LOCAL COHOMOLOGY, CONNECTEDNESS AND INITIAL IDEALS
 Matteo Varbaro

Dipartimento di Matematica
Universitá di Genova

arXiv:0802.1800

We start with a simple question

We start with a simple question

Given $J=(u a, z a, y a, x a, u v, z v, y v, x v, x y u, x y z, x z u, y z u)$ in $S:=k[x, y, z, u, v, w, a]$ is it possible to find:

We start with a simple question

Given $J=(u a, z a, y a, x a, u v, z v, y v, x v, x y u, x y z, x z u, y z u)$ in $S:=k[x, y, z, u, v, w, a]$ is it possible to find:
(a) a term order \prec on S

We start with a simple question

Given $J=(u a, z a, y a, x a, u v, z v, y v, x v, x y u, x y z, x z u, y z u)$ in $S:=k[x, y, z, u, v, w, a]$ is it possible to find:
(a) a term order \prec on S
(b) I $\subseteq S$ homogeneus such that S / I is Cohen-Macaulay

We start with a simple question

Given $J=(u a, z a, y a, x a, u v, z v, y v, x v, x y u, x y z, x z u, y z u)$ in $S:=k[x, y, z, u, v, w, a]$ is it possible to find:
(a) a term order \prec on S
(b) $I \subseteq S$ homogeneus such that S / I is Cohen-Macaulay such that:

We start with a simple question

Given $J=(u a, z a, y a, x a, u v, z v, y v, x v, x y u, x y z, x z u, y z u)$ in $S:=k[x, y, z, u, v, w, a]$ is it possible to find:
(a) a term order \prec on S
(b) $I \subseteq S$ homogeneus such that S / I is Cohen-Macaulay
such that:

$$
\sqrt{L T_{\prec}(I)}=J ?
$$

MAIN GOAL OF THE TALK

MAIN GOAL OF THE TALK

We'll generalize the following theorem of Kalkbrener and Sturmfels:

MAIN GOAL OF THE TALK

We'll generalize the following theorem of Kalkbrener and Sturmfels:
$k=\bar{k}, I \subseteq S:=k\left[x_{1}, \ldots, x_{n}\right]$ and $\omega \in\left(\mathbb{Z}_{+}\right)^{n}$.
If I is a prime ideal, then $S / \operatorname{in}_{\omega}(I)$ is connected in codimension 1.

MAIN GOAL OF THE TALK

We'll generalize the following theorem of Kalkbrener and Sturmfels:
$k=\bar{k}, I \subseteq S:=k\left[x_{1}, \ldots, x_{n}\right]$ and $\omega \in\left(\mathbb{Z}_{+}\right)^{n}$.
If I is a prime ideal, then $S / \operatorname{in}_{\omega}(I)$ is connected in codimension 1.
So, in particular, they proved that for every term order \prec on S

MAIN GOAL OF THE TALK

We'll generalize the following theorem of Kalkbrener and Sturmfels:
$k=\bar{k}, I \subseteq S:=k\left[x_{1}, \ldots, x_{n}\right]$ and $\omega \in\left(\mathbb{Z}_{+}\right)^{n}$.
If I is a prime ideal, then $S / \operatorname{in}_{\omega}(I)$ is connected in codimension 1.
So, in particular, they proved that for every term order \prec on S

$$
\text { I prime } \Rightarrow S / L T_{\prec}(I) \text { connected in codimension } 1
$$

Structure of the talk

Structure of the talk

Two principal chapters:

Structure of the talk

Two principal chapters:

- Local cohomology and connectedness

Structure of the talk

Two principal chapters:

- Local cohomology and connectedness
- Connectedness of an ideal versus connectedness of its initial ideals

PART 1
 LOCAL COHOMOLOGY AND CONNECTEDNESS

Notation, definitions and "basic" results

Notation, definitions and "basic" results

- R noetherian ring, commutative with $1, \mathfrak{a} \subseteq R$ ideal.

Notation, definitions and "basic" results

- R noetherian ring, commutative with $1, \mathfrak{a} \subseteq R$ ideal.
$-\operatorname{cd}(R ; \mathfrak{a})$ is the infimum $d \in \mathbb{N}$ s.t. $H_{\mathfrak{a}}^{i}(M)=0$ for every R-module M and $i \geq d$.

Notation, definitions and "basic" results

- R noetherian ring, commutative with $1, \mathfrak{a} \subseteq R$ ideal.
$-\operatorname{cd}(R ; \mathfrak{a})$ is the infimum $d \in \mathbb{N}$ s.t. $H_{\mathfrak{a}}^{i}(R)=0$ for every $i \geq d$.

Notation, definitions and "basic" results

- R noetherian ring, commutative with $1, \mathfrak{a} \subseteq R$ ideal.
$-\operatorname{cd}(R ; \mathfrak{a})$ is the infimum $d \in \mathbb{N}$ s.t. $H_{\mathfrak{a}}^{i}(R)=0$ for every $i \geq d$.

$$
\operatorname{ht}(\mathfrak{a}) \leq \operatorname{cd}(R ; \mathfrak{a}) \leq \operatorname{dim} R .
$$

Connectivity dimension

Connectivity dimension

Let T be a noetherian topological space.

Connectivity dimension

Let T be a noetherian topological space.
$c(T)$ is the infimum of $\operatorname{dim} Z$ such that $Z \subseteq T$ is closed and
$T \backslash Z$ is disconnected, with \emptyset disconnected of dimension -1 .

Connectivity dimension

Let T be a noetherian topological space.
$c(T)$ is the infimum of $\operatorname{dim} Z$ such that $Z \subseteq T$ is closed and
$T \backslash Z$ is disconnected, with \emptyset disconnected of dimension -1 .

EXAMPLES

Connectivity dimension

Let T be a noetherian topological space.
$c(T)$ is the infimum of $\operatorname{dim} Z$ such that $Z \subseteq T$ is closed and
$T \backslash Z$ is disconnected, with \emptyset disconnected of dimension -1 .

EXAMPLES
T is connected if and only if $\mathrm{c}(T) \geq 0$.

Connectivity dimension

Let T be a noetherian topological space.
$c(T)$ is the infimum of $\operatorname{dim} Z$ such that $Z \subseteq T$ is closed and
$T \backslash Z$ is disconnected, with \emptyset disconnected of dimension -1 .

EXAMPLES
If T is irreducible, then $\mathrm{c}(T)=\operatorname{dim} T$.

Connectivity dimension

Let T be a noetherian topological space.
$c(T)$ is the infimum of $\operatorname{dim} Z$ such that $Z \subseteq T$ is closed and
$T \backslash Z$ is disconnected, with \emptyset disconnected of dimension -1 .

EXAMPLES

$$
\begin{gathered}
\mathfrak{a}=(x z, x w, y z, y w) \subseteq \mathbb{C}[x, y, z, w], T=\mathcal{Z}(\mathfrak{a}) \subseteq \mathbb{A}^{4} \\
T=\mathcal{Z}(x, y) \cup \mathcal{Z}(z, w), \text { and } \mathcal{Z}(x, y) \cap \mathcal{Z}(z, w)=\{(0,0,0,0)\} \\
\text { so } \operatorname{dim} T=2 \text { and } c(T)=0
\end{gathered}
$$

Connectivity dimension

Let T be a noetherian topological space.
$c(T)$ is the infimum of $\operatorname{dim} Z$ such that $Z \subseteq T$ is closed and
$T \backslash Z$ is disconnected, with \emptyset disconnected of dimension -1 .

If $T=\operatorname{Spec} R$, then $\mathrm{c}(R):=\mathrm{c}(T)$ is the infimum of $\operatorname{dim} R / \mathfrak{a}$ with \mathfrak{a} ideal such that $\operatorname{Spec} R \backslash \mathcal{V}(\mathfrak{a})$ is disconnected.

A characterization of connectivity dimension

A characterization of connectivity dimension
T.F.A.E.:

A characterization of connectivity dimension
T.F.A.E.:
(1) $\mathrm{c}(R) \geq d$;

A characterization of connectivity dimension
T.F.A.E.:
(1) $\mathrm{c}(R) \geq d$;
(2) $\forall \wp^{\prime}, \wp^{\prime \prime} \in \operatorname{Min} R$, are d-connected

A characterization of connectivity dimension

T.F.A.E.:
(1) $\mathrm{c}(R) \geq d$;
(2) $\forall \wp^{\prime}, \wp^{\prime \prime} \in \operatorname{Min} R$, are d-connected, i.e $\exists \wp^{\prime}=\wp_{0}, \wp_{1}$,
$\ldots, \wp_{r}=\wp^{\prime \prime}, \wp_{i} \in \operatorname{Min} R$ and $\operatorname{dim} R /\left(\wp_{j}+\wp_{j-1}\right) \geq d$.

