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Notation and basic definitions

N = {0, 1, 2, . . .}.
K any field.

R = K [X1, . . . ,Xn] the polynomial ring in n variables over K .

A monomial of R is an element X u := X u1
1 · · ·X un

n ∈ R, where
u = (u1, . . . , un) ∈ Nn.

Mon(R) is the set of monomials of R.

A term of R is an element of the form aµ ∈ R where a ∈ K
and µ is a monomial.

Notice that every f ∈ R can be written as a sum of terms: there
exists a unique (finite) subset supp(f ) ⊂ Mon(R) such that:

f =
∑

µ∈supp(f )

aµµ, aµ ∈ K \ {0}.
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Notation and basic definitions

In the above representation, the only lack of uniqueness is the
order of the terms.

Definition

A monomial order on R is a total order < on Mon(R) such that:

(i) 1 ≤ µ for every µ ∈ Mon(R);

(ii) If µ1, µ2, ν ∈ Mon(R) such that µ1 ≤ µ2, then µ1ν ≤ µ2ν.

Notice that, if < is a monomial order on R and µ, ν are monomials
such that µ|ν, then µ ≤ ν: indeed 1 ≤ ν/µ, so

µ = 1 · µ ≤ (ν/µ) · µ = ν.
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Notation and basic definitions

Typical examples of monomial orders are the following: given
monomials µ = X u1

1 · · ·X un
n and ν = X v1

1 · · ·X vn
n we define:

The lexicographic order (Lex) by µ <Lex ν iff uk < vk for
some k and ui = vi for any i < k.

The degree lexicographic order (DegLex) by µ <DegLex ν iff
deg(µ) < deg(ν) or deg(µ) = deg(ν) and µ <Lex ν.

The (degree) reverse lexicographic order (RevLex) by
µ <RevLex ν iff deg(µ) < deg(ν) or deg(µ) = deg(ν) and
uk > vk for some k and ui = vi for any i > k .

Example

In K [X ,Y ,Z ], assuming X > Y > Z , we have
X 2 >Lex XZ >Lex Y

2, while X 2 >RevLex Y
2 >RevLex XZ .

Matteo Gröbner deformations



Notation and basic definitions

Proposition

A monomial order on R is a well-order on Mon(R). That is, any
nonempty subset of Mon(R) has a minimum. Equivalently, all
descending chains of monomials in R terminate.

Proof: Let ∅ 6= N ⊂ Mon(R), and I ⊂ R be the ideal generated by
N. By Hilbert basis theorem, I is generated by a finite number of
monomials of N. Since a monomial order refines divisibility, the
minimum of such finitely many monomials is also the minimum of
N. �
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Notation and basic definitions

From now on, we fix a monomial order < on R, so that every
polynomial 0 6= f ∈ R can be written uniquely as

f = a1µ1 + . . .+ akµk

with ai ∈ K \ {0}, µi ∈ Mon(R) and µ1 > µ2 > . . . > µk .

Definition

The initial monomial of f is in(f ) = µ1. Furthermore, its initial
coefficient is inic(f ) = a1 and its initial term is init(f ) = a1µ1.

Notice that, for all f , g ∈ R:

inic(f ) in(f ) = init(f ).

in(fg) = in(f ) in(g).

in(f + g) ≤ max{in(f ), in(g)}.
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Notation and basic definitions

Example

If f = X1 + X2X4 + X 2
3 , we have:

in(f ) = X1 with respect to Lex.

in(f ) = X2X4 with respect to DegLex.

in(f ) = X 2
3 with respect to RevLex.

Example

If f = X 2 + XY + Y 2 ∈ K [X ,Y ], then we have:

in(f ) = X 2 if X > Y .

in(f ) = Y 2 if Y > X .

In particular, XY 6= in(f ) for all monomial orders.
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Gröbner bases and Buchberger algorithm

Definition

If I is an ideal of R, then the monomial ideal in(I ) ⊂ R generated
by {in(f ) : f ∈ I} is named the initial ideal of I .

Definition

Polynomials f1, . . . , fm of an ideal I ⊂ R are a Gröbner basis of I if
in(I ) = (in(f1), . . . , in(fm)).

Example

Consider the ideal I = (f1 = X 2 − Y 2, f2 = XZ − Y 2) of
K [X ,Y ,Z ]. For Lex with X > Y > Z the polynomials f1, f2 are
not a Gröbner basis of I , indeed XY 2 = in(Zf1 − Xf2) is a
monomial of in(I ) which is not in (in(f1) = X 2, in(f2) = XZ ). For
RevLex with X > Y > Z , it turns out that in(I ) = (X 2,Y 2), so f1
and f2 are a Gröbner basis of I in this case.
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Gröbner bases and Buchberger algorithm

Remark

The Noetherianity of R implies that any ideal in R has a finite
Gröbner basis.

There is a way to compute a Gröbner basis of an ideal I starting
from a system of generators of I , namely the Buchsberger
algorithm; it also checks if such a system of generators is already a
Gröbner basis. We will develop the algorithm in the next few slides:

Definition

Let f1, . . . , fm ∈ R. A polynomial r ∈ R is a reduction of g ∈ R
modulo f1, . . . , fm if there exist q1, . . . , qm ∈ R satisfying:

g = q1f1 + . . .+ qmfm + r ;

in(qi fi ) ≤ in(g) for all i = 1, . . . ,m;

For all i = 1, . . . ,m, in(fi ) does not divide µ ∀ µ ∈ supp(r).
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Gröbner bases and Buchberger algorithm

Lemma

Let f1, . . . , fm ∈ R. Every polynomial g ∈ R admits a reduction
modulo f1, . . . , fm.

