LOCAL COHOMOLOGY, CONNECTEDNESS AND INITIAL IDEALS

Matteo Varbaro

Dipartimento di Matematica Universitá di Genova

arXiv:0802.1800

Given J = (ua, za, ya, xa, uv, zv, yv, xv, xyu, xyz, xzu, yzu)in S := k[x, y, z, u, v, w, a] is it possible to find:

Given J = (ua, za, ya, xa, uv, zv, yv, xv, xyu, xyz, xzu, yzu)in S := k[x, y, z, u, v, w, a] is it possible to find:

(a) a term order \prec on S

Given J = (ua, za, ya, xa, uv, zv, yv, xv, xyu, xyz, xzu, yzu)in S := k[x, y, z, u, v, w, a] is it possible to find:

(a) a term order \prec on S

(b) $I \subseteq S$ homogeneus such that S/I is Cohen-Macaulay

Given J = (ua, za, ya, xa, uv, zv, yv, xv, xyu, xyz, xzu, yzu)in S := k[x, y, z, u, v, w, a] is it possible to find:

(a) a term order \prec on S

(b) $I \subseteq S$ homogeneus such that S/I is Cohen-Macaulay

such that:

Given J = (ua, za, ya, xa, uv, zv, yv, xv, xyu, xyz, xzu, yzu)in S := k[x, y, z, u, v, w, a] is it possible to find:

(a) a term order \prec on S

(b) $I \subseteq S$ homogeneus such that S/I is Cohen-Macaulay such that:

 $\sqrt{LT_{\prec}(I)} = J$?

We'll generalize the following theorem of Kalkbrener and Sturmfels:

We'll generalize the following theorem of Kalkbrener and Sturmfels:

 $k = \overline{k}$, $I \subseteq S := k[x_1, \dots, x_n]$ and $\omega \in (\mathbb{Z}_+)^n$.

If I is a prime ideal, then $S/in_{\omega}(I)$ is connected in codimension 1.

We'll generalize the following theorem of Kalkbrener and Sturmfels:

 $k = \overline{k}$, $I \subseteq S := k[x_1, \dots, x_n]$ and $\omega \in (\mathbb{Z}_+)^n$.

If I is a prime ideal, then $S/in_{\omega}(I)$ is connected in codimension 1.

So, in particular, they proved that for every term order \prec on S

We'll generalize the following theorem of Kalkbrener and Sturmfels:

 $k = \overline{k}$, $I \subseteq S := k[x_1, \dots, x_n]$ and $\omega \in (\mathbb{Z}_+)^n$.

If I is a prime ideal, then $S/in_{\omega}(I)$ is connected in codimension 1.

So, in particular, they proved that for every term order \prec on S

I prime \Rightarrow S/LT_{\prec}(I) connected in codimension 1

Two principal chapters:

Two principal chapters:

- Local cohomology and connectedness

Two principal chapters:

- Local cohomology and connectedness
- Connectedness of an ideal versus connectedness of its initial ideals

PART 1 LOCAL COHOMOLOGY AND CONNECTEDNESS

- *R* noetherian ring, commutative with 1, $\mathfrak{a} \subseteq R$ ideal.

- R noetherian ring, commutative with 1, $\mathfrak{a} \subseteq R$ ideal.

- $\operatorname{cd}(R; \mathfrak{a})$ is the infimum $d \in \mathbb{N}$ s.t. $H^i_{\mathfrak{a}}(M) = 0$ for every *R*-module M and $i \geq d$.

- *R* noetherian ring, commutative with 1, $\mathfrak{a} \subseteq R$ ideal.

- $\operatorname{cd}(R; \mathfrak{a})$ is the infimum $d \in \mathbb{N}$ s.t. $H^i_{\mathfrak{a}}(R) = 0$ for every $i \geq d$.

- R noetherian ring, commutative with 1, $\mathfrak{a} \subseteq R$ ideal.

- $\operatorname{cd}(R; \mathfrak{a})$ is the infimum $d \in \mathbb{N}$ s.t. $H^i_{\mathfrak{a}}(R) = 0$ for every $i \geq d$.

 $\operatorname{ht}(\mathfrak{a}) \leq \operatorname{cd}(R;\mathfrak{a}) \leq \dim R.$

Let T be a noetherian topological space.

Let T be a noetherian topological space.

c(T) is the *infimum* of dim Z such that $Z \subseteq T$ is closed and $T \setminus Z$ is *disconnected*, with \emptyset disconnected of dimension -1.

Let T be a noetherian topological space.

c(T) is the *infimum* of dim Z such that $Z \subseteq T$ is closed and $T \setminus Z$ is *disconnected*, with \emptyset disconnected of dimension -1.

