Gröbner deformations

Matteo Varbaro (University of Genoa, Italy)

CIME-CIRM Course on Recent Developments in Commutative Algebra Levico Terme, 1-5/7/2019

- $\mathbb{N} = \{0, 1, 2, \ldots\}.$
- K any field.
- $R = K[X_1, ..., X_n]$ the polynomial ring in *n* variables over *K*.
- A monomial of R is an element $X^u := X_1^{u_1} \cdots X_n^{u_n} \in R$, where $u = (u_1, \dots, u_n) \in \mathbb{N}^n$.
- Mon(R) is the set of monomials of R.
- A *term* of R is an element of the form aµ ∈ R where a ∈ K and µ is a monomial.

Notice that every $f \in R$ can be written as a sum of terms: there exists a unique (finite) subset $supp(f) \subset Mon(R)$ such that:

$$f = \sum_{\mu \in \mathrm{supp}(f)} a_{\mu} \mu, \quad a_{\mu} \in K \setminus \{0\}.$$

In the above representation, the only lack of uniqueness is the order of the terms.

Definition

A monomial order on R is a total order < on Mon(R) such that:

(i)
$$1 \le \mu$$
 for every $\mu \in Mon(R)$;

(ii) If $\mu_1, \mu_2, \nu \in Mon(R)$ such that $\mu_1 \leq \mu_2$, then $\mu_1 \nu \leq \mu_2 \nu$.

Notice that, if < is a monomial order on R and μ,ν are monomials such that $\mu|\nu,$ then $\mu\leq\nu:$ indeed $1\leq\nu/\mu,$ so

$$\mu = 1 \cdot \mu \leq (\nu/\mu) \cdot \mu = \nu$$

Typical examples of monomial orders are the following: given monomials $\mu = X_1^{u_1} \cdots X_n^{u_n}$ and $\nu = X_1^{v_1} \cdots X_n^{v_n}$ we define:

- The *lexicographic order* (Lex) by μ <_{Lex} ν iff u_k < v_k for some k and u_i = v_i for any i < k.
- The degree lexicographic order (DegLex) by μ <_{DegLex} ν iff deg(μ) < deg(ν) or deg(μ) = deg(ν) and μ <_{Lex} ν.
- The (degree) reverse lexicographic order (RevLex) by $\mu <_{\text{RevLex}} \nu$ iff deg(μ) < deg(ν) or deg(μ) = deg(ν) and $u_k > v_k$ for some k and $u_i = v_i$ for any i > k.

Example

In
$$K[X, Y, Z]$$
, assuming $X > Y > Z$, we have
 $X^2 >_{\text{Lex}} XZ >_{\text{Lex}} Y^2$, while $X^2 >_{\text{RevLex}} Y^2 >_{\text{RevLex}} XZ$.

Proposition

A monomial order on R is a well-order on Mon(R). That is, any nonempty subset of Mon(R) has a minimum. Equivalently, all descending chains of monomials in R terminate.

Proof. Let $\emptyset \neq N \subset Mon(R)$, and $I \subset R$ be the ideal generated by N. By Hilbert basis theorem, I is generated by a finite number of monomials of N. Since a monomial order refines divisibility, the minimum of such finitely many monomials is also the minimum of N. \Box

From now on, we fix a monomial order < on R, so that every polynomial $0 \neq f \in R$ can be written uniquely as

$$f = a_1 \mu_1 + \ldots + a_k \mu_k$$

with $a_i \in K \setminus \{0\}$, $\mu_i \in Mon(R)$ and $\mu_1 > \mu_2 > \ldots > \mu_k$.

Definition

The *initial monomial* of f is $in(f) = \mu_1$. Furthermore, its *initial coefficient* is $inic(f) = a_1$ and its *initial term* is $init(f) = a_1\mu_1$.

Notice that, for all $f, g \in R$:

- $\operatorname{inic}(f)\operatorname{in}(f) = \operatorname{init}(f)$.
- in(fg) = in(f)in(g).
- $in(f+g) \le max\{in(f), in(g)\}.$

Example

If
$$f = X_1 + X_2 X_4 + X_3^2$$
, we have:

- $in(f) = X_1$ with respect to Lex.
- $in(f) = X_2 X_4$ with respect to DegLex.
- $in(f) = X_3^2$ with respect to RevLex.

Example

If
$$f = X^2 + XY + Y^2 \in K[X, Y]$$
, then we have:

•
$$in(f) = X^2$$
 if $X > Y$.

•
$$in(f) = Y^2$$
 if $Y > X$.

In particular, $XY \neq in(f)$ for all monomial orders.

Gröbner bases and Buchberger algorithm

Definition

If I is an ideal of R, then the monomial ideal $in(I) \subset R$ generated by $\{in(f) : f \in I\}$ is named the *initial ideal* of I.

Definition

Polynomials f_1, \ldots, f_m of an ideal $I \subset R$ are a *Gröbner basis* of I if $in(I) = (in(f_1), \ldots, in(f_m))$.

Example

Consider the ideal $I = (f_1 = X^2 - Y^2, f_2 = XZ - Y^2)$ of K[X, Y, Z]. For Lex with X > Y > Z the polynomials f_1, f_2 are not a Gröbner basis of I, indeed $XY^2 = in(Zf_1 - Xf_2)$ is a monomial of in(I) which is not in $(in(f_1) = X^2, in(f_2) = XZ)$. For RevLex with X > Y > Z, it turns out that $in(I) = (X^2, Y^2)$, so f_1 and f_2 are a Gröbner basis of I in this case.

Remark

The Noetherianity of R implies that any ideal in R has a finite Gröbner basis.

There is a way to compute a Gröbner basis of an ideal *I* starting from a system of generators of *I*, namely the *Buchsberger algorithm*; it also checks if such a system of generators is already a Gröbner basis. We will develop the algorithm in the next few slides:

Definition

Let $f_1, \ldots, f_m \in R$. A polynomial $r \in R$ is a reduction of $g \in R$ modulo f_1, \ldots, f_m if there exist $q_1, \ldots, q_m \in R$ satisfying:

•
$$g = q_1 f_1 + \ldots + q_m f_m + r;$$

•
$$\operatorname{in}(q_i f_i) \leq \operatorname{in}(g)$$
 for all $i = 1, \dots, m$;

• For all i = 1, ..., m, $in(f_i)$ does not divide $\mu \forall \mu \in supp(r)$.

Lemma

Let $f_1, \ldots, f_m \in R$. Every polynomial $g \in R$ admits a reduction modulo f_1, \ldots, f_m .

Proof: Let $J = (in(f_1), ..., in(f_m))$. We start with r = g and apply the *reduction algorithm*:

- (1) If supp $(r) \cap J = \emptyset$, we are done: r is the desired reduction.
- (2) Otherwise choose μ ∈ supp(r) ∩ J and let b ∈ K be the coefficient of μ in the monomial representation of r. Choose i such that in(f_i) | μ and set r' = r − aνf_i where ν = μ/in(f_i) and a = b/inic(f_i). Then replace r by r' and go to (1).