Proof: Let J = (in(f1), . . . , in(fm)). We start with r = g and apply
the reduction algorithm:

(1) If supp(r) ∩ J = ∅, we are done: r is the desired reduction.

(2) Otherwise choose µ ∈ supp(r) ∩ J and let b ∈ K be the
coefficient of µ in the monomial representation of r . Choose i
such that in(fi ) | µ and set r ′ = r − aνfi where ν = µ/ in(fi )
and a = b/ inic(fi ). Then replace r by r ′ and go to (1).

This algorithm terminates after finitely many steps since it replaces
the monomial µ by a linear combination of monomials that are
smaller in the monomial order, and all descending chains of
monomials in R terminate. �
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Gröbner bases and Buchberger algorithm

Example

Once again, we take R = K [X ,Y ,Z ], f1 = X 2 − Y 2 and
f2 = XZ − Y 2, and we consider Lex with X > Y > Z . Set
g = X 2Z . Then g = Zf1 + Y 2Z , but g = Xf2 + XY 2 as well.
Both these equations yield reductions of g , namely XY 2 and Y 2Z .
Thus a polynomial can have several reductions modulo f1, f2.

The reduction of g ∈ R modulo f1, . . . , fm is unique when
f1, . . . , fm is a Gröbner basis...
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Gröbner bases and Buchberger algorithm

Proposition

Let I be an ideal of R, f1, . . . , fm ∈ I and J = (in(f1), . . . , in(fm)).
Then the following are equivalent:

(a) f1, . . . , fm form a Gröbner basis of I ;

(b) every g ∈ I reduces to 0 modulo f1, . . . , fm;

(c) the monomials µ, µ /∈ J, are linearly independent modulo I .

If the equivalent conditions (a), (b), (c) hold, then:

(d) Every element of R has a unique reduction modulo f1, . . . , fm.

(e) The reduction depends only on I and the monomial order.

Proof: Check (a) =⇒ (c) =⇒ (b) as an exercise.
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Gröbner bases and Buchberger algorithm

(b) =⇒ (a) Let g ∈ I , g 6= 0. If g reduces to 0, then we have

g = q1f1 + · · ·+ qmfm

such that in(qi fi ) ≤ in(g) for all i . But the monomial in(g) must
appear on the right hand side as well, and this is only possible if
in(g) = in(qi fi ) = in(qi ) in(fi ) for at least one i . In other words,
in(g) must be divisible by in(fi ) for some i . Hence in(I ) = J.

Check (c) =⇒ (d), (e) as an exercise. �

Corollary

If f1, . . . , fm is a Gröbner basis of an ideal I ⊂ R then
I = (f1, . . . , fm).
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Gröbner bases and Buchberger algorithm

Corollary

Let I ⊂ R be an ideal and <1, <2 monomial orders of R. If
in<1(I ) ⊂ in<2(I ), then in<1(I ) = in<2(I ).

Proof: By the previous proposition, the sets Ai of monomials of R
not in in<i (I ) are K -bases of R/I for each i = 1, 2. Since A1 ⊃ A2,
we must have A1 = A2. �

Corollary

Let I1, I2 ⊂ R be ideals and < a monomial order of R. If I1 ⊂ I2
and in<(I1) = in<(I2), then I1 = I2.

Proof: By the previous proposition, the set A of monomials of R
not in in<(I1) = in<(I2) are K -bases of R/Ii for each i = 1, 2.
Since I1 ⊂ I2, we must have I1 = I2. �
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Gröbner bases and Buchberger algorithm

Definition

The S-polynomial of two elements f , g ∈ R is defined as

S(f , g) =
lcm(in(f ), in(g))

init(f )
f − lcm(in(f ), in(g))

init(g)
g

Proposition

Let f1, . . . , fm ∈ R and I = (f1, . . . , fm). Then the following are
equivalent:

(a) f1, . . . , fm form a Gröbner basis of I .

(b) For all 1 ≤ i < j ≤ m, S(fi , fj) reduces to 0 modulo f1, . . . , fm.

Proof: (a) =⇒ (b): It follows since S(fi , fj) ∈ I .
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Gröbner bases and Buchberger algorithm

(b) =⇒ (a): We need to show that every g ∈ I reduces to 0
modulo the fk ’s. Since g ∈ I , we have g = a1f1 + . . .+ amfm for
some ak ∈ R. Among such representations, we can choose one
minimizing µ := max{in(ai fi ) : i = 1, . . . ,m} and, among these,
minimizing s := |{i = 1, . . . ,m| in(ai fi ) = µ}|. By contradiction,
suppose µ > in(g). In this case s ≥ 2, so there exist i < j such
that in(ai fi ) = in(aj fj) = µ. Set c := inic(ai fi ) and notice that
µ = ν · lcm(in(fi ), in(fj)) for some ν ∈ Mon(R). Let

S(fi , fj) = q1f1 + . . .+ qmfm

the reduction of S(fi , fj) (so that in(qk fk) ≤ in(S(fi , fj)) which is
less than αij := lcm(in(fi ), in(fj)) for all k). From this we get a
representation g = a′1f1 + . . .+ a′mfm contradicting the minimality
of µ and s where a′i = ai −

cναij

init(fi )
+ cνqi , a

′
j = aj +

cναij

init(fj )
+ cνqj

and a′k = ak + cνqk for i 6= k 6= j . �
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Initial ideals with respect to weights

Fix w = (w1, . . . ,wn) ∈ Nn a weight vector. If µ = X u ∈ Mon(R)
with u = (u1, . . . , un) then we set w(µ) := w1u1 + . . .+ wnun. If
0 6= f ∈ R we set w(f ) := max{w(µ) : µ ∈ supp(f )} and

initw (f ) =
∑

µ∈supp(f )
w(µ)=w(f )

aµµ,

where f =
∑

µ∈supp(f ) aµµ.

