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Notation and basic definitions

N={0,1,2,...}.

K any field.

R = K[Xi, ..., X;,] the polynomial ring in n variables over K.
A monomial of R is an element X" := X{" --- X!» € R, where
u=(u1,...,up) € N".

Mon(R) is the set of monomials of R.

e 6 o6 o

A term of R is an element of the form au € R where a € K
and p is a monomial.

Notice that every f € R can be written as a sum of terms: there
exists a unique (finite) subset supp(f) C Mon(R) such that:

f= Z aup,  ay € K\ {0}.

pesupp(f)
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Notation and basic definitions

In the above representation, the only lack of uniqueness is the
order of the terms.

Definition

A monomial order on R is a total order < on Mon(R) such that:
(i) 1 < p for every u € Mon(R);
(i) If p1, p2,v € Mon(R) such that p1 < pp, then pyv < pov.

Notice that, if < is a monomial order on R and p, v are monomials
such that p|v, then p < v: indeed 1 < v/pu, so

p=1-p</p) - p=v
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Notation and basic definitions

Typical examples of monomial orders are the following: given
monomials p = X" --- XU and v = X}* - - - X} we define:

@ The lexicographic order (Lex) by p <ex v iff ux < vy for
some k and u; = v; for any i < k.

® The degree lexicographic order (Deglex) by 1 <peglex V iff
deg(n) < deg(v) or deg(p) = deg(v) and p <pex v.
o The (degree) reverse lexicographic order (RevLex) by

1L <RevLex V iff deg(u) < deg(v) or deg(u) = deg(v) and
ug > vi for some k and u; = v; for any i > k.

In K[X,Y,Z], assuming X > Y > Z, we have
X2 > ex XZ >Lex Y?, while X2 >Revlex Y2 >Revlex XZ.
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Notation and basic definitions

Proposition

A monomial order on R is a well-order on Mon(R). That is, any
nonempty subset of Mon(R) has a minimum. Equivalently, all
descending chains of monomials in R terminate.

Proof. Let ) # N C Mon(R), and | C R be the ideal generated by
N. By Hilbert basis theorem, [/ is generated by a finite number of
monomials of N. Since a monomial order refines divisibility, the

minimum of such finitely many monomials is also the minimum of
N. O
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Notation and basic definitions

From now on, we fix a monomial order < on R, so that every
polynomial 0 # f € R can be written uniquely as

f=aypr+...+ akkk

with a; € K\ {0}, pj € Mon(R) and 1 > po > ... > puk.

Definition

The initial monomial of f is in(f) = uy. Furthermore, its initial
coefficient is inic(f) = a; and its initial term is init(f) = ajp1.

Notice that, for all f,g € R:

e inic(f)i ( ) = init(f).
o in(fg) = in(f)in(g).
o in(f + g) < max{in(),in(g)}.
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Notation and basic definitions

If £ = X1+ XoXa + X2, we have:
e in(f) = X1 with respect to Lex.

e in(f) = XoXs with respect to Deglex.
e in(f) = X? with respect to RevLex.

If f =X2+ XY + Y? € K[X, Y], then we have:
o in(f)=X2ifX>Y.
o in(f)=Y2if Y > X.

In particular, XY # in(f) for all monomial orders.

A\
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Grobner bases and Buchberger algorithm

If 1 is an ideal of R, then the monomial ideal in(/) C R generated
by {in(f) : f € I} is named the initial ideal of I.

Polynomials fi, ..., f, of an ideal | C R are a Grobner basis of | if

in(1) = (in(A), ....in(fm)).

Consider the ideal | = (ff = X? — Y2, f, = XZ — Y?) of
K[X,Y,Z]. For Lex with X > Y > Z the polynomials f, f, are
not a Grobner basis of /, indeed XY?2 = in(Zfy — Xf) is a
monomial of in(/) which is not in (in(f;) = X2,in(f) = XZ). For
RevLex with X > Y > Z, it turns out that in(/) = (X2, Y?), so f
and f>» are a Grobner basis of / in this case.
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Grobner bases and Buchberger algorithm

The Noetherianity of R implies that any ideal in R has a finite
Grobner basis.

There is a way to compute a Grobner basis of an ideal / starting
from a system of generators of /, namely the Buchsberger
algorithm; it also checks if such a system of generators is already a
Grobner basis. We will develop the algorithm in the next few slides:

Definition
Let f1,...,fm € R. A polynomial r € R is a reduction of g € R
modulo fi, ..., fy, if there exist q1,...,gm € R satisfying:

o g=qh+ ...+ qmfm+r;
e in(qg;f;) <in(g) foralli=1,...,m;

e Foralli=1,...,m, in(f;) does not divide p V 1 € supp(r).
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Grobner bases and Buchberger algorithm

Let f1,...,fm € R. Every polynomial g € R admits a reduction
modulo fi, ..., fy.

Proof: Let J = (in(f1),...,in(fn)). We start with r = g and apply

the reduction algorithm:

(1) If supp(r) N J =0, we are done: r is the desired reduction.

(2) Otherwise choose € supp(r) N J and let b € K be the
coefficient of y in the monomial representation of r. Choose i
such that in(f;) | u and set r' = r — avf; where v = u/ in(f;)
and a = b/ inic(f;). Then replace r by r’ and go to (1).

This algorithm terminates after finitely many steps since it replaces

the monomial p by a linear combination of monomials that are

smaller in the monomial order, and all descending chains of

monomials in R terminate. [J
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Grobner bases and Buchberger algorithm

Once again, we take R = K[X,Y,Z], i = X?> — Y? and
f» = XZ — Y?, and we consider Lex with X > Y > Z. Set

g =X?Z. Then g = Zfi + Y?Z, but g = Xf, + XY? as well.
Both these equations yield reductions of g, namely XY? and Y?Z.
Thus a polynomial can have several reductions modulo fi, f.

The reduction of g € R modulo f1, ..., fy, is unique when
fi,...,fm is a Grobner basis...
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Grobner bases and Buchberger algorithm

Let / be an ideal of R, fi,...,fym € [ and J = (in(f1), ..., in(fn)).
Then the following are equivalent:

(a) f,...,fn form a Grobner basis of /;

(b) every g € I reduces to 0 modulo fi,..., f;

(c) the monomials i, u ¢ J, are linearly independent modulo /.
If the equivalent conditions (a), (b), (c) hold, then:

(d) Every element of R has a unique reduction modulo fi,. .., fy.

(e) The reduction depends only on / and the monomial order.

Proof. Check (a) = (c¢) = (b) as an exercise.
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Grobner bases and Buchberger algorithm

(b) = (a) Let g€/, g #0. If g reduces to 0, then we have
g=qfh+ -+ qmfm

such that in(g;f;) <in(g) for all i. But the monomial in(g) must
appear on the right hand side as well, and this is only possible if
in(g) = in(qifi) = in(q;) in(f;) for at least one i. In other words,
in(g) must be divisible by in(f;) for some i. Hence in(/) = J.

Check (c) = (d), (e) as an exercise. [J

If f1,...,fy is a Grobner basis of an ideal / C R then
I =(f,...,fm).
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Grobner bases and Buchberger algorithm

Let | C R be an ideal and <1, <o monomial orders of R. If
ine, (1) Cing, (1), then in. (1) = in., (/).

Proof. By the previous proposition, the sets A; of monomials of R
not in in..(/) are K-bases of R/ for each i = 1,2. Since A; D Ay,
we must have A; = Ay. O

Let /1, b C R be ideals and < a monomial order of R. If 1 C b
and in<(ll) = in<(/2), then h = b.

Proof. By the previous proposition, the set A of monomials of R
not in inc (/1) = inc(h) are K-bases of R/I; for each i =1,2.
Since Iy C b, we must have [ = L. O
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Grobner bases and Buchberger algorithm

Definition

The S-polynomial of two elements f, g € R is defined as

_lem(in(f),in(g)) lem(in(f),in(g))
She)=—wm T mie) %

Proposition

Let f1,...,fm € Rand | = (f,..., fm). Then the following are
equivalent:

(a) f,...,fn form a Grobner basis of /.
(b) Forall 1 <i<j<m,S(fif;) reducesto 0 modulo fi,...,fny.

Proof. (a) = (b): It follows since S(f;, 6‘) el
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Grobner bases and Buchberger algorithm

(b) = (a): We need to show that every g € / reduces to 0
modulo the f;'s. Since g € I, we have g = a1fi + ... + amfy for
some ax € R. Among such representations, we can choose one
minimizing 1 := max{in(a;jf;) : i = 1,..., m} and, among these,
minimizing s := [{i = 1,..., m|in(a; ,) p}|. By contradiction,
suppose 1 > in(g). In this case s > 2, so there exist i < j such
that in(a;jf;) = in(ajf;) = p. Set ¢ := inic(a;f;) and notice that
p=v-lem(in(f;),in(f;)) for some v € Mon(R). Let

S(f,, f,) =qfi+...+gmfm

the reduction of S(f;, f;) (so that in(qxfx) < in(S(f;, f;)) which is

less than «jj := lem(in(f;), |n(6)) for all k). From this we get a

representation g = ajfi +...+ a fm contradicting the minimality
(ot o

of pnand s where a; = a; — r=ry + cvgi, @ = aj + ) T VY

and a, = ay + cvqy for i # k # j. O
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Initial ideals with respect to weights