This algorithm terminates after finitely many steps since it replaces the monomial μ by a linear combination of monomials that are smaller in the monomial order, and all descending chains of monomials in R terminate. \Box

Example

Once again, we take R = K[X, Y, Z], $f_1 = X^2 - Y^2$ and $f_2 = XZ - Y^2$, and we consider Lex with X > Y > Z. Set $g = X^2Z$. Then $g = Zf_1 + Y^2Z$, but $g = Xf_2 + XY^2$ as well. Both these equations yield reductions of g, namely XY^2 and Y^2Z . Thus a polynomial can have several reductions modulo f_1, f_2 .

The reduction of $g \in R$ modulo f_1, \ldots, f_m is unique when f_1, \ldots, f_m is a Gröbner basis...

Proposition

Let I be an ideal of R, $f_1, \ldots, f_m \in I$ and $J = (in(f_1), \ldots, in(f_m))$. Then the following are equivalent:

- (a) f_1, \ldots, f_m form a Gröbner basis of *I*;
- (b) every $g \in I$ reduces to 0 modulo f_1, \ldots, f_m ;
- (c) the monomials μ , $\mu \notin J$, are linearly independent modulo I.

If the equivalent conditions (a), (b), (c) hold, then:

- (d) Every element of R has a unique reduction modulo f_1, \ldots, f_m .
- (e) The reduction depends only on I and the monomial order.

Proof: Check (a) \implies (c) \implies (b) as an exercise.

(b) \implies (a) Let $g \in I$, $g \neq 0$. If g reduces to 0, then we have

$$g=q_1f_1+\cdots+q_mf_m$$

such that $in(q_i f_i) \leq in(g)$ for all *i*. But the monomial in(g) must appear on the right hand side as well, and this is only possible if $in(g) = in(q_i f_i) = in(q_i) in(f_i)$ for at least one *i*. In other words, in(g) must be divisible by $in(f_i)$ for some *i*. Hence in(I) = J.

Check (c) \implies (d), (e) as an exercise. \Box

Corollary

If f_1, \ldots, f_m is a Gröbner basis of an ideal $I \subset R$ then $I = (f_1, \ldots, f_m)$.

Corollary

Let $I \subset R$ be an ideal and $<_1, <_2$ monomial orders of R. If $in_{<_1}(I) \subset in_{<_2}(I)$, then $in_{<_1}(I) = in_{<_2}(I)$.

Proof. By the previous proposition, the sets A_i of monomials of R not in $in_{\leq_i}(I)$ are K-bases of R/I for each i = 1, 2. Since $A_1 \supset A_2$, we must have $A_1 = A_2$. \Box

Corollary

Let $I_1, I_2 \subset R$ be ideals and < a monomial order of R. If $I_1 \subset I_2$ and $in_<(I_1) = in_<(I_2)$, then $I_1 = I_2$.

Proof. By the previous proposition, the set A of monomials of R not in $in_{\leq}(I_1) = in_{\leq}(I_2)$ are K-bases of R/I_i for each i = 1, 2. Since $I_1 \subset I_2$, we must have $I_1 = I_2$. \Box

Definition

The *S*-polynomial of two elements $f, g \in R$ is defined as

$$S(f,g) = \frac{\operatorname{lcm}(\operatorname{in}(f),\operatorname{in}(g))}{\operatorname{init}(f)}f - \frac{\operatorname{lcm}(\operatorname{in}(f),\operatorname{in}(g))}{\operatorname{init}(g)}g$$

Proposition

Let $f_1, \ldots, f_m \in R$ and $I = (f_1, \ldots, f_m)$. Then the following are equivalent:

(a) f_1, \ldots, f_m form a Gröbner basis of *I*.

(b) For all $1 \le i < j \le m$, $S(f_i, f_j)$ reduces to 0 modulo f_1, \ldots, f_m .

Proof. (a) \implies (b): It follows since $S(f_i, f_j) \in I$.

Gröbner bases and Buchberger algorithm

(b) \implies (a): We need to show that every $g \in I$ reduces to 0 modulo the f_k 's. Since $g \in I$, we have $g = a_1 f_1 + \ldots + a_m f_m$ for some $a_k \in R$. Among such representations, we can choose one minimizing $\mu := \max\{in(a_i f_i) : i = 1, \ldots, m\}$ and, among these, minimizing $s := |\{i = 1, \ldots, m| in(a_i f_i) = \mu\}|$. By contradiction, suppose $\mu > in(g)$. In this case $s \ge 2$, so there exist i < j such that $in(a_i f_i) = in(a_j f_j) = \mu$. Set $c := inic(a_i f_i)$ and notice that $\mu = \nu \cdot lcm(in(f_i), in(f_j))$ for some $\nu \in Mon(R)$. Let

 $S(f_i, f_j) = q_1 f_1 + \ldots + q_m f_m$

the reduction of $S(f_i, f_j)$ (so that $in(q_k f_k) \leq in(S(f_i, f_j))$ which is less than $\alpha_{ij} := lcm(in(f_i), in(f_j))$ for all k). From this we get a representation $g = a'_1 f_1 + \ldots + a'_m f_m$ contradicting the minimality of μ and s where $a'_i = a_i - \frac{c\nu\alpha_{ij}}{init(f_i)} + c\nu q_i$, $a'_j = a_j + \frac{c\nu\alpha_{ij}}{init(f_j)} + c\nu q_j$ and $a'_k = a_k + c\nu q_k$ for $i \neq k \neq j$. \Box Fix $w = (w_1, \ldots, w_n) \in \mathbb{N}^n$ a weight vector. If $\mu = X^u \in Mon(R)$ with $u = (u_1, \ldots, u_n)$ then we set $w(\mu) := w_1 u_1 + \ldots + w_n u_n$. If $0 \neq f \in R$ we set $w(f) := \max\{w(\mu) : \mu \in \operatorname{supp}(f)\}$ and

$$\operatorname{init}_{w}(f) = \sum_{\substack{\mu \in \operatorname{supp}(f) \\ w(\mu) = w(f)}} a_{\mu}\mu,$$

where
$$f = \sum_{\mu \in \text{supp}(f)} a_{\mu} \mu$$
.

Example

If
$$w = (2,1)$$
 and $f = X^3 + 2X^2Y^2 - Y^5 \in \mathbb{Q}[X, Y]$ then
 $init_w(f) = X^3 + 2X^2Y^2$.

Given an ideal $I \subset R$ we set $in_w(I) = (init_w(f) : f \in I) \subset R$.

As we will see, the passage from an ideal I to $in_w(I)$ can be seen as a "continuous" degenerative process. Before explaining it, we will show that, given a monomial order < on R and an ideal $I \subset R$, we can always find a suitable $w \in (\mathbb{N}_{>0})^n$ such that $in_w(I) = in_{<}(I)$.

Example

Let us find a weight vector that picks the largest monomial in every subset of monomials of degree $\leq d$ in K[X, Y, Z] for the lexicographic order determined by X > Y > Z. We give weight 1 to Z. Since $Y > Z^d$, we give weight d + 1 to Y. Since $X > Y^d$ and $w(Y^d) = d(d+1)$, we must choose w(X) = d(d+1) + 1. It is not hard to check that w = (d(d+1) + 1, d+1, 1) indeed solves our problem.