A characterization of connectivity dimension

T.F.A.E.:
(1) $\mathrm{c}(R) \geq d$;
(2) $\forall \wp^{\prime}, \wp^{\prime \prime} \in \operatorname{Min} R$, are d-connected, i.e $\exists \wp^{\prime}=\wp_{0}, \wp_{1}$, $\ldots, \wp_{r}=\wp^{\prime \prime}, \wp_{i} \in \operatorname{Min} R$ and $\operatorname{dim} R /\left(\wp_{j}+\wp_{j-1}\right) \geq d$.

We will say that R is connected in codimension $\operatorname{dim} R-d$.

A characterization of connectivity dimension

T.F.A.E.:
(1) $\mathrm{c}(R) \geq d$;
(2) $\forall \wp^{\prime}, \wp^{\prime \prime} \in \operatorname{Min} R$, are d-connected, i.e $\exists \wp^{\prime}=\wp_{0}, \wp_{1}$, $\ldots, \wp_{r}=\wp^{\prime \prime}, \wp_{i} \in \operatorname{Min} R$ and $\operatorname{dim} R /\left(\wp_{j}+\wp_{j-1}\right) \geq d$.

We will say that R is connected in codimension $\operatorname{dim} R-d$.

EXAMPLES

A characterization of connectivity dimension

T.F.A.E.:
(1) $\mathrm{c}(R) \geq d$;
(2) $\forall \wp^{\prime}, \wp^{\prime \prime} \in \operatorname{Min} R$, are d-connected, i.e $\exists \wp^{\prime}=\wp_{0}, \wp_{1}$, $\ldots, \wp_{r}=\wp^{\prime \prime}, \wp_{i} \in \operatorname{Min} R$ and $\operatorname{dim} R /\left(\wp_{j}+\wp_{j-1}\right) \geq d$.

We will say that R is connected in codimension $\operatorname{dim} R-d$.

EXAMPLES
$S=k[x, y, z, v, w], \mathfrak{a}=(x y, x v, x w, y v, y z, v z, w z), R=S / \mathfrak{a}$.
R is connected in codimension 2, but not in codimension 1

A characterization of connectivity dimension

T.F.A.E.:
(1) $\mathrm{c}(R) \geq d$;
(2) $\forall \wp^{\prime}, \wp^{\prime \prime} \in \operatorname{Min} R$, are d-connected, i.e $\exists \wp^{\prime}=\wp_{0}, \wp_{1}$,

$$
\ldots, \wp_{r}=\wp^{\prime \prime}, \wp_{i} \in \operatorname{Min} R \text { and } \operatorname{dim} R /\left(\wp_{j}+\wp_{j-1}\right) \geq d
$$

We will say that R is connected in codimension $\operatorname{dim} R-d$.

EXAMPLES
$S=k[x, y, z, v, w], \mathfrak{a}=(x y, x v, x w, y v, y z, v z, w z), R=S / \mathfrak{a}$.
R is connected in codimension 2, but not in codimension 1, since

$$
\mathfrak{a}=(x, y, z) \cap(x, z, v) \cap(y, v, w)=\wp_{1} \cap \wp_{2} \cap \wp_{3}
$$

A characterization of connectivity dimension

T.F.A.E.:
(1) $\mathrm{c}(R) \geq d$;
(2) $\forall \wp^{\prime}, \wp^{\prime \prime} \in \operatorname{Min} R$, are d-connected, i.e $\exists \wp^{\prime}=\wp_{0}, \wp_{1}$,

$$
\ldots, \wp_{r}=\wp^{\prime \prime}, \wp_{i} \in \operatorname{Min} R \text { and } \operatorname{dim} R /\left(\wp_{j}+\wp_{j-1}\right) \geq d
$$

We will say that R is connected in codimension $\operatorname{dim} R-d$.

EXAMPLES
$S=k[x, y, z, v, w], \mathfrak{a}=(x y, x v, x w, y v, y z, v z, w z), R=S / \mathfrak{a}$.
R is connected in codimension 2, but not in codimension 1 , since

$$
\begin{gathered}
\mathfrak{a}=(x, y, z) \cap(x, z, v) \cap(y, v, w)=\wp_{1} \cap \wp_{2} \cap \wp_{3} \\
\operatorname{dim} R=2, \quad \operatorname{dim} S /\left(\wp_{1}+\wp_{2}\right)=1, \\
\operatorname{dim} S /\left(\wp_{1}+\wp_{3}\right)=0, \quad \operatorname{dim} S /\left(\wp_{2}+\wp_{3}\right)=0 .
\end{gathered}
$$

A characterization of connectivity dimension

T.F.A.E.:
(1) $\mathrm{c}(R) \geq d$;
(2) $\forall \wp^{\prime}, \wp^{\prime \prime} \in \operatorname{Min} R$, are d-connected, i.e $\exists \wp^{\prime}=\wp_{0}, \wp_{1}$, $\ldots, \wp_{r}=\wp^{\prime \prime}, \wp_{i} \in \operatorname{Min} R$ and $\operatorname{dim} R /\left(\wp_{j}+\wp_{j-1}\right) \geq d$.

We will say that R is connected in codimension $\operatorname{dim} R-d$.

EXAMPLES
$S=k[x, y, z, v, w], \mathfrak{a}=(z v, y v, x v, y w, y z, x z), R=S / \mathfrak{a}$.
R is connected in codimension 1

A characterization of connectivity dimension

T.F.A.E.:
(1) $\mathrm{c}(R) \geq d$;
(2) $\forall \wp^{\prime}, \wp^{\prime \prime} \in \operatorname{Min} R$, are d-connected, i.e $\exists \wp^{\prime}=\wp_{0}, \wp_{1}$,

$$
\ldots, \wp_{r}=\wp^{\prime \prime}, \wp_{i} \in \operatorname{Min} R \text { and } \operatorname{dim} R /\left(\wp_{j}+\wp_{j-1}\right) \geq d
$$

We will say that R is connected in codimension $\operatorname{dim} R-d$.

EXAMPLES
$S=k[x, y, z, v, w], \mathfrak{a}=(z v, y v, x v, y w, y z, x z), R=S / \mathfrak{a}$.
R is connected in codimension 1 , since

$$
\mathfrak{a}=(x, y, z) \cap(y, z, v) \cap(z, v, w) \cap(x, y, v)=\wp_{1} \cap \wp_{2} \cap \wp_{3} \cap \wp_{4}
$$

A characterization of connectivity dimension

T.F.A.E.:
(1) $c(R) \geq d$;
(2) $\forall \wp^{\prime}, \wp^{\prime \prime} \in \operatorname{Min} R$, are d-connected, i.e $\exists \wp^{\prime}=\wp_{0}, \wp_{1}$,

$$
\ldots, \wp_{r}=\wp^{\prime \prime}, \wp_{i} \in \operatorname{Min} R \text { and } \operatorname{dim} R /\left(\wp_{j}+\wp_{j-1}\right) \geq d .
$$

We will say that R is connected in codimension $\operatorname{dim} R-d$.
EXAMPLES
$S=k[x, y, z, v, w], \mathfrak{a}=(z v, y v, x v, y w, y z, x z), R=S / \mathfrak{a}$.
R is connected in codimension 1 , since

$$
\begin{gathered}
\mathfrak{a}=(x, y, z) \cap(y, z, v) \cap(z, v, w) \cap(x, y, v)=\wp_{1} \cap \wp_{2} \cap \wp_{3} \cap \wp_{4} \\
\operatorname{dim} R=2, \quad \operatorname{dim} S /\left(\wp_{1}+\wp_{2}\right)=1, \\
\operatorname{dim} S /\left(\wp_{2}+\wp_{3}\right)=1, \quad \operatorname{dim} S /\left(\wp_{3}+\wp_{4}\right)=1 .
\end{gathered}
$$

The complete case

The complete case

Let (R, \mathfrak{m}) be local and complete.

