Gröbner deformations

Matteo Varbaro (University of Genoa, Italy)

CIME-CIRM Course on
Recent Developments in Commutative Algebra Levico Terme, 1-5/7/2019

Notation and basic definitions

- $\mathbb{N}=\{0,1,2, \ldots\}$.
- K any field.
- $R=K\left[X_{1}, \ldots, X_{n}\right]$ the polynomial ring in n variables over K.
- A monomial of R is an element $X^{u}:=X_{1}^{u_{1}} \cdots X_{n}^{u_{n}} \in R$, where $u=\left(u_{1}, \ldots, u_{n}\right) \in \mathbb{N}^{n}$.
- Mon (R) is the set of monomials of R.
- A term of R is an element of the form $a \mu \in R$ where $a \in K$ and μ is a monomial.

Notice that every $f \in R$ can be written as a sum of terms: there exists a unique (finite) subset supp $(f) \subset \operatorname{Mon}(R)$ such that:

$$
f=\sum_{\mu \in \operatorname{supp}(f)} a_{\mu} \mu, \quad a_{\mu} \in K \backslash\{0\} .
$$

Notation and basic definitions

In the above representation, the only lack of uniqueness is the order of the terms.

Definition

A monomial order on R is a total order $<$ on $\operatorname{Mon}(R)$ such that:
(i) $1 \leq \mu$ for every $\mu \in \operatorname{Mon}(R)$;
(ii) If $\mu_{1}, \mu_{2}, \nu \in \operatorname{Mon}(R)$ such that $\mu_{1} \leq \mu_{2}$, then $\mu_{1} \nu \leq \mu_{2} \nu$.

Notice that, if $<$ is a monomial order on R and μ, ν are monomials such that $\mu \mid \nu$, then $\mu \leq \nu$: indeed $1 \leq \nu / \mu$, so

$$
\mu=1 \cdot \mu \leq(\nu / \mu) \cdot \mu=\nu
$$

Notation and basic definitions

Typical examples of monomial orders are the following: given monomials $\mu=X_{1}^{u_{1}} \cdots X_{n}^{u_{n}}$ and $\nu=X_{1}^{v_{1}} \cdots X_{n}^{v_{n}}$ we define:

- The lexicographic order (Lex) by $\mu<$ Lex ν iff $u_{k}<v_{k}$ for some k and $u_{i}=v_{i}$ for any $i<k$.
- The degree lexicographic order (DegLex) by $\mu<$ DegLex ν iff $\operatorname{deg}(\mu)<\operatorname{deg}(\nu)$ or $\operatorname{deg}(\mu)=\operatorname{deg}(\nu)$ and $\mu<$ Lex ν.
- The (degree) reverse lexicographic order (RevLex) by $\mu<$ RevLex ν iff $\operatorname{deg}(\mu)<\operatorname{deg}(\nu)$ or $\operatorname{deg}(\mu)=\operatorname{deg}(\nu)$ and $u_{k}>v_{k}$ for some k and $u_{i}=v_{i}$ for any $i>k$.

Example

In $K[X, Y, Z]$, assuming $X>Y>Z$, we have
$X^{2}>_{\text {Lex }} X Z>_{\text {Lex }} Y^{2}$, while $X^{2}>_{\text {RevLex }} Y^{2}>_{\text {RevLex }} X Z$.

Notation and basic definitions

Proposition

A monomial order on R is a well-order on $\operatorname{Mon}(R)$. That is, any nonempty subset of $\operatorname{Mon}(R)$ has a minimum. Equivalently, all descending chains of monomials in R terminate.

Proof: Let $\emptyset \neq N \subset \operatorname{Mon}(R)$, and $I \subset R$ be the ideal generated by N. By Hilbert basis theorem, l is generated by a finite number of monomials of N. Since a monomial order refines divisibility, the minimum of such finitely many monomials is also the minimum of $N . \square$

Notation and basic definitions

From now on, we fix a monomial order $<$ on R, so that every polynomial $0 \neq f \in R$ can be written uniquely as

$$
f=a_{1} \mu_{1}+\ldots+a_{k} \mu_{k}
$$

with $a_{i} \in K \backslash\{0\}, \mu_{i} \in \operatorname{Mon}(R)$ and $\mu_{1}>\mu_{2}>\ldots>\mu_{k}$.

Definition

The initial monomial of f is $\operatorname{in}(f)=\mu_{1}$. Furthermore, its initial coefficient is $\operatorname{inic}(f)=a_{1}$ and its initial term is $\operatorname{init}(f)=a_{1} \mu_{1}$.

Notice that, for all $f, g \in R$:

- $\operatorname{inic}(f) \operatorname{in}(f)=\operatorname{init}(f)$.
- in $(f g)=\operatorname{in}(f) \operatorname{in}(g)$.
- in $(f+g) \leq \max \{\operatorname{in}(f), \operatorname{in}(g)\}$.

Notation and basic definitions

Example

If $f=X_{1}+X_{2} X_{4}+X_{3}^{2}$, we have:

- $\operatorname{in}(f)=X_{1}$ with respect to Lex.
- in $(f)=X_{2} X_{4}$ with respect to DegLex.
- in $(f)=X_{3}^{2}$ with respect to RevLex.

Example

If $f=X^{2}+X Y+Y^{2} \in K[X, Y]$, then we have:

- $\operatorname{in}(f)=X^{2}$ if $X>Y$.
- in $(f)=Y^{2}$ if $Y>X$.

In particular, $X Y \neq \operatorname{in}(f)$ for all monomial orders.

Gröbner bases and Buchberger algorithm

Definition

If I is an ideal of R, then the monomial ideal $\operatorname{in}(I) \subset R$ generated by $\{\operatorname{in}(f): f \in I\}$ is named the initial ideal of I.

Definition

Polynomials f_{1}, \ldots, f_{m} of an ideal $I \subset R$ are a Gröbner basis of I if $\operatorname{in}(I)=\left(\operatorname{in}\left(f_{1}\right), \ldots, \operatorname{in}\left(f_{m}\right)\right)$.

Example

Consider the ideal $I=\left(f_{1}=X^{2}-Y^{2}, f_{2}=X Z-Y^{2}\right)$ of $K[X, Y, Z]$. For Lex with $X>Y>Z$ the polynomials f_{1}, f_{2} are not a Gröbner basis of I, indeed $X Y^{2}=\operatorname{in}\left(Z f_{1}-X f_{2}\right)$ is a monomial of in (I) which is not in $\left(\operatorname{in}\left(f_{1}\right)=X^{2}, \operatorname{in}\left(f_{2}\right)=X Z\right)$. For RevLex with $X>Y>Z$, it turns out that in $(I)=\left(X^{2}, Y^{2}\right)$, so f_{1} and f_{2} are a Gröbner basis of I in this case.

Gröbner bases and Buchberger algorithm

Remark

The Noetherianity of R implies that any ideal in R has a finite Gröbner basis.

There is a way to compute a Gröbner basis of an ideal I starting from a system of generators of I, namely the Buchsberger algorithm; it also checks if such a system of generators is already a Gröbner basis. We will develop the algorithm in the next few slides:

Definition

Let $f_{1}, \ldots, f_{m} \in R$. A polynomial $r \in R$ is a reduction of $g \in R$ modulo f_{1}, \ldots, f_{m} if there exist $q_{1}, \ldots, q_{m} \in R$ satisfying:

- $g=q_{1} f_{1}+\ldots+q_{m} f_{m}+r$;
- in $\left(q_{i} f_{i}\right) \leq \operatorname{in}(g)$ for all $i=1, \ldots, m$;
- For all $i=1, \ldots, m, \operatorname{in}\left(f_{i}\right)$ does not divide $\mu \forall \mu \in \operatorname{supp}(r)$.

Gröbner bases and Buchberger algorithm

Lemma

Let $f_{1}, \ldots, f_{m} \in R$. Every polynomial $g \in R$ admits a reduction modulo f_{1}, \ldots, f_{m}.