Example

If w = (2, 1) and f = X 3 + 2X 2Y 2 − Y 5 ∈ Q[X ,Y ] then
initw (f ) = X 3 + 2X 2Y 2.

Given an ideal I ⊂ R we set inw (I ) = (initw (f ) : f ∈ I ) ⊂ R.
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Initial ideals with respect to weights

As we will see, the passage from an ideal I to inw (I ) can be seen as
a “continuous” degenerative process. Before explaining it, we will
show that, given a monomial order < on R and an ideal I ⊂ R, we
can always find a suitable w ∈ (N>0)n such that inw (I ) = in<(I ).

Example

Let us find a weight vector that picks the largest monomial in
every subset of monomials of degree ≤ d in K [X ,Y ,Z ] for the
lexicographic order determined by X > Y > Z . We give weight 1
to Z . Since Y > Zd , we give weight d + 1 to Y . Since X > Y d

and w(Y d) = d(d + 1), we must choose w(X ) = d(d + 1) + 1. It
is not hard to check that w = (d(d + 1) + 1, d + 1, 1) indeed
solves our problem.
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Initial ideals with respect to weights

Given w ∈ Nn and < a monomial order, we define another
monomial order on R as

µ<wν ⇐⇒

{
w(µ) < w(ν)

w(µ) = w(ν) and µ < ν
.

Lemma

For an ideal I ⊂ R, if inw (I ) ⊂ in<(I ) or inw (I ) ⊃ in<(I ), then
inw (I ) = in<(I ).

Proof: By applying in<(−) on both sides we get, for example,
in<w (I ) = in<(inw (I )) ⊃ in<(in<(I )) = in<(I ). So the equality
in<(inw (I )) = in<(in<(I )) must hold, and because inw (I ) ⊃ in<(I )
we must have inw (I ) = in<(I ). �
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Initial ideals with respect to weights

Lemma

Let P ⊂ Rn be the convex hull of some vectors u1, . . . , um ∈ Nn.
Then X u ≤ max{X u1 , . . . ,X um} for any u ∈ P ∩ Nn.

Proof: If u ∈ P ∩ Nn, then u =
∑m

i=1 λiu
i with λi ∈ Q≥0 and∑m

i=1 λi = 1. If λi = ai/bi with ai ∈ N, bi ∈ N \ {0}, then we have

bu =
m∑
i=1

a′iu
i ,

where b = b1 · · · bm and a′i = ai (b/bi ). If, by contradiction,

X u > X ui for all i = 1, . . . ,m, then

(X u)b > (X u1)a
′
1 · · · (X um)a

′
m

(because b =
∑m

i=1 a
′
i ) but this contradicts the fact that these two

monomials are the same. �
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Initial ideals with respect to weights

Proposition

Given a monomial order > on R and µi , νi ∈ Mon(R) such that
µi > νi for i = 1, . . . , k, there exists w ∈ (N>0)n such that
w(µi ) > w(νi ) ∀ i = 1, . . . , k . Consequently, given an ideal I ⊂ R
there exists w ∈ (N>0)n such that in<(I ) = inw (I ).

Proof: Notice that µi > νi ⇐⇒
∏

j µj > νi
∏

j 6=i µj and
w(µi ) > w(νi ) ⇐⇒ w(

∏
j µj) > w(νi

∏
j 6=i µj), so we can

assume that µi is the same monomial µ for all i = 1, . . . , k. If
µ = X u and νi = X v i

, consider C = u + (R≥0)n ⊂ Rn and P ⊂ Rn

the convex hull of u and v1, . . . , vk . We claim that C ∩ P = {u}.
Suppose that v ∈ C ∩ P. We can assume that v ∈ Qn, so that
there is N ∈ N big enough such that Nv ∈ N. Let ν = XNv . Since
v ∈ C , ν is divided by µN = XNu, so ν ≥ µN . On the other hand,
v ∈ P =⇒ Nv ∈ NP, so ν ≤ max{Nu,Nv i : i = 1, . . . , k} = Nu
by the previous lemma, so ν = µN , that is v = u.
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Initial ideals with respect to weights

Therefore there is a hyperplane passing through u separating C
and P, that is there is w ∈ (Rn)∗ such that

w(v) > w(u) > w(v i )

for all v ∈ C \ {u} and i = 1, . . . , k . Of course we can pick
w = (w1, . . . ,wn) ∈ Qn; furthermore the first inequalities yield
wi > 0 for all i = 1, . . . , n. After taking a suitable multiple, so, we
can assume w ∈ (N>0)n is our desired weight vector.

For the last part of the statement, let f1, . . . , fm be a Gröbner basis
of I . By the first part, there is w ∈ (N>0)n such that w(µ) > w(ν)
where µ = in(fi ) and ν ∈ supp(fi ) \ {µ} for all i = 1, . . . ,m. So
in<(I ) ⊂ inw (I ), hence in<(I ) = inw (I ). �
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Initial ideals with respect to weights

Let us extend R to P = R[t] by introducing a homogenizing
variable t. The w -homogenization of f =

∑
µ∈supp(f ) aµµ ∈ R is

homw (f ) =
∑

µ∈supp(f )

aµµt
w(f )−w(µ) ∈ P.