The complete case

Let (R, \mathfrak{m}) be local and complete. Then

$$
\mathrm{c}(R / \mathfrak{a}) \geq \min \{\mathrm{c}(R), \operatorname{dim} R-1\}-\operatorname{cd}(R, \mathfrak{a})
$$

The complete case

Let (R, \mathfrak{m}) be local and complete. Then

$$
\mathrm{c}(R / \mathfrak{a}) \geq \min \{\mathrm{c}(R), \operatorname{dim} R-1\}-\operatorname{cd}(R, \mathfrak{a})
$$

Corollary

The complete case

Let (R, \mathfrak{m}) be local and complete. Then

$$
\mathrm{c}(R / \mathfrak{a}) \geq \min \{\mathrm{c}(R), \operatorname{dim} R-1\}-\operatorname{cd}(R, \mathfrak{a})
$$

Corollary (Grothendieck)
(R, \mathfrak{m}) complete and local. Then

$$
\mathrm{c}(R / \mathfrak{a}) \geq \min \{\mathrm{c}(R), \operatorname{dim} R-1\}-\operatorname{ara}(\mathfrak{a}) .
$$

The complete case

Let (R, \mathfrak{m}) be local and complete. Then

$$
\mathrm{c}(R / \mathfrak{a}) \geq \min \{\mathrm{c}(R), \operatorname{dim} R-1\}-\operatorname{cd}(R, \mathfrak{a})
$$

Corollary (Grothendieck)
(R, \mathfrak{m}) complete and local. Then

$$
\mathrm{c}(R / \mathfrak{a}) \geq \min \{\mathrm{c}(R), \operatorname{dim} R-1\}-\operatorname{ara}(\mathfrak{a}) .
$$

Proof of Corollary

The complete case

Let (R, \mathfrak{m}) be local and complete. Then

$$
\mathrm{c}(R / \mathfrak{a}) \geq \min \{\mathrm{c}(R), \operatorname{dim} R-1\}-\mathrm{cd}(R, \mathfrak{a})
$$

Corollary (Grothendieck)
(R, \mathfrak{m}) complete and local. Then

$$
\mathrm{c}(R / \mathfrak{a}) \geq \min \{\mathrm{c}(R), \operatorname{dim} R-1\}-\operatorname{ara}(\mathfrak{a}) .
$$

Proof of Corollary

$$
\operatorname{ara}(\mathfrak{a}) \geq \operatorname{cd}(R, \mathfrak{a})
$$

The complete case

Let (R, \mathfrak{m}) be local and complete. Then

$$
\mathrm{c}(R / \mathfrak{a}) \geq \min \{\mathrm{c}(R), \operatorname{dim} R-1\}-\operatorname{cd}(R, \mathfrak{a})
$$

Corollary (Hochster and Huneke)
(R, \mathfrak{m}) complete, loc., equidimensional, $H_{\mathfrak{m}}^{\operatorname{dim} R}(R)$ indecomposable. If $\operatorname{cd}(R, \mathfrak{a}) \leq \operatorname{dim} R-2$ then $\operatorname{Spec} R / \mathfrak{a} \backslash\{\mathfrak{m}\}$ is connected.

The complete case

Let (R, \mathfrak{m}) be local and complete. Then

$$
\mathrm{c}(R / \mathfrak{a}) \geq \min \{\mathrm{c}(R), \operatorname{dim} R-1\}-\operatorname{cd}(R, \mathfrak{a})
$$

Corollary (Hochster and Huneke)
(R, \mathfrak{m}) complete, loc., equidimensional, $H_{\mathfrak{m}}^{\operatorname{dim} R}(R)$ indecomposable.
If $\operatorname{cd}(R, \mathfrak{a}) \leq \operatorname{dim} R-2$ then $\operatorname{Spec} R / \mathfrak{a} \backslash\{\mathfrak{m}\}$ is connected.
Proof of Corollary

The complete case

Let (R, \mathfrak{m}) be local and complete. Then

$$
\mathrm{c}(R / \mathfrak{a}) \geq \min \{\mathrm{c}(R), \operatorname{dim} R-1\}-\operatorname{cd}(R, \mathfrak{a})
$$

Corollary (Hochster and Huneke)
(R, \mathfrak{m}) complete, loc., equidimensional, $H_{\mathfrak{m}}^{\operatorname{dim} R}(R)$ indecomposable.
If $\operatorname{cd}(R, \mathfrak{a}) \leq \operatorname{dim} R-2$ then $\operatorname{Spec} R / \mathfrak{a} \backslash\{\mathfrak{m}\}$ is connected.
Proof of Corollary
$H_{\mathfrak{m}}^{\operatorname{dim} R}(R)$ indecomposable iff R connected in codimension 1.

The complete case

Let (R, \mathfrak{m}) be local and complete. Then

$$
\mathrm{c}(R / \mathfrak{a}) \geq \min \{\mathrm{c}(R), \operatorname{dim} R-1\}-\operatorname{cd}(R, \mathfrak{a})
$$

Corollary (Hochster and Huneke)
(R, \mathfrak{m}) complete, loc., equidimensional, $H_{\mathfrak{m}}^{\operatorname{dim} R}(R)$ indecomposable.
If $\operatorname{cd}(R, \mathfrak{a}) \leq \operatorname{dim} R-2$ then $\operatorname{Spec} R / \mathfrak{a} \backslash\{\mathfrak{m}\}$ is connected.
Proof of Corollary
$H_{\mathfrak{m}}^{\operatorname{dim} R}(R)$ indecomposable iff R connected in codimension 1.

$$
\mathrm{c}(\operatorname{Spec} R / \mathfrak{a} \backslash \mathfrak{m})=\mathrm{c}(R / \mathfrak{a})-1
$$

The Cohen-Macaulay and graded cases

The Cohen-Macaulay and graded cases

(R, \mathfrak{m}) local Cohen-Macaulay ring.

The Cohen-Macaulay and graded cases

(R, \mathfrak{m}) local Cohen-Macaulay ring.
Then $\mathrm{c}(R / \mathfrak{a}) \geq \operatorname{dim} R-\operatorname{cd}(R, \mathfrak{a})-1$.

The Cohen-Macaulay and graded cases

(R, \mathfrak{m}) local Cohen-Macaulay ring.
Then $\mathrm{c}(R / \mathfrak{a}) \geq \operatorname{dim} R-\operatorname{cd}(R, \mathfrak{a})-1$.
Proof

The Cohen-Macaulay and graded cases

(R, \mathfrak{m}) local Cohen-Macaulay ring.
Then $\mathrm{c}(R / \mathfrak{a}) \geq \operatorname{dim} R-\operatorname{cd}(R, \mathfrak{a})-1$.
Proof
R Cohen-Macaulay $\Leftrightarrow \widehat{R}$ Cohen-Macaulay

The Cohen-Macaulay and graded cases

(R, \mathfrak{m}) local Cohen-Macaulay ring.
Then $\mathrm{c}(R / \mathfrak{a}) \geq \operatorname{dim} R-\operatorname{cd}(R, \mathfrak{a})-1$.
Proof
R Cohen-Macaulay $\Leftrightarrow \widehat{R}$ Cohen-Macaulay
Cohen-Macaulay \Rightarrow connected in codimension 1

The Cohen-Macaulay and graded cases

(R, \mathfrak{m}) local Cohen-Macaulay ring.
Then $\mathrm{c}(R / \mathfrak{a}) \geq \operatorname{dim} R-\operatorname{cd}(R, \mathfrak{a})-1$.
Proof

$$
\begin{gathered}
R \text { Cohen-Macaulay } \Leftrightarrow \widehat{R} \text { Cohen-Macaulay } \\
\text { Cohen-Macaulay } \Rightarrow \text { connected in codimension } 1 \\
c(R / \mathfrak{a}) \geq \mathrm{c}(\widehat{R} / \mathfrak{a} \widehat{R})
\end{gathered}
$$

The Cohen-Macaulay and graded cases

(R, \mathfrak{m}) local Cohen-Macaulay ring.
Then $\mathrm{c}(R / \mathfrak{a}) \geq \operatorname{dim} R-\operatorname{cd}(R, \mathfrak{a})-1$.
Proof
R Cohen-Macaulay $\Leftrightarrow \widehat{R}$ Cohen-Macaulay
Cohen-Macaulay \Rightarrow connected in codimension 1

$$
\begin{aligned}
\mathrm{c}(R / \mathfrak{a}) & \geq \mathrm{c}(\widehat{R} / \mathfrak{a} \widehat{R}) \\
\operatorname{cd}(R, \mathfrak{a}) & =\operatorname{cd}(\widehat{R}, \mathfrak{a} \widehat{R})
\end{aligned}
$$

The Cohen-Macaulay and graded cases

(R, \mathfrak{m}) local Cohen-Macaulay ring.
Then $\mathrm{c}(R / \mathfrak{a}) \geq \operatorname{dim} R-\operatorname{cd}(R, \mathfrak{a})-1$.
Proof

$$
\begin{aligned}
& R \text { Cohen-Macaulay } \Leftrightarrow \widehat{R} \text { Cohen-Macaulay } \\
& \text { Cohen-Macaulay } \Rightarrow \text { connected in codimension } 1 \\
& c(R / \mathfrak{a}) \geq \mathrm{c}(\widehat{R} / \mathfrak{a} \widehat{R}) \\
& \operatorname{cd}(R, \mathfrak{a})=\operatorname{cd}(\widehat{R}, \mathfrak{a} \widehat{R})
\end{aligned}
$$

R k-algebra finitely generated positively graded, \mathfrak{a} homogeneus.