Proof: Let $J=\left(\operatorname{in}\left(f_{1}\right), \ldots, \operatorname{in}\left(f_{m}\right)\right)$. We start with $r=g$ and apply the reduction algorithm:
(1) If $\operatorname{supp}(r) \cap J=\emptyset$, we are done: r is the desired reduction.
(2) Otherwise choose $\mu \in \operatorname{supp}(r) \cap J$ and let $b \in K$ be the coefficient of μ in the monomial representation of r. Choose i such that $\operatorname{in}\left(f_{i}\right) \mid \mu$ and set $r^{\prime}=r-a \nu f_{i}$ where $\nu=\mu / \operatorname{in}\left(f_{i}\right)$ and $a=b / \operatorname{inic}\left(f_{i}\right)$. Then replace r by r^{\prime} and go to (1).
This algorithm terminates after finitely many steps since it replaces the monomial μ by a linear combination of monomials that are smaller in the monomial order, and all descending chains of monomials in R terminate. \square

Gröbner bases and Buchberger algorithm

Example

Once again, we take $R=K[X, Y, Z], f_{1}=X^{2}-Y^{2}$ and $f_{2}=X Z-Y^{2}$, and we consider Lex with $X>Y>Z$. Set $g=X^{2} Z$. Then $g=Z f_{1}+Y^{2} Z$, but $g=X f_{2}+X Y^{2}$ as well.
Both these equations yield reductions of g, namely $X Y^{2}$ and $Y^{2} Z$. Thus a polynomial can have several reductions modulo f_{1}, f_{2}.

The reduction of $g \in R$ modulo f_{1}, \ldots, f_{m} is unique when f_{1}, \ldots, f_{m} is a Gröbner basis...

Gröbner bases and Buchberger algorithm

Proposition

Let I be an ideal of $R, f_{1}, \ldots, f_{m} \in I$ and $J=\left(\operatorname{in}\left(f_{1}\right), \ldots, \operatorname{in}\left(f_{m}\right)\right)$. Then the following are equivalent:
(a) f_{1}, \ldots, f_{m} form a Gröbner basis of I;
(b) every $g \in I$ reduces to 0 modulo f_{1}, \ldots, f_{m};
(c) the monomials $\mu, \mu \notin J$, are linearly independent modulo I. If the equivalent conditions (a), (b), (c) hold, then:
(d) Every element of R has a unique reduction modulo f_{1}, \ldots, f_{m}.
(e) The reduction depends only on I and the monomial order.

Proof: Check $(\mathrm{a}) \Longrightarrow(\mathrm{c}) \Longrightarrow(\mathrm{b})$ as an exercise.

Gröbner bases and Buchberger algorithm

(b) \Longrightarrow (a) Let $g \in I, g \neq 0$. If g reduces to 0 , then we have

$$
g=q_{1} f_{1}+\cdots+q_{m} f_{m}
$$

such that $\operatorname{in}\left(q_{i} f_{i}\right) \leq \operatorname{in}(g)$ for all i. But the monomial in (g) must appear on the right hand side as well, and this is only possible if $\operatorname{in}(g)=\operatorname{in}\left(q_{i} f_{i}\right)=\operatorname{in}\left(q_{i}\right) \operatorname{in}\left(f_{i}\right)$ for at least one i. In other words, in (g) must be divisible by in $\left(f_{i}\right)$ for some i. Hence in $(I)=J$.

Check (c) $\Longrightarrow(\mathrm{d})$, (e) as an exercise. \square

Corollary

If f_{1}, \ldots, f_{m} is a Gröbner basis of an ideal $I \subset R$ then $I=\left(f_{1}, \ldots, f_{m}\right)$.

Gröbner bases and Buchberger algorithm

Corollary

Let $I \subset R$ be an ideal and $<_{1},<_{2}$ monomial orders of R. If $\mathrm{in}_{<_{1}}(I) \subset \mathrm{in}_{<_{2}}(I)$, then $\mathrm{in}_{<_{1}}(I)=\mathrm{in}_{<_{2}}(I)$.

Proof: By the previous proposition, the sets A_{i} of monomials of R not in in < $_{i}(I)$ are K-bases of R / I for each $i=1,2$. Since $A_{1} \supset A_{2}$, we must have $A_{1}=A_{2}$. \square

Corollary

Let $I_{1}, I_{2} \subset R$ be ideals and $<$ a monomial order of R. If $I_{1} \subset I_{2}$ and $\mathrm{in}_{<}\left(I_{1}\right)=\mathrm{in}_{<}\left(I_{2}\right)$, then $I_{1}=I_{2}$.

Proof: By the previous proposition, the set A of monomials of R not in $\mathrm{in}_{<}\left(I_{1}\right)=\mathrm{in}_{<}\left(I_{2}\right)$ are K-bases of R / I_{i} for each $i=1,2$.
Since $I_{1} \subset I_{2}$, we must have $I_{1}=I_{2}$. \square

Gröbner bases and Buchberger algorithm

Definition

The S-polynomial of two elements $f, g \in R$ is defined as

$$
S(f, g)=\frac{\operatorname{Icm}(\operatorname{in}(f), \operatorname{in}(g))}{\operatorname{init}(f)} f-\frac{\operatorname{Icm}(\operatorname{in}(f), \operatorname{in}(g))}{\operatorname{init}(g)} g
$$

Proposition

Let $f_{1}, \ldots, f_{m} \in R$ and $I=\left(f_{1}, \ldots, f_{m}\right)$. Then the following are equivalent:
(a) f_{1}, \ldots, f_{m} form a Gröbner basis of I.
(b) For all $1 \leq i<j \leq m, S\left(f_{i}, f_{j}\right)$ reduces to 0 modulo f_{1}, \ldots, f_{m}.

Proof: $(\mathrm{a}) \Longrightarrow(\mathrm{b})$: It follows since $S\left(f_{i}, f_{j}\right) \in I$.

Gröbner bases and Buchberger algorithm

(b) \Longrightarrow (a): We need to show that every $g \in I$ reduces to 0 modulo the f_{k} 's. Since $g \in I$, we have $g=a_{1} f_{1}+\ldots+a_{m} f_{m}$ for some $a_{k} \in R$. Among such representations, we can choose one minimizing $\mu:=\max \left\{\operatorname{in}\left(a_{i} f_{i}\right): i=1, \ldots, m\right\}$ and, among these, minimizing $s:=\left|\left\{i=1, \ldots, m \mid \operatorname{in}\left(a_{i} f_{i}\right)=\mu\right\}\right|$. By contradiction, suppose $\mu>\operatorname{in}(g)$. In this case $s \geq 2$, so there exist $i<j$ such that $\operatorname{in}\left(a_{i} f_{i}\right)=\operatorname{in}\left(a_{j} f_{j}\right)=\mu$. Set $c:=\operatorname{inic}\left(a_{i} f_{i}\right)$ and notice that $\mu=\nu \cdot \operatorname{lcm}\left(\operatorname{in}\left(f_{i}\right), \operatorname{in}\left(f_{j}\right)\right)$ for some $\nu \in \operatorname{Mon}(R)$. Let

$$
S\left(f_{i}, f_{j}\right)=q_{1} f_{1}+\ldots+q_{m} f_{m}
$$

the reduction of $S\left(f_{i}, f_{j}\right)$ (so that $\operatorname{in}\left(q_{k} f_{k}\right) \leq \operatorname{in}\left(S\left(f_{i}, f_{j}\right)\right)$ which is less than $\alpha_{i j}:=\operatorname{lcm}\left(\operatorname{in}\left(f_{i}\right), \operatorname{in}\left(f_{j}\right)\right)$ for all $\left.k\right)$. From this we get a representation $g=a_{1}^{\prime} f_{1}+\ldots+a_{m}^{\prime} f_{m}$ contradicting the minimality of μ and s where $a_{i}^{\prime}=a_{i}-\frac{c \nu \alpha_{i j}}{\operatorname{init}\left(f_{i}\right)}+c \nu q_{i}, a_{j}^{\prime}=a_{j}+\frac{c \nu \alpha_{i j}}{\operatorname{init}\left(f_{j}\right)}+c \nu q_{j}$ and $a_{k}^{\prime}=a_{k}+c \nu q_{k}$ for $i \neq k \neq j$. \square

Initial ideals with respect to weights

Fix $w=\left(w_{1}, \ldots, w_{n}\right) \in \mathbb{N}^{n}$ a weight vector. If $\mu=X^{u} \in \operatorname{Mon}(R)$ with $u=\left(u_{1}, \ldots, u_{n}\right)$ then we set $w(\mu):=w_{1} u_{1}+\ldots+w_{n} u_{n}$. If $0 \neq f \in R$ we set $w(f):=\max \{w(\mu): \mu \in \operatorname{supp}(f)\}$ and

$$
\operatorname{init}_{w}(f)=\sum_{\substack{\mu \in \operatorname{supp}(f) \\ w(\mu)=w(f)}} a_{\mu} \mu,
$$

where $f=\sum_{\mu \in \operatorname{supp}(f)} a_{\mu} \mu$.