Initial ideals with respect to weights

Given $w \in \mathbb{N}^n$ and < a monomial order, we define another monomial order on R as

$$\mu <_w \nu \iff \begin{cases} w(\mu) < w(\nu) \\ w(\mu) = w(\nu) \text{ and } \mu < \nu \end{cases}$$

Lemma

For an ideal $I \subset R$, if $in_w(I) \subset in_<(I)$ or $in_w(I) \supset in_<(I)$, then $in_w(I) = in_<(I)$.

Proof: By applying $in_{<}(-)$ on both sides we get, for example, $in_{<_{w}}(I) = in_{<}(in_{w}(I)) \supset in_{<}(in_{<}(I)) = in_{<}(I)$. So the equality $in_{<}(in_{w}(I)) = in_{<}(in_{<}(I))$ must hold, and because $in_{w}(I) \supset in_{<}(I)$ we must have $in_{w}(I) = in_{<}(I)$. \Box

Initial ideals with respect to weights

Lemma

Let $P \subset \mathbb{R}^n$ be the convex hull of some vectors $u^1, \ldots, u^m \in \mathbb{N}^n$. Then $X^u \leq \max\{X^{u^1}, \ldots, X^{u^m}\}$ for any $u \in P \cap \mathbb{N}^n$.

Proof. If $u \in P \cap \mathbb{N}^n$, then $u = \sum_{i=1}^m \lambda_i u^i$ with $\lambda_i \in \mathbb{Q}_{\geq 0}$ and $\sum_{i=1}^m \lambda_i = 1$. If $\lambda_i = a_i/b_i$ with $a_i \in \mathbb{N}$, $b_i \in \mathbb{N} \setminus \{0\}$, then we have

$$bu=\sum_{i=1}^m a_i'u^i,$$

where $b = b_1 \cdots b_m$ and $a'_i = a_i(b/b_i)$. If, by contradiction, $X^u > X^{u^i}$ for all $i = 1, \dots, m$, then

$$(X^{u})^{b} > (X^{u^{1}})^{a'_{1}} \cdots (X^{u^{m}})^{a'_{m}}$$

(because $b = \sum_{i=1}^{m} a'_i$) but this contradicts the fact that these two monomials are the same. \Box

Proposition

Given a monomial order > on R and $\mu_i, \nu_i \in Mon(R)$ such that $\mu_i > \nu_i$ for i = 1, ..., k, there exists $w \in (\mathbb{N}_{>0})^n$ such that $w(\mu_i) > w(\nu_i) \ \forall \ i = 1, ..., k$. Consequently, given an ideal $I \subset R$ there exists $w \in (\mathbb{N}_{>0})^n$ such that $in_<(I) = in_w(I)$.

Proof: Notice that $\mu_i > \nu_i \iff \prod_j \mu_j > \nu_i \prod_{j \neq i} \mu_j$ and $w(\mu_i) > w(\nu_i) \iff w(\prod_j \mu_j) > w(\nu_i \prod_{j \neq i} \mu_j)$, so we can assume that μ_i is the same monomial μ for all i = 1, ..., k. If $\mu = X^u$ and $\nu_i = X^{v^i}$, consider $C = u + (\mathbb{R}_{\geq 0})^n \subset \mathbb{R}^n$ and $P \subset \mathbb{R}^n$ the convex hull of u and $v^1, ..., v^k$. We claim that $C \cap P = \{u\}$. Suppose that $v \in C \cap P$. We can assume that $v \in \mathbb{Q}^n$, so that there is $N \in \mathbb{N}$ big enough such that $Nv \in \mathbb{N}$. Let $\nu = X^{Nv}$. Since $v \in C, \nu$ is divided by $\mu^N = X^{Nu}$, so $\nu \geq \mu^N$. On the other hand, $v \in P \implies Nv \in NP$, so $\nu \leq \max\{Nu, Nv^i : i = 1, ..., k\} = Nu$ by the previous lemma, so $\nu = \mu^N$, that is v = u.

Therefore there is a hyperplane passing through u separating C and P, that is there is $w \in (\mathbb{R}^n)^*$ such that

 $w(v) > w(u) > w(v^i)$

for all $v \in C \setminus \{u\}$ and i = 1, ..., k. Of course we can pick $w = (w_1, ..., w_n) \in \mathbb{Q}^n$; furthermore the first inequalities yield $w_i > 0$ for all i = 1, ..., n. After taking a suitable multiple, so, we can assume $w \in (\mathbb{N}_{>0})^n$ is our desired weight vector.

For the last part of the statement, let f_1, \ldots, f_m be a Gröbner basis of *I*. By the first part, there is $w \in (\mathbb{N}_{>0})^n$ such that $w(\mu) > w(\nu)$ where $\mu = in(f_i)$ and $\nu \in supp(f_i) \setminus \{\mu\}$ for all $i = 1, \ldots, m$. So $in_{<}(I) \subset in_w(I)$, hence $in_{<}(I) = in_w(I)$. \Box

Initial ideals with respect to weights

Let us extend R to P = R[t] by introducing a homogenizing variable t. The w-homogenization of $f = \sum_{\mu \in \text{supp}(f)} a_{\mu}\mu \in R$ is

$$\hom_w(f) = \sum_{\mu \in \operatorname{supp}(f)} a_{\mu} \mu t^{w(f) - w(\mu)} \in P.$$

Example

Let
$$f = X^2 - XY + Z^2 \in K[X, Y, Z]$$
. We have:

• hom_w(f) =
$$X^2 - XY + Z^2t^2$$
 if $w = (2, 2, 1)$.

• hom_w(f) =
$$X^2 - XYt^2 + Z^2t^6$$
 if $w = (4, 2, 1)$.

Given an ideal $I \subset R$, $\hom_w(I) \subset P$ denotes the ideal generated by $\hom_w(f)$ with $f \in I$. For its study, we extend the weight vector w to w' on P by w'(t) = 1, so that $\hom_w(I)$ is a w'-homogeneous ideal of P, where the grading is $\deg(X_i) = w_i$ and $\deg(t) = 1$.

Initial ideals with respect to weights

Because $P/\hom_w(I)$ is a w'-graded P-module, it is also a graded K[t]-module (w.r.t. the standard grading on K[t]). So t - a is not a zero-divisor on $P/\hom_w(I)$ for any $a \in K \setminus \{0\}$. We want to show that also t is not a zero-divisor on $P/\hom_w(I)$ as well, and in order to do so it is useful to consider the *dehomogenization map*:

$$\pi: P \longrightarrow R$$
$$F(X_1, \ldots, X_n, t) \mapsto F(X_1, \ldots, X_n, 1).$$

Remark

• $\pi(\hom_w(f)) = f \forall f \in R.$ So, $\pi(\hom_w(I)) = I.$

② If $F \in P \setminus tP$ is w'-homogeneous, then hom_w($\pi(F)$) = F; moreover, if $r \in \mathbb{N}$ and $G = t^r F$, hom_w($\pi(G)$) $t^r = G$.