Fix w = (wi,...,w,) € N" a weight vector. If u = X" € Mon(R)
with u = (u1,..., u,) then we set w(p) := wius + ... + wyu,. If
0+#f € R weset w(f):=max{w(u): p € supp(f)} and

init,, () = E auft,
pEsupp(f)
w(p)=w(f)

where £ =37 coop(f) k-

If w=(2,1) and f = X3 +2X2Y2 — Y5 € Q[X, Y] then
init,, (f) = X3 +2X2Y2,

Given an ideal | C R we set in, (/) = (init,(f): f €1) C R.
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Initial ideals with respect to weights

As we will see, the passage from an ideal / to in,, (/) can be seen as
a “continuous” degenerative process. Before explaining it, we will
show that, given a monomial order < on R and an ideal | C R, we
can always find a suitable w € (Nsg)” such that in, (/) = in(/).

Let us find a weight vector that picks the largest monomial in
every subset of monomials of degree < d in K[X, Y, Z] for the
lexicographic order determined by X > Y > Z. We give weight 1
to Z. Since Y > Z9, we give weight d + 1 to Y. Since X > Y¢
and w(Y?) = d(d + 1), we must choose w(X) =d(d +1)+1. It
is not hard to check that w = (d(d + 1) + 1,d + 1,1) indeed
solves our problem.

Matteo Grobner deformations



Initial ideals with respect to weights

Given w € N" and < a monomial order, we define another
monomial order on R as

w(p) < w(v)

<wlV <
a {W(u) =w(v)and p <v

For anideal / C R, if iny (/) C inc(/) or iny (/) D inc(/), then
iny (1) =inc (/).

Proof. By applying in.(—) on both sides we get, for example,
inc,, (1) =inc(inw (1)) Dinc(inc(/)) = in (/). So the equality
inc(iny (1)) = inc(inc(/)) must hold, and because in, (/) D in<(/)
we must have in, (/) = inc(/). O
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Initial ideals with respect to weights

Let P C R” be the convex hull of some vectors u!, ..., u™ € N".
Then X“ < max{X“",...,X“"} for any u € PNN".

Proof: If u€ PNN", then u=>""_ \;u’ with \; € Q> and
Sl Ai =1 0f X\j = aj/b; with a; € N, b; € N\ {0}, then we have

m
_ /o0
bu = g a;u',
i=1

where b= by --- by and a! = aj(b/b;). If, by contradiction,
XY > X" forall i =1,...,m, then

(Xu)b > (Xul)ai . (Xu’")a’m

(because b = >, a’) but this contradicts the fact that these two

=19
monomials are the same. [
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Initial ideals with respect to weights

Proposition

Given a monomial order > on R and pj,v; € Mon(R) such that
wi > v for i =1,... k, there exists w € (N<()" such that

w(pi) > w(v;) Vi=1,..., k. Consequently, given an ideal /| C R
there exists w € (Nsg)" such that in<(/) = in, (/).

Proof. Notice that yi; > v; <= [[;p; > vi]];,; p; and
w(pi) > w(vi) <= w([T; ;) > w(viTl. 1), so we can

assume that 4 is the same monomial p for all i =1,... k. If
p=X"and v; = X“', consider C = u+ (R>)" C R" and P C R"
the convex hull of v and v!,... vk, We claim that CN P = {u}.

Suppose that v € C N P. We can assume that v € Q", so that
there is N € N big enough such that Nv € N. Let v = X™. Since
v € C, v is divided by ,uN = XNu 50 > MN. On the other hand,
vEP = NveENP, sov<max{Nu Nv :i=1,... k}=Nu
by the previous lemma, so v = u, that is v = u.
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Initial ideals with respect to weights

Therefore there is a hyperplane passing through u separating C
and P, that is there is w € (R")* such that

w(v) > w(u) > w(v')

forallve C\ {u}and i=1,..., k. Of course we can pick

w = (wi,...,w,) € Q"; furthermore the first inequalities yield

w; >0 for all i =1,... n. After taking a suitable multiple, so, we
can assume w € (Nsg)” is our desired weight vector.

For the last part of the statement, let f1,..., f, be a Grobner basis
of /. By the first part, there is w € (Nsg)” such that w(u) > w(v)
where 1 = in(f;) and v € supp(f;) \ {u} forall i =1,...,m. So
inc(/) Ciny(/), hence inc(I) =iny, (/). O
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Initial ideals with respect to weights

Let us extend R to P = R([t] by introducing a homogenizing

variable t. The w-homogenization of f = ZuEsupp(f) a,peRis

hom,,(f) = Z auut""(f)_w(“) e P.
pesupp(f)

Let f = X2 — XY + Z2 € K[X, Y, Z]. We have:
o hom,(f) = X2 — XY + Z?t2 if w = (2,2,1).
o homy(f) = X2 — XYt2 + Z2t5 if w = (4,2,1).

Given an ideal I C R, hom,, (/) C P denotes the ideal generated by
hom,,(f) with f € /. For its study, we extend the weight vector w
to w’ on P by w/(t) = 1, so that hom,, (/) is a w'-homogeneous
ideal of P, where the grading is deg(X;) = w; and deg(t) = 1.
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Initial ideals with respect to weights

Because P/ hom,, (/) is a w'-graded P-module, it is also a graded
K[t]-module (w.r.t. the standard grading on K|[t]). So t — a is not
a zero-divisor on P/ hom,, (/) for any a € K\ {0}. We want to
show that also t is not a zero-divisor on P/hom,, (/) as well, and in
order to do so it is useful to consider the dehomogenization map:

7m:P—R
F(X1y..., Xn, t) = F(X1,...,Xp, 1).

@ n(homy(f))=fV f e R. So, w(hom,(/)) = 1.
Q If F € P\ tP is w'-homogeneous, then hom,, (7(F)) = F;
moreover, if r € N and G = t"F, hom,,(7(G))t" = G.

Summarizing, for F € P we have F € hom, (/) <= =(F) € I.
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Initial ideals with respect to weights

Proposition

Given an ideal / of R, the element t — a € K|[t] is not a zero
divisor on P/ hom,,(/) for every a € K. Furthermore:

o P/(homy () + (t)) = R/iny (/).
o P/(hom,(I)+ (t —a)) = R/l for all a € K\ {0}.

Proof. For the first assertion, we need to show it just for a = 0:
Let F € P such that tF € hom,, (/). Then w(tF) € I, so, since
7(F) = w(tF), F € hom,(/).

For P/(hom,, (/) + (t)) = R/iny(/) it is enough to check that

hom, (/) + (t) = inw (/) + (t). This is easily seen since for every
f € R the difference hom,,(f) — init,(f) is divisible by t.
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Initial ideals with respect to weights

To prove that P/(hom, (/) + (t — a)) = R/l for every a € K\ {0},
we consider the graded isomorphism 1 : R — R induced by

Y(X;) = a="iX;. Of course ¥(u) = a~ "My ¥ 1 € Mon(R) and
hom,, (f) — a*(Fy(f) is divisible by t — a for all f € R. So

hom,, (/) + (t — a) = ¢(/) + (t — a), which implies the desired
isomorphism. [J

Since a module over a PID is flat iff it has no torsion, the
proposition above says that P/hom,, (/) is a flat K[t]-module, and
that it defines a flat family over K|t] with generic fiber R/l and
special fiber R/ iny (/).
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Initial ideals with respect to weights

Next we want to show that local cohomology cannot shrink
passing to the initial ideal. We need the following first:

Let A be a ring, M, N A-modules and a € ann(N) C A a
non-zero-divisor on M as well as on A. Then, for all / > 0,

Extin(M, N) = Ext)y ,o(M/aM, N).

Proof: Let F, be a free resolution of M. The Ext modules on the
left hand side are the cohomology modules of Homa(F,, N), which
is a complex of A-modules isomorphic to Hom 4/,4(Fe/aFe, N)
because a annihilates N. However F,/aF, is a free resolution of
the A/aA-module M/aM since a is a non-zero-divisor on M as well
as on A, so the cohomology modules of the latter complex are the
Ext modules on the right hand side. [J
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Initial ideals with respect to weights

Let us give a graded structure to R = K[Xi, ..., X,] by putting
deg(X;) = gi where g = (g1,...,gn) is a vector of positive integers
(so that m = (Xi,...,Xy) is the unique homogeneous maximal
ideal of R). If I C R is a g-homogeneous ideal, then hom,, (/) C P
is homogeneous with respect to the bi-graded structure on P given
by deg(X;) = (gi, w;) and deg(t) = (0,1). So S = P/ hom,,(/)
and Exth(S, P) are finetely generated bi-graded P-modules.