Example

If $w=(2,1)$ and $f=X^{3}+2 X^{2} Y^{2}-Y^{5} \in \mathbb{Q}[X, Y]$ then $\operatorname{init}_{w}(f)=X^{3}+2 X^{2} Y^{2}$.

Given an ideal $I \subset R$ we set $\operatorname{in}_{w}(I)=\left(\operatorname{init}_{w}(f): f \in I\right) \subset R$.

As we will see, the passage from an ideal $/$ to $\mathrm{in}_{w}(I)$ can be seen as a "continuous" degenerative process. Before explaining it, we will show that, given a monomial order $<$ on R and an ideal $I \subset R$, we can always find a suitable $w \in\left(\mathbb{N}_{>0}\right)^{n}$ such that $\mathrm{in}_{w}(I)=\mathrm{in}_{<}(I)$.

Example

Let us find a weight vector that picks the largest monomial in every subset of monomials of degree $\leq d$ in $K[X, Y, Z]$ for the lexicographic order determined by $X>Y>Z$. We give weight 1 to Z. Since $Y>Z^{d}$, we give weight $d+1$ to Y. Since $X>Y^{d}$ and $w\left(Y^{d}\right)=d(d+1)$, we must choose $w(X)=d(d+1)+1$. It is not hard to check that $w=(d(d+1)+1, d+1,1)$ indeed solves our problem.

Initial ideals with respect to weights

Given $w \in \mathbb{N}^{n}$ and $<$ a monomial order, we define another monomial order on R as

$$
\mu<{ }_{w} \nu \Longleftrightarrow\left\{\begin{array}{l}
w(\mu)<w(\nu) \\
w(\mu)=w(\nu) \text { and } \mu<\nu
\end{array}\right.
$$

Lemma

For an ideal $I \subset R$, if $\mathrm{in}_{w}(I) \subset \mathrm{in}_{<}(I)$ or $\mathrm{in}_{w}(I) \supset \mathrm{in}_{<}(I)$, then $\mathrm{in}_{w}(I)=\mathrm{in}_{<}(I)$.

Proof: By applying $\mathrm{in}_{<}(-)$on both sides we get, for example, $\mathrm{in}_{<_{w}}(I)=\mathrm{in}_{<}\left(\mathrm{in}_{w}(I)\right) \supset \mathrm{in}_{<}\left(\mathrm{in}_{<}(I)\right)=\mathrm{in}_{<}(I)$. So the equality $\mathrm{in}_{<}\left(\mathrm{in}_{w}(I)\right)=\mathrm{in}_{<}\left(\mathrm{in}_{<}(I)\right)$ must hold, and because $\mathrm{in}_{w}(I) \supset \mathrm{in}_{<}(I)$ we must have $\mathrm{in}_{w}(I)=\mathrm{in}_{<}(I)$. \square

Initial ideals with respect to weights

Lemma

Let $P \subset \mathbb{R}^{n}$ be the convex hull of some vectors $u^{1}, \ldots, u^{m} \in \mathbb{N}^{n}$. Then $X^{u} \leq \max \left\{X^{u^{1}}, \ldots, X^{u^{m}}\right\}$ for any $u \in P \cap \mathbb{N}^{n}$.

Proof: If $u \in P \cap \mathbb{N}^{n}$, then $u=\sum_{i=1}^{m} \lambda_{i} u^{i}$ with $\lambda_{i} \in \mathbb{Q} \geq 0$ and $\sum_{i=1}^{m} \lambda_{i}=1$. If $\lambda_{i}=a_{i} / b_{i}$ with $a_{i} \in \mathbb{N}, b_{i} \in \mathbb{N} \backslash\{0\}$, then we have

$$
b u=\sum_{i=1}^{m} a_{i}^{\prime} u^{i}
$$

where $b=b_{1} \cdots b_{m}$ and $a_{i}^{\prime}=a_{i}\left(b / b_{i}\right)$. If, by contradiction, $X^{u}>X^{u^{i}}$ for all $i=1, \ldots, m$, then

$$
\left(X^{u}\right)^{b}>\left(X^{u^{1}}\right)^{a_{1}^{\prime}} \cdots\left(X^{u^{m}}\right)^{a_{m}^{a_{m}^{\prime}}}
$$

(because $b=\sum_{i=1}^{m} a_{i}^{\prime}$) but this contradicts the fact that these two monomials are the same.

Initial ideals with respect to weights

Proposition

Given a monomial order $>$ on R and $\mu_{i}, \nu_{i} \in \operatorname{Mon}(R)$ such that $\mu_{i}>\nu_{i}$ for $i=1, \ldots, k$, there exists $w \in\left(\mathbb{N}_{>0}\right)^{n}$ such that $w\left(\mu_{i}\right)>w\left(\nu_{i}\right) \forall i=1, \ldots, k$. Consequently, given an ideal $I \subset R$ there exists $w \in\left(\mathbb{N}_{>0}\right)^{n}$ such that $\mathrm{in}_{<}(I)=\mathrm{in}_{w}(I)$.

Proof: Notice that $\mu_{i}>\nu_{i} \Longleftrightarrow \prod_{j} \mu_{j}>\nu_{i} \prod_{j \neq i} \mu_{j}$ and $w\left(\mu_{i}\right)>w\left(\nu_{i}\right) \Longleftrightarrow w\left(\prod_{j} \mu_{j}\right)>w\left(\nu_{i} \prod_{j \neq i} \mu_{j}\right)$, so we can assume that μ_{i} is the same monomial μ for all $i=1, \ldots, k$. If $\mu=X^{u}$ and $\nu_{i}=X^{v^{i}}$, consider $C=u+\left(\mathbb{R}_{\geq 0}\right)^{n} \subset \mathbb{R}^{n}$ and $P \subset \mathbb{R}^{n}$ the convex hull of u and v^{1}, \ldots, v^{k}. We claim that $C \cap P=\{u\}$. Suppose that $v \in C \cap P$. We can assume that $v \in \mathbb{Q}^{n}$, so that there is $N \in \mathbb{N}$ big enough such that $N_{v} \in \mathbb{N}$. Let $\nu=X^{N v}$. Since $v \in C, \nu$ is divided by $\mu^{N}=X^{N u}$, so $\nu \geq \mu^{N}$. On the other hand, $v \in P \Longrightarrow N v \in N P$, so $\nu \leq \max \left\{N u, N v^{i}: i=1, \ldots, k\right\}=N u$ by the previous lemma, so $\nu=\mu^{N}$, that is $v=u$.

Therefore there is a hyperplane passing through u separating C and P, that is there is $w \in\left(\mathbb{R}^{n}\right)^{*}$ such that

$$
w(v)>w(u)>w\left(v^{i}\right)
$$

for all $v \in C \backslash\{u\}$ and $i=1, \ldots, k$. Of course we can pick $w=\left(w_{1}, \ldots, w_{n}\right) \in \mathbb{Q}^{n} ;$ furthermore the first inequalities yield $w_{i}>0$ for all $i=1, \ldots, n$. After taking a suitable multiple, so, we can assume $w \in\left(\mathbb{N}_{>0}\right)^{n}$ is our desired weight vector.

For the last part of the statement, let f_{1}, \ldots, f_{m} be a Gröbner basis of I. By the first part, there is $w \in\left(\mathbb{N}_{>0}\right)^{n}$ such that $w(\mu)>w(\nu)$ where $\mu=\operatorname{in}\left(f_{i}\right)$ and $\nu \in \operatorname{supp}\left(f_{i}\right) \backslash\{\mu\}$ for all $i=1, \ldots, m$. So $\mathrm{in}_{<}(I) \subset \mathrm{in}_{w}(I)$, hence $\mathrm{in}_{<}(I)=\mathrm{in}_{w}(I) . \square$

Initial ideals with respect to weights

Let us extend R to $P=R[t]$ by introducing a homogenizing variable t. The w-homogenization of $f=\sum_{\mu \in \operatorname{supp}(f)} a_{\mu} \mu \in R$ is

$$
\operatorname{hom}_{w}(f)=\sum_{\mu \in \operatorname{supp}(f)} a_{\mu} \mu t^{w(f)-w(\mu)} \in P
$$

Example

Let $f=X^{2}-X Y+Z^{2} \in K[X, Y, Z]$. We have:

- $\operatorname{hom}_{w}(f)=X^{2}-X Y+Z^{2} t^{2}$ if $w=(2,2,1)$.
- $\operatorname{hom}_{w}(f)=X^{2}-X Y t^{2}+Z^{2} t^{6}$ if $w=(4,2,1)$.