The Cohen-Macaulay and graded cases

(R, \mathfrak{m}) local Cohen-Macaulay ring.
Then $\mathrm{c}(R / \mathfrak{a}) \geq \operatorname{dim} R-\operatorname{cd}(R, \mathfrak{a})-1$.
Proof

$$
\begin{aligned}
& R \text { Cohen-Macaulay } \Leftrightarrow \widehat{R} \text { Cohen-Macaulay } \\
& \text { Cohen-Macaulay } \Rightarrow \text { connected in codimension } 1 \\
&\operatorname{c(R/a}) \geq \mathrm{c}(\widehat{R} / \mathfrak{a} \widehat{R}) \\
& \operatorname{cd}(R, \mathfrak{a})=\operatorname{cd}(\widehat{R}, \mathfrak{a} \widehat{R})
\end{aligned}
$$

R k-algebra finitely generated positively graded, \mathfrak{a} homogeneus.
Then $\mathrm{c}(R / \mathfrak{a}) \geq \min \{\mathrm{c}(R), \operatorname{dim} R-1\}-\mathrm{cd}(R, \mathfrak{a})$.

Vanishing of local cohomology and connectedness

Vanishing of local cohomology and connectedness

(Hartshorne) (R, \mathfrak{m}) local ring. If $H_{\mathfrak{m}}^{i}(R)=0$ for every $i \leq k$,

Vanishing of local cohomology and connectedness

(Hartshorne) (R, \mathfrak{m}) local ring. If $H_{\mathfrak{m}}^{i}(R)=0$ for every $i \leq k$, then $\mathrm{c}(R) \geq k$.

Vanishing of local cohomology and connectedness

(Hartshorne) (R, \mathfrak{m}) local ring. If $H_{\mathfrak{m}}^{i}(R)=0$ for every $i \leq k$, then $\mathrm{c}(R) \geq k$.
Equivalently $\mathrm{c}(R) \geq \operatorname{depth}(R)-1$.

Vanishing of local cohomology and connectedness

(Hartshorne) (R, \mathfrak{m}) local ring. If $H_{\mathfrak{m}}^{i}(R)=0$ for every $i \leq k$, then $\mathrm{c}(R) \geq k$.
Equivalently $\mathrm{c}(R) \geq \operatorname{depth}(R)-1$.
So, if R is a positively graded n-dimensional k-algebra connected in codimension 1 and $\mathfrak{m}=\oplus_{d>0} R_{d}$,

Vanishing of local cohomology and connectedness

(Hartshorne) (R, \mathfrak{m}) local ring. If $H_{\mathfrak{m}}^{i}(R)=0$ for every $i \leq k$, then $\mathrm{c}(R) \geq k$.
Equivalently $\mathrm{c}(R) \geq \operatorname{depth}(R)-1$.
So, if R is a positively graded n-dimensional k-algebra connected in codimension 1 and $\mathfrak{m}=\oplus_{d>0} R_{d}$,

$$
H_{\mathfrak{a}}^{n-i}(R)=0 \quad \forall i \leq k \Rightarrow \mathrm{c}(R / \mathfrak{a}) \geq k
$$

Vanishing of local cohomology and connectedness

(Hartshorne) (R, \mathfrak{m}) local ring. If $H_{\mathfrak{m}}^{i}(R)=0$ for every $i \leq k$, then $\mathrm{c}(R) \geq k$.
Equivalently $\mathrm{c}(R) \geq \operatorname{depth}(R)-1$.
So, if R is a positively graded n-dimensional k-algebra connected in codimension 1 and $\mathfrak{m}=\oplus_{d>0} R_{d}$,

$$
H_{\mathfrak{a}}^{n-i}(R)=0 \quad \forall i \leq k \Rightarrow \mathrm{c}(R / \mathfrak{a}) \geq k
$$

$$
H_{\mathfrak{m}}^{i}(R / \mathfrak{a})=0 \quad \forall i \leq k \Rightarrow \mathrm{c}(R / \mathfrak{a}) \geq k
$$

PART 2
 APPLICATIONS TO INITIAL IDEALS

Notation

Notation

- $S:=k\left[x_{1}, \ldots, x_{n}\right]$;

Notation

- $S:=k\left[x_{1}, \ldots, x_{n}\right] ;$
- $I \subseteq S$ ideal;

Notation

- $S:=k\left[x_{1}, \ldots, x_{n}\right] ;$
- $I \subseteq S$ ideal;
- we will say I Cohen-Macaulay for S/I Cohen-Macaulay;

Notation

- $S:=k\left[x_{1}, \ldots, x_{n}\right]$;
- $I \subseteq S$ ideal;
- we will say I Cohen-Macaulay for S/I Cohen-Macaulay;
- \prec term order on S;

Notation

- $S:=k\left[x_{1}, \ldots, x_{n}\right]$;
- $I \subseteq S$ ideal;
- we will say I Cohen-Macaulay for S/I Cohen-Macaulay;
- \prec term order on S;
- $L T_{\prec}(I) \subseteq S$ ideal of leading terms of I with respect to \prec;

Notation

- $S:=k\left[x_{1}, \ldots, x_{n}\right]$;
- $I \subseteq S$ ideal;
- we will say I Cohen-Macaulay for S/I Cohen-Macaulay;
- \prec term order on S;
- $L T_{\prec}(I) \subseteq S$ ideal of leading terms of I with respect to \prec;
- $\omega=\left(\omega_{1}, \ldots, \omega_{n}\right) \in\left(\mathbb{Z}_{+}\right)^{n}$ weight vector;

Initial ideals with respect to weight vectors

Initial ideals with respect to weight vectors

- $f \in S, \operatorname{in}_{\omega}(f) \in S$ is the leading coefficient of

$$
f\left(x_{1} t^{\omega_{1}}, \ldots, x_{n} t^{\omega_{n}}\right) \in S[t]
$$

Initial ideals with respect to weight vectors

- $f \in S, \operatorname{in}_{\omega}(f) \in S$ is the leading coefficient of

$$
f\left(x_{1} t^{\omega_{1}}, \ldots, x_{n} t^{\omega_{n}}\right) \in S[t]
$$

E. g., $f=2 x_{1} x_{2}^{3}+x_{1} x_{3}^{3}+3 x_{2}^{4} x_{3} \in k\left[x_{1}, x_{2}, x_{3}\right]$ and $\omega=(3,2,1)$;

Initial ideals with respect to weight vectors

- $f \in S, \operatorname{in}_{\omega}(f) \in S$ is the leading coefficient of

$$
f\left(x_{1} t^{\omega_{1}}, \ldots, x_{n} t^{\omega_{n}}\right) \in S[t]
$$

E. g., $f=2 x_{1} x_{2}^{3}+x_{1} x_{3}^{3}+3 x_{2}^{4} x_{3} \in k\left[x_{1}, x_{2}, x_{3}\right]$ and $\omega=(3,2,1)$;
then $f\left(x_{1} t^{3}, x_{2} t^{2}, x_{3} t\right)=2 x_{1} x_{2}^{3} t^{9}+x_{1} x_{3}^{3} t^{6}+3 x_{2}^{4} x_{3} t^{9}$

Initial ideals with respect to weight vectors

- $f \in S, \operatorname{in}_{\omega}(f) \in S$ is the leading coefficient of

$$
f\left(x_{1} t^{\omega_{1}}, \ldots, x_{n} t^{\omega_{n}}\right) \in S[t]
$$

E. g., $f=2 x_{1} x_{2}^{3}+x_{1} x_{3}^{3}+3 x_{2}^{4} x_{3} \in k\left[x_{1}, x_{2}, x_{3}\right]$ and $\omega=(3,2,1)$; then $f\left(x_{1} t^{3}, x_{2} t^{2}, x_{3} t\right)=2 x_{1} x_{2}^{3} t^{9}+x_{1} x_{3}^{3} t^{6}+3 x_{2}^{4} x_{3} t^{9}$, so

$$
\operatorname{in}_{\omega}(f)=2 x_{1} x_{2}^{3}+3 x_{2}^{4} x_{3}
$$

Initial ideals with respect to weight vectors

- $f \in S, \operatorname{in}_{\omega}(f) \in S$ is the leading coefficient of

$$
\begin{gathered}
f\left(x_{1} t^{\omega_{1}}, \ldots, x_{n} t^{\omega_{n}}\right) \in S[t] \\
-\operatorname{in}_{\omega}(I):=\left(\operatorname{in}_{\omega}(f): f \in I\right) \subseteq S
\end{gathered}
$$