Notice that, given a finitely generated bi-graded P-module M,
M) = @rez M(j ) is a finitely generated graded (w.r.t. the
standard grading) K|[t]-module for all j € Z. Finally, if N is a

finitely generated K[t]-module, N = K[t]? & T for a € N and

some finitely generated torsion K[t]-module T (since K|[t] is a
PID). If N is also graded, then T = @k€N>O(K[t]/(tk))bk.
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Initial ideals with respect to weights

From now, let us fix a g-homogeneous ideal / C R and denote
P/hom,, (/) by S. From the above discussion, for all i,j € Z:

Extp(S, P) (. = K[t @ @ (K[t]/(£%))in
keNso

for some natural numbers a;; and b;j «. Let b;; = ZkeN>o bi j -

With the above notation, for any i,j € Z we have:

o dimk(Extik(R/I,R);) = ai .

o dimk(Extik(R/iny (), R);) = aij + bij + biy1,-
In particular,.dimK(Extf;?(R/l, R)j) < dimk (Extk(R/inw(l), R);)
and dimg(HL(R/1);) < dimk(Hy(R/ inw(1));)-

Matteo Grobner deformations



Initial ideals with respect to weights

Proof. Letting x be t or t — 1 we have the short exact sequence
0P 5P P/xP—0.

The long exact sequence of Extp(S, —) associated to it, gives us
the following short exact sequences for all i € Z:

0 — Coker aj x — Extf:(S, P/xP) — Ker aj11,x — 0,

where o , is the multiplication by x on Ext’,‘;(S, P). We can
restrict the above exact sequences to the degree (j, *) for any
J € Z getting:

0— (Coker (Y;’X)(j,*) — (EXt;;(S./ P/XP))(L*) — (Ker ()é,'+17x)(j7*) — 0.

Notice that we have:
o (Coker avj¢)(j ) = K@i hii and (Ker avjp1¢)(j ) = KP1d.

o (Cokerajt—1)(j«) = K and (Ker ajt1,¢-1)(j+) = 0.
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Initial ideals with respect to weights

Therefore, for all i,j € Z, we got:
o (Extp(S, P/tP)) (.« = Kaithiithinj,
o (Extp(S,P/(t —1)P))(j.) = K.
By a previous proposition both t and t — 1 are non-zero-divisors on
S as well on P, hence a previous lemma together with the same
proposition imply:
® (Extp(S, P/tP))(,«) = (Extp,p(S/tS, P/tP))(.+), Which is
isomorphic to (Extg(R/inw (1), R));.
® (Extp(S, P/(t = 1)P))gis) = (Extp ) 1)p(S/(t = 1)S, P/(t = 1)P)) (.,
which is isomorphic to (Extix(R//, R));.
The thesis follows from this. For the local cohomology statement
just observe that by Grothendieck graded duality H,(R/J); is dual
as K-vector space to Extyy '(R/J, R)_|4|—; for any g-homogeneous
ideal J C R and i,j € Z (where |g|=g1+ ...+ gn). O
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Initial ideals with respect to weights

If I is a homogeneous ideal of R, then for all i,j € Z

dimx (HL(R/1);) < dimk(HL(R/ in(1));)-

Next we want to show that, if in(/) is squarefree, then we have
equalities above. In order to do this, we will show that, if in, (/) is
a squarefree monomial ideal, then Ext(S, P) is a flat K[t]-module
for all i € Z (so that the numbers b; ; in the previous theorem
would be 0 for all i,j € Z). Let us recall that a module is flat over
a PID (such as K[t]) if and only if it has no torsion...
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Fiber-full modules and flatness

In the following slides, A is a Noetherian flat K[t]-algebra and M a
finitely generated A-module which is flat over K[t], and both A
and M are graded K|[t]-modules (think at A and M like they were,
with the previous notation, P and S).

The following are equivalent:
Q Ext/;(M, A) is a flat over K|[t] for all i € N.
@ Ext)y/ma(M/t™M,A/t™A) is a flat over K[t]/(t™) V i,m € N.

Proof. (1) = (2): Since A is flat over K[t], there is a short

exact sequence 0 — A A A/t™A — 0. Consider the
induced long exact sequence of Exta(M, —):

co o Extiy (M, A) -5 Extiy(M, A) — Extiy(M, A/t™A)
— Exti1(M, A) 55 Exti LM, A) — ...

Matteo Grobner deformations



Fiber-full modules and flatness

By (1), Extk(M, A) does not have t-torsion for all k € N, so for all
i € N we have a short exact sequence

0 — Extiy(M, A) -5 Extiy(M, A) — Extiy(M, A/t™A) — 0,

Extiy (M, A)
tm Extly(M, A)’
straightforward to check that the latter is flat over K[t]/(t™)
because (1). Finally, a previous lemma implies that

from which Ext)y(M, A/t™A) = It is

Extiy(M, A/t A) & Extly o a(M/t™M, A/t A).