Given an ideal $I \subset R$, hom $_{w}(I) \subset P$ denotes the ideal generated by hom $_{w}(f)$ with $f \in I$. For its study, we extend the weight vector w to w^{\prime} on P by $w^{\prime}(t)=1$, so that $\operatorname{hom}_{w}(I)$ is a w^{\prime}-homogeneous ideal of P, where the grading is $\operatorname{deg}\left(X_{i}\right)=w_{i}$ and $\operatorname{deg}(t)=1$.

Initial ideals with respect to weights

Because $P /$ hom $_{w}(I)$ is a w^{\prime}-graded P-module, it is also a graded $K[t]$-module (w.r.t. the standard grading on $K[t]$). So $t-a$ is not a zero-divisor on $P /$ hom $_{w}(I)$ for any $a \in K \backslash\{0\}$. We want to show that also t is not a zero-divisor on $P / \operatorname{hom}_{w}(I)$ as well, and in order to do so it is useful to consider the dehomogenization map:

$$
\begin{aligned}
\pi: P & \longrightarrow R \\
F\left(X_{1}, \ldots, X_{n}, t\right) & \mapsto F\left(X_{1}, \ldots, X_{n}, 1\right)
\end{aligned}
$$

Remark

(1) $\pi\left(\operatorname{hom}_{w}(f)\right)=f \forall f \in R$. So, $\pi\left(\operatorname{hom}_{w}(I)\right)=I$.
(2) If $F \in P \backslash t P$ is w^{\prime}-homogeneous, then $\operatorname{hom}_{w}(\pi(F))=F$; moreover, if $r \in \mathbb{N}$ and $G=t^{r} F$, $\operatorname{hom}_{w}(\pi(G)) t^{r}=G$.

Summarizing, for $F \in P$ we have $F \in \operatorname{hom}_{w}(I) \Longleftrightarrow \pi(F) \in I$.

Initial ideals with respect to weights

Proposition

Given an ideal $/$ of R, the element $t-a \in K[t]$ is not a zero divisor on $P /$ hom $_{w}(I)$ for every $a \in K$. Furthermore:

- $P /\left(\operatorname{hom}_{w}(I)+(t)\right) \cong R / \operatorname{in}_{w}(I)$.
- $P /\left(\operatorname{hom}_{w}(I)+(t-a)\right) \cong R / I$ for all $a \in K \backslash\{0\}$.

Proof: For the first assertion, we need to show it just for $a=0$: Let $F \in P$ such that $t F \in \operatorname{hom}_{w}(I)$. Then $\pi(t F) \in I$, so, since $\pi(F)=\pi(t F), F \in \operatorname{hom}_{w}(I)$.

For $P /\left(\operatorname{hom}_{w}(I)+(t)\right) \cong R / \operatorname{in}_{w}(I)$ it is enough to check that hom $_{w}(I)+(t)=\mathrm{in}_{w}(I)+(t)$. This is easily seen since for every $f \in R$ the difference $\operatorname{hom}_{w}(f)-\operatorname{init}_{w}(f)$ is divisible by t.

Initial ideals with respect to weights

To prove that $P /\left(\operatorname{hom}_{w}(I)+(t-a)\right) \cong R / I$ for every $a \in K \backslash\{0\}$, we consider the graded isomorphism $\psi: R \rightarrow R$ induced by $\psi\left(X_{i}\right)=a^{-w_{i}} X_{i}$. Of course $\psi(\mu)=a^{-w(\mu)} \mu \forall \mu \in \operatorname{Mon}(R)$ and hom $_{w}(f)-a^{w(f)} \psi(f)$ is divisible by $t-a$ for all $f \in R$. So hom $_{w}(I)+(t-a)=\psi(I)+(t-a)$, which implies the desired isomorphism.

Remark

Since a module over a PID is flat iff it has no torsion, the proposition above says that $P / \operatorname{hom}_{w}(I)$ is a flat $K[t]-$ module, and that it defines a flat family over $K[t]$ with generic fiber R / I and special fiber $R / \mathrm{in}_{w}(I)$.

Initial ideals with respect to weights

Next we want to show that local cohomology cannot shrink passing to the initial ideal. We need the following first:

Lemma

Let A be a ring, $M, N A$-modules and $a \in \operatorname{ann}(N) \subset A$ a non-zero-divisor on M as well as on A. Then, for all $i \geq 0$,

$$
\operatorname{Ext}_{A}^{i}(M, N) \cong \operatorname{Ext}_{A / a A}^{i}(M / a M, N)
$$

Proof: Let F_{\bullet} be a free resolution of M. The Ext modules on the left hand side are the cohomology modules of $\operatorname{Hom}_{A}\left(F_{0}, N\right)$, which is a complex of A-modules isomorphic to $\operatorname{Hom}_{A / a A}\left(F_{\bullet} / a F_{\bullet}, N\right)$ because a annihilates N. However $F_{0} / a F_{0}$ is a free resolution of the $A / a A$-module $M / a M$ since a is a non-zero-divisor on M as well as on A, so the cohomology modules of the latter complex are the Ext modules on the right hand side. \square

Let us give a graded structure to $R=K\left[X_{1}, \ldots, X_{n}\right]$ by putting $\operatorname{deg}\left(X_{i}\right)=g_{i}$ where $g=\left(g_{1}, \ldots, g_{n}\right)$ is a vector of positive integers (so that $\mathfrak{m}=\left(X_{1}, \ldots, X_{n}\right)$ is the unique homogeneous maximal ideal of R). If $I \subset R$ is a g-homogeneous ideal, then $\operatorname{hom}_{w}(I) \subset P$ is homogeneous with respect to the bi-graded structure on P given by $\operatorname{deg}\left(X_{i}\right)=\left(g_{i}, w_{i}\right)$ and $\operatorname{deg}(t)=(0,1)$. So $S=P / \operatorname{hom}_{w}(I)$ and $\mathrm{Ext}_{P}^{i}(S, P)$ are finetely generated bi-graded P-modules.

Notice that, given a finitely generated bi-graded P-module M, $M_{(j, *)}=\bigoplus_{k \in \mathbb{Z}} M_{(j, k)}$ is a finitely generated graded (w.r.t. the standard grading) $K[t]$-module for all $j \in \mathbb{Z}$. Finally, if N is a finitely generated $K[t]$-module, $N \cong K[t]^{a} \oplus T$ for $a \in \mathbb{N}$ and some finitely generated torsion $K[t]$-module T (since $K[t]$ is a PID). If N is also graded, then $T \cong \bigoplus_{k \in \mathbb{N}_{>0}}\left(K[t] /\left(t^{k}\right)\right)^{b_{k}}$.

Initial ideals with respect to weights

From now, let us fix a g-homogeneous ideal $I \subset R$ and denote $P /$ hom $_{w}(I)$ by S. From the above discussion, for all $i, j \in \mathbb{Z}$:

$$
\operatorname{Ext}_{P}^{i}(S, P)_{(j, *)} \cong K[t]^{a_{i, j}} \oplus\left(\bigoplus_{k \in \mathbb{N}>0}\left(K[t] /\left(t^{k}\right)\right)^{b_{i, j, k}}\right)
$$

for some natural numbers $a_{i, j}$ and $b_{i, j, k}$. Let $b_{i, j}=\sum_{k \in \mathbb{N}_{>0}} b_{i, j, k}$.

Theorem

With the above notation, for any $i, j \in \mathbb{Z}$ we have:

- $\operatorname{dim}_{K}\left(\operatorname{Ext}_{R}^{i}(R / I, R)_{j}\right)=a_{i, j}$.
- $\operatorname{dim}_{K}\left(\operatorname{Ext}_{R}^{i}\left(R / \operatorname{in}_{w}(I), R\right)_{j}\right)=a_{i, j}+b_{i, j}+b_{i+1, j}$.

In particular, $\operatorname{dim}_{K}\left(\operatorname{Ext}_{R}^{i}(R / I, R)_{j}\right) \leq \operatorname{dim}_{K}\left(\operatorname{Ext}_{R}^{i}\left(R / \operatorname{in}_{w}(I), R\right)_{j}\right)$ and $\operatorname{dim}_{K}\left(H_{\mathfrak{m}}^{i}(R / I)_{j}\right) \leq \operatorname{dim}_{K}\left(H_{\mathfrak{m}}^{i}\left(R / \operatorname{in}_{w}(I)\right)_{j}\right)$.