EXAMPLES

Let T be a noetherian topological space.

c(T) is the *infimum* of dim Z such that $Z \subseteq T$ is closed and $T \setminus Z$ is *disconnected*, with \emptyset disconnected of dimension -1.

EXAMPLES

T is connected if and only if $c(T) \ge 0$.

Let T be a noetherian topological space.

c(T) is the *infimum* of dim Z such that $Z \subseteq T$ is closed and $T \setminus Z$ is *disconnected*, with \emptyset disconnected of dimension -1.

EXAMPLES

If T is irreducible, then $c(T) = \dim T$.

Let T be a noetherian topological space.

c(T) is the *infimum* of dim Z such that $Z \subseteq T$ is closed and $T \setminus Z$ is *disconnected*, with \emptyset disconnected of dimension -1.

EXAMPLES $\mathfrak{a} = (xz, xw, yz, yw) \subseteq \mathbb{C}[x, y, z, w], T = \mathcal{Z}(\mathfrak{a}) \subseteq \mathbb{A}^4.$ $T = \mathcal{Z}(x, y) \cup \mathcal{Z}(z, w), \text{ and } \mathcal{Z}(x, y) \cap \mathcal{Z}(z, w) = \{(0, 0, 0, 0)\},$ so dim T = 2 and c(T) = 0.

Let T be a noetherian topological space.

c(T) is the *infimum* of dim Z such that $Z \subseteq T$ is closed and $T \setminus Z$ is *disconnected*, with \emptyset disconnected of dimension -1.

If $T = \operatorname{Spec} R$, then c(R) := c(T) is the infimum of dim R/\mathfrak{a} with a ideal such that $\operatorname{Spec} R \setminus \mathcal{V}(\mathfrak{a})$ is disconnected.

T.F.A.E.:

T.F.A.E.:

(1) $c(R) \ge d;$

T.F.A.E.:

- (1) $c(R) \ge d;$
- (2) $\forall \wp', \wp'' \in \operatorname{Min} R$, are d-connected

T.F.A.E.:

(1) $c(R) \ge d;$

(2) $\forall \wp', \wp'' \in \operatorname{Min} R$, are *d*-connected, i.e $\exists \wp' = \wp_0, \wp_1, \ldots, \wp_r = \wp'', \wp_i \in \operatorname{Min} R$ and $\dim R/(\wp_i + \wp_{i-1}) \ge d$.

T.F.A.E.:

- (1) $c(R) \ge d;$
- (2) $\forall \wp', \wp'' \in \operatorname{Min} R$, are *d*-connected, *i.e* $\exists \wp' = \wp_0, \wp_1, \ldots, \wp_r = \wp'', \wp_i \in \operatorname{Min} R$ and $\dim R/(\wp_j + \wp_{j-1}) \ge d$.

We will say that R is connected in codimension dim R - d.
T.F.A.E.:

- (1) $c(R) \ge d;$
- (2) $\forall \wp', \wp'' \in \operatorname{Min} R$, are *d*-connected, *i.e* $\exists \wp' = \wp_0, \wp_1, \ldots, \wp_r = \wp'', \wp_i \in \operatorname{Min} R$ and $\dim R/(\wp_j + \wp_{j-1}) \ge d$.
- We will say that R is connected in codimension dim R d.

EXAMPLES

T.F.A.E.:

- (1) $c(R) \ge d;$
- (2) $\forall \wp', \wp'' \in \operatorname{Min} R$, are *d*-connected, *i.e* $\exists \wp' = \wp_0, \wp_1, \ldots, \wp_r = \wp'', \wp_i \in \operatorname{Min} R$ and $\dim R/(\wp_j + \wp_{j-1}) \ge d$.

We will say that R is connected in codimension dim R - d.

EXAMPLES

 $S = k[x, y, z, v, w], \mathfrak{a} = (xy, xv, xw, yv, yz, vz, wz), R = S/\mathfrak{a}.$

R is connected in codimension 2, but not in codimension 1

T.F.A.E.:

- (1) $c(R) \ge d;$
- (2) $\forall \wp', \wp'' \in \operatorname{Min} R$, are *d*-connected, i.e $\exists \wp' = \wp_0, \wp_1, \ldots, \wp_r = \wp'', \wp_i \in \operatorname{Min} R$ and $\dim R/(\wp_j + \wp_{j-1}) \ge d$.

We will say that R is connected in codimension dim R - d.

EXAMPLES

$$S = k[x, y, z, v, w], \mathfrak{a} = (xy, xv, xw, yv, yz, vz, