ {1, . . . , h}.
Again, a product of doset minors Δ = δ1 · · · δp is a standard monomial if δ1 � · · · � δp, and

the standard monomials form a K-basis of K[Y ]. If the shape of Δ, defined as before, is the
vector (a1, . . . , ap) ∈ N

p, similarly to the generic case, we have the following.

Proposition 4.3. With the above notation, we have

Δ ∈ It(Y )(r) ⇐⇒ ai � n ∀ i and

p∑
i=1

max{0, ai − t + 1} � r.

Proof. Arguing as in the proof of [8, Lemma 10.3], one shows that ynn is a non-zerodivisor
for K[Y ]/J(t, r), where J(t, r) is the ideal generated by the products of doset minors whose
shape (a1, . . . , ap) satisfies the condition

∑p
i=1 max{0, ai − t + 1} � r. At this point, we can

exploit the ‘localization trick’ at ynn and apply the induction on t to show J(t, r) = It(Y )(r),
as explained before [8, Lemma 10.3].

Also in the symmetric case we have a nice primary decomposition for the powers, namely:

Theorem 4.4. If char(K) = 0 or > min{t, n − t}, then It(Y )s has primary decomposition:

It(Y )s =
t⋂

j=1

Ij(Y )((t−j+1)s).

In arbitrary characteristic such a decomposition holds true for integral closures:

It(Y )s =
t⋂

j=1

Ij(Y )((t−j+1)s).

Proof. The first part can be derived as in [8, Corollary 10.13], the second as in the proof
of [6, Theorem 1.3] (it is enough to specialize to symmetric matrices the equations of [6,
Lemma 1.4; 6, Lemma 1.5]).

As in the generic case, we can identify standard monomials with Young tableaux. In this
case, however, the restriction to doset minors and the more stringent partial ordering make
the appropriate object to identify with a standard monomial a single tableau, as opposed
to a pair in the generic case. Specifically, if a standard monomial Δ = δ1δ2 · · · δp has shape
(a1, a2, . . . , ap), then we associate a diagram D of shape (a1, a1, a2, a2, . . . , ap, ap). The rows of
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δi are listed in row 2i − 1 of D, and the columns of δi are listed in row 2i of D. For example,

1 3 4
2 4 5
2
4

↔ [1, 3, 4|2, 4, 5] · [2|4].

4.3. The alternating case

Now, let Z = (zij) be an n × n skew-symmetric matrix (zij = −zji) whose non-zero entries are
indeterminates over K. Here the situation is a bit different by the previous ones, since the ideal
It(Z) is not radical. This is because any minor of the form [i1, . . . , i2k|i1, . . . , i2k] is a square of
a polynomial, namely its pfaffian, which we will simply denote by [i1, . . . , i2k]. Indeed the locus
of the alternating matrices of rank at most 2t − 2 is the same as the locus of the alternating
matrices of rank at most 2t − 1, which is defined by the prime ideal P2t(Z) ⊆ K[Z] generated
by all the 2t-pfaffians [i1, . . . , i2t]. We can equip the set of pfaffians with the following partial
order:

[i1, . . . , i2k] � [u1, . . . , u2h] ⇐⇒ k � h, iq � uq ∀ q ∈ {1, . . . , 2h}.
Once again, a product of pfaffians Δ = δ1 · · · δp is a standard monomial if δ1 � · · · � δp,

and these standard monomials are a K-basis of K[Z]. The shape of Δ will be the vector
(a1, . . . , ap) ∈ N

p, where δi is a 2ai-pfaffian. By [21, Theorem 2.1], we have the following.

Proposition 4.5. With the above notation:

Δ ∈ P2t(Z)(r) ⇐⇒ ai � �n/2� ∀ i and

p∑
i=1

max{0, ai − t + 1} � r.

Furthermore, by [21, Proposition 2.6] (for the second part of the statement see the comment
below [21, Proposition 2.6]):

Theorem 4.6. If char(K) = 0 or > min{2t, n − 2t}, then P2t(Z)s has primary
decomposition:

P2t(Z)s =
t⋂

j=r

P2j(Z)((t−j+1)s), where r = max{1, �n/2� − s(�n/2� − t)}.