Initial ideals with respect to weights

Proof: Letting x be t or $t-1$ we have the short exact sequence

$$
0 \rightarrow P \xrightarrow{\cdot x} P \rightarrow P / x P \rightarrow 0 .
$$

The long exact sequence of $\operatorname{Ext}_{p}(S,-)$ associated to it, gives us the following short exact sequences for all $i \in \mathbb{Z}$:

$$
0 \rightarrow \text { Coker } \alpha_{i, x} \rightarrow \operatorname{Ext}_{P}^{i}(S, P / x P) \rightarrow \operatorname{Ker} \alpha_{i+1, x} \rightarrow 0,
$$

where $\alpha_{k, x}$ is the multiplication by x on $\operatorname{Ext}_{P}^{k}(S, P)$. We can restrict the above exact sequences to the degree $(j, *)$ for any $j \in \mathbb{Z}$ getting:
$0 \rightarrow\left(\operatorname{Coker} \alpha_{i, x}\right)_{(j, *)} \rightarrow\left(\operatorname{Ext}_{P}^{i}(S, P / x P)\right)_{(j, *)} \rightarrow\left(\operatorname{Ker} \alpha_{i+1, x}\right)_{(j, *)} \rightarrow 0$.
Notice that we have:

- $\left(\operatorname{Coker} \alpha_{i, t}\right)_{(j, *)} \cong K^{a_{i, j}+b_{i, j}}$ and $\left(\operatorname{Ker} \alpha_{i+1, t}\right)_{(j, *)} \cong K^{b_{i+1, j}}$.
- $\left(\operatorname{Coker} \alpha_{i, t-1}\right)_{(j, *)} \cong K^{a_{i, j}}$ and $\left(\operatorname{Ker} \alpha_{i+1, t-1}\right)_{(j, *)}=0$.

Initial ideals with respect to weights

Therefore, for all $i, j \in \mathbb{Z}$, we got:

- $\left(\operatorname{Ext}_{P}^{i}(S, P / t P)\right)_{(j, *)} \cong K^{a_{i, j}+b_{i, j}+b_{i+1, j}}$.
- $\left(\operatorname{Ext}_{P}^{i}(S, P /(t-1) P)\right)_{(j, *)} \cong K^{a_{i, j}}$.

By a previous proposition both t and $t-1$ are non-zero-divisors on S as well on P, hence a previous lemma together with the same proposition imply:

- $\left(\operatorname{Ext}_{P}^{i}(S, P / t P)\right)_{(j, *)} \cong\left(\operatorname{Ext}_{P / t P}^{i}(S / t S, P / t P)\right)_{(j, *)}$, which is isomorphic to $\left(\operatorname{Ext}_{R}^{i}\left(R / \mathrm{in}_{w}(I), R\right)\right)_{j}$.
- $\left(\operatorname{Ext}_{P}^{i}(S, P /(t-1) P)\right)_{(j, *)} \cong\left(\operatorname{Ext}_{P /(t-1) P}^{i}(S /(t-1) S, P /(t-1) P)\right)_{(j, *)}$, which is isomorphic to $\left(\operatorname{Ext}_{R}^{i}(R / I, R)\right)_{j}$.
The thesis follows from this. For the local cohomology statement just observe that by Grothendieck graded duality $H_{\mathfrak{m}}^{i}(R / J)_{j}$ is dual as K-vector space to $\operatorname{Ext}_{R}^{n-i}(R / J, R)_{-|g|-j}$ for any g-homogeneous ideal $J \subset R$ and $i, j \in \mathbb{Z}$ (where $|g|=g_{1}+\ldots+g_{n}$). \square

Initial ideals with respect to weights

Corollary

If I is a homogeneous ideal of R, then for all $i, j \in \mathbb{Z}$

$$
\operatorname{dim}_{K}\left(H_{\mathfrak{m}}^{i}(R / I)_{j}\right) \leq \operatorname{dim}_{K}\left(H_{\mathfrak{m}}^{i}(R / \operatorname{in}(I))_{j}\right) .
$$

Next we want to show that, if $\mathrm{in}(I)$ is squarefree, then we have equalities above. In order to do this, we will show that, if $\mathrm{in}_{w}(I)$ is a squarefree monomial ideal, then $\operatorname{Ext}_{p}^{i}(S, P)$ is a flat $K[t]$-module for all $i \in \mathbb{Z}$ (so that the numbers $b_{i, j}$ in the previous theorem would be 0 for all $i, j \in \mathbb{Z}$). Let us recall that a module is flat over a PID (such as $K[t]$) if and only if it has no torsion...

Fiber-full modules and flatness

In the following slides, A is a Noetherian flat $K[t]$-algebra and M a finitely generated A-module which is flat over $K[t]$, and both A and M are graded $K[t]$-modules (think at A and M like they were, with the previous notation, P and S).

Lemma

The following are equivalent:
(1) $\operatorname{Ext}_{A}^{i}(M, A)$ is a flat over $K[t]$ for all $i \in \mathbb{N}$.
(2) $\operatorname{Ext}_{A / t^{m} A}^{i}\left(M / t^{m} M, A / t^{m} A\right)$ is a flat over $K[t] /\left(t^{m}\right) \forall i, m \in \mathbb{N}$.

Proof: $(1) \Longrightarrow(2)$: Since A is flat over $K[t]$, there is a short exact sequence $0 \rightarrow A \xrightarrow{\cdot t^{m}} A \rightarrow A / t^{m} A \rightarrow 0$. Consider the induced long exact sequence of $\operatorname{Ext}_{A}(M,-)$:

$$
\begin{gathered}
\cdots \rightarrow \operatorname{Ext}_{A}^{i}(M, A) \xrightarrow{\cdot t^{m}} \operatorname{Ext}_{A}^{i}(M, A) \rightarrow \operatorname{Ext}_{A}^{i}\left(M, A / t^{m} A\right) \\
\rightarrow \operatorname{Ext}_{A}^{i+1}(M, A) \xrightarrow{\cdot t^{m}} \operatorname{Ext}_{A}^{i+1}(M, A) \rightarrow \ldots
\end{gathered}
$$

By (1), $\operatorname{Ext}_{A}^{k}(M, A)$ does not have t-torsion for all $k \in \mathbb{N}$, so for all $i \in \mathbb{N}$ we have a short exact sequence

$$
0 \rightarrow \operatorname{Ext}_{A}^{i}(M, A) \xrightarrow{\cdot t^{m}} \operatorname{Ext}_{A}^{i}(M, A) \rightarrow \operatorname{Ext}_{A}^{i}\left(M, A / t^{m} A\right) \rightarrow 0
$$

from which $\operatorname{Ext}_{A}^{i}\left(M, A / t^{m} A\right) \cong \frac{\operatorname{Ext}_{A}^{i}(M, A)}{t^{m} \operatorname{Ext}_{A}^{i}(M, A)}$. It is
straightforward to check that the latter is flat over $K[t] /\left(t^{m}\right)$ because (1). Finally, a previous lemma implies that

$$
\operatorname{Ext}_{A}^{i}\left(M, A / t^{m} A\right) \cong \operatorname{Ext}_{A / t^{m} A}^{i}\left(M / t^{m} M, A / t^{m} A\right)
$$

$(2) \Longrightarrow(1)$: By contradiction, suppose $\operatorname{Ext}_{A}^{i}(M, A)$ is not flat over $K[t]$. Because $K[t]$ is a PID, then $\operatorname{Ext}_{A}^{i}(M, A)$ has nontrivial torsion. So, by the graded structure of $\operatorname{Ext}_{A}^{i}(M, A)$, there exists a nontrivial class $[\phi] \in \operatorname{Ext}_{A}^{i}(M, A)$ and $k \in \mathbb{N}$ such that $t^{k}[\phi]=0$.

Let us take a A-free resolution F_{\bullet} of M, and let $\left(G^{\bullet}, \partial^{\bullet}\right)$ be the complex $\operatorname{Hom}_{A}\left(F_{\bullet}, A\right)$, so that $\operatorname{Ext}_{A}^{i}(M, A)$ is the i th cohomology module of G^{\bullet}. Then $\phi \in \operatorname{Ker}\left(\partial^{i}\right) \backslash \operatorname{Im}\left(\partial^{i-1}\right)$ and $t^{k} \phi \in \operatorname{Im}\left(\partial^{i-1}\right)$.