(2) = (1): By contradiction, suppose Ext/y(M, A) is not flat over
K[t]. Because K[t] is a PID, then Ext/;(M, A) has nontrivial
torsion. So, by the graded structure of Exty(M, A), there exists a
nontrivial class [¢] € Ext/y(M, A) and k € N such that t*[¢] = 0.
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Fiber-full modules and flatness

Let us take a A-free resolution Fe of M, and let (G*,0°%) be the
complex Homa(F,, A), so that Ext);(M, A) is the ith cohomology
module of G*. Then ¢ € Ker(9') \ Im(0'~1) and tk¢ € Im(9'~1).

Since M and A are flat over k[t], Fo/t™F, is a A/t™A-free
resolution of M/t™M. Let (G*,0*) denote the complex

Hom s /ima(Fe/t™Fe, A/t™A), so that Exti\/th(M/t’"l\/l,A/t’"A)
is the ith cohomology module of G*, and 7® the natural map of
complexes from G* to G*. Of course 7'(¢) € Ker(d') and

thri(¢) € Im(0'=1). Now, it is enough to find a positive integer m
such that 7/(¢) does neither belong to Im(9'~1) nor to

M=K Ker(9"). Indeed, in this case x = [1'(¢)] would be an element
of Extpimp(S/t™S, P/t™P)\ ™ KExtp )mp(S/t™S, P/t™P)
such that tXx = 0, and this would contradict the flatness of
Extp/mp(S/t™S, P/t™P) over K[t]/(t™).
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Fiber-full modules and flatness

If 7/(¢) € Im(0~1), then
€M@Y +t"G" = 1m(0 1) + t™ Ker(9').

Since ¢ does not belong to Im(9"~1), Krull's intersection theorem
tells us that 7'(¢) cannot belong to Im(9'~1) for all m > 0.
Analogously, if ©/(¢) € t™~k Ker(9'), then

¢ € t" KKer(d') + t"G' = t™ * Ker(9").

But ¢ # 0, so, again using Krull's intersection theorem,
7i(¢) ¢ t™ kG for all m>>0. O
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Fiber-full modules and flatness

In the above situation, we say that M is a fiber-full A-module if, for
any m € N>, the natural projection M/t™M — M/tM induces
injective maps Ext),(M/tM, A) — Ext)(M/t™ M, A) for all i € Z.

Next we will see that, if M is a fiber-full A-module, then
Extiy(M, A) is flat over K[t] for all i € Z. This circle of ideas are
due (in slightly different contexts) to Ma-Quy and Kollar-Kovacs.
After this, we will show that S is a fiber-full P-module provided
that in, (/) is a squarefree monomial ideal, and this will imply that

dimk (HL(R/1);) = dimg(HL(R/in(1));) Vi, jEZ

whenever | C R is a homogeneous ideal such that in(/) C Ris a
squarefree monomial ideal, a result of Conca and myself.

Matteo Grobner deformations



Fiber-full modules and flatness

The previous lemma says that to show that Ext,(M, A) is flat over
K([t] for all i € Z it is enough to show that the K[t]/(t™)-module
Exty/ima(M/t™M, A/t A) is flat for all i € Z and m € N>o. So
we introduce the following helpful notation for all m € N<g:

o An=A/tTA.

e Mp,=M/t"M.

° 4 1M, — t/M,, the natural inclusion v J.

° Lj: t! My, — t™ 1M, the multiplication by t™~1J V j.

o E}(—) the contravariant functor Exty (—, Am) V¥ i.

A lemma of Rees implies that EJ (M) = Ext’, ™} (M, A) whenever
k < m. Hence we deduce that

EL(Mi) = Ef(Mm) V k< m.
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Fiber-full modules and flatness

Since t is a non-zero-divisor on M we have that:

M; = t™ I My, V). )
The short exact sequences 0 — +1M,, 2 tiM,, 2% tm=1M,, — 0, if M
is fiber-full, yield the following short exact sequences for all i € Z:

0 — EL(t™ M) £, i (gip,) Sl Bl ety S 0.
Indeed, up to the above identifications, j; corresponds to the natural
projection Mpy_; — My, therefore the map E/ (y;) is injective for all
i € Z by definition of fiber-full module.
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Fiber-full modules and flatness

With the above notation, if M is a fiber-full A-module, then
Ext,y(M, A) is flat over K[t] for all i € Z.

Proof. By the previous lemma, it is enough to show that E/ (M,,)
is flat over K[t]/(t™) for all m € N5o. This is clear for m =1
(because K|t]/(t)) is a field), so we will proceed by induction:
thus let us fix m > 2 and assume that £/, ;(My_1) is flat over
K[t]/(t™1). The local flatness criterion tells us that is enough to
show the following two properties:

Q EL(M,)/t™LE (M,,) is flat over K[t]/(t™1).