Summarizing, for $F \in P$ we have $F \in \hom_w(I) \iff \pi(F) \in I$.

Proposition

Given an ideal I of R, the element $t - a \in K[t]$ is not a zero divisor on $P / \hom_w(I)$ for every $a \in K$. Furthermore:

- $P/(\hom_w(I) + (t)) \cong R/\operatorname{in}_w(I).$
- $P/(\hom_w(I) + (t a)) \cong R/I$ for all $a \in K \setminus \{0\}$.

Proof. For the first assertion, we need to show it just for a = 0: Let $F \in P$ such that $tF \in \hom_w(I)$. Then $\pi(tF) \in I$, so, since $\pi(F) = \pi(tF)$, $F \in \hom_w(I)$.

For $P/(\hom_w(I) + (t)) \cong R/\operatorname{in}_w(I)$ it is enough to check that $\hom_w(I) + (t) = \operatorname{in}_w(I) + (t)$. This is easily seen since for every $f \in R$ the difference $\hom_w(f) - \operatorname{init}_w(f)$ is divisible by t. To prove that $P/(\hom_w(I) + (t - a)) \cong R/I$ for every $a \in K \setminus \{0\}$, we consider the graded isomorphism $\psi : R \to R$ induced by $\psi(X_i) = a^{-w_i}X_i$. Of course $\psi(\mu) = a^{-w(\mu)}\mu \forall \mu \in \operatorname{Mon}(R)$ and $\hom_w(f) - a^{w(f)}\psi(f)$ is divisible by t - a for all $f \in R$. So $\hom_w(I) + (t - a) = \psi(I) + (t - a)$, which implies the desired isomorphism. \Box

Remark

Since a module over a PID is flat iff it has no torsion, the proposition above says that $P/\hom_w(I)$ is a flat K[t]-module, and that it defines a flat family over K[t] with generic fiber R/I and special fiber $R/\inf_w(I)$.

Next we want to show that local cohomology cannot shrink passing to the initial ideal. We need the following first:

Lemma

Let A be a ring, M, N A-modules and $a \in \operatorname{ann}(N) \subset A$ a non-zero-divisor on M as well as on A. Then, for all $i \ge 0$,

 $\operatorname{Ext}^{i}_{\mathcal{A}}(M,N) \cong \operatorname{Ext}^{i}_{\mathcal{A}/a\mathcal{A}}(M/aM,N).$

Proof. Let F_{\bullet} be a free resolution of M. The Ext modules on the left hand side are the cohomology modules of $\text{Hom}_A(F_{\bullet}, N)$, which is a complex of A-modules isomorphic to $\text{Hom}_{A/aA}(F_{\bullet}/aF_{\bullet}, N)$ because a annihilates N. However F_{\bullet}/aF_{\bullet} is a free resolution of the A/aA-module M/aM since a is a non-zero-divisor on M as well as on A, so the cohomology modules of the latter complex are the Ext modules on the right hand side. \Box

Let us give a graded structure to $R = K[X_1, \ldots, X_n]$ by putting deg $(X_i) = g_i$ where $g = (g_1, \ldots, g_n)$ is a vector of positive integers (so that $\mathbf{m} = (X_1, \ldots, X_n)$ is the unique homogeneous maximal ideal of R). If $I \subset R$ is a g-homogeneous ideal, then hom_w $(I) \subset P$ is homogeneous with respect to the *bi-graded* structure on P given by deg $(X_i) = (g_i, w_i)$ and deg(t) = (0, 1). So S = P/ hom_w(I)and Ext $_P^i(S, P)$ are finetely generated bi-graded P-modules.

Notice that, given a finitely generated bi-graded *P*-module *M*, $M_{(j,*)} = \bigoplus_{k \in \mathbb{Z}} M_{(j,k)}$ is a finitely generated graded (w.r.t. the standard grading) K[t]-module for all $j \in \mathbb{Z}$. Finally, if *N* is a finitely generated K[t]-module, $N \cong K[t]^a \oplus T$ for $a \in \mathbb{N}$ and some finitely generated torsion K[t]-module *T* (since K[t] is a PID). If *N* is also graded, then $T \cong \bigoplus_{k \in \mathbb{N} > 0} (K[t]/(t^k))^{b_k}$.

Initial ideals with respect to weights

From now, let us fix a g-homogeneous ideal $I \subset R$ and denote $P/\operatorname{hom}_w(I)$ by S. From the above discussion, for all $i, j \in \mathbb{Z}$:

$$\operatorname{Ext}_P^i(S,P)_{(j,*)} \cong K[t]^{a_{i,j}} \oplus \left(\bigoplus_{k \in \mathbb{N}_{>0}} (K[t]/(t^k))^{b_{i,j,k}} \right)$$

for some natural numbers $a_{i,j}$ and $b_{i,j,k}$. Let $b_{i,j} = \sum_{k \in \mathbb{N}_{>0}} b_{i,j,k}$.

Theorem

With the above notation, for any $i, j \in \mathbb{Z}$ we have:

• dim_K(Extⁱ_R(R/I, R)_j) =
$$a_{i,j}$$
.

• $\dim_{K}(\operatorname{Ext}_{R}^{i}(R/\operatorname{in}_{w}(I),R)_{j}) = a_{i,j} + b_{i,j} + b_{i+1,j}.$

In particular, $\dim_{\mathcal{K}}(\operatorname{Ext}_{R}^{i}(R/I, R)_{j}) \leq \dim_{\mathcal{K}}(\operatorname{Ext}_{R}^{i}(R/\operatorname{in}_{w}(I), R)_{j})$ and $\dim_{\mathcal{K}}(H_{\mathfrak{m}}^{i}(R/I)_{j}) \leq \dim_{\mathcal{K}}(H_{\mathfrak{m}}^{i}(R/\operatorname{in}_{w}(I))_{j}).$ *Proof.* Letting x be t or t-1 we have the short exact sequence

$$0 \to P \xrightarrow{\cdot x} P \to P/xP \to 0.$$

The long exact sequence of $\text{Ext}_P(S, -)$ associated to it, gives us the following short exact sequences for all $i \in \mathbb{Z}$:

$0 \rightarrow \operatorname{Coker} \alpha_{i,x} \rightarrow \operatorname{Ext}_P^i(S, P/xP) \rightarrow \operatorname{Ker} \alpha_{i+1,x} \rightarrow 0,$

where $\alpha_{k,x}$ is the multiplication by x on $\operatorname{Ext}_{P}^{k}(S, P)$. We can restrict the above exact sequences to the degree (j, *) for any $j \in \mathbb{Z}$ getting:

 $0 \to (\operatorname{Coker} \alpha_{i,x})_{(j,*)} \to (\operatorname{Ext}^i_P(S, P/xP))_{(j,*)} \to (\operatorname{Ker} \alpha_{i+1,x})_{(j,*)} \to 0.$

Notice that we have:

• (Coker
$$\alpha_{i,t}$$
) _{$(j,*) $\cong K^{a_{i,j}+b_{i,j}}$ and (Ker $\alpha_{i+1,t}$) _{$(j,*) $\cong K^{b_{i+1,j}}$.$}$}

• (Coker
$$\alpha_{i,t-1})_{(j,*)} \cong K^{a_{i,j}}$$
 and $(\operatorname{Ker} \alpha_{i+1,t-1})_{(j,*)} = 0$

Therefore, for all $i, j \in \mathbb{Z}$, we got:

- $(\operatorname{Ext}^{i}_{P}(S, P/tP))_{(j,*)} \cong K^{a_{i,j}+b_{i,j}+b_{i+1,j}}$.
- $(\operatorname{Ext}_{P}^{i}(S, P/(t-1)P))_{(j,*)} \cong K^{a_{i,j}}$.