Example

Let f = X 2 − XY + Z 2 ∈ K [X ,Y ,Z ]. We have:

homw (f ) = X 2 − XY + Z 2t2 if w = (2, 2, 1).

homw (f ) = X 2 − XYt2 + Z 2t6 if w = (4, 2, 1).

Given an ideal I ⊂ R, homw (I ) ⊂ P denotes the ideal generated by
homw (f ) with f ∈ I . For its study, we extend the weight vector w
to w ′ on P by w ′(t) = 1, so that homw (I ) is a w ′-homogeneous
ideal of P, where the grading is deg(Xi ) = wi and deg(t) = 1.
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Initial ideals with respect to weights

Because P/ homw (I ) is a w ′-graded P-module, it is also a graded
K [t]-module (w.r.t. the standard grading on K [t]). So t − a is not
a zero-divisor on P/ homw (I ) for any a ∈ K \ {0}. We want to
show that also t is not a zero-divisor on P/ homw (I ) as well, and in
order to do so it is useful to consider the dehomogenization map:

π : P −→ R

F (X1, . . . ,Xn, t) 7→ F (X1, . . . ,Xn, 1).

Remark

1 π(homw (f )) = f ∀ f ∈ R. So, π(homw (I )) = I .

2 If F ∈ P \ tP is w ′-homogeneous, then homw (π(F )) = F ;
moreover, if r ∈ N and G = trF , homw (π(G ))tr = G .

Summarizing, for F ∈ P we have F ∈ homw (I ) ⇐⇒ π(F ) ∈ I .
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Initial ideals with respect to weights

Proposition

Given an ideal I of R, the element t − a ∈ K [t] is not a zero
divisor on P/ homw (I ) for every a ∈ K . Furthermore:

P/
(
homw (I ) + (t)

) ∼= R/ inw (I ).

P/
(
homw (I ) + (t − a)

) ∼= R/I for all a ∈ K \ {0}.

Proof: For the first assertion, we need to show it just for a = 0:
Let F ∈ P such that tF ∈ homw (I ). Then π(tF ) ∈ I , so, since
π(F ) = π(tF ), F ∈ homw (I ).

For P/(homw (I ) + (t)) ∼= R/ inw (I ) it is enough to check that
homw (I ) + (t) = inw (I ) + (t). This is easily seen since for every
f ∈ R the difference homw (f )− initw (f ) is divisible by t.
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Initial ideals with respect to weights

To prove that P/(homw (I ) + (t − a)) ∼= R/I for every a ∈ K \ {0},
we consider the graded isomorphism ψ : R → R induced by
ψ(Xi ) = a−wiXi . Of course ψ(µ) = a−w(µ)µ ∀ µ ∈ Mon(R) and
homw (f )− aw(f )ψ(f ) is divisible by t − a for all f ∈ R. So
homw (I ) + (t − a) = ψ(I ) + (t − a), which implies the desired
isomorphism. �

Remark

Since a module over a PID is flat iff it has no torsion, the
proposition above says that P/ homw (I ) is a flat K [t]-module, and
that it defines a flat family over K [t] with generic fiber R/I and
special fiber R/ inw (I ).
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Initial ideals with respect to weights

Next we want to show that local cohomology cannot shrink
passing to the initial ideal. We need the following first:

Lemma

Let A be a ring, M,N A-modules and a ∈ ann(N) ⊂ A a
non-zero-divisor on M as well as on A. Then, for all i ≥ 0,

ExtiA(M,N) ∼= ExtiA/aA(M/aM,N).

Proof: Let F• be a free resolution of M. The Ext modules on the
left hand side are the cohomology modules of HomA(F•,N), which
is a complex of A-modules isomorphic to HomA/aA(F•/aF•,N)
because a annihilates N. However F•/aF• is a free resolution of
the A/aA-module M/aM since a is a non-zero-divisor on M as well
as on A, so the cohomology modules of the latter complex are the
Ext modules on the right hand side. �
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Initial ideals with respect to weights

Let us give a graded structure to R = K [X1, . . . ,Xn] by putting
deg(Xi ) = gi where g = (g1, . . . , gn) is a vector of positive integers
(so that m = (X1, . . . ,Xn) is the unique homogeneous maximal
ideal of R). If I ⊂ R is a g -homogeneous ideal, then homw (I ) ⊂ P
is homogeneous with respect to the bi-graded structure on P given
by deg(Xi ) = (gi ,wi ) and deg(t) = (0, 1). So S = P/ homw (I )
and ExtiP(S ,P) are finetely generated bi-graded P-modules.

Notice that, given a finitely generated bi-graded P-module M,
M(j ,∗) =

⊕
k∈ZM(j ,k) is a finitely generated graded (w.r.t. the

standard grading) K [t]-module for all j ∈ Z. Finally, if N is a
finitely generated K [t]-module, N ∼= K [t]a ⊕ T for a ∈ N and
some finitely generated torsion K [t]-module T (since K [t] is a
PID). If N is also graded, then T ∼=

⊕
k∈N>0

(K [t]/(tk))bk .
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Initial ideals with respect to weights

From now, let us fix a g -homogeneous ideal I ⊂ R and denote
P/ homw (I ) by S . From the above discussion, for all i , j ∈ Z:

ExtiP(S ,P)(j ,∗) ∼= K [t]ai,j ⊕

 ⊕
k∈N>0

(K [t]/(tk))bi,j,k


for some natural numbers ai ,j and bi ,j ,k . Let bi ,j =

∑
k∈N>0

bi ,j ,k .