Initial ideals with respect to weight vectors

- $f \in S, \operatorname{in}_{\omega}(f) \in S$ is the leading coefficient of

$$
\begin{gathered}
f\left(x_{1} t^{\omega_{1}}, \ldots, x_{n} t^{\omega_{n}}\right) \in S[t] \\
-\operatorname{in}_{\omega}(I):=\left(\operatorname{in}_{\omega}(f): f \in I\right) \subseteq S
\end{gathered}
$$

for every I, \prec there exists ω such that $L T_{\prec}(I)=\operatorname{in}_{\omega}(I)$

Initial ideals with respect to weight vectors

- $f \in S, \operatorname{in}_{\omega}(f) \in S$ is the leading coefficient of

$$
\begin{aligned}
& f\left(x_{1} t^{\omega_{1}}, \ldots, x_{n} t^{\omega_{n}}\right) \in S[t] \\
& -\operatorname{in}_{\omega}(I):=\left(\operatorname{in}_{\omega}(f): f \in I\right) \subseteq S
\end{aligned}
$$

for every I, \prec there exists ω such that $L T_{\prec}(I)=\operatorname{in}_{\omega}(I)$

$$
-{ }^{\omega_{f}}\left(x_{1}, \ldots, x_{n}, t\right):=f\left(\frac{x_{1}}{t^{\omega_{1}}}, \ldots, \frac{x_{n}}{t^{\omega_{n}}}\right) t^{\operatorname{deg}_{\omega} f} \in S[t]
$$

Initial ideals with respect to weight vectors

- $f \in S, \operatorname{in}_{\omega}(f) \in S$ is the leading coefficient of

$$
f\left(x_{1} t^{\omega_{1}}, \ldots, x_{n} t^{\omega_{n}}\right) \in S[t]
$$

$-\operatorname{in}_{\omega}(I):=\left(\operatorname{in}_{\omega}(f): f \in I\right) \subseteq S$
for every I, \prec there exists ω such that $L T_{\prec}(I)=\operatorname{in}_{\omega}(I)$
$-\operatorname{deg}_{\omega} f:=\max \left\{\sum_{i=1}^{n} \omega_{i} a_{i} \quad: x_{1}^{a_{1}} \cdots x_{n}^{a_{n}}\right.$ term of $\left.f\right\}$
${ }^{-}{ }^{\omega_{f}}\left(x_{1}, \ldots, x_{n}, t\right):=f\left(\frac{x_{1}}{t^{\omega_{1}}}, \ldots, \frac{x_{n}}{t^{\omega_{n}}}\right) t^{\operatorname{deg}_{\omega} f} \in S[t]$

Initial ideals with respect to weight vectors

- $f \in S, \operatorname{in}_{\omega}(f) \in S$ is the leading coefficient of

$$
f\left(x_{1} t^{\omega_{1}}, \ldots, x_{n} t^{\omega_{n}}\right) \in S[t]
$$

$-\operatorname{in}_{\omega}(I):=\left(\operatorname{in}_{\omega}(f): f \in I\right) \subseteq S$
for every I, \prec there exists ω such that $L T_{\prec}(I)=\operatorname{in}_{\omega}(I)$
$-\operatorname{deg}_{\omega} f:=\max \left\{\sum_{i=1}^{n} \omega_{i} a_{i}: x_{1}^{a_{1}} \cdots x_{n}^{a_{n}}\right.$ term of $\left.f\right\}$
${ }^{-}{ }^{\omega_{f}}\left(x_{1}, \ldots, x_{n}, t\right):=f\left(\frac{x_{1}}{t^{\omega_{1}}}, \ldots, \frac{x_{n}}{t^{\omega_{n}}}\right) t^{\operatorname{deg}_{\omega} f} \in S[t]$
$-{ }^{\omega} /:=\left({ }^{\omega} f: f \in I\right) \subseteq S[t]$

The main result

The main result

For every I and ω

The main result

For every I and ω

The main result

For every I and ω

$$
\mathrm{c}\left(S / \operatorname{in}_{\omega}(I)\right) \geq \min \{\mathrm{c}(S / I), \operatorname{dim} S / I-1\}
$$

Corollary

The main result

For every I and ω

$$
\mathrm{c}\left(S / \operatorname{in}_{\omega}(I)\right) \geq \min \{\mathrm{c}(S / I), \operatorname{dim} S / I-1\}
$$

Corollary (Kalkbrener and Sturmfels).
For every ω and I, if I is prime, then

$$
S / \mathrm{in}_{\omega}(I) \text { is connected in codimension } 1 .
$$

The main result

For every I and ω

$$
\mathrm{c}\left(S / \operatorname{in}_{\omega}(I)\right) \geq \min \{\mathrm{c}(S / I), \operatorname{dim} S / I-1\}
$$

Corollary (Kalkbrener and Sturmfels).
For every ω and I, if I is prime, then

$$
S / \mathrm{in}_{\omega}(I) \text { is connected in codimension } 1 .
$$

Proof of Corollary

The main result

For every I and ω

$$
\mathrm{c}\left(S / \operatorname{in}_{\omega}(I)\right) \geq \min \{\mathrm{c}(S / I), \operatorname{dim} S / I-1\}
$$

Corollary (Kalkbrener and Sturmfels).
For every ω and I, if I is prime, then

$$
S / \mathrm{in}_{\omega}(I) \text { is connected in codimension } 1 .
$$

Proof of Corollary
I prime $\Rightarrow \mathrm{c}(S / I)=\operatorname{dim} S / I$.

The main result

For every I and ω

$$
c\left(S / \operatorname{in}_{\omega}(I)\right) \geq \min \{c(S / I), \operatorname{dim} S / I-1\}
$$

Corollary For every \prec and I, then

$$
\mathrm{c}\left(S / L T_{\prec}(I)\right) \geq \min \{\mathrm{c}(S / I), \operatorname{dim} S / I-1\} .
$$

The main result

For every I and ω

$$
\mathrm{c}\left(S / \operatorname{in}_{\omega}(I)\right) \geq \min \{\mathrm{c}(S / I), \operatorname{dim} S / I-1\}
$$

Corollary For every \prec and I, then

$$
\mathrm{c}\left(S / L T_{\prec}(I)\right) \geq \min \{\mathrm{c}(S / I), \operatorname{dim} S / I-1\} .
$$

Proof of Corollary

The main result

For every I and ω

$$
c\left(S / \operatorname{in}_{\omega}(I)\right) \geq \min \{c(S / I), \operatorname{dim} S / I-1\}
$$

Corollary For every \prec and I, then

$$
\mathrm{c}\left(S / L T_{\prec}(I)\right) \geq \min \{\mathrm{c}(S / I), \operatorname{dim} S / I-1\} .
$$

Proof of Corollary
Choose ω such that $\operatorname{in}_{\omega}(I)=L T_{\prec}(I)$.

The main result

For every I and ω

$$
c\left(S / \operatorname{in}_{\omega}(I)\right) \geq \min \{c(S / I), \operatorname{dim} S / I-1\}
$$

Corollary For every ω and graded I, the following holds:

$$
\mathrm{c}\left(S / \operatorname{in}_{\omega}(I)\right) \geq \operatorname{depth}(S / I)-1
$$

The main result

For every I and ω

$$
\mathrm{c}\left(S / \operatorname{in}_{\omega}(I)\right) \geq \min \{\mathrm{c}(S / I), \operatorname{dim} S / I-1\}
$$

Corollary For every ω and graded I, the following holds:

$$
\mathrm{c}\left(S / \operatorname{in}_{\omega}(I)\right) \geq \operatorname{depth}(S / I)-1
$$

So, I Cohen-Macaulay $\Rightarrow S / \operatorname{in}_{\omega}(I)$ connected in codimension 1 .