In arbitrary characteristic such a decomposition holds true for integral closures:

P2t(Z)s =
t⋂

j=r

P2j(Z)((t−j+1)s), where r = max{1, �n/2� − s(�n/2� − t)}.

As above, we associate to each pfaffian a tableau: to a pfaffian of shape (a1, . . . , ap) we
associate the tableau of shape (2a1, . . . , 2ap) in which the ith row lists the rows of the ith
minor.

5. Counting young tableaux

Proposition 5.1 (The diagram criterion, generic case). Let X be a matrix of generic
indeterminates. A standard monomial of shape (a1, . . . , ap) belongs to

(It(X)s+1)sat \ It(X)s+1
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if and only if its shape satisfies the conditions:

(1) ai � m for all i,
(2a)

∑
ai < t(s + 1) and

(3) p �
∑

ai − (t − 1)(s + 1).

A standard monomial belongs to

((It(X)s+1)sat ∩ It(X)s ) \ It(X)s+1

if and only if its shape satisfies the conditions (1) and (3) above plus the condition

(2b) ts �
∑

ai < t(s + 1).

Proof. By Theorem 4.2, we have

(It(X)s+1)sat \ It(X)s+1 =
t⋂

j=2

Ij(X)((t−j+1)(s+1)) \
t⋂

j=1

Ij(X)((t−j+1)(s+1)).

Applying Theorem 4.1, a standard monomial is in this set if and only if its shape satisfies the
conditions:

(1) ai � m for all i,
(2a)

∑
ai < t(s + 1) and

(3’)
∑

max{0, ai − j + 1} � (t − j + 1)(s + 1) for all j = 2, . . . , t.

For j = 1, . . . ,m, let rj denote |{i : ai = j}|. We compute

p∑
i=1

max{0, ai − j + 1} =
p−(r1+···+rj−1)∑

i=1

ai − (j − 1)(p − (r1 + · · · + rj−1))

=
p∑

i=1

ai − (r1 + 2r2 + · · · + (j − 1)rj−1)

− (j − 1)(p − (r1 + · · · + rj−1))

=
p∑

i=1

ai − (j − 1)p + (j − 2)r1 + (j − 3)r2 + · · · + rj−2.

Then,
p∑

i=1

max{0, ai − j + 1} � (t − j + 1)(s + 1) for all j = 2, . . . , t

if and only if

p � s + 1 + min
2�j�t

(∑
ai − t(s + 1)

j − 1
+

(j − 2)r1 + (j − 3)r2 + · · · + rj−2

j − 1

)
.

Since the first fraction above is negative and the second positive, the minimum is achieved for
j = 2. This shows that condition (3′) can be replaced by (3).

For the second statement, we note that a standard monomial is in

((It(X)s+1)sat ∩ It(X)s) \ It(X)s+1

if and only if it is in

(It(X)s+1)sat \ It(X)s+1

and in I1(X)(ts).
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There are nearly identical characterizations in the symmetric and pfaffian cases:

Proposition 5.2 (The diagram criterion, symmetric case). Let Y be a generic symmetric
matrix of indeterminates. A standard monomial M of shape (a1, a2, . . . , ap) belongs to

(It(Y )s+1)sat \ It(Y )s+1

if and only if conditions (1), (2a) and (3) of Proposition 5.1 hold for

(a1, . . . , ap);

a such standard monomial corresponds to a diagram, the shape of which is (a1, a1, a2,
a2, . . . , ap, ap). The monomial M belongs to

((It(Y )s+1)sat ∩ It(Y )s) \ It(Y )s+1

if and only if conditions (1), (2b) and (3) of Proposition 5.1 hold for the same (a1, . . . , ap).

Proposition 5.3 (The diagram criterion, pfaffian case). Let Z be a generic antisymmetric
matrix of indeterminates. A standard monomial M of shape (a1, a2, . . . , ap) belongs to

(P2t(Z)s+1)sat \ P2t(Z)s+1

if and only if conditions (1), (2a) and (3) of Proposition 5.1 hold for

(a1, a2, . . . , ap),

with m = �n/2�; a such standard monomial represents a diagram of shape (2a1, . . . , 2ap). The
monomial M belongs to

((P2t(Z)s+1)sat ∩ P2t(Z)s) \ P2t(Z)s+1

if and only if conditions (1), (2b) and (3) of Proposition 5.1 hold for the same (a1, . . . , ap) with
m = �n/2�.

The number of standard tableaux on {1, . . . , n} of shape (a1, . . . , ap) is the dimension of the
irreducible (if char(K) = 0) GLn(K)-representation associated to (a1, . . . , ap). This dimension
can be computed by the hook-length formula; however, for our aims it is convenient to have
a polynomial formula in suitable data characterizing the given shape, while the hook-length
formula is certainly not polynomial in nature.

Remark 5.4. The notations we are using are dual to the standard ones used in repre-
sentation theory: for example, with our conventions, to the diagram (t) would correspond∧t

Kn.

To this goal, we set ri to be the number of rows of the diagram (a1, . . . , ap) with exactly i
boxes. If we deal with diagrams with at most m columns, then the diagram will be determined
by r1, . . . , rm. The next proposition provides a polynomial formula for the number of standard
tableaux on {1, . . . , n} of shape (a1, . . . , ap) in terms of the ri. Such a quantity will be
denoted by Wn(r1, . . . , rm), and in particular it will be a (inhomogeneous) polynomial of degree
m(n − m) + ( m

2 ).

Proposition 5.5. For all i = 1, . . . ,m, set Bi = rm + · · · + rm−i+1. Then:

Wn(r1, . . . , rm) =

∏m
i=1(Bi + i) · · · (Bi + i + n − m − 1) ·∏i<j(Bj − Bi + j − i)

(n − 1)!(n − 2)! · · · (n − m)!
.
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Proof. The proof is an application of the hook-length formula [40].
We will divide the diagram in m(m + 1)/2 regions Ra,b, for all 1 � a � m and

1 � b � (m + 1 − a). The boxes of Ra,b are the ones (i, b) such that Ba−1 + 1 � i � Ba, where
B0 = 0.

The factors in the hook-length formula corresponding to the boxes in the region Ra,b are:

Ba∏
i=Ba−1+1

n − b + i

(m + 2 − a − b) + Bm+1−b − i
.

Now, we multiply together the factors corresponding to a fixed b, that is to a fix
column:

B1∏
i=1

n − b + i

(m + 1 − b) + Bm+1−b − i
·

B2∏
i=B1+1

n − b + i

(m − b) + Bm+1−b − i

· · ·
Bm+1−b∏

i=Bm−b+1

n − b + i

1 + Bm+1−b − i
.

Now, we can rearrange these factors to obtain:

=
Bm+1−b∏

i=1

n − b + i

(m + 1 − b) + Bm+1−b − i
·

Bm+1−b∏
i=B1+1

(m + 1 − b) + Bm+1−b − i

(m − b) + Bm+1−b − i

·
Bm+1−b∏
i=B2+1

(m − b) + Bm+1−b − i

(m − 1 − b) + Bm+1−b − i
· · ·

Bm+1−b∏
i=Bm−b+1

2 + Bm+1−b − i

1 + Bm+1−b − i
.

Most of these terms cancel and this product is equal to:

=
(n − b + Bm+1−b) . . . (m + 1 − b + Bm+1−b)

(n − b) · · · (m + 1 − b)
· m − b + Bm+1−b − B1

m − b
·

m − 1 − b + Bm+1−b − B2

m − 1 − b
· · · 1 + Bm+1−b − Bm−b

1

=
∏n−b

i=m+1−b(i + Bm+1−b) ·
∏m−b

i=1 ((m + 1 − b − i) + Bm+1−b − Bi)
(n − b)!

.

Multiplying this last expression over all b we obtain the desired conclusion.

6. Multiplicities of determinantal varieties

In this section, we give expressions for the j-multiplicity, the ε-multiplicity and the multiplicity
of the fiber cone of any determinantal ideal of generic, generic symmetric and generic skew-
symmetric matrices. Let ν be the measure on the affine subspace

∑
z = t such that π∗ν is

Lebesgue measure, where π is projection onto one of the coordinate hyperplanes.

