LOCAL COHOMOLOGY, CONNECTEDNESS
AND INITIAL IDEALS

Matteo Varbaro

Dipartimento di Matematica
Universitd di Genova

arXiv:0802.1800



We start with a simple question



We start with a simple question

Given J = (ua, za, ya, xa, uv, zv, yv, Xv, xXyu, Xyz, Xxzu, yzu)

inS :=klx,y,z,u,v,w,al is it possible to find:



We start with a simple question

Given J = (ua, za, ya, xa, uv, zv, yv, Xv, xXyu, Xyz, Xxzu, yzu)

inS :=klx,y,z,u,v,w,al is it possible to find:

(a) a term order < on S



We start with a simple question

Given J = (ua, za, ya, xa, uv, zv, yv, Xv, xXyu, Xyz, Xxzu, yzu)

inS :=klx,y,z,u,v,w,al is it possible to find:
(a) a term order < on S

(b) | C S homogeneus such that S/I is Cohen-Macaulay



We start with a simple question

Given J = (ua, za, ya, xa, uv, zv, yv, Xv, xXyu, Xyz, Xxzu, yzu)

inS :=klx,y,z,u,v,w,al is it possible to find:
(a) a term order < on S
(b) | C S homogeneus such that S/I is Cohen-Macaulay

such that:



We start with a simple question

Given J = (ua, za, ya, xa, uv, zv, yv, Xv, xXyu, Xyz, Xxzu, yzu)

inS :=klx,y,z,u,v,w,al is it possible to find:
(a) a term order < on S
(b) | C S homogeneus such that S/I is Cohen-Macaulay
such that:

[T-()=J7?



MAIN GOAL OF THE TALK



MAIN GOAL OF THE TALK

We'll generalize the following theorem of Kalkbrener and Sturmfels:



MAIN GOAL OF THE TALK

We'll generalize the following theorem of Kalkbrener and Sturmfels:

k=k,lCS:=kxi,...,xs] andw € (Z;)".

If I is a prime ideal, then S/ in,(l) is connected in codimension 1.



MAIN GOAL OF THE TALK
We'll generalize the following theorem of Kalkbrener and Sturmfels:
k=k,lCS:=kxi,...,xs] andw € (Z;)".
If I is a prime ideal, then S/ in,(l) is connected in codimension 1.

So, in particular, they proved that for every term order < on S



MAIN GOAL OF THE TALK
We'll generalize the following theorem of Kalkbrener and Sturmfels:
k=k,lCS:=kxi,...,xs] andw € (Z;)".
If I is a prime ideal, then S/ in,(l) is connected in codimension 1.

So, in particular, they proved that for every term order < on S

I prime = S/LT<(Il) connected in codimension 1
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Structure of the talk

Two principal chapters:
- Local cohomology and connectedness

- Connectedness of an ideal versus connectedness of its initial ideals
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- R noetherian ring, commutative with 1, a C R ideal.

- cd(R; a) is the infimum d € N s.t. Hi(R) = 0 for every i > d.

ht(a) < cd(R; a) < dimR.
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Let 7 be a noetherian topological space.

¢(T) is the infimum of dim Z such that Z C T is closed and

T \ Z is disconnected, with () disconnected of dimension —1.

EXAMPLES
a=(xz,xw,yz,yw) C C[x,y,z,w], T = Z(a) C A%,
T =Z2(x,y)UZ(z,w), and Z(x,y)N Z(z,w) = {(0,0,0,0)},
sodimT =2and c(T)=0.



Connectivity dimension

Let 7 be a noetherian topological space.

¢(T) is the infimum of dim Z such that Z C T is closed and

T \ Z is disconnected, with () disconnected of dimension —1.

If T =SpecR, then ¢(R) :=c¢(T) is the infimum of dim R/a
with a ideal such that Spec R\ V(a) is disconnected.
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A characterization of connectivity dimension
T.F.AE.:
(1) e(R) = d;
(2) V', " € Min R, are d-connected , i.e 3 ¢ = o, 91,
o or=¢", pi € Min R and dm R /(pj + pj—1) > d.
We will say that R is connected in codimension dimR — d .
EXAMPLES
S =kix,y,z,v,w],a = (zv,yv,xv,yw,yz,xz),R = S/a.
R is connected in codimension 1, since
a=(xy,2)N(y,z,v) N (z,v,w) N (x,y,v) = 1 N2 N 31 04
dmR =2, dimS/(p1+ p2) =1,
dimS/(p2 + p3) =1, dimS/(p3 + pa) = 1.
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The complete case

Let (R, m) be local and complete. Then

c(R/a) > min{c(R),dim R — 1} — c¢d(R, a)