Theorem

With the above notation, for any i , j ∈ Z we have:

dimK (ExtiR(R/I ,R)j) = ai ,j .

dimK (ExtiR(R/ inw (I ),R)j) = ai ,j + bi ,j + bi+1,j .

In particular, dimK (ExtiR(R/I ,R)j) ≤ dimK (ExtiR(R/ inw (I ),R)j)
and dimK (H i

m(R/I )j) ≤ dimK (H i
m(R/ inw (I ))j).
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Initial ideals with respect to weights

Proof: Letting x be t or t − 1 we have the short exact sequence

0→ P
·x−→ P → P/xP → 0.

The long exact sequence of ExtP(S ,−) associated to it, gives us
the following short exact sequences for all i ∈ Z:

0→ Cokerαi ,x → ExtiP(S ,P/xP)→ Kerαi+1,x → 0,

where αk,x is the multiplication by x on ExtkP(S ,P). We can
restrict the above exact sequences to the degree (j , ∗) for any
j ∈ Z getting:

0→ (Cokerαi ,x)(j ,∗) → (ExtiP(S ,P/xP))(j ,∗) → (Kerαi+1,x)(j ,∗) → 0.

Notice that we have:

(Cokerαi ,t)(j ,∗) ∼= K ai,j+bi,j and (Kerαi+1,t)(j ,∗) ∼= Kbi+1,j .

(Cokerαi ,t−1)(j ,∗) ∼= K ai,j and (Kerαi+1,t−1)(j ,∗) = 0.
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Initial ideals with respect to weights

Therefore, for all i , j ∈ Z, we got:

(ExtiP(S ,P/tP))(j ,∗) ∼= K ai,j+bi,j+bi+1,j .

(ExtiP(S ,P/(t − 1)P))(j ,∗) ∼= K ai,j .

By a previous proposition both t and t − 1 are non-zero-divisors on
S as well on P, hence a previous lemma together with the same
proposition imply:

(ExtiP(S ,P/tP))(j,∗) ∼= (ExtiP/tP(S/tS ,P/tP))(j,∗), which is

isomorphic to (ExtiR(R/ inw (I ),R))j .

(ExtiP(S ,P/(t − 1)P))(j,∗) ∼= (ExtiP/(t−1)P(S/(t − 1)S ,P/(t − 1)P))(j,∗),

which is isomorphic to (ExtiR(R/I ,R))j .

The thesis follows from this. For the local cohomology statement
just observe that by Grothendieck graded duality H i

m(R/J)j is dual
as K -vector space to Extn−iR (R/J,R)−|g |−j for any g -homogeneous
ideal J ⊂ R and i , j ∈ Z (where |g | = g1 + . . .+ gn). �
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Initial ideals with respect to weights

Corollary

If I is a homogeneous ideal of R, then for all i , j ∈ Z

dimK (H i
m(R/I )j) ≤ dimK (H i

m(R/ in(I ))j).

Next we want to show that, if in(I ) is squarefree, then we have
equalities above. In order to do this, we will show that, if inw (I ) is
a squarefree monomial ideal, then ExtiP(S ,P) is a flat K [t]-module
for all i ∈ Z (so that the numbers bi ,j in the previous theorem
would be 0 for all i , j ∈ Z). Let us recall that a module is flat over
a PID (such as K [t]) if and only if it has no torsion...

Matteo Gröbner deformations



Fiber-full modules and flatness

In the following slides, A is a Noetherian flat K [t]-algebra and M a
finitely generated A-module which is flat over K [t], and both A
and M are graded K [t]-modules (think at A and M like they were,
with the previous notation, P and S).

Lemma

The following are equivalent:

1 ExtiA(M,A) is a flat over K [t] for all i ∈ N.

2 ExtiA/tmA(M/tmM,A/tmA) is a flat over K [t]/(tm) ∀ i ,m ∈ N.

Proof: (1) =⇒ (2): Since A is flat over K [t], there is a short

exact sequence 0→ A
·tm−−→ A→ A/tmA→ 0. Consider the

induced long exact sequence of ExtA(M,−):

· · · → ExtiA(M,A)
·tm−−→ ExtiA(M,A)→ ExtiA(M,A/tmA)

→ Exti+1
A (M,A)

·tm−−→ Exti+1
A (M,A)→ . . .
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Fiber-full modules and flatness

By (1), ExtkA(M,A) does not have t-torsion for all k ∈ N, so for all
i ∈ N we have a short exact sequence

0→ ExtiA(M,A)
·tm−−→ ExtiA(M,A)→ ExtiA(M,A/tmA)→ 0,

from which ExtiA(M,A/tmA) ∼=
ExtiA(M,A)

tm ExtiA(M,A)
. It is

straightforward to check that the latter is flat over K [t]/(tm)
because (1). Finally, a previous lemma implies that

ExtiA(M,A/tmA) ∼= ExtiA/tmA(M/tmM,A/tmA).