@ The map 0: (tm_l)/(tm) ®K[t]/(tm) E;"(Mm) — tm_lE,’;,(M,-,,)
sending t™~1 ® ¢ to t™1g, is a bijection.
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Fiber-full modules and flatness

By the previous Remark E/ (1) is surjective for all k, so E/ (/) is
surjective where &/ :=tj0...im_2 : t™ My — t!My,. Since
¢/ o pj is the multiplication by tm=1=J on ! M,,,, we therefore have

Im(En (k7)) = Im(Ep (1) © () = t™ I EL (6 Mim).
Therefore Ker(E] (1)) = t™ Y E! (¢ M,,). Hence

Epn(t Mm)
tm=1=JEl (t Mp,)

En(t M) =

Plugging in j = 0, we get that

Ep(Mom)

——mA ) o E (M) 2 EL (M) & EL (M
tmilE,In(Mm) m( ) m( 1) ( 1)

m—1
is flat over K[t]/(t™1) by induction, and this shows (1).
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Fiber-full modules and flatness

Concerning (2), from what said above it is not difficult to infer that
the kernel of the surjective map E/ (:%) : E} (M) — EL(t™1Mp,)
is equal to tE! (M,,). Since E! (uo) o E! (:°) is the multiplication
by t™~! on E! (Mp) and E! (1) is injective, we get

0 g (M) 7" = Ker(E, (L)) = tEL(Mp).

Since Ker(0) = {t" '@ ¢: ¢ €0 g (m,) tm™=11, then 6 is
injective, and so bijective (it is always surjective). O

Let | C R = K[Xi,..., X;] be an ideal such that S = P/hom,, (/)
is a fiber-full P-module (P = R[t]). Then Extp(S, P) is a flat
K[t]-module. So, if furthermore / is homogeneous:

dimx(HL(R/1);) = dimk (HL(R/ inw(1));) Y i,j € Z.
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Squarefree monomial ideals and fiber-full modules

Our next goal is to show that, for an ideal / C R such that in, (/)
is a squarefree monomial ideal, then S = P/hom,, (/) is a fiber-full
P-module. To do so, we need to recall some notion:

Let J C R a monomial ideal minimally generated by monomials
pi, .., pr. Forall subset o C {1,...,r} we define the monomial
p(J, o) = lem(ui|i € o) € R. If v is the gth element of o we set
sign(v, o) := (—=1)971 € K. Let us consider the graded complex of
free R-modules Fo(J) = (Fj, 0;)i=o0,....r With

and differentials defined by 1, — > sign(v,a)% Loy It
is well known and not difficult to see that Fo(J) is a graded free
R-resolution of R/J, called the Taylor resolution.
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Squarefree monomial ideals and fiber-full modules

For any positive integer k we introduce the monomial ideal

W = (uf,... ).

Notice that uX, ..., u¥ are the minimal system of monomial
generators of JIK, so u(JM o) = pu(J,0)k forany o c {1,...,r}.

If J C R is a squarefree monomial ideal, for all i € Z and k € N>g
the map Extik(R/JK, R) — Exti(R/JH1 R), induced by the
projection R/JIKH1 — R/ JIK s injective.
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Squarefree monomial ideals and fiber-full modules

Let / C R be an ideal such that in,, (/) is a squarefree monomial
ideal. Then S = P/hom, (/) is a fiber-full P-module.

Proof of the corollary: Notice that hom,, (/) + tP = in, () + tP is
a squarefree monomial ideal of P. So, by the previous theorem, the
maps Exth(S/tS, P) — Extb(P/(hom,, (/) + tP)™ P) are
injective for all m € N<g. Since (hom,, (/) + tP)I™l c hom,, (/) + t™P,
these maps factor through Exth(S/tS, P) — Exth(S/t™S, P),
hence the latter are injective as well. [J

Proof of the theorem: Let uy,...,u, be the minimal monomial
generators of J. For all k € Nyg,0 C {1,...,r} set

piolk] == p(J¥, o) and pi, == pie[1]. Of course iy is a squarefree
monomial and, for what we said above, i, [k] = pX.
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Squarefree monomial ideals and fiber-full modules

The module Extix(R/J, R) is the ith cohomology of the complex
G*[K] = Homg(Fu[k], R) where Fu[k] = Fu(J) = (F;, 3i[K])i—o

the Taylor resolution of R/J[k]. Let F; LN F; be the map sending
1, t0 jiy - 1. The collection Fu[k + 1] <=, F,[k] is a morphism
of complexes lifting R/Jk+1 — R/JK (since u,[k] = pk).