Corollary (Hochster and Huneke)

(R, m) complete, loc., equidimensional, HSm R(R) indecomposable.
If cd(R,a) < dim R — 2 then Spec R/a \ {m} is connected.
Proof of Corollary

H4im R(R) indecomposable iff R connected in codimension 1.

c(Spec R/a\ m) =c(R/a) — 1.
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The Cohen-Macaulay and graded cases

(R,m) local Cohen-Macaulay ring.
Then ¢(R/a) > dimR —cd(R,a) — 1.
Proof
R Cohen-Macaulay < R Cohen-Macaulay
Cohen-Macaulay = connected in codimension 1
¢(R/a) > ¢(R/aR)
cd(R,a) = cd(R, aR)

R k-algebra finitely generated positively graded, a homogeneus.
Then c¢(R/a) > min{c(R),dim R — 1} — cd(R, a).
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(Hartshorne) (R, m) local ring. If H.(R) = 0 for every i < k ,
then ¢(R) > k.
Equivalently c(R) > depth(R) — 1.

So, if R is a positively graded n-dimensional k-algebra connected
in codimension 1 and m = ®y~oRy,

H~(R)=0 Vi< k= c(R/a) > k

Hi(R/a)=0 Vi< k= c(R/a) > k
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v

S i=kl[x1,...,Xnl;

v

| C S ideal;

v

we will say / Cohen-Macaulay for S/I Cohen-Macaulay;

v

< term order on S;

v

LT-(I) C S ideal of leading terms of / with respect to <;

> w=(wi,...,wy) € (Z4+)" weight vector;
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For every | and w

c(S/iny (1)) > min{c(S/1),dimS/I — 1}

Corollary For every < and graded |, the following holds:

depth(S/1) > 2 = depth(S/+/LT<(I)) > 2.
Proof of Corollary
depth(S/1) >2=¢(S/1) > 1= c(S/LT<(1) > 1
= depth(S//LT<(I)) > 2.
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Idea of the proof

Let be R := S[t]/“ and a := (“/ +t)/“l C R.
S/in,(l) = R/a

Give a positive graduation to R s.t. a is homogeneus as follows:

degx; = w;, degt=1

Graded version of the main result of the first part let us conclude!
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J = (ua, za,ya,xa, uv, zv, yv, xv, Xyu, Xyz, Xzu, yzu)
The minimal primes of J C S := k[x,y,z,u,v,w,a] are:

P1 = (X./y,Z./ U) » 2 = (Xaya Vaa)v ©3 = (X727 Vaa)v
4 = (X7 u, Vva)' {5 = (}/727 Vaa)v

6 = (yv u,v, a)r P17 = (27 u,v, a)-
Note that dim S/(p1 + p;) = 1 whereas dimS/J = 3.
So S/J is not connected in codimension 1, therefore

cannot exist /| C S Cohen-Macaulay and <'s. t. /LT<(/) = J!
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S:= (C[Xl, ‘e ,X6]
| := (x1x5 + xoX6 + XE,X1X4 + X32 — X3Xs, X12 + x1x2 + X2x5)

I is a prime complete intersection of codimension 3,

Proj(S/1) is a normal surface with 3 singular points.

If < is the lexicographic order, then

LT(1) # /LT<(1) = (x1, X3X5, X2X3Xa, X2X4 X6, X2X5X6)

S/+\/LT<(I) is not Cohen-Macaulay !

In this case we have also that cd(S, /) < cd(S, LT<(/))!
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Related questions:

(1) Does there exist a Cohen-Macaulay ideal | of codimension 2
and a term order < such that \/LT(/) is not Cohen-Macaulay?

Notice that there are squarefree monomial ideals of codimension 2
connected in codimension one and not Cohen-Macaulay, in spite of
those of dimension 2.

(2) Does there exist a Cohen-Macaulay ideal / and a term order <
such that LT-(/) = \/LT<(/) is not Cohen-Macaulay?

Notice that there are squarefree monomial ideals connected in
codimension one with h-vector with negative coefficients, so they
cannot be the initial ideal of any Cohen-Macaulay ideal.
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then there exists a prime ideal /, and a term order < such that
VLT<() = J.

Taylor. J C S = k[xo, ..., xs] squarefree monomial ideal

of codimension 2 and Cohen-Macaulay.

Then, for every term order respecting the total degree,

there exist k C K and a graded prime | C S ®, K such that
LT(1) = J(S @k K)
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But one can show that

If a squarefree monomial ideal J C S = k[xo, . .., xp]
is such that A(J) is the d-skeleton of the (n — 1)-simplex,
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The proof is by using a recent result of Sturmfels and Sullivant

and [ defines the d-th secant variety of the rational normal curve.