(2) =⇒ (1): By contradiction, suppose ExtiA(M,A) is not flat over
K [t]. Because K [t] is a PID, then ExtiA(M,A) has nontrivial
torsion. So, by the graded structure of ExtiA(M,A), there exists a
nontrivial class [φ] ∈ ExtiA(M,A) and k ∈ N such that tk [φ] = 0.
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Fiber-full modules and flatness

Let us take a A-free resolution F• of M, and let (G •, ∂•) be the
complex HomA(F•,A), so that ExtiA(M,A) is the ith cohomology
module of G •. Then φ ∈ Ker(∂ i ) \ Im(∂ i−1) and tkφ ∈ Im(∂ i−1).

Since M and A are flat over k[t], F•/t
mF• is a A/tmA-free

resolution of M/tmM. Let (G •, ∂•) denote the complex
HomA/tmA(F•/t

mF•,A/t
mA), so that ExtiA/tmA(M/tmM,A/tmA)

is the ith cohomology module of G •, and π• the natural map of
complexes from G • to G •. Of course πi (φ) ∈ Ker(∂ i ) and
tkπi (φ) ∈ Im(∂ i−1). Now, it is enough to find a positive integer m
such that πi (φ) does neither belong to Im(∂i−1) nor to
tm−k Ker(∂ i ). Indeed, in this case x = [πi (φ)] would be an element
of ExtiP/tmP(S/tmS ,P/tmP) \ tm−k ExtiP/tmP(S/tmS ,P/tmP)

such that tkx = 0, and this would contradict the flatness of
ExtiP/tmP(S/tmS ,P/tmP) over K [t]/(tm).
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Fiber-full modules and flatness

If πi (φ) ∈ Im(∂i−1), then

φ ∈ Im(∂ i−1) + tmG i = Im(∂ i−1) + tm Ker(∂ i ).

Since φ does not belong to Im(∂ i−1), Krull’s intersection theorem
tells us that πi (φ) cannot belong to Im(∂ i−1) for all m� 0.
Analogously, if πi (φ) ∈ tm−k Ker(∂ i ), then

φ ∈ tm−k Ker(∂ i ) + tmG i = tm−k Ker(∂ i ).

But φ 6= 0, so, again using Krull’s intersection theorem,
πi (φ) /∈ tm−kG i for all m� 0. �
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Fiber-full modules and flatness

In the above situation, we say that M is a fiber-full A-module if, for
any m ∈ N>0, the natural projection M/tmM → M/tM induces
injective maps ExtiA(M/tM,A)→ ExtiA(M/tmM,A) for all i ∈ Z.

Next we will see that, if M is a fiber-full A-module, then
ExtiA(M,A) is flat over K [t] for all i ∈ Z. This circle of ideas are
due (in slightly different contexts) to Ma-Quy and Kollar-Kovacs.
After this, we will show that S is a fiber-full P-module provided
that inw (I ) is a squarefree monomial ideal, and this will imply that

dimK (H i
m(R/I )j) = dimK (H i

m(R/ in(I ))j) ∀ i , j ∈ Z

whenever I ⊂ R is a homogeneous ideal such that in(I ) ⊂ R is a
squarefree monomial ideal, a result of Conca and myself.
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Fiber-full modules and flatness

The previous lemma says that to show that ExtiA(M,A) is flat over
K [t] for all i ∈ Z it is enough to show that the K [t]/(tm)-module
ExtiA/tmA(M/tmM,A/tmA) is flat for all i ∈ Z and m ∈ N>0. So
we introduce the following helpful notation for all m ∈ N>0:

Am = A/tmA.

Mm = M/tmM.

ιj : t j+1Mm → t jMm the natural inclusion ∀ j .

µj : t jMm → tm−1Mm the multiplication by tm−1−j ∀ j .

E i
m(−) the contravariant functor ExtiAm

(−,Am) ∀ i .

Remark

A lemma of Rees implies that E i
m(Mk) ∼= Exti+1

A (Mk ,A) whenever
k ≤ m. Hence we deduce that

E i
m(Mk) ∼= E i

m(Mm) ∀ k ≤ m.
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Fiber-full modules and flatness

Remark

Since t is a non-zero-divisor on M we have that:

Mj
∼= tm−jMm ∀j .

Remark

The short exact sequences 0→ t j+1Mm
ιj−→ t jMm

µj−→ tm−1Mm → 0, if M
is fiber-full, yield the following short exact sequences for all i ∈ Z:

0→ E i
m(tm−1Mm)

E i
m(µj )−−−−→ E i

m(t jMm)
E i
m(ιj )−−−−→ E i

m(t j+1Mm)→ 0.

Indeed, up to the above identifications, µj corresponds to the natural

projection Mm−j → M1, therefore the map E i
m(µj) is injective for all

i ∈ Z by definition of fiber-full module.
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Fiber-full modules and flatness

Theorem

With the above notation, if M is a fiber-full A-module, then
ExtiA(M,A) is flat over K [t] for all i ∈ Z.

Proof: By the previous lemma, it is enough to show that E i
m(Mm)

is flat over K [t]/(tm) for all m ∈ N>0. This is clear for m = 1
(because K [t]/(t)) is a field), so we will proceed by induction:
thus let us fix m ≥ 2 and assume that E i

m−1(Mm−1) is flat over

K [t]/(tm−1). The local flatness criterion tells us that is enough to
show the following two properties:

1 E i
m(Mm)/tm−1E i

m(Mm) is flat over K [t]/(tm−1).

2 The map θ : (tm−1)/(tm)⊗K [t]/(tm) E
i
m(Mm)→ tm−1E i

m(Mm)

sending tm−1 ⊗ φ to tm−1φ, is a bijection.