The main result

For every I and ω

$$
\mathrm{c}\left(S / \operatorname{in}_{\omega}(I)\right) \geq \min \{\mathrm{c}(S / I), \operatorname{dim} S / I-1\}
$$

Corollary For every ω and graded I, the following holds:

$$
\mathrm{c}\left(S / \operatorname{in}_{\omega}(I)\right) \geq \operatorname{depth}(S / I)-1
$$

So, I Cohen-Macaulay $\Rightarrow S / \operatorname{in}_{\omega}(I)$ connected in codimension 1 .
Proof of Corollary

The main result

For every I and ω

$$
\mathrm{c}\left(S / \operatorname{in}_{\omega}(I)\right) \geq \min \{\mathrm{c}(S / I), \operatorname{dim} S / I-1\}
$$

Corollary For every ω and graded I, the following holds:

$$
\mathrm{c}\left(S / \operatorname{in}_{\omega}(I)\right) \geq \operatorname{depth}(S / I)-1
$$

So, I Cohen-Macaulay $\Rightarrow S / \operatorname{in}_{\omega}(I)$ connected in codimension 1 .
Proof of Corollary
Follows from the fact that $\mathrm{c}(S / I) \geq \operatorname{depth}(S / I)-1$.

The main result

For every I and ω

$$
c\left(S / \operatorname{in}_{\omega}(I)\right) \geq \min \{c(S / I), \operatorname{dim} S / I-1\}
$$

Corollary For every \prec and graded I, the following holds:

$$
\operatorname{depth}(S / I) \geq 2 \Rightarrow \operatorname{depth}\left(S / \sqrt{L T_{\prec}(I)}\right) \geq 2
$$

The main result

For every I and ω

$$
c\left(S / \operatorname{in}_{\omega}(I)\right) \geq \min \{c(S / I), \operatorname{dim} S / I-1\}
$$

Corollary For every \prec and graded I, the following holds:

$$
\operatorname{depth}(S / I) \geq 2 \Rightarrow \operatorname{depth}\left(S / \sqrt{L T_{\prec}(I)}\right) \geq 2
$$

Proof of Corollary

The main result

For every I and ω

$$
c\left(S / \operatorname{in}_{\omega}(I)\right) \geq \min \{c(S / I), \operatorname{dim} S / I-1\}
$$

Corollary For every \prec and graded I, the following holds:

$$
\operatorname{depth}(S / I) \geq 2 \Rightarrow \operatorname{depth}\left(S / \sqrt{L T_{\prec}(I)}\right) \geq 2
$$

Proof of Corollary $\operatorname{depth}(S / I) \geq 2 \Rightarrow c(S / I) \geq 1 \Rightarrow c\left(S / L T_{\prec}(I)\right) \geq 1$

The main result

For every I and ω

$$
\mathrm{c}\left(S / \operatorname{in}_{\omega}(I)\right) \geq \min \{\mathrm{c}(S / I), \operatorname{dim} S / I-1\}
$$

Corollary For every \prec and graded I, the following holds:

$$
\operatorname{depth}(S / I) \geq 2 \Rightarrow \operatorname{depth}\left(S / \sqrt{L T_{\prec}(I)}\right) \geq 2
$$

Proof of Corollary
$\operatorname{depth}(S / I) \geq 2 \Rightarrow c(S / I) \geq 1 \Rightarrow c\left(S / L T_{\prec}(I)\right) \geq 1$
$\Rightarrow \operatorname{depth}\left(S / \sqrt{L T_{\prec}(I)}\right) \geq 2$.

Idea of the proof

Idea of the proof

Let be $R:=S[t] /{ }^{\omega} /$ and $\mathfrak{a}:=\left({ }^{\omega} /+t\right) /{ }^{\omega} / \subseteq R$.

Idea of the proof

Let be $R:=S[t] /{ }^{\omega} /$ and $\mathfrak{a}:=\left({ }^{\omega} /+t\right) /{ }^{\omega} \mid \subseteq R$.

$$
S / \operatorname{in}_{\omega}(I) \cong R / \mathfrak{a}
$$

Idea of the proof

Let be $R:=S[t] /{ }^{\omega} /$ and $\mathfrak{a}:=\left({ }^{\omega} /+t\right) /{ }^{\omega} \mid \subseteq R$.

$$
S / \operatorname{in}_{\omega}(I) \cong R / \mathfrak{a}
$$

Give a positive graduation to R s.t. \mathfrak{a} is homogeneus as follows:

Idea of the proof

Let be $R:=S[t] /{ }^{\omega} /$ and $\mathfrak{a}:=\left({ }^{\omega} /+t\right) /{ }^{\omega} / \subseteq R$.

$$
S / \operatorname{in}_{\omega}(I) \cong R / \mathfrak{a}
$$

Give a positive graduation to R s.t. \mathfrak{a} is homogeneus as follows:

$$
\operatorname{deg} \bar{x}_{i}=\omega_{i}, \quad \operatorname{deg} \bar{t}=1
$$

Idea of the proof

Let be $R:=S[t] /{ }^{\omega} /$ and $\mathfrak{a}:=\left({ }^{\omega} /+t\right) /{ }^{\omega} \mid \subseteq R$.

$$
S / \operatorname{in}_{\omega}(I) \cong R / \mathfrak{a}
$$

Give a positive graduation to R s.t. \mathfrak{a} is homogeneus as follows:

$$
\operatorname{deg} \bar{x}_{i}=\omega_{i}, \quad \operatorname{deg} \bar{t}=1
$$

Graded version of the main result of the first part let us conclude!

The answer to the initial question

The answer to the initial question

$$
J=(u a, z a, y a, x a, u v, z v, y v, x v, x y u, x y z, x z u, y z u)
$$

The answer to the initial question

$$
J=(u a, z a, y a, x a, u v, z v, y v, x v, x y u, x y z, x z u, y z u)
$$

The minimal primes of $J \subseteq S:=k[x, y, z, u, v, w, a]$ are:

$$
\begin{gathered}
\wp_{1}=(x, y, z, u), \wp_{2}=(x, y, v, a), \wp_{3}=(x, z, v, a), \\
\wp_{4}=(x, u, v, a), \wp_{5}=(y, z, v, a), \\
\wp_{6}=(y, u, v, a), \wp_{7}=(z, u, v, a) .
\end{gathered}
$$

The answer to the initial question

$$
J=(u a, z a, y a, x a, u v, z v, y v, x v, x y u, x y z, x z u, y z u)
$$

The minimal primes of $J \subseteq S:=k[x, y, z, u, v, w, a]$ are:

$$
\begin{gathered}
\wp_{1}=(x, y, z, u), \wp_{2}=(x, y, v, a), \wp_{3}=(x, z, v, a), \\
\wp_{4}=(x, u, v, a), \wp_{5}=(y, z, v, a), \\
\wp_{6}=(y, u, v, a), \wp_{7}=(z, u, v, a) .
\end{gathered}
$$

Note that $\operatorname{dim} S /\left(\wp_{1}+\wp_{i}\right)=1$

The answer to the initial question

$$
J=(u a, z a, y a, x a, u v, z v, y v, x v, x y u, x y z, x z u, y z u)
$$

The minimal primes of $J \subseteq S:=k[x, y, z, u, v, w, a]$ are:

$$
\begin{gathered}
\wp_{1}=(x, y, z, u), \wp_{2}=(x, y, v, a), \wp_{3}=(x, z, v, a), \\
\wp_{4}=(x, u, v, a), \wp_{5}=(y, z, v, a), \\
\wp_{6}=(y, u, v, a), \wp_{7}=(z, u, v, a) .
\end{gathered}
$$

Note that $\operatorname{dim} S /\left(\wp_{1}+\wp_{i}\right)=1$ whereas $\operatorname{dim} S / J=3$.

The answer to the initial question

$$
J=(u a, z a, y a, x a, u v, z v, y v, x v, x y u, x y z, x z u, y z u)
$$

The minimal primes of $J \subseteq S:=k[x, y, z, u, v, w, a]$ are:

$$
\begin{gathered}
\wp_{1}=(x, y, z, u), \wp_{2}=(x, y, v, a), \wp_{3}=(x, z, v, a), \\
\wp_{4}=(x, u, v, a), \wp_{5}=(y, z, v, a), \\
\wp_{6}=(y, u, v, a), \wp_{7}=(z, u, v, a) .
\end{gathered}
$$

Note that $\operatorname{dim} S /\left(\wp_{1}+\wp_{i}\right)=1$ whereas $\operatorname{dim} S / J=3$.
So S / J is not connected in codimension 1 ,

The answer to the initial question

$$
J=(u a, z a, y a, x a, u v, z v, y v, x v, x y u, x y z, x z u, y z u)
$$

The minimal primes of $J \subseteq S:=k[x, y, z, u, v, w, a]$ are:

$$
\begin{gathered}
\wp_{1}=(x, y, z, u), \wp_{2}=(x, y, v, a), \wp_{3}=(x, z, v, a), \\
\wp_{4}=(x, u, v, a), \wp_{5}=(y, z, v, a), \\
\wp_{6}=(y, u, v, a), \wp_{7}=(z, u, v, a) .
\end{gathered}
$$

Note that $\operatorname{dim} S /\left(\wp_{1}+\wp_{i}\right)=1$ whereas $\operatorname{dim} S / J=3$.
So S / J is not connected in codimension 1 , therefore cannot exist $I \subseteq S$ Cohen-Macaulay and \prec s. t. $\sqrt{L T_{\prec}(I)}=J$!