By a previous proposition both t and t-1 are non-zero-divisors on S as well on P, hence a previous lemma together with the same proposition imply:

- $(\operatorname{Ext}_{P}^{i}(S, P/tP))_{(j,*)} \cong (\operatorname{Ext}_{P/tP}^{i}(S/tS, P/tP))_{(j,*)}$, which is isomorphic to $(\operatorname{Ext}_{R}^{i}(R/\operatorname{in}_{w}(I), R))_{j}$.
- $(\operatorname{Ext}_{P}^{i}(S, P/(t-1)P))_{(j,*)} \cong (\operatorname{Ext}_{P/(t-1)P}^{i}(S/(t-1)S, P/(t-1)P))_{(j,*)},$ which is isomorphic to $(\operatorname{Ext}_{R}^{i}(R/I, R))_{j}.$

The thesis follows from this. For the local cohomology statement just observe that by Grothendieck graded duality $H^i_{\mathfrak{m}}(R/J)_j$ is dual as *K*-vector space to $\operatorname{Ext}_R^{n-i}(R/J,R)_{-|g|-j}$ for any *g*-homogeneous ideal $J \subset R$ and $i, j \in \mathbb{Z}$ (where $|g| = g_1 + \ldots + g_n$). \Box

Corollary

If *I* is a homogeneous ideal of *R*, then for all $i, j \in \mathbb{Z}$

 $\dim_{\mathcal{K}}(H^{i}_{\mathfrak{m}}(R/I)_{j}) \leq \dim_{\mathcal{K}}(H^{i}_{\mathfrak{m}}(R/\operatorname{in}(I))_{j}).$

Next we want to show that, if in(I) is squarefree, then we have equalities above. In order to do this, we will show that, if $in_w(I)$ is a squarefree monomial ideal, then $\operatorname{Ext}_P^i(S, P)$ is a flat K[t]-module for all $i \in \mathbb{Z}$ (so that the numbers $b_{i,j}$ in the previous theorem would be 0 for all $i, j \in \mathbb{Z}$). Let us recall that a module is flat over a PID (such as K[t]) if and only if it has no torsion...

Fiber-full modules and flatness

In the following slides, A is a Noetherian flat K[t]-algebra and M a finitely generated A-module which is flat over K[t], and both A and M are graded K[t]-modules (think at A and M like they were, with the previous notation, P and S).

Lemma

The following are equivalent:

1 Ext^{*i*}_{*A*}(*M*, *A*) is a flat over *K*[*t*] for all
$$i \in \mathbb{N}$$
.

2 $\operatorname{Ext}^{i}_{A/t^{m}A}(M/t^{m}M, A/t^{m}A)$ is a flat over $K[t]/(t^{m}) \forall i, m \in \mathbb{N}$.

Proof: (1) \implies (2): Since *A* is flat over *K*[*t*], there is a short exact sequence $0 \rightarrow A \xrightarrow{\cdot t^m} A \rightarrow A/t^m A \rightarrow 0$. Consider the induced long exact sequence of $\text{Ext}_A(M, -)$:

$$\cdots \to \operatorname{Ext}_{A}^{i}(M,A) \xrightarrow{\cdot t^{m}} \operatorname{Ext}_{A}^{i}(M,A) \to \operatorname{Ext}_{A}^{i}(M,A/t^{m}A)$$
$$\to \operatorname{Ext}_{A}^{i+1}(M,A) \xrightarrow{\cdot t^{m}} \operatorname{Ext}_{A}^{i+1}(M,A) \to \dots$$

Fiber-full modules and flatness

By (1), $\operatorname{Ext}_{A}^{k}(M, A)$ does not have *t*-torsion for all $k \in \mathbb{N}$, so for all $i \in \mathbb{N}$ we have a short exact sequence

$$0 \to \mathsf{Ext}^i_{\mathcal{A}}(M, \mathcal{A}) \xrightarrow{\cdot t^m} \mathsf{Ext}^i_{\mathcal{A}}(M, \mathcal{A}) \to \mathsf{Ext}^i_{\mathcal{A}}(M, \mathcal{A}/t^m \mathcal{A}) \to 0,$$

from which $\operatorname{Ext}_{A}^{i}(M, A/t^{m}A) \cong \frac{\operatorname{Ext}_{A}^{i}(M, A)}{t^{m}\operatorname{Ext}_{A}^{i}(M, A)}$. It is straightforward to check that the latter is flat over $K[t]/(t^{m})$ because (1). Finally, a previous lemma implies that

$$\operatorname{Ext}^{i}_{A}(M, A/t^{m}A) \cong \operatorname{Ext}^{i}_{A/t^{m}A}(M/t^{m}M, A/t^{m}A).$$

(2) \implies (1): By contradiction, suppose $\operatorname{Ext}_{A}^{i}(M, A)$ is not flat over K[t]. Because K[t] is a PID, then $\operatorname{Ext}_{A}^{i}(M, A)$ has nontrivial torsion. So, by the graded structure of $\operatorname{Ext}_{A}^{i}(M, A)$, there exists a nontrivial class $[\phi] \in \operatorname{Ext}_{A}^{i}(M, A)$ and $k \in \mathbb{N}$ such that $t^{k}[\phi] = 0$.

Let us take a A-free resolution F_{\bullet} of M, and let $(G^{\bullet}, \partial^{\bullet})$ be the complex $\operatorname{Hom}_{A}(F_{\bullet}, A)$, so that $\operatorname{Ext}_{A}^{i}(M, A)$ is the *i*th cohomology module of G^{\bullet} . Then $\phi \in \operatorname{Ker}(\partial^{i}) \setminus \operatorname{Im}(\partial^{i-1})$ and $t^{k}\phi \in \operatorname{Im}(\partial^{i-1})$.

Since M and A are flat over k[t], $F_{\bullet}/t^m F_{\bullet}$ is a $A/t^m A$ -free resolution of $M/t^m M$. Let $(\overline{G^{\bullet}}, \overline{\partial^{\bullet}})$ denote the complex $\operatorname{Hom}_{A/t^m A}(F_{\bullet}/t^m F_{\bullet}, A/t^m A)$, so that $\operatorname{Ext}_{A/t^m A}^i(M/t^m M, A/t^m A)$ is the *i*th cohomology module of $\overline{G^{\bullet}}$, and π^{\bullet} the natural map of complexes from G^{\bullet} to $\overline{G^{\bullet}}$. Of course $\pi^{i}(\phi) \in \text{Ker}(\partial^{i})$ and $t^k \pi^i(\phi) \in Im(\overline{\partial^{i-1}})$. Now, it is enough to find a positive integer m such that $\pi^{i}(\phi)$ does neither belong to $Im(\overline{\partial^{i-1}})$ nor to t^{m-k} Ker $(\overline{\partial^i})$. Indeed, in this case $x = [\pi^i(\phi)]$ would be an element of $\operatorname{Ext}_{P/t^m P}^i(S/t^m S, P/t^m P) \setminus t^{m-k} \operatorname{Ext}_{P/t^m P}^i(S/t^m S, P/t^m P)$ such that $t^k x = 0$, and this would contradict the flatness of $\operatorname{Ext}_{P/t^m P}^{i}(S/t^m S, P/t^m P)$ over $K[t]/(t^m)$.

If $\pi^{i}(\phi) \in \operatorname{Im}(\overline{\partial^{i-1}})$, then $\phi \in \operatorname{Im}(\partial^{i-1}) + t^{m}G^{i} = \operatorname{Im}(\partial^{i-1}) + t^{m}\operatorname{Ker}(\partial^{i}).$ Since ϕ does not belong to $\operatorname{Im}(\partial^{i-1})$, Krull's intersection theorem tells us that $\pi^{i}(\phi)$ cannot belong to $\operatorname{Im}(\overline{\partial^{i-1}})$ for all $m \gg 0$. Analogously, if $\pi^{i}(\phi) \in t^{m-k}\operatorname{Ker}(\overline{\partial^{i}})$, then

$$\phi \in t^{m-k} \operatorname{Ker}(\partial^{i}) + t^{m} G^{i} = t^{m-k} \operatorname{Ker}(\partial^{i}).$$

But $\phi \neq 0$, so, again using Krull's intersection theorem, $\pi^i(\phi) \notin t^{m-k}\overline{G^i}$ for all $m \gg 0$. \Box

In the above situation, we say that M is a *fiber-full* A-module if, for any $m \in \mathbb{N}_{>0}$, the natural projection $M/t^m M \to M/tM$ induces injective maps $\operatorname{Ext}_A^i(M/tM, A) \to \operatorname{Ext}_A^i(M/t^m M, A)$ for all $i \in \mathbb{Z}$.

Next we will see that, if M is a fiber-full A-module, then Extⁱ_A(M, A) is flat over K[t] for all $i \in \mathbb{Z}$. This circle of ideas are due (in slightly different contexts) to Ma-Quy and Kollar-Kovacs. After this, we will show that S is a fiber-full P-module provided that in_w(I) is a squarefree monomial ideal, and this will imply that

$$\dim_{\mathcal{K}}(H^{i}_{\mathfrak{m}}(R/I)_{j}) = \dim_{\mathcal{K}}(H^{i}_{\mathfrak{m}}(R/\operatorname{in}(I))_{j}) \quad \forall \ i, j \in \mathbb{Z}$$

whenever $I \subset R$ is a homogeneous ideal such that $in(I) \subset R$ is a squarefree monomial ideal, a result of Conca and myself.

Fiber-full modules and flatness

The previous lemma says that to show that $\operatorname{Ext}_{A}^{i}(M, A)$ is flat over K[t] for all $i \in \mathbb{Z}$ it is enough to show that the $K[t]/(t^{m})$ -module $\operatorname{Ext}_{A/t^{m}A}^{i}(M/t^{m}M, A/t^{m}A)$ is flat for all $i \in \mathbb{Z}$ and $m \in \mathbb{N}_{>0}$. So we introduce the following helpful notation for all $m \in \mathbb{N}_{>0}$:

- $A_m = A/t^m A$.
- $M_m = M/t^m M$.
- $\iota_j: t^{j+1}M_m \to t^j M_m$ the natural inclusion $\forall j$.
- $\mu_j: t^j M_m \to t^{m-1} M_m$ the multiplication by $t^{m-1-j} \forall j$.
- $E_m^i(-)$ the contravariant functor $\operatorname{Ext}_{A_m}^i(-,A_m)$ $\forall i$.

Remark

A lemma of Rees implies that $E_m^i(M_k) \cong \operatorname{Ext}_A^{i+1}(M_k, A)$ whenever $k \leq m$. Hence we deduce that

$$E_m^i(M_k)\cong E_m^i(M_m) \ \forall \ k\leq m.$$

Remark

Since t is a non-zero-divisor on M we have that:

$$M_j \cong t^{m-j} M_m \quad \forall j.$$

Remark

The short exact sequences $0 \to t^{j+1}M_m \xrightarrow{\iota_j} t^j M_m \xrightarrow{\mu_j} t^{m-1}M_m \to 0$, if M is fiber-full, yield the following short exact sequences for all $i \in \mathbb{Z}$:

$$0 \rightarrow E_m^i(t^{m-1}M_m) \xrightarrow{E_m^i(\mu_j)} E_m^i(t^jM_m) \xrightarrow{E_m^i(\iota_j)} E_m^i(t^{j+1}M_m) \rightarrow 0.$$

Indeed, up to the above identifications, μ_j corresponds to the natural projection $M_{m-j} \to M_1$, therefore the map $E_m^i(\mu_j)$ is injective for all $i \in \mathbb{Z}$ by definition of fiber-full module.

Theorem

With the above notation, if M is a fiber-full A-module, then $\operatorname{Ext}_{A}^{i}(M, A)$ is flat over K[t] for all $i \in \mathbb{Z}$.

Proof: By the previous lemma, it is enough to show that $E_m^i(M_m)$ is flat over $K[t]/(t^m)$ for all $m \in \mathbb{N}_{>0}$. This is clear for m = 1 (because K[t]/(t)) is a field), so we will proceed by induction: thus let us fix $m \ge 2$ and assume that $E_{m-1}^i(M_{m-1})$ is flat over $K[t]/(t^{m-1})$. The local flatness criterion tells us that is enough to show the following two properties:

- $E_m^i(M_m)/t^{m-1}E_m^i(M_m)$ is flat over $K[t]/(t^{m-1})$.
- 2 The map $\theta: (t^{m-1})/(t^m) \otimes_{K[t]/(t^m)} E^i_m(M_m) \to t^{m-1}E^i_m(M_m)$ sending $\overline{t^{m-1}} \otimes \phi$ to $t^{m-1}\phi$, is a bijection.

Fiber-full modules and flatness

By the previous Remark $E_m^i(\iota_k)$ is surjective for all k, so $E_m^i(\iota^j)$ is surjective where $\iota^j := \iota_j \circ \ldots \iota_{m-2} : t^{m-1}M_m \to t^j M_m$. Since $\iota^j \circ \mu_j$ is the multiplication by t^{m-1-j} on $t^j M_m$, we therefore have

$$\operatorname{Im}(E_m^i(\mu_j)) = \operatorname{Im}(E_m^i(\mu_j) \circ E_m^i(\iota^j)) = t^{m-1-j}E_m^i(t^jM_m).$$

Therefore $\operatorname{Ker}(E_m^i(\iota_j)) = t^{m-1-j}E_m^i(t^jM_m)$. Hence

$$E_m^i(t^{j+1}M_m)\cong \frac{E_m^i(t^jM_m)}{t^{m-1-j}E_m^i(t^jM_m)}.$$

Plugging in j = 0, we get that

$$\frac{E_m^i(M_m)}{t^{m-1}E_m^i(M_m)} \cong E_m^i(tM_m) \cong E_m^i(M_{m-1}) \cong E_{m-1}^i(M_{m-1})$$

is flat over $K[t]/(t^{m-1})$ by induction, and this shows (1).

