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We start with a simple question

Given J = (ua, za, ya, xa, uv , zv , yv , xv , xyu, xyz , xzu, yzu)

in S := k[x , y , z , u, v , w , a] is it possible to find:

(a) a term order ≺ on S

(b) I ⊆ S homogeneus such that S/I is Cohen-Macaulay

such that: √
LT≺(I ) = J ?
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k = k̄ , I ⊆ S := k[x1, . . . , xn] and ω ∈ (Z+)n.

If I is a prime ideal, then S/ inω(I ) is connected in codimension 1.

So, in particular, they proved that for every term order ≺ on S

I prime ⇒ S/LT≺(I ) connected in codimension 1
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Notation, definitions and ”basic” results

- R noetherian ring, commutative with 1, a ⊆ R ideal.

- cd(R; a) is the infimum d ∈ N s.t. H i
a(R) = 0 for every i ≥ d .

ht(a) ≤ cd(R; a) ≤ dim R.
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Let T be a noetherian topological space.

c(T ) is the infimum of dim Z such that Z ⊆ T is closed and

T \ Z is disconnected, with ∅ disconnected of dimension −1.

EXAMPLES

a = (xz , xw , yz , yw) ⊆ C[x , y , z , w ], T = Z(a) ⊆ A4.

T = Z(x , y) ∪ Z(z , w), and Z(x , y) ∩ Z(z , w) = {(0, 0, 0, 0)},

so dim T = 2 and c(T ) = 0.



Connectivity dimension

Let T be a noetherian topological space.

c(T ) is the infimum of dim Z such that Z ⊆ T is closed and

T \ Z is disconnected, with ∅ disconnected of dimension −1.

If T = Spec R, then c(R) := c(T ) is the infimum of dim R/a

with a ideal such that Spec R \ V(a) is disconnected.
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We will say that R is connected in codimension dim R − d .
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The complete case

Let (R, m) be local and complete. Then

c(R/a) ≥ min{c(R), dim R − 1} − cd(R, a)

Corollary (Hochster and Huneke)

(R, m) complete, loc., equidimensional, Hdim R
m (R) indecomposable.

If cd(R, a) ≤ dim R − 2 then Spec R/a \ {m} is connected.

Proof of Corollary

Hdim R
m (R) indecomposable iff R connected in codimension 1.

c(Spec R/a \m) = c(R/a)− 1.
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PART 2

APPLICATIONS TO INITIAL IDEALS
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℘6 = (y , u, v , a), ℘7 = (z , u, v , a).

Note that dim S/(℘1 + ℘i ) = 1 whereas dim S/J = 3.

So S/J is not connected in codimension 1, therefore

cannot exist I ⊆ S Cohen-Macaulay and ≺ s. t.
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X :=

 x1 + x2 x5 x4

x6 − x5 x3 + x7 x5

x4 + x7 x1 − x3 x5 + x7


I := I2(X ) is a prime ideal of codimension 4,

so S/I is a Gorenstein domain of dimension 3.

Moreover Proj(S/I ) is a smooth surface.

If ≺ is the lexicographic order, then

LT≺(I ) 6=
√

LT≺(I ) = (x1, x3x5, x2x5, x3x4, x4x5, x2x3x6, x2x4x7, x2x6x7)
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Related questions:

(1) Does there exist a Cohen-Macaulay ideal I of codimension 2
and a term order ≺ such that

√
LT≺(I ) is not Cohen-Macaulay?

Notice that there are squarefree monomial ideals of codimension 2
connected in codimension one and not Cohen-Macaulay, in spite of
those of dimension 2.

(2) Does there exist a Cohen-Macaulay ideal I and a term order ≺
such that LT≺(I ) =

√
LT≺(I ) is not Cohen-Macaulay?

Notice that there are squarefree monomial ideals connected in
codimension one with h-vector with negative coefficients, so they
cannot be the initial ideal of any Cohen-Macaulay ideal.
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Inverse problem

Dalbec. J ⊆ S = k[x0, . . . , xn] squarefree monomial ideal

such that ∆(J) is the d-skeleton of the n-simplex,

then there exists a prime ideal I , and a term order ≺ such that√
LT≺(I ) = J.

Taylor. J ⊆ S = k[x0, . . . , xn] squarefree monomial ideal

of codimension 2 and Cohen-Macaulay.

Then, for every term order respecting the total degree,

there exist k ⊆ K and a graded prime I ⊆ S ⊗k K such that√
LT≺(I ) = J(S ⊗k K )
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Inverse problem

In the above theorems LT≺(I ) is not radical.

But one can show that

If a squarefree monomial ideal J ⊆ S = k[x0, . . . , xn]

is such that ∆(J) is the d-skeleton of the (n − 1)-simplex,

then there exists a graded prime ideal I , and a term order ≺ s. t.

LT≺(I ) = J.

The proof is by using a recent result of Sturmfels and Sullivant

and I defines the d-th secant variety of the rational normal curve.
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