Matteo Gröbner deformations



Fiber-full modules and flatness

By the previous Remark E i
m(ιk) is surjective for all k, so E i

m(ιj) is
surjective where ιj := ιj ◦ . . . ιm−2 : tm−1Mm → t jMm. Since
ιj ◦ µj is the multiplication by tm−1−j on t jMm, we therefore have

Im(E i
m(µj)) = Im(E i

m(µj) ◦ E i
m(ιj)) = tm−1−jE i

m(t jMm).

Therefore Ker(E i
m(ιj)) = tm−1−jE i

m(t jMm). Hence

E i
m(t j+1Mm) ∼=

E i
m(t jMm)

tm−1−jE i
m(t jMm)

.

Plugging in j = 0, we get that

E i
m(Mm)

tm−1E i
m(Mm)

∼= E i
m(tMm) ∼= E i

m(Mm−1) ∼= E i
m−1(Mm−1)

is flat over K [t]/(tm−1) by induction, and this shows (1).
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Fiber-full modules and flatness

Concerning (2), from what said above it is not difficult to infer that
the kernel of the surjective map E i

m(ι0) : E i
m(Mm)→ E i

m(tm−1Mm)
is equal to tE i

m(Mm). Since E i
m(µ0) ◦ E i

m(ι0) is the multiplication
by tm−1 on E i

m(Mm) and E i
m(µ0) is injective, we get

0 :E i
m(Mm) t

m−1 = Ker(E i
m(ι0)) = tE i

m(Mm).

Since Ker(θ) = {tm−1 ⊗ φ : φ ∈ 0 :E i
m(Mm) t

m−1}, then θ is
injective, and so bijective (it is always surjective). �

Corollary

Let I ⊂ R = K [X1, . . . ,Xn] be an ideal such that S = P/ homw (I )
is a fiber-full P-module (P = R[t]). Then ExtiP(S ,P) is a flat
K [t]-module. So, if furthermore I is homogeneous:

dimK (H i
m(R/I )j) = dimK (H i

m(R/ inw (I ))j) ∀ i , j ∈ Z.
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Squarefree monomial ideals and fiber-full modules

Our next goal is to show that, for an ideal I ⊂ R such that inw (I )
is a squarefree monomial ideal, then S = P/ homw (I ) is a fiber-full
P-module. To do so, we need to recall some notion:

Let J ⊂ R a monomial ideal minimally generated by monomials
µ1, . . . , µr . For all subset σ ⊂ {1, . . . , r} we define the monomial
µ(J, σ) := lcm(µi |i ∈ σ) ∈ R. If v is the qth element of σ we set
sign(v , σ) := (−1)q−1 ∈ K . Let us consider the graded complex of
free R-modules F•(J) = (Fi , ∂i )i=0,...,r with

Fi :=
⊕

σ⊂{1,...,r}
|σ|=i

R(− degµ(J, σ)),

and differentials defined by 1σ 7→
∑

v∈σ sign(v , σ) µ(J,σ)
µ(J,σ\{v}) · 1σ\{v}. It

is well known and not difficult to see that F•(J) is a graded free
R-resolution of R/J, called the Taylor resolution.
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Squarefree monomial ideals and fiber-full modules

For any positive integer k we introduce the monomial ideal

J [k] = (µk1 , . . . , µ
k
r ).

Notice that µk1 , . . . , µ
k
r are the minimal system of monomial

generators of J [k], so µ(J [k], σ) = µ(J, σ)k for any σ ⊂ {1, . . . , r}.

Theorem

If J ⊂ R is a squarefree monomial ideal, for all i ∈ Z and k ∈ N>0

the map ExtiR(R/J [k],R)→ ExtiR(R/J [k+1],R), induced by the
projection R/J [k+1] → R/J [k], is injective.
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Squarefree monomial ideals and fiber-full modules

Corollary

Let I ⊂ R be an ideal such that inw (I ) is a squarefree monomial
ideal. Then S = P/ homw (I ) is a fiber-full P-module.

Proof of the corollary: Notice that homw (I ) + tP = inw (I ) + tP is
a squarefree monomial ideal of P. So, by the previous theorem, the
maps ExtiP(S/tS ,P)→ ExtiP(P/(homw (I ) + tP)[m],P) are
injective for all m ∈ N>0. Since (homw (I ) + tP)[m] ⊂ homw (I ) + tmP,
these maps factor through ExtiP(S/tS ,P)→ ExtiP(S/tmS ,P),
hence the latter are injective as well. �

Proof of the theorem: Let u1, . . . , ur be the minimal monomial
generators of J. For all k ∈ N>0, σ ⊂ {1, . . . , r} set
µσ[k] := µ(J [k], σ) and µσ := µσ[1]. Of course µσ is a squarefree
monomial and, for what we said above, µσ[k] = µkσ.
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Squarefree monomial ideals and fiber-full modules

The module ExtiR(R/J [k],R) is the ith cohomology of the complex
G •[k] = HomR(F•[k],R) where F•[k] = F•(J

[k]) = (Fi , ∂i [k])i=0,...,r is

the Taylor resolution of R/J [k]. Let Fi
fi−→ Fi be the map sending

1σ to µσ · 1σ. The collection F•[k + 1]
f•=(fi )i−−−−→ F•[k] is a morphism

of complexes lifting R/J [k+1] → R/J [k] (since µσ[k] = µkσ).