Since M and A are flat over $k[t], F_{\bullet} / t^{m} F_{\bullet}$ is a $A / t^{m} A$-free resolution of $M / t^{m} M$. Let $\left(\overline{G^{\bullet}}, \overline{\partial^{\bullet}}\right)$ denote the complex $\operatorname{Hom}_{A / t^{m} A}\left(F_{\bullet} / t^{m} F_{\bullet}, A / t^{m} A\right)$, so that $\operatorname{Ext}_{A / t^{m} A}^{i}\left(M / t^{m} M, A / t^{m} A\right)$ is the i th cohomology module of \bar{G}^{\bullet}, and π^{\bullet} the natural map of complexes from G^{\bullet} to $\overline{G^{\bullet}}$. Of course $\pi^{i}(\phi) \in \operatorname{Ker}\left(\overline{\partial^{i}}\right)$ and $t^{k} \pi^{i}(\phi) \in \operatorname{Im}\left(\overline{\partial^{i-1}}\right)$. Now, it is enough to find a positive integer m such that $\pi^{i}(\phi)$ does neither belong to $\operatorname{Im}\left(\overline{\partial^{i-1}}\right)$ nor to $t^{m-k} \operatorname{Ker}\left(\overline{\partial^{i}}\right)$. Indeed, in this case $x=\left[\pi^{i}(\phi)\right]$ would be an element of $\operatorname{Ext}_{P / t^{m} P}^{i}\left(S / t^{m} S, P / t^{m} P\right) \backslash t^{m-k} \operatorname{Ext}_{P / t^{m} P}^{i}\left(S / t^{m} S, P / t^{m} P\right)$ such that $t^{k} x=0$, and this would contradict the flatness of $\operatorname{Ext}_{P / t^{m} P}^{i}\left(S / t^{m} S, P / t^{m} P\right)$ over $K[t] /\left(t^{m}\right)$.

If $\pi^{i}(\phi) \in \operatorname{Im}\left(\overline{\partial^{i-1}}\right)$, then

$$
\phi \in \operatorname{Im}\left(\partial^{i-1}\right)+t^{m} G^{i}=\operatorname{Im}\left(\partial^{i-1}\right)+t^{m} \operatorname{Ker}\left(\partial^{i}\right) .
$$

Since ϕ does not belong to $\operatorname{Im}\left(\partial^{i-1}\right)$, Krull's intersection theorem tells us that $\pi^{i}(\phi)$ cannot belong to $\operatorname{Im}\left(\overline{\partial^{i-1}}\right)$ for all $m \gg 0$. Analogously, if $\pi^{i}(\phi) \in t^{m-k} \operatorname{Ker}\left(\overline{\partial^{i}}\right)$, then

$$
\phi \in t^{m-k} \operatorname{Ker}\left(\partial^{i}\right)+t^{m} G^{i}=t^{m-k} \operatorname{Ker}\left(\partial^{i}\right) .
$$

But $\phi \neq 0$, so, again using Krull's intersection theorem, $\pi^{i}(\phi) \notin t^{m-k} \overline{G^{i}}$ for all $m \gg 0$.

In the above situation, we say that M is a fiber-full A-module if, for any $m \in \mathbb{N}_{>0}$, the natural projection $M / t^{m} M \rightarrow M / t M$ induces injective maps $\operatorname{Ext}_{A}^{i}(M / t M, A) \rightarrow \operatorname{Ext}_{A}^{i}\left(M / t^{m} M, A\right)$ for all $i \in \mathbb{Z}$.

Next we will see that, if M is a fiber-full A-module, then $\operatorname{Exx}_{A}^{i}(M, A)$ is flat over $K[t]$ for all $i \in \mathbb{Z}$. This circle of ideas are due (in slightly different contexts) to Ma-Quy and Kollar-Kovacs. After this, we will show that S is a fiber-full P-module provided that $\mathrm{in}_{w}(I)$ is a squarefree monomial ideal, and this will imply that

$$
\operatorname{dim}_{K}\left(H_{\mathfrak{m}}^{i}(R / I)_{j}\right)=\operatorname{dim}_{K}\left(H_{\mathfrak{m}}^{i}(R / \operatorname{in}(I))_{j}\right) \quad \forall i, j \in \mathbb{Z}
$$

whenever $I \subset R$ is a homogeneous ideal such that in $(I) \subset R$ is a squarefree monomial ideal, a result of Conca and myself.

The previous lemma says that to show that $\operatorname{Ext}_{A}^{i}(M, A)$ is flat over $K[t]$ for all $i \in \mathbb{Z}$ it is enough to show that the $K[t] /\left(t^{m}\right)$-module $\operatorname{Ext}_{A / t^{m} A}^{i}\left(M / t^{m} M, A / t^{m} A\right)$ is flat for all $i \in \mathbb{Z}$ and $m \in \mathbb{N}_{>0}$. So we introduce the following helpful notation for all $m \in \mathbb{N}_{>0}$:

- $A_{m}=A / t^{m} A$.
- $M_{m}=M / t^{m} M$.
- $\iota_{j}: t^{j+1} M_{m} \rightarrow t^{j} M_{m}$ the natural inclusion $\forall j$.
- $\mu_{j}: t^{j} M_{m} \rightarrow t^{m-1} M_{m}$ the multiplication by $t^{m-1-j} \forall j$.
- $E_{m}^{i}(-)$ the contravariant functor $\operatorname{Ext}_{A_{m}}^{i}\left(-, A_{m}\right) \forall i$.

Remark

A lemma of Rees implies that $E_{m}^{i}\left(M_{k}\right) \cong \operatorname{Ext}_{A}^{i+1}\left(M_{k}, A\right)$ whenever $k \leq m$. Hence we deduce that

$$
E_{m}^{i}\left(M_{k}\right) \cong E_{m}^{i}\left(M_{m}\right) \quad \forall k \leq m
$$

Remark

Since t is a non-zero-divisor on M we have that:

$$
M_{j} \cong t^{m-j} M_{m} \quad \forall j
$$

Remark

The short exact sequences $0 \rightarrow t^{j+1} M_{m} \xrightarrow{\iota_{j}} t^{j} M_{m} \xrightarrow{\mu_{j}} t^{m-1} M_{m} \rightarrow 0$, if M is fiber-full, yield the following short exact sequences for all $i \in \mathbb{Z}$:

$$
0 \rightarrow E_{m}^{i}\left(t^{m-1} M_{m}\right) \xrightarrow[m]{E_{m}^{i}\left(\mu_{j}\right)} E_{m}^{i}\left(t^{j} M_{m}\right) \xrightarrow{E_{m}^{i}\left(\iota_{j}\right)} E_{m}^{i}\left(t^{j+1} M_{m}\right) \rightarrow 0
$$

Indeed, up to the above identifications, μ_{j} corresponds to the natural projection $M_{m-j} \rightarrow M_{1}$, therefore the map $E_{m}^{i}\left(\mu_{j}\right)$ is injective for all $i \in \mathbb{Z}$ by definition of fiber-full module.

Theorem

With the above notation, if M is a fiber-full A-module, then $\operatorname{Ext}_{A}^{i}(M, A)$ is flat over $K[t]$ for all $i \in \mathbb{Z}$.

Proof: By the previous lemma, it is enough to show that $E_{m}^{i}\left(M_{m}\right)$ is flat over $K[t] /\left(t^{m}\right)$ for all $m \in \mathbb{N}_{>0}$. This is clear for $m=1$ (because $K[t] /(t)$) is a field), so we will proceed by induction: thus let us fix $m \geq 2$ and assume that $E_{m-1}^{i}\left(M_{m-1}\right)$ is flat over $K[t] /\left(t^{m-1}\right)$. The local flatness criterion tells us that is enough to show the following two properties:
(1) $E_{m}^{i}\left(M_{m}\right) / t^{m-1} E_{m}^{i}\left(M_{m}\right)$ is flat over $K[t] /\left(t^{m-1}\right)$.
(2) The map $\theta:\left(t^{m-1}\right) /\left(t^{m}\right) \otimes_{K[t] /\left(t^{m}\right)} E_{m}^{i}\left(M_{m}\right) \rightarrow t^{m-1} E_{m}^{i}\left(M_{m}\right)$ sending $\overline{t^{m-1}} \otimes \phi$ to $t^{m-1} \phi$, is a bijection.