Theorem 6.1. Let X be a generic m × n matrix of indeterminates, t an integer with
0 < t < m, and set

c =
(mn − 1)!

(n − 1)!(n − 2)! · · · (n − m)! · m!(m − 1)! · · · 1!
.
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Then

(i) j(It(X)) = ct
∫

[0,1]m∑
zi=t

(z1 · · · zm)n−m
∏

1�i<j�m(zj − zi)2 dν;

(ii) ε(It(X)) = cmn
∫

[0,1]m

maxi{zi}+t−1�∑ zi�t

(z1 · · · zm)n−m
∏

1�i<j�m(zj − zi)2 dz;

(iii) if char(K) = 0 or > min{t,m − t, n − t}, then

e(At(X)) = c

∫
[0,1]m∑

zi=t

(z1 · · · zm)n−m
∏

1�i<j�m

(zj − zi)2 dν,

where At(X) is the algebra of minors F(It(X)).

Proof. For (i), by Proposition 2.1 we have

j(It(X)) = lim
s→∞

(d − 1)!
sd−1

λ(((It(X)s+1)sat ∩ It(X)s)/It(X)s+1).

We compute the length

�t(s) := λ(((It(X)s+1)sat ∩ It(X)s)/It(X)s+1)

by counting the number of standard monomials in

((It(X)s+1)sat ∩ It(X)s) \ It(X)s+1.

Write Gt(s) for the set of diagrams corresponding to these standard monomials. As in the
discussion before Proposition 5.5, for a standard monomial denote by ri the number of rows
in the diagram associated to it. The condition in Proposition 5.1 can be expressed in terms of
the numbers ri. Set

k =
∑

ai − ts = mrm + (m − 1)rm−1 + · · · + r1 − ts.

A diagram belongs to Gt(s) if and only if

(1) ri = 0, ∀i > m,
(2b) 0 � k < t,
(3) rm + rm−1 + · · · + r1 � s − t + 1 + k,

which can be rewritten as

0 � k < t,

(m − 1)rm−1 + (m − 2)rm−2 + · · · + r1 � st + k,

(m − 1)rm−1 + (m − 2)rm−2 + · · · + r1 ≡ st + k (mod m),
rm−1 + 2rm−2 + · · · + (m − 1)r1 � s(m − t) + m(1 − t) + k(m − 1).

Then,

�t(s) =
∑

(rm−1,...,r1)∈Gt(s)

Wm(r1, . . . , rm)Wn(r1, . . . , rm),

with rm = (1/m)(st + k − (m − 1)rm−1 − · · · − r1). We may now apply Lemma 2.2 to obtain

lim
s→∞

�t(s)
smn−1

=
t

m

∫
P

(B1 · · ·Bm)n−m
∏

i<j(Bj − Bi)2

(n − 1)! · · · (n − m)! · (m − 1)! · · · 1!
dr1 · · · drm−1,

for Bk = rm + · · · + rm−k+1, and P ⊂ R
m−1 defined by the inequalities

ri � 0,

(m − 1)rm−1 + (m − 2)rm−2 + · · · + r1 � t,

rm−1 + 2rm−2 + · · · + (m − 1)r1 � m − t,
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and rm = (1/m)(t − (m − 1)rm−1 − · · · − r1). Then, applying the change of variables zi = Bi,
for i = {1, . . . , m}, one has

j(It(X)) = lim
s→∞

(nm − 1)!�t(s)
smn−1

= t(nm − 1)!
∫
R

(z1 · · · zm)n−m
∏

i<j(zi − zj)2

(n − 1)! · · · (n − m)! · (m − 1)! · · · 1!
dν,

where R ⊂ R
m is the region given by

0 � z1 � z2 � · · · � zm−1 � zm � 1,

z1 + z2 + · · · + zm−1 + zm = t.

Using the fact that the integrand is symmetric under permutation of the variables, we obtain
the formula in the statement.

For (ii), one proceeds as in (i) using the condition in Proposition 5.1 for a standard monomial
to belong to (It(X)s+1)sat/It(X)s+1.