So the maps ExtiR(R/J [k],R)→ ExtiR(R/J [k+1],R) we are

interested in are the homomorphisms H i (G •[k])
g i

−→ H i (G •[k + 1])
induced by g• = Hom(f•,R) : G •[k]→ G •[k + 1]. Let us see how
g i acts: if G •[k] = (G i , ∂i [k]), then G i = HomR(Fi ,R) can be
identified with Fi (ignoring the grading) and ∂ i [k] : G i −→ G i+1

sends 1σ to
∑

v∈{1,...,r}\σ sign(v , σ ∪ {v})
(
µσ∪{v}
µσ

)k
· 1σ∪{v} for

all σ ⊂ {1, . . . , r} and |σ| = i . The map g i : G i → G i , up to the
identification Fi ∼= Gi , is then the map sending 1σ to µσ · 1σ.
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Squarefree monomial ideals and fiber-full modules

Want: g i injective. Let x ∈ Ker(∂ i [k]) with g i (x) ∈ Im(∂ i−1[k + 1]).
We need to show that x ∈ Im(∂ i−1[k]). Let y =

∑
σ yσ · 1σ ∈ G i−1 such

that ∂ i−1[k + 1](y) = g i (x). We can write yσ uniquely as y ′σ + µσy
′′
σ

where no monomial in supp(y ′σ) is divided by µσ. If

y ′ =
∑
σ

y ′σ · 1σ, y ′′ =
∑
σ

y ′′σ · 1σ,

g i (x) = ∂ i−1[k + 1](y) = ∂ i−1[k + 1](y ′) + ∂ i−1[k + 1](g i−1(y ′′)) =
∂ i−1[k + 1](y ′) + g i (∂ i−1[k](y ′′)). Writing z =

∑
σ zσ · 1σ for

∂ i−1[k + 1](y ′) ∈ G i , we have

zσ =
∑
v∈σ

sign(v , σ)

(
µσ

µσ\{v}

)k+1

y ′σ\{v}.

Since J is squarefree and µσ\{v} does not divide y ′σ\{v} for any v ∈ σ, µσ
cannot divide zσ unless it is zero. On the other hand, µσ must divide zσ
by the green equality. Therefore zσ = 0, and since σ was arbitrary z = 0,

that is: g i (x) = g i (∂ i−1[k](y ′′)). Being g i : G i → G i obviously injective,

we have found x = ∂ i−1[k](y ′′). �
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Squarefree monomial ideals and fiber-full modules

Corollary

Let I ⊂ R be an ideal such that inw (I ) ⊂ R is a squarefree
monomial ideal. Then ExtiP(S ,P) is a flat K [t]-module. So, if I is
homogeneous and in(I ) is a squarefree monomial ideal, then

dimK (H i
m(R/I )j) = dimK (H i

m(R/ in(I ))j) ∀ i , j ∈ Z.

This is the arrival point for these lectures, but it suggests also
some open questions...
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Open questions

During the lectures we proved the following:

Theorem

Let I ⊂ R be an ideal such that S = P/ homw (I ) is a fiber-full
P-module. Then ExtiP(S ,P) is a flat K [t]-module. So, if
furthermore I is homogeneous:

dimK (H i
m(R/I )j) = dimK (H i

m(R/ inw (I ))j) ∀ i , j ∈ Z.

After this we proved that, if inw (I ) ⊂ R is a squarefree monomial
ideal, then S = P/ homw (I ) is a fiber-full P-module. However, this
is not the only instance: e.g., if R/ inw (I ) is Cohen-Macaulay
(equivalently if S is CM), then it is not difficult to see that S is
fiber-full.

Matteo Gröbner deformations



Open questions

More interestingly, we have:

If K has positive characteristic, then S is fiber-full whenever
R/ inw (I ) is F -pure (Ma).

If K has characteristic 0, then S is fiber-full whenever
R/ inw (I ) is Du Bois (Ma-Schwede-Shimomoto).

S is fiber-full whenever R/ inw (I ) is cohomologically full (a
notion recently introduced by Dao-De Stefani-Ma).

Let us recall that, for a homogeneous ideal J ⊂ R, R/J is
cohomologically full if, whenever H ⊂ I such that

√
H =

√
J, the

natural map H i
m(R/H)→ H i

m(R/J) is surjective for all i .
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Open questions

Often inw (I ) is not a monomial ideal, rather a binomial ideal s.t.

R/ inw (I ) ∼= K [M] := K [Y u : u ∈M] ⊂ K [Y1, . . . ,Ym].

for some monoid M⊂ Nm. This is the case when dealing with
SAGBI (or Khovanskii) bases.

Problem

Find a big class of monoids M⊂ Nm such that K [M] is
cohomologically full.

For example, if K has characteristic 0 and M is seminormal, then
K [M] is Du Bois combining results of Bruns-Li-Römer and
Schwede. So K [M] is cohomologically full for a seminormal
monoid M.
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Open questions

We proved that, if A is a Noetherian graded flat K [t]-algebra, M is
a f.g. A-module which is graded and flat over K [t], then
ExtiA(M,A) is flat over K [t] for all i ∈ Z whenever M is fiber-full.

Problem

With the above notation, when is it true that ExtiA(M,A) is
fiber-full whenever M is fiber-full?

For example, together with D’Al̀ı we proved that, if M/tM is a
squarefree R-module then M is fiber-full, and this implies a
positive answer to the above problem when M/tM is a squarefree
R-module. A consequence of this, is that the homological degrees
(a notion introduced by Vasconcelos) of R/I and R in(I ) are the
same provided that in(I ) is a squarefree monomial ideal.
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