Examples

Examples

$$
S:=\mathbb{C}\left[x_{1}, \ldots, x_{7}\right]
$$

Examples

$$
\begin{gathered}
S:=\mathbb{C}\left[x_{1}, \ldots, x_{7}\right] \\
X:=\left(\begin{array}{ccc}
x_{1}+x_{2} & x_{5} & x_{4} \\
x_{6}-x_{5} & x_{3}+x_{7} & x_{5} \\
x_{4}+x_{7} & x_{1}-x_{3} & x_{5}+x_{7}
\end{array}\right)
\end{gathered}
$$

Examples

$$
\begin{gathered}
S:=\mathbb{C}\left[x_{1}, \ldots, x_{7}\right] \\
X:=\left(\begin{array}{ccc}
x_{1}+x_{2} & x_{5} & x_{4} \\
x_{6}-x_{5} & x_{3}+x_{7} & x_{5} \\
x_{4}+x_{7} & x_{1}-x_{3} & x_{5}+x_{7}
\end{array}\right)
\end{gathered}
$$

$I:=I_{2}(X)$ is a prime ideal of codimension 4,

Examples

$$
\begin{gathered}
S:=\mathbb{C}\left[x_{1}, \ldots, x_{7}\right] \\
X:=\left(\begin{array}{ccc}
x_{1}+x_{2} & x_{5} & x_{4} \\
x_{6}-x_{5} & x_{3}+x_{7} & x_{5} \\
x_{4}+x_{7} & x_{1}-x_{3} & x_{5}+x_{7}
\end{array}\right)
\end{gathered}
$$

$I:=I_{2}(X)$ is a prime ideal of codimension 4, so S / I is a Gorenstein domain of dimension 3.

Examples

$$
\begin{gathered}
S:=\mathbb{C}\left[x_{1}, \ldots, x_{7}\right] \\
X:=\left(\begin{array}{ccc}
x_{1}+x_{2} & x_{5} & x_{4} \\
x_{6}-x_{5} & x_{3}+x_{7} & x_{5} \\
x_{4}+x_{7} & x_{1}-x_{3} & x_{5}+x_{7}
\end{array}\right)
\end{gathered}
$$

$I:=I_{2}(X)$ is a prime ideal of codimension 4, so S / I is a Gorenstein domain of dimension 3. Moreover $\operatorname{Proj}(S / I)$ is a smooth surface.

Examples

$$
\begin{gathered}
S:=\mathbb{C}\left[x_{1}, \ldots, x_{7}\right] \\
X:=\left(\begin{array}{ccc}
x_{1}+x_{2} & x_{5} & x_{4} \\
x_{6}-x_{5} & x_{3}+x_{7} & x_{5} \\
x_{4}+x_{7} & x_{1}-x_{3} & x_{5}+x_{7}
\end{array}\right)
\end{gathered}
$$

$I:=I_{2}(X)$ is a prime ideal of codimension 4, so S / I is a Gorenstein domain of dimension 3. Moreover $\operatorname{Proj}(S / I)$ is a smooth surface.

If \prec is the lexicographic order, then
$L T_{\prec}(I) \neq \sqrt{L T_{\prec}(I)}=\left(x_{1}, x_{3} x_{5}, x_{2} x_{5}, x_{3} x_{4}, x_{4} x_{5}, x_{2} x_{3} x_{6}, x_{2} x_{4} x_{7}, x_{2} x_{6} x_{7}\right)$

Examples

$$
\begin{gathered}
S:=\mathbb{C}\left[x_{1}, \ldots, x_{7}\right] \\
X:=\left(\begin{array}{ccc}
x_{1}+x_{2} & x_{5} & x_{4} \\
x_{6}-x_{5} & x_{3}+x_{7} & x_{5} \\
x_{4}+x_{7} & x_{1}-x_{3} & x_{5}+x_{7}
\end{array}\right)
\end{gathered}
$$

$I:=I_{2}(X)$ is a prime ideal of codimension 4, so S / I is a Gorenstein domain of dimension 3. Moreover $\operatorname{Proj}(S / I)$ is a smooth surface.

If \prec is the lexicographic order, then
$L T_{\prec}(I) \neq \sqrt{L T_{\prec}(I)}=\left(x_{1}, x_{3} x_{5}, x_{2} x_{5}, x_{3} x_{4}, x_{4} x_{5}, x_{2} x_{3} x_{6}, x_{2} x_{4} x_{7}, x_{2} x_{6} x_{7}\right)$
$S / \sqrt{L T_{\prec}(I)}$ is not Cohen-Macaulay !

Examples

Examples

$$
S:=\mathbb{C}\left[x_{1}, \ldots, x_{6}\right]
$$

Examples

$$
\begin{gathered}
S:=\mathbb{C}\left[x_{1}, \ldots, x_{6}\right] \\
I:=\left(x_{1} x_{5}+x_{2} x_{6}+x_{4}^{2}, x_{1} x_{4}+x_{3}^{2}-x_{4} x_{5}, x_{1}^{2}+x_{1} x_{2}+x_{2} x_{5}\right)
\end{gathered}
$$

Examples

$$
\begin{gathered}
S:=\mathbb{C}\left[x_{1}, \ldots, x_{6}\right] \\
I:=\left(x_{1} x_{5}+x_{2} x_{6}+x_{4}^{2}, x_{1} x_{4}+x_{3}^{2}-x_{4} x_{5}, x_{1}^{2}+x_{1} x_{2}+x_{2} x_{5}\right) \\
I \text { is a prime complete intersection of codimension 3, }
\end{gathered}
$$

Examples

$$
\begin{gathered}
S:=\mathbb{C}\left[x_{1}, \ldots, x_{6}\right] \\
I:=\left(x_{1} x_{5}+x_{2} x_{6}+x_{4}^{2}, x_{1} x_{4}+x_{3}^{2}-x_{4} x_{5}, x_{1}^{2}+x_{1} x_{2}+x_{2} x_{5}\right)
\end{gathered}
$$

I is a prime complete intersection of codimension 3,
$\operatorname{Proj}(S / I)$ is a normal surface with 3 singular points.
If \prec is the lexicographic order, then

$$
L T_{\prec}(I) \neq \sqrt{L T_{\prec}(I)}=\left(x_{1}, x_{3} x_{5}, x_{2} x_{3} x_{4}, x_{2} x_{4} x_{6}, x_{2} x_{5} x_{6}\right)
$$

Examples

$$
\begin{gathered}
S:=\mathbb{C}\left[x_{1}, \ldots, x_{6}\right] \\
I:=\left(x_{1} x_{5}+x_{2} x_{6}+x_{4}^{2}, x_{1} x_{4}+x_{3}^{2}-x_{4} x_{5}, x_{1}^{2}+x_{1} x_{2}+x_{2} x_{5}\right)
\end{gathered}
$$

I is a prime complete intersection of codimension 3,
$\operatorname{Proj}(S / I)$ is a normal surface with 3 singular points.
If \prec is the lexicographic order, then

$$
L T_{\prec}(I) \neq \sqrt{L T_{\prec}(I)}=\left(x_{1}, x_{3} x_{5}, x_{2} x_{3} x_{4}, x_{2} x_{4} x_{6}, x_{2} x_{5} x_{6}\right)
$$

$S / \sqrt{L T_{\prec}(I)}$ is not Cohen-Macaulay!

Examples

$$
\begin{gathered}
S:=\mathbb{C}\left[x_{1}, \ldots, x_{6}\right] \\
I:=\left(x_{1} x_{5}+x_{2} x_{6}+x_{4}^{2}, x_{1} x_{4}+x_{3}^{2}-x_{4} x_{5}, x_{1}^{2}+x_{1} x_{2}+x_{2} x_{5}\right)
\end{gathered}
$$

I is a prime complete intersection of codimension 3,
$\operatorname{Proj}(S / I)$ is a normal surface with 3 singular points.
If \prec is the lexicographic order, then

$$
L T_{\prec}(I) \neq \sqrt{L T_{\prec}(I)}=\left(x_{1}, x_{3} x_{5}, x_{2} x_{3} x_{4}, x_{2} x_{4} x_{6}, x_{2} x_{5} x_{6}\right)
$$

$S / \sqrt{L T_{\prec}(I)}$ is not Cohen-Macaulay!
In this case we have also that $\operatorname{cd}(S, I)<\operatorname{cd}\left(S, L T_{\prec}(I)\right)$!