So the maps Extir(R/JK, R) — Exti(R/Jk+1], R) we are
interested in are the homomorphisms H'(G*[k]) £+ H/(G*[k + 1])
induced by g* = Hom(f,,R) : G*[k] — G°®[k + 1]. Let us see how
g’ acts: if G*[k] = (G',0'[]), then G' = Homg(F;, R) can be
identified with F; (ignoring the grading) and 9'[k] : G' — G'*!

, k
sends 1, to Zve{l Mo sign(v, o U {v}) (M) Loy for

.....

alo c{1,...,r}and |o| =i. The map g’ : G' — G’, up to the
identification F; & G;, is then the map sending 1, to 1y - 1,.
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Squarefree monomial ideals and fiber-full modules

Want: g’ injective. Let x € Ker(d[k]) with g(x) € Im(8'~[k + 1]).
We need to show that x € Im(0'"[K]). Let y = > y» - 1o € G~ such
that 9 ~1[k + 1](y) = g'(x). We can write y, uniquely as y/. + oy
where no monomial in supp(y.) is divided by . If

Y= v 1y =Dyl Lo,
g g

g'(x) =0k +1](y) = 0"k + 1)(y') + 0" [k + 1](g" (")) =
O Mk +10(y") + &' (9" K] (y"))- Writing z =" 2, - 1, for
O 1k +1](y') € G', we have
k+1
) Yo\fv}-

Zy = Zsign(v, o) (
vEo
Since J is squarefree and i\ {,} does not divide y;\{v} forany v € o, s
cannot divide z, unless it is zero. On the other hand, u, must divide z,
by the green equality. Therefore z, = 0, and since o was arbitrary z = 0,
that is: g/(x) = g/(0" '[k](y"")). Being g’ : G' — G' obviously injective,
we have found x = &'~ 1[k](y"). O

Ho\{v}



Squarefree monomial ideals and fiber-full modules

Let / C R be an ideal such that in, (/) C R is a squarefree
monomial ideal. Then Extjp(S, P) is a flat K[t]-module. So, if / is
homogeneous and in(/) is a squarefree monomial ideal, then

dimx(HL(R/1);) = dimk (HL(R/in(1));) VY i,j € Z.

This is the arrival point for these lectures, but it suggests also
some open questions...
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Open questions

During the lectures we proved the following:

Let / C R be an ideal such that S = P/homy (/) is a fiber-full
P-module. Then Extp(S, P) is a flat K[t]-module. So, if
furthermore / is homogeneous:

dimx(HL(R/1);) = dimk (HL(R/ inw(1));) Y i,j € Z.

After this we proved that, if in,,(/) C R is a squarefree monomial
ideal, then S = P/ hom,, (/) is a fiber-full P-module. However, this
is not the only instance: e.g., if R/iny(/) is Cohen-Macaulay
(equivalently if S is CM), then it is not difficult to see that S is
fiber-full.
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Open questions

More interestingly, we have:
o If K has positive characteristic, then S is fiber-full whenever
R/iny (/) is F-pure (Ma).
o If K has characteristic 0, then S is fiber-full whenever
R/iny (/) is Du Bois (Ma-Schwede-Shimomoto).
e S is fiber-full whenever R/ in, (/) is cohomologically full (a
notion recently introduced by Dao-De Stefani-Ma).

Let us recall that, for a homogeneous ideal J C R, R/J is
cohomologically full if, whenever H C I such that VH =+, the
natural map H.(R/H) — Hi(R/J) is surjective for all i.
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Open questions

Often in, (/) is not a monomial ideal, rather a binomial ideal s.t.

R/iny (1) = KIM] == K[Y":u € M] C K[Yi,..., Ym]-

for some monoid M C N™. This is the case when dealing with
SAGBI (or Khovanskii) bases.

Find a big class of monoids M C N™ such that K[M] is
cohomologically full.

For example, if K has characteristic 0 and M is seminormal, then
K[M] is Du Bois combining results of Bruns-Li-Romer and
Schwede. So K[M)] is cohomologically full for a seminormal
monoid M.
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Open questions

We proved that, if A is a Noetherian graded flat K[t]-algebra, M is
a f.g. A-module which is graded and flat over K[t], then
Exti(M, A) is flat over K[t] for all i € Z whenever M is fiber-full.

Problem

With the above notation, when is it true that Extyy(M, A) is
fiber-full whenever M is fiber-full?

For example, together with D'Ali we proved that, if M/tM is a
squarefree R-module then M is fiber-full, and this implies a
positive answer to the above problem when M/tM is a squarefree
R-module. A consequence of this, is that the homological degrees
(a notion introduced by Vasconcelos) of R/ and Rin(/) are the
same provided that in(/) is a squarefree monomial ideal.
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