Fiber-full modules and flatness

Concerning (2), from what said above it is not difficult to infer that the kernel of the surjective map $E_m^i(\iota^0) : E_m^i(M_m) \to E_m^i(t^{m-1}M_m)$ is equal to $tE_m^i(M_m)$. Since $E_m^i(\mu_0) \circ E_m^i(\iota^0)$ is the multiplication by t^{m-1} on $E_m^i(M_m)$ and $E_m^i(\mu_0)$ is injective, we get

$$0:_{E_m^i(M_m)} t^{m-1} = \operatorname{Ker}(E_m^i(\iota^0)) = t E_m^i(M_m).$$

Since $\operatorname{Ker}(\theta) = \{\overline{t^{m-1}} \otimes \phi : \phi \in 0 :_{E_m^i(M_m)} t^{m-1}\}$, then θ is injective, and so bijective (it is always surjective). \Box

Corollary

Let $I \subset R = K[X_1, ..., X_n]$ be an ideal such that $S = P/\hom_w(I)$ is a fiber-full *P*-module (P = R[t]). Then $\operatorname{Ext}_P^i(S, P)$ is a flat K[t]-module. So, if furthermore *I* is homogeneous:

 $\dim_{\mathcal{K}}(H^{i}_{\mathfrak{m}}(R/I)_{j}) = \dim_{\mathcal{K}}(H^{i}_{\mathfrak{m}}(R/\operatorname{in}_{w}(I))_{j}) \quad \forall \ i, j \in \mathbb{Z}.$

Squarefree monomial ideals and fiber-full modules

Our next goal is to show that, for an ideal $I \subset R$ such that $in_w(I)$ is a squarefree monomial ideal, then $S = P / hom_w(I)$ is a fiber-full P-module. To do so, we need to recall some notion:

Let $J \subset R$ a monomial ideal minimally generated by monomials μ_1, \ldots, μ_r . For all subset $\sigma \subset \{1, \ldots, r\}$ we define the monomial $\mu(J, \sigma) := \operatorname{lcm}(\mu_i | i \in \sigma) \in R$. If v is the *q*th element of σ we set $\operatorname{sign}(v, \sigma) := (-1)^{q-1} \in K$. Let us consider the graded complex of free *R*-modules $F_{\bullet}(J) = (F_i, \partial_i)_{i=0,\ldots,r}$ with

$$F_i := \bigoplus_{\substack{\sigma \subset \{1, \dots, r\} \\ |\sigma| = i}} R(-\deg \mu(J, \sigma)),$$

and differentials defined by $1_{\sigma} \mapsto \sum_{v \in \sigma} \operatorname{sign}(v, \sigma) \frac{\mu(J, \sigma)}{\mu(J, \sigma \setminus \{v\})} \cdot 1_{\sigma \setminus \{v\}}$. It is well known and not difficult to see that $F_{\bullet}(J)$ is a graded free R-resolution of R/J, called the *Taylor resolution*.

For any positive integer k we introduce the monomial ideal

$$J^{[k]} = (\mu_1^k, \ldots, \mu_r^k).$$

Notice that μ_1^k, \ldots, μ_r^k are the minimal system of monomial generators of $J^{[k]}$, so $\mu(J^{[k]}, \sigma) = \mu(J, \sigma)^k$ for any $\sigma \subset \{1, \ldots, r\}$.

Theorem

If $J \subset R$ is a squarefree monomial ideal, for all $i \in \mathbb{Z}$ and $k \in \mathbb{N}_{>0}$ the map $\operatorname{Ext}_{R}^{i}(R/J^{[k]}, R) \to \operatorname{Ext}_{R}^{i}(R/J^{[k+1]}, R)$, induced by the projection $R/J^{[k+1]} \to R/J^{[k]}$, is injective.

Corollary

Let $I \subset R$ be an ideal such that $in_w(I)$ is a squarefree monomial ideal. Then $S = P / hom_w(I)$ is a fiber-full *P*-module.

Proof of the corollary: Notice that $\hom_w(I) + tP = \inf_w(I) + tP$ is a squarefree monomial ideal of P. So, by the previous theorem, the maps $\operatorname{Ext}_P^i(S/tS, P) \to \operatorname{Ext}_P^i(P/(\hom_w(I) + tP)^{[m]}, P)$ are injective for all $m \in \mathbb{N}_{>0}$. Since $(\hom_w(I) + tP)^{[m]} \subset \hom_w(I) + t^m P$, these maps factor through $\operatorname{Ext}_P^i(S/tS, P) \to \operatorname{Ext}_P^i(S/t^mS, P)$, hence the latter are injective as well. \Box

Proof of the theorem: Let u_1, \ldots, u_r be the minimal monomial generators of J. For all $k \in \mathbb{N}_{>0}, \sigma \subset \{1, \ldots, r\}$ set $\mu_{\sigma}[k] := \mu(J^{[k]}, \sigma)$ and $\mu_{\sigma} := \mu_{\sigma}[1]$. Of course μ_{σ} is a squarefree monomial and, for what we said above, $\mu_{\sigma}[k] = \mu_{\sigma}^{k}$.

Squarefree monomial ideals and fiber-full modules

The module $\operatorname{Ext}_{R}^{i}(R/J^{[k]}, R)$ is the *i*th cohomology of the complex $G^{\bullet}[k] = \operatorname{Hom}_{R}(F_{\bullet}[k], R)$ where $F_{\bullet}[k] = F_{\bullet}(J^{[k]}) = (F_{i}, \partial_{i}[k])_{i=0,\dots,r}$ is the Taylor resolution of $R/J^{[k]}$. Let $F_i \xrightarrow{f_i} F_i$ be the map sending 1_{σ} to $\mu_{\sigma} \cdot 1_{\sigma}$. The collection $F_{\bullet}[k+1] \xrightarrow{f_{\bullet} = (f_i)_i} F_{\bullet}[k]$ is a morphism of complexes lifting $R/J^{[k+1]} \to R/J^{[k]}$ (since $\mu_{\sigma}[k] = \mu_{\sigma}^{k}$). So the maps $\operatorname{Ext}_{P}^{i}(R/J^{[k]}, R) \to \operatorname{Ext}_{P}^{i}(R/J^{[k+1]}, R)$ we are interested in are the homomorphisms $H^i(G^{\bullet}[k]) \xrightarrow{\overline{g^i}} H^i(G^{\bullet}[k+1])$ induced by $g^{\bullet} = \text{Hom}(f_{\bullet}, R) : G^{\bullet}[k] \to G^{\bullet}[k+1]$. Let us see how $\overline{g^i}$ acts: if $G^{\bullet}[k] = (G^i, \partial^i[k])$, then $G^i = \operatorname{Hom}_R(F_i, R)$ can be identified with F_i (ignoring the grading) and $\partial^i[k]: G^i \longrightarrow G^{i+1}$ sends 1_{σ} to $\sum_{v \in \{1,...,r\} \setminus \sigma} \operatorname{sign}(v, \sigma \cup \{v\}) \left(\frac{\mu_{\sigma \cup \{v\}}}{\mu_{\sigma}}\right)^k \cdot 1_{\sigma \cup \{v\}}$ for all $\sigma \subset \{1, \ldots, r\}$ and $|\sigma| = i$. The map $g^i : G^i \to G^i$, up to the identification $F_i \cong G_i$, is then the map sending 1_σ to $\mu_\sigma \cdot 1_\sigma$.