For (iii), by Theorem 4.2 and condition (2a) of Proposition 5.1 we conclude that It(X)
satisfies the assumption in Theorem 3.1(iii); the formula then follows by part (i).

We have analogous statements for the symmetric and skew-symmetric cases, the proofs of
which proceed along the same lines as above.

Theorem 6.2. Let Y be a generic symmetric n × n matrix of indeterminates, t an integer
with 0 < t < n, and set

c =
2(n

2 )(
(

n+1
2

)− 1)!
n!(n − 1)!(n − 2)! · · · 1!

.

Then

(i) j(It(Y )) = ct
∫

[0,1]n∑
zi=t

∏
1�i<j�n |zj − zi| dν;

(ii) ε(It(Y )) = c
(

n+1
2

) ∫
[0,1]n

maxi{zi}+t−1�∑ zi�t

∏
1�i<j�n |zj − zi| dz;

(iii) if char(K) = 0 or > min{t, n − t}, then

e(At(Y )) = c

∫
[0,1]n∑

zi=t

∏
1�i<j�n

|zj − zi| dν,

where At(Y ) is the algebra of minors F(It(Y )).

Proof. The diagrams in this case have an even number of rows of each size. So if we denote
by 2ri the number of rows of length i for 1 � i � n, then the conditions in Proposition 5.2 can
be written in terms of the ri as in the proof of Theorem 6.1. Now, we apply Proposition 5.5
to count the number of tableaux, we compute Wn(2r1, . . . , 2rn) whose leading term equals the
one of 2(n

2 )Wn(r1, . . . , rn). The rest of the proof follows as in Theorem 6.1, using Theorem 4.4
and Proposition 5.2 for part (iii).

Theorem 6.3. Let Z be a generic skew-symmetric n × n matrix of indeterminates. Set
m = �n/2�. Let t an integer with 0 < t < m and put

c =
(( n

2 ) − 1)!
m!(n − 1)!(n − 2)! · · · 1!

.
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Also, set δ(n) to be 0 if n is even and 1 otherwise. Then

(i) j(P2t(Z)) = ct
∫

[0,1]m∑
zi=t

(z1 · · · zm)2δ(n)
∏

1�i<j�m(zj − zi)4 dν;

(ii) ε(P2t(Z)) = c ( n
2 )

∫
[0,1]m

maxi{zi}+t−1�∑ zi�t

(z1 · · · zm)2δ(n)
∏

1�i<j�m(zj − zi)4 dz,

(iii) if char(K) = 0 or > min{2t, n − 2t}, then

e(At(Z)) = c

∫
[0,1]m∑

zi=t

(z1 · · · zm)2δ(n)
∏

1�i<j�m

(zj − zi)4 dν,

where At(Z) is the algebra of pfaffians F(P2t(Z)).

Proof. The proof is similar to the previous two theorems. In this case, the diagrams
only have rows with even size, then we compute using Wn(0, r1, 0, r2, 0, . . . , 0, rm) if n is
even or Wn(0, r1, 0, r2, 0, . . . , 0, rm, 0) if n is odd. When n = 2m is even, in the notation of
Proposition 5.5, write

W2m(0, r1, 0, r2, 0, . . . , 0, rm) =

∏
1�i<j�2m((Bj − Bi) − (j − i))

(n − 1)! · · · 1!

=
1

(n − 1)! · · · 1!

∏
1�i<j�m

(((B2j−1 − B2i) − (2j − 2i − 1))

((B2j − B2i) − (2j − 2i))((B2j−1 − B2i−1) − (2j − 2i))

((B2j − B2i−1) − (2j − 2i + 1)))
∏

1�i�m

(B2i − B2i−1 + 1). (�)

Since B2i = B2i−1 for 1 � i � m, the leading term in (�) is∏
1�i<j�m(B2j − B2i)4

(n − 1)! · · · 1!
.

If n = 2m + 1 is odd, an extra factor of∏
1�i�m

((B2m+1 − B2i) − (2m − 2i + 1))((B2m+1 − B2i−1) − (2j − 2i + 2))

occurs in equation (�), and since B2m+1 = 0, the leading term in this case is

(B2B4 · · ·B2m)2
∏

1�i<j�m(B2j − B2i)4

(n − 1)! · · · 1!
.