By the previous Remark $E_{m}^{i}\left(\iota_{k}\right)$ is surjective for all k, so $E_{m}^{i}\left(\iota^{j}\right)$ is surjective where $\iota^{j}:=\iota_{j} \circ \ldots \iota_{m-2}: t^{m-1} M_{m} \rightarrow t^{j} M_{m}$. Since $\iota^{j} \circ \mu_{j}$ is the multiplication by t^{m-1-j} on $t^{j} M_{m}$, we therefore have

$$
\operatorname{Im}\left(E_{m}^{i}\left(\mu_{j}\right)\right)=\operatorname{Im}\left(E_{m}^{i}\left(\mu_{j}\right) \circ E_{m}^{i}\left(\iota^{j}\right)\right)=t^{m-1-j} E_{m}^{i}\left(t^{j} M_{m}\right)
$$

Therefore $\operatorname{Ker}\left(E_{m}^{i}\left(\iota_{j}\right)\right)=t^{m-1-j} E_{m}^{i}\left(t^{j} M_{m}\right)$. Hence

$$
E_{m}^{i}\left(t^{j+1} M_{m}\right) \cong \frac{E_{m}^{i}\left(t^{j} M_{m}\right)}{t^{m-1-j} E_{m}^{i}\left(t^{j} M_{m}\right)}
$$

Plugging in $j=0$, we get that

$$
\frac{E_{m}^{i}\left(M_{m}\right)}{t^{m-1} E_{m}^{i}\left(M_{m}\right)} \cong E_{m}^{i}\left(t M_{m}\right) \cong E_{m}^{i}\left(M_{m-1}\right) \cong E_{m-1}^{i}\left(M_{m-1}\right)
$$

is flat over $K[t] /\left(t^{m-1}\right)$ by induction, and this shows (1).

Fiber-full modules and flatness

Concerning (2), from what said above it is not difficult to infer that the kernel of the surjective map $E_{m}^{i}\left(\iota^{0}\right): E_{m}^{i}\left(M_{m}\right) \rightarrow E_{m}^{i}\left(t^{m-1} M_{m}\right)$ is equal to $t E_{m}^{i}\left(M_{m}\right)$. Since $E_{m}^{i}\left(\mu_{0}\right) \circ E_{m}^{i}\left(\iota^{0}\right)$ is the multiplication by t^{m-1} on $E_{m}^{i}\left(M_{m}\right)$ and $E_{m}^{i}\left(\mu_{0}\right)$ is injective, we get

$$
0:_{E_{m}^{i}\left(M_{m}\right)} t^{m-1}=\operatorname{Ker}\left(E_{m}^{i}\left(\iota^{0}\right)\right)=t E_{m}^{i}\left(M_{m}\right)
$$

Since $\operatorname{Ker}(\theta)=\left\{\overline{t^{m-1}} \otimes \phi: \phi \in 0:_{E_{m}^{i}\left(M_{m}\right)} t^{m-1}\right\}$, then θ is injective, and so bijective (it is always surjective). \square

Corollary

Let $I \subset R=K\left[X_{1}, \ldots, X_{n}\right]$ be an ideal such that $S=P / \operatorname{hom}_{w}(I)$ is a fiber-full P-module $(P=R[t])$. Then $\operatorname{Ext}_{P}^{i}(S, P)$ is a flat $K[t]$-module. So, if furthermore I is homogeneous:

$$
\operatorname{dim}_{K}\left(H_{\mathfrak{m}}^{i}(R / I)_{j}\right)=\operatorname{dim}_{K}\left(H_{\mathfrak{m}}^{i}\left(R / \mathrm{in}_{w}(I)\right)_{j}\right) \quad \forall i, j \in \mathbb{Z}
$$

Our next goal is to show that, for an ideal $I \subset R$ such that $\mathrm{in}_{w}(I)$ is a squarefree monomial ideal, then $S=P /$ hom $_{w}(I)$ is a fiber-full P-module. To do so, we need to recall some notion:

Let $J \subset R$ a monomial ideal minimally generated by monomials μ_{1}, \ldots, μ_{r}. For all subset $\sigma \subset\{1, \ldots, r\}$ we define the monomial $\mu(J, \sigma):=\operatorname{lcm}\left(\mu_{i} \mid i \in \sigma\right) \in R$. If v is the q th element of σ we set $\operatorname{sign}(v, \sigma):=(-1)^{q-1} \in K$. Let us consider the graded complex of free R-modules $F_{\bullet}(J)=\left(F_{i}, \partial_{i}\right)_{i=0, \ldots, r}$ with

$$
F_{i}:=\bigoplus_{\substack{\sigma \subset\{1, \ldots, r\} \\|\sigma|=i}} R(-\operatorname{deg} \mu(J, \sigma)),
$$

and differentials defined by $1_{\sigma} \mapsto \sum_{v \in \sigma} \operatorname{sign}(v, \sigma) \frac{\mu(J, \sigma)}{\mu(J, \sigma \backslash\{v\})} \cdot 1_{\sigma \backslash\{v\}}$. It is well known and not difficult to see that $F_{\bullet}(J)$ is a graded free R-resolution of R / J, called the Taylor resolution.

For any positive integer k we introduce the monomial ideal

$$
J^{[k]}=\left(\mu_{1}^{k}, \ldots, \mu_{r}^{k}\right)
$$

Notice that $\mu_{1}^{k}, \ldots, \mu_{r}^{k}$ are the minimal system of monomial generators of $J^{[k]}$, so $\mu\left(J^{[k]}, \sigma\right)=\mu(J, \sigma)^{k}$ for any $\sigma \subset\{1, \ldots, r\}$.

Theorem

If $J \subset R$ is a squarefree monomial ideal, for all $i \in \mathbb{Z}$ and $k \in \mathbb{N}_{>0}$ the map $\operatorname{Ext}_{R}^{i}\left(R / J^{[k]}, R\right) \rightarrow \operatorname{Ext}_{R}^{i}\left(R / J^{[k+1]}, R\right)$, induced by the projection $R / J^{[k+1]} \rightarrow R / J^{[k]}$, is injective.

Corollary

Let $I \subset R$ be an ideal such that $\mathrm{in}_{w}(I)$ is a squarefree monomial ideal. Then $S=P /$ hom $_{w}(I)$ is a fiber-full P-module.

Proof of the corollary: Notice that hom $_{w}(I)+t P=\mathrm{in}_{w}(I)+t P$ is a squarefree monomial ideal of P. So, by the previous theorem, the maps $\operatorname{Ext}_{P}^{i}(S / t S, P) \rightarrow \operatorname{Ext}_{P}^{i}\left(P /\left(\operatorname{hom}_{w}(I)+t P\right)^{[m]}, P\right)$ are injective for all $m \in \mathbb{N}_{>0}$. Since $\left(\operatorname{hom}_{w}(I)+t P\right)^{[m]} \subset \operatorname{hom}_{w}(I)+t^{m} P$, these maps factor through $\operatorname{Ext}_{P}^{i}(S / t S, P) \rightarrow \operatorname{Ext}_{P}^{i}\left(S / t^{m} S, P\right)$, hence the latter are injective as well. \square

Proof of the theorem: Let u_{1}, \ldots, u_{r} be the minimal monomial generators of J. For all $k \in \mathbb{N}_{>0}, \sigma \subset\{1, \ldots, r\}$ set $\mu_{\sigma}[k]:=\mu\left(J^{[k]}, \sigma\right)$ and $\mu_{\sigma}:=\mu_{\sigma}[1]$. Of course μ_{σ} is a squarefree monomial and, for what we said above, $\mu_{\sigma}[k]=\mu_{\sigma}^{k}$.