Squarefree monomial ideals and fiber-full modules

Want: $\overline{g^i}$ injective. Let $x \in \text{Ker}(\partial^i[k])$ with $g^i(x) \in \text{Im}(\partial^{i-1}[k+1])$. We need to show that $x \in \text{Im}(\partial^{i-1}[k])$. Let $y = \sum_{\sigma} y_{\sigma} \cdot 1_{\sigma} \in G^{i-1}$ such that $\partial^{i-1}[k+1](y) = g^i(x)$. We can write y_{σ} uniquely as $y'_{\sigma} + \mu_{\sigma}y''_{\sigma}$ where no monomial in $\text{supp}(y'_{\sigma})$ is divided by μ_{σ} . If

$$y' = \sum_{\sigma} y'_{\sigma} \cdot 1_{\sigma}, \,\, y'' = \sum_{\sigma} y''_{\sigma} \cdot 1_{\sigma},$$

 $\begin{array}{l} g^{i}(x) = \partial^{i-1}[k+1](y) = \partial^{i-1}[k+1](y') + \partial^{i-1}[k+1](g^{i-1}(y'')) = \\ \partial^{i-1}[k+1](y') + g^{i}(\partial^{i-1}[k](y'')). \text{ Writing } z = \sum_{\sigma} z_{\sigma} \cdot 1_{\sigma} \text{ for } \\ \partial^{i-1}[k+1](y') \in G^{i}, \text{ we have} \end{array}$

$$z_{\sigma} = \sum_{v \in \sigma} \operatorname{sign}(v, \sigma) \left(\frac{\mu_{\sigma}}{\mu_{\sigma \setminus \{v\}}} \right)^{k+1} y'_{\sigma \setminus \{v\}}$$

Since J is squarefree and $\mu_{\sigma \setminus \{v\}}$ does not divide $y'_{\sigma \setminus \{v\}}$ for any $v \in \sigma$, μ_{σ} cannot divide z_{σ} unless it is zero. On the other hand, μ_{σ} must divide z_{σ} by the green equality. Therefore $z_{\sigma} = 0$, and since σ was arbitrary z = 0, that is: $g^{i}(x) = g^{i}(\partial^{i-1}[k](y''))$. Being $g^{i} : G^{i} \to G^{i}$ obviously injective, we have found $x = \partial^{i-1}[k](y'')$. \Box

Corollary

Let $I \subset R$ be an ideal such that $\operatorname{in}_w(I) \subset R$ is a squarefree monomial ideal. Then $\operatorname{Ext}_P^i(S, P)$ is a flat K[t]-module. So, if I is homogeneous and $\operatorname{in}(I)$ is a squarefree monomial ideal, then

 $\dim_{\mathcal{K}}(H^{i}_{\mathfrak{m}}(R/I)_{j}) = \dim_{\mathcal{K}}(H^{i}_{\mathfrak{m}}(R/\operatorname{in}(I))_{j}) \quad \forall \ i, j \in \mathbb{Z}.$

This is the arrival point for these lectures, but it suggests also some open questions...

During the lectures we proved the following:

Theorem

Let $I \subset R$ be an ideal such that $S = P/\hom_w(I)$ is a fiber-full *P*-module. Then $\operatorname{Ext}_P^i(S, P)$ is a flat K[t]-module. So, if furthermore *I* is homogeneous:

$$\dim_{\mathcal{K}}(H^{i}_{\mathfrak{m}}(R/I)_{j}) = \dim_{\mathcal{K}}(H^{i}_{\mathfrak{m}}(R/\operatorname{in}_{w}(I))_{j}) \quad \forall \ i, j \in \mathbb{Z}.$$

After this we proved that, if $in_w(I) \subset R$ is a squarefree monomial ideal, then $S = P / hom_w(I)$ is a fiber-full *P*-module. However, this is not the only instance: e.g., if $R / in_w(I)$ is Cohen-Macaulay (equivalently if *S* is CM), then it is not difficult to see that *S* is fiber-full.

More interestingly, we have:

- If K has positive characteristic, then S is fiber-full whenever $R/in_w(I)$ is F-pure (Ma).
- If K has characteristic 0, then S is fiber-full whenever $R/in_w(I)$ is Du Bois (Ma-Schwede-Shimomoto).
- S is fiber-full whenever R/in_w(I) is cohomologically full (a notion recently introduced by Dao-De Stefani-Ma).

Let us recall that, for a homogeneous ideal $J \subset R$, R/J is cohomologically full if, whenever $H \subset I$ such that $\sqrt{H} = \sqrt{J}$, the natural map $H^i_{\mathfrak{m}}(R/H) \to H^i_{\mathfrak{m}}(R/J)$ is surjective for all *i*. Often $in_w(I)$ is not a monomial ideal, rather a binomial ideal s.t.

$$R/\operatorname{in}_w(I) \cong K[\mathcal{M}] := K[Y^u : u \in \mathcal{M}] \subset K[Y_1, \ldots, Y_m].$$

for some monoid $\mathcal{M} \subset \mathbb{N}^m$. This is the case when dealing with SAGBI (or Khovanskii) bases.

Problem

Find a big class of monoids $\mathcal{M} \subset \mathbb{N}^m$ such that $\mathcal{K}[\mathcal{M}]$ is cohomologically full.

For example, if K has characteristic 0 and \mathcal{M} is seminormal, then $K[\mathcal{M}]$ is Du Bois combining results of Bruns-Li-Römer and Schwede. So $K[\mathcal{M}]$ is cohomologically full for a seminormal monoid \mathcal{M} .

We proved that, if A is a Noetherian graded flat K[t]-algebra, M is a f.g. A-module which is graded and flat over K[t], then $\operatorname{Ext}_{A}^{i}(M, A)$ is flat over K[t] for all $i \in \mathbb{Z}$ whenever M is fiber-full.

Problem

With the above notation, when is it true that $Ext_A^i(M, A)$ is fiber-full whenever M is fiber-full?

For example, together with D'Alì we proved that, if M/tM is a squarefree *R*-module then *M* is fiber-full, and this implies a positive answer to the above problem when M/tM is a squarefree *R*-module. A consequence of this, is that the homological degrees (a notion introduced by Vasconcelos) of R/I and R in(I) are the same provided that in(I) is a squarefree monomial ideal.