The rest of the proof follows as in Theorem 6.1 using Proposition 5.3 and setting zi = B2i. For
part (iii), we use Theorem 4.6 and Proposition 5.3.

In [16], it was shown that the ε-mutiplicity may be irrational. However, as the formulas
above consist of the integral of a polynomial with rational coefficients over a polytope with
rational vertices, we obtain the following corollary.

Corollary 6.4. For the ideals It(X), It(Y ), P2t(Z) in Theorems 6.1–6.3, the ε-multiplicity
is a rational number.
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Table 1. Some values of j(It(X)) and ε(It(X))

t m n j(It(X)) ε(It(X))

2 3 3 2 1/2
2 3 4 64 341/24

2 3 5 1192 62 289/27

2 3 6 17 236 4 195 559/29

2 4 4 4768 214 865/253
2 4 5 178 368 1 610 240 575/2635

2 4 6 4 888 048 33 029 597 513 545/2939

3 4 4 3 1/3
3 4 5 2853 96 631/35

3 4 6 368 643 747 4 134 333 611/39

4 5 5 4 1/4
4 5 6 130 496 40 162 739/212

Remark 6.5. In the cases not included in Theorems 6.1–6.3, the analytic spread is not
maximal, so the j- and ε-multiplicity are 0 in these cases. More precisely:

(i) Am(X) is the coordinate ring of the Grassmannian of m-dimensional subspaces in an
n-dimensional K-vector space. In particular, we have that �(Im(X)) = m(n − m) + 1.
The formula for e(Am(X)) is classical and follows by the ‘postulation formula’ proved
by Littlewood and then by Hodge [27];

(ii) An(Y ) is a polynomial ring in one variable;
(iii) Am(Z) is a polynomial ring in one variable if n = 2m, while it is a polynomial ring in n

variables if n = 2m + 1 (this follows, for example, by a stronger result of Huneke [29],
where he shows that these ideals are of linear type).

Example 6.6. In Table 1, we present some values of j(It(X)) and ε(It(X)) for small t, m
and n using Theorem 6.1. To compute the multiplicities of larger determinantal varieties via
Theorems 6.1–6.3, there are very good specific programs to evaluate integrals of polynomial
functions over rational polytopes: LattE [20] (in particular, the new version LattE integrale)
or Normaliz [7] (via the package NmzIntegrate). The algorithms used in these programs are
explained, respectively, in the papers [5, 12].

7. The integral

In this section, we briefly discuss a few aspects of the integrals appearing in Section 6: their
meaning in random matrix theory, methods of evaluating them and a closed formula in the
case t = m − 1 of Theorem 6.1.

To the first end, we apply a well-known transformation of Hua [28, Section 3.3]: Let

D = {W |W is m × m Hermitian, W and 1 − W are positive definite}.
Then ∫

[0,1]m∑
zi�t

(z1 · · · zm)n−m
∏
i<j

(zj − zi)2 dz =
(m − 1)! · · · 1!

(2π)(
m
2 )

∫
W∈D

tr(W )�t

(det(W ))n−m dw,

where dw is the product of differentials over all real and imaginary components of entries
of W . Thus, if W is a random Hermitian matrix with W and 1 − W positive definite, with
distribution proportional to (det(W ))n−m, the integral above is proportional to the probability
that tr(W ) � t.
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These and other related integrals have received considerable interest recently, see [25] for
a survey of some of this activity. No closed forms for the integrals above are known in
general. However, the case t = 1 was settled in somewhat greater generality than the above by
unpublished work of Selberg, and by Askey and Richards [4]. For t = 1, we have I1(X) is the
homogeneous maximal ideal of the polynomial ring K[X], so that

j(I1(X)) = ε(I1(X)) = e(A1(X)) = 1.

We obtain as a corollary of Theorem 6.1 the following special case of the main theorem of [38]
(Selberg’s Integral):

Corollary 7.1.∫
z1...,zm�0∑

zi�1

(z1 · · · zm)n−m
∏
i<j

(zj − zi)2 dz =
(n − 1)! · · · (n − m)! · m! · · · 1!

(nm)!
.