The module $\operatorname{Ext}_{R}^{i}\left(R / J^{[k]}, R\right)$ is the i th cohomology of the complex $G^{\bullet}[k]=\operatorname{Hom}_{R}\left(F_{\bullet}[k], R\right)$ where $F_{\bullet}[k]=F_{\bullet}\left(J^{[k]}\right)=\left(F_{i}, \partial_{i}[k]\right)_{i=0, \ldots, r}$ is the Taylor resolution of $R / J^{[k]}$. Let $F_{i} \xrightarrow{f_{i}} F_{i}$ be the map sending 1_{σ} to $\mu_{\sigma} \cdot 1_{\sigma}$. The collection $F_{\bullet}[k+1] \xrightarrow{f_{\bullet}=\left(f_{i}\right)_{i}} F_{\bullet}[k]$ is a morphism of complexes lifting $R / J^{[k+1]} \rightarrow R / J^{[k]}\left(\right.$ since $\left.\mu_{\sigma}[k]=\mu_{\sigma}^{k}\right)$.
So the maps $\operatorname{Ext}_{R}^{i}\left(R / J^{[k]}, R\right) \rightarrow \operatorname{Ext}_{R}^{i}\left(R / J^{[k+1]}, R\right)$ we are interested in are the homomorphisms $H^{i}\left(G^{\bullet}[k]\right) \xrightarrow{\overline{g^{i}}} H^{i}\left(G^{\bullet}[k+1]\right)$ induced by $g^{\bullet}=\operatorname{Hom}\left(f_{\bullet}, R\right): G^{\bullet}[k] \rightarrow G^{\bullet}[k+1]$. Let us see how $\overline{g^{i}}$ acts: if $G^{\bullet}[k]=\left(G^{i}, \partial^{i}[k]\right)$, then $G^{i}=\operatorname{Hom}_{R}\left(F_{i}, R\right)$ can be identified with F_{i} (ignoring the grading) and $\partial^{i}[k]: G^{i} \longrightarrow G^{i+1}$ sends 1_{σ} to $\sum_{v \in\{1, \ldots, r\} \backslash \sigma} \operatorname{sign}(v, \sigma \cup\{v\})\left(\frac{\mu_{\sigma \cup\{v\}}}{\mu_{\sigma}}\right)^{k} \cdot 1_{\sigma \cup\{v\}}$ for all $\sigma \subset\{1, \ldots, r\}$ and $|\sigma|=i$. The map $g^{i}: G^{i} \rightarrow G^{i}$, up to the identification $F_{i} \cong G_{i}$, is then the map sending 1_{σ} to $\mu_{\sigma} \cdot 1_{\sigma}$.

Squarefree monomial ideals and fiber-full modules

Want: $\overline{g^{i}}$ injective. Let $x \in \operatorname{Ker}\left(\partial^{i}[k]\right)$ with $g^{i}(x) \in \operatorname{Im}\left(\partial^{i-1}[k+1]\right)$. We need to show that $x \in \operatorname{Im}\left(\partial^{i-1}[k]\right)$. Let $y=\sum_{\sigma} y_{\sigma} \cdot 1_{\sigma} \in G^{i-1}$ such that $\partial^{i-1}[k+1](y)=g^{i}(x)$. We can write y_{σ} uniquely as $y_{\sigma}^{\prime}+\mu_{\sigma} y_{\sigma}^{\prime \prime}$ where no monomial in $\operatorname{supp}\left(y_{\sigma}^{\prime}\right)$ is divided by μ_{σ}. If

$$
y^{\prime}=\sum_{\sigma} y_{\sigma}^{\prime} \cdot 1_{\sigma}, y^{\prime \prime}=\sum_{\sigma} y_{\sigma}^{\prime \prime} \cdot 1_{\sigma},
$$

$g^{i}(x)=\partial^{i-1}[k+1](y)=\partial^{i-1}[k+1]\left(y^{\prime}\right)+\partial^{i-1}[k+1]\left(g^{i-1}\left(y^{\prime \prime}\right)\right)=$ $\partial^{i-1}[k+1]\left(y^{\prime}\right)+g^{i}\left(\partial^{i-1}[k]\left(y^{\prime \prime}\right)\right)$. Writing $z=\sum_{\sigma} z_{\sigma} \cdot 1_{\sigma}$ for $\partial^{i-1}[k+1]\left(y^{\prime}\right) \in G^{i}$, we have

$$
z_{\sigma}=\sum_{v \in \sigma} \operatorname{sign}(v, \sigma)\left(\frac{\mu_{\sigma}}{\mu_{\sigma \backslash\{v\}}}\right)^{k+1} y_{\sigma \backslash\{v\}}^{\prime} .
$$

Since J is squarefree and $\mu_{\sigma \backslash\{v\}}$ does not divide $y_{\sigma \backslash\{v\}}^{\prime}$ for any $v \in \sigma, \mu_{\sigma}$ cannot divide z_{σ} unless it is zero. On the other hand, μ_{σ} must divide z_{σ} by the green equality. Therefore $z_{\sigma}=0$, and since σ was arbitrary $z=0$, that is: $g^{i}(x)=g^{i}\left(\partial^{i-1}[k]\left(y^{\prime \prime}\right)\right)$. Being $g^{i}: G^{i} \rightarrow G^{i}$ obviously injective, we have found $x=\partial^{i-1}[k]\left(y^{\prime \prime}\right)$.

Corollary

Let $I \subset R$ be an ideal such that $\mathrm{in}_{w}(I) \subset R$ is a squarefree monomial ideal. Then $\operatorname{Ext}_{P}^{i}(S, P)$ is a flat $K[t]$-module. So, if I is homogeneous and $\operatorname{in}(I)$ is a squarefree monomial ideal, then

$$
\operatorname{dim}_{K}\left(H_{\mathfrak{m}}^{i}(R / I)_{j}\right)=\operatorname{dim}_{K}\left(H_{\mathfrak{m}}^{i}(R / \operatorname{in}(I))_{j}\right) \quad \forall i, j \in \mathbb{Z}
$$

This is the arrival point for these lectures, but it suggests also some open questions...

Open questions

During the lectures we proved the following:

Theorem

Let $I \subset R$ be an ideal such that $S=P /$ hom $_{w}(I)$ is a fiber-full P-module. Then $\operatorname{Ext}_{P}^{i}(S, P)$ is a flat $K[t]$-module. So, if furthermore I is homogeneous:

$$
\operatorname{dim}_{K}\left(H_{\mathfrak{m}}^{i}(R / I)_{j}\right)=\operatorname{dim}_{K}\left(H_{\mathfrak{m}}^{i}\left(R / \mathrm{in}_{w}(I)\right)_{j}\right) \quad \forall i, j \in \mathbb{Z}
$$

After this we proved that, if $\mathrm{in}_{w}(I) \subset R$ is a squarefree monomial ideal, then $S=P /$ hom $_{w}(I)$ is a fiber-full P-module. However, this is not the only instance: e.g., if $R / \mathrm{in}_{w}(I)$ is Cohen-Macaulay (equivalently if S is CM), then it is not difficult to see that S is fiber-full.

Open questions

More interestingly, we have:

- If K has positive characteristic, then S is fiber-full whenever $R / \mathrm{in}_{w}(I)$ is F-pure (Ma).
- If K has characteristic 0 , then S is fiber-full whenever $R / \mathrm{in}_{w}(I)$ is Du Bois (Ma-Schwede-Shimomoto).
- S is fiber-full whenever $R / \operatorname{in}_{w}(I)$ is cohomologically full (a notion recently introduced by Dao-De Stefani-Ma).
Let us recall that, for a homogeneous ideal $J \subset R, R / J$ is cohomologically full if, whenever $H \subset I$ such that $\sqrt{H}=\sqrt{J}$, the natural map $H_{\mathfrak{m}}^{i}(R / H) \rightarrow H_{\mathfrak{m}}^{i}(R / J)$ is surjective for all i.

Open questions

Often $\mathrm{in}_{w}(I)$ is not a monomial ideal, rather a binomial ideal s.t.

$$
R / \mathrm{in}_{w}(I) \cong K[\mathcal{M}]:=K\left[Y^{u}: u \in \mathcal{M}\right] \subset K\left[Y_{1}, \ldots, Y_{m}\right] .
$$

for some monoid $\mathcal{M} \subset \mathbb{N}^{m}$. This is the case when dealing with SAGBI (or Khovanskii) bases.

Problem

Find a big class of monoids $\mathcal{M} \subset \mathbb{N}^{m}$ such that $K[\mathcal{M}]$ is cohomologically full.

For example, if K has characteristic 0 and \mathcal{M} is seminormal, then $K[\mathcal{M}]$ is Du Bois combining results of Bruns-Li-Römer and Schwede. So $K[\mathcal{M}]$ is cohomologically full for a seminormal monoid \mathcal{M}.

Open questions

We proved that, if A is a Noetherian graded flat $K[t]$-algebra, M is a f.g. A-module which is graded and flat over $K[t]$, then $\operatorname{Ext}_{A}^{i}(M, A)$ is flat over $K[t]$ for all $i \in \mathbb{Z}$ whenever M is fiber-full.

Problem

With the above notation, when is it true that $\operatorname{Ext}^{i}{ }_{A}(M, A)$ is fiber-full whenever M is fiber-full?

For example, together with D'Alì we proved that, if $M / t M$ is a squarefree R-module then M is fiber-full, and this implies a positive answer to the above problem when $M / t M$ is a squarefree R-module. A consequence of this, is that the homological degrees (a notion introduced by Vasconcelos) of R / I and R in (I) are the same provided that in (I) is a squarefree monomial ideal.