Related questions:

Related questions:

(1) Does there exist a Cohen-Macaulay ideal I of codimension 2 and a term order \prec such that $\sqrt{L T_{\prec}(I)}$ is not Cohen-Macaulay?

Related questions:

(1) Does there exist a Cohen-Macaulay ideal I of codimension 2 and a term order \prec such that $\sqrt{L T_{\prec}(I)}$ is not Cohen-Macaulay? Notice that there are squarefree monomial ideals of codimension 2 connected in codimension one and not Cohen-Macaulay, in spite of those of dimension 2.

Related questions:

(1) Does there exist a Cohen-Macaulay ideal / of codimension 2 and a term order \prec such that $\sqrt{L T_{\prec}(I)}$ is not Cohen-Macaulay? Notice that there are squarefree monomial ideals of codimension 2 connected in codimension one and not Cohen-Macaulay, in spite of those of dimension 2.
(2) Does there exist a Cohen-Macaulay ideal I and a term order \prec such that $L T_{\prec}(I)=\sqrt{L T_{\prec}(I)}$ is not Cohen-Macaulay?

Related questions:

(1) Does there exist a Cohen-Macaulay ideal / of codimension 2 and a term order \prec such that $\sqrt{L T_{\prec}(I)}$ is not Cohen-Macaulay? Notice that there are squarefree monomial ideals of codimension 2 connected in codimension one and not Cohen-Macaulay, in spite of those of dimension 2.
(2) Does there exist a Cohen-Macaulay ideal I and a term order \prec such that $L T_{\prec}(I)=\sqrt{L T_{\prec}(I)}$ is not Cohen-Macaulay?
Notice that there are squarefree monomial ideals connected in codimension one with h-vector with negative coefficients, so they cannot be the initial ideal of any Cohen-Macaulay ideal.

Inverse problem

Inverse problem

Dalbec. $J \subseteq S=k\left[x_{0}, \ldots, x_{n}\right]$ squarefree monomial ideal

Inverse problem

Dalbec. $J \subseteq S=k\left[x_{0}, \ldots, x_{n}\right]$ squarefree monomial ideal such that $\Delta(J)$ is the d-skeleton of the n-simplex,

Inverse problem

Dalbec. $J \subseteq S=k\left[x_{0}, \ldots, x_{n}\right]$ squarefree monomial ideal such that $\Delta(J)$ is the d-skeleton of the n-simplex, then there exists a prime ideal I, and a term order \prec such that

Inverse problem

Dalbec. $J \subseteq S=k\left[x_{0}, \ldots, x_{n}\right]$ squarefree monomial ideal such that $\Delta(J)$ is the d-skeleton of the n-simplex, then there exists a prime ideal I, and a term order \prec such that

$$
\sqrt{L T_{\prec}(I)}=J .
$$

Inverse problem

Dalbec. $J \subseteq S=k\left[x_{0}, \ldots, x_{n}\right]$ squarefree monomial ideal such that $\Delta(J)$ is the d-skeleton of the n-simplex, then there exists a prime ideal I, and a term order \prec such that

$$
\sqrt{L T_{\prec}(I)}=J .
$$

Taylor. $J \subseteq S=k\left[x_{0}, \ldots, x_{n}\right]$ squarefree monomial ideal

Inverse problem

Dalbec. $J \subseteq S=k\left[x_{0}, \ldots, x_{n}\right]$ squarefree monomial ideal such that $\Delta(J)$ is the d-skeleton of the n-simplex, then there exists a prime ideal I, and a term order \prec such that

$$
\sqrt{L T_{\prec}(I)}=J .
$$

Taylor. $J \subseteq S=k\left[x_{0}, \ldots, x_{n}\right]$ squarefree monomial ideal of codimension 2 and Cohen-Macaulay.

Inverse problem

Dalbec. $J \subseteq S=k\left[x_{0}, \ldots, x_{n}\right]$ squarefree monomial ideal such that $\Delta(J)$ is the d-skeleton of the n-simplex, then there exists a prime ideal I, and a term order \prec such that

$$
\sqrt{L T_{\prec}(I)}=J .
$$

Taylor. $J \subseteq S=k\left[x_{0}, \ldots, x_{n}\right]$ squarefree monomial ideal of codimension 2 and Cohen-Macaulay.

Then, for every term order respecting the total degree,

Inverse problem

Dalbec. $J \subseteq S=k\left[x_{0}, \ldots, x_{n}\right]$ squarefree monomial ideal such that $\Delta(J)$ is the d-skeleton of the n-simplex, then there exists a prime ideal I, and a term order \prec such that

$$
\sqrt{L T_{\prec}(I)}=J .
$$

Taylor. $J \subseteq S=k\left[x_{0}, \ldots, x_{n}\right]$ squarefree monomial ideal of codimension 2 and Cohen-Macaulay.

Then, for every term order respecting the total degree, there exist $k \subseteq K$ and a graded prime $I \subseteq S \otimes_{k} K$ such that

Inverse problem

Dalbec. $J \subseteq S=k\left[x_{0}, \ldots, x_{n}\right]$ squarefree monomial ideal such that $\Delta(J)$ is the d-skeleton of the n-simplex, then there exists a prime ideal I, and a term order \prec such that

$$
\sqrt{L T_{\prec}(I)}=J .
$$

Taylor. $J \subseteq S=k\left[x_{0}, \ldots, x_{n}\right]$ squarefree monomial ideal of codimension 2 and Cohen-Macaulay.

Then, for every term order respecting the total degree, there exist $k \subseteq K$ and a graded prime $I \subseteq S \otimes_{k} K$ such that

$$
\sqrt{L T_{\prec}(I)}=J\left(S \otimes_{k} K\right)
$$

Inverse problem

Inverse problem

In the above theorems $L T_{\prec}(I)$ is not radical.

Inverse problem

In the above theorems $L T_{\prec}(I)$ is not radical.
But one can show that

Inverse problem

In the above theorems $L T_{\prec}(I)$ is not radical.
But one can show that
If a squarefree monomial ideal $J \subseteq S=k\left[x_{0}, \ldots, x_{n}\right]$

Inverse problem

In the above theorems $L T_{\prec}(I)$ is not radical.
But one can show that
If a squarefree monomial ideal $J \subseteq S=k\left[x_{0}, \ldots, x_{n}\right]$
is such that $\Delta(J)$ is the d-skeleton of the $(n-1)$-simplex,

Inverse problem

In the above theorems $L T_{\prec}(I)$ is not radical.
But one can show that
If a squarefree monomial ideal $J \subseteq S=k\left[x_{0}, \ldots, x_{n}\right]$
is such that $\Delta(J)$ is the d-skeleton of the $(n-1)$-simplex,
then there exists a graded prime ideal I, and a term order $\prec \mathrm{s}$. t.

Inverse problem

In the above theorems $L T_{\prec}(I)$ is not radical.
But one can show that
If a squarefree monomial ideal $J \subseteq S=k\left[x_{0}, \ldots, x_{n}\right]$
is such that $\Delta(J)$ is the d-skeleton of the $(n-1)$-simplex,
then there exists a graded prime ideal I, and a term order $\prec \mathrm{s}$. t.

$$
L T_{\prec}(I)=J .
$$

Inverse problem

In the above theorems $L T_{\prec}(I)$ is not radical.
But one can show that
If a squarefree monomial ideal $J \subseteq S=k\left[x_{0}, \ldots, x_{n}\right]$
is such that $\Delta(J)$ is the d-skeleton of the $(n-1)$-simplex,
then there exists a graded prime ideal I, and a term order $\prec \mathrm{s}$. t.

$$
L T_{\prec}(I)=J .
$$

The proof is by using a recent result of Sturmfels and Sullivant

Inverse problem

In the above theorems $L T_{\prec}(I)$ is not radical.
But one can show that
If a squarefree monomial ideal $J \subseteq S=k\left[x_{0}, \ldots, x_{n}\right]$
is such that $\Delta(J)$ is the d-skeleton of the $(n-1)$-simplex,
then there exists a graded prime ideal I, and a term order $\prec \mathrm{s}$. t.

$$
L T_{\prec}(I)=J .
$$

The proof is by using a recent result of Sturmfels and Sullivant and I defines the d-th secant variety of the rational normal curve.