Other special cases of Selberg’s integral are obtained from the case t = 1 in Theorems 6.2
and 6.3.

In [5], Baldoni et al. prove a nice method to integrate a product of linear forms over a
simplex. The integrands in Theorems 6.1–6.3 are products of linear forms, and the regions of
integration in the integral formulas for the j-multiplicity and for the degree of the fiber cone in
the theorems above are well-studied hypersimplices, with triangulations given by [41] or [42].
This provides a relatively quick method for evaluating these integrals.

We illustrate this in more detail in the special case of j(I(X)m−1), equivalently, by
Theorem 3.1(iii), of t · e(F(I(X)m−1)), where the region of integration is already the
simplex Δ ∈ R

m with vertices (1, 1, . . . , 1, 0, 1, . . . , 1). Applying [5, Corollary 11], since
vol(Δ) = 1/(m − 1)!, we obtain

∑
M∈N

(
m+1

2

)
(
∑

M + m − 1)!
∏

i�j t
Mij

ij∏
i�j(Mij !)

∫
Δ

xM11
1 · · ·xMmm

m

∏
i<j

(xi − xj)Mij dν

=
1∏m

k=1(1 −∑h�=k thh +
∑

j>k tkj −
∑

i<k tik)

with ν as in the proof of Theorem 6.1, so that one may calculate the j-multiplicity by expanding
the series on the right to order m(n − 1), retrieving the coefficient of the term with exponents
Mij = 2 for i < j and Mij = n − m for i = j, and multiplying by the appropriate constant,
namely:

(m − 1) · 2(m
2 )∏m−1

i=1 (n − i)i · m!(m − 1)! · · · 2!
.

In order to retrieve these coefficients define, for all k = 1, . . . ,m,

�k = 1 −
∑
h�=k

thh +
∑
j>k

tkj −
∑
i<k

tik.

Denote the inverse of �k by

Gk =
∑

λk((aii, aik)i�=k)
∏
i�=k

taii
ii taik

ik .

It is easy to see that the coefficients of Gk are:

λk((aii, aik)i�=k) = (−1)
∑

i<k aik
(
∑

i�=k(aii + aik))!∏
i�=k(aii!aik!)

.
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We want to compute G =
∏m

k=1 Gk =
∑

λ((aij)i�j)
∏

i�j t
aij

ij . To this goal, we have to identify
all m terms (one for each Gk) whose product is

∏
i�j t

aij

ij . This is the set A((aij)i�j) consisting
of elements of the form (ak

ii, a
k
ik)k=1,...,m

i�=k
, where the ak

ij are natural numbers satisfying:

m∑
k=1

ak
ii = aii ∀ i = 1, . . . , m,

m∑
k=1

ak
pq = apq ∀ 1 � p < q � m,

where we have put ak
ij = 0 if i = j = k or i �= j �= k �= i, and ak

ij = ak
ji in the remaining cases.

With this notation we have

λ((aij)i�j) =
∑

(ak
ii,a

k
ik)i�=k∈A((aij)i�j)

m∏
k=1

(−1)
∑

i<k ak
ik

(
∑

i�=k(ak
ii + ak

ik))!∏
i�=k(ak

ii!a
k
ik!)

.

Recall that the coefficient that is relevant to j(Im−1(X)) is λ((aij)i�j) with aii = n − m and
aij = 2 for i < j. For such (aij)ij the set A((aij)i�j) can be identified with the set A(m,n) of
all pairs of m × m matrices (aij , bij)ij with natural entries such that

aij = bij = 0 if i = j,
m∑

j=1

aij = n − m ∀ i = 1, . . . ,m,

bpq + bqp = 2 ∀ 1 � p < q � m.

Finally, we get the following.

Proposition 7.2. The j-multiplicity of Im−1(X) is

(m − 1) · 2(m
2 )∏m−1

i=1 (n − i)i · m!(m − 1)! · · · 1!

⎛
⎝ ∑

(aij ,bij)ij∈A(m,n)

m∏
j=1

(−1)
∑

i<j bij
(
∑m

i=1(aij + bij))!∏m
i=1(aij !bij !)

⎞
⎠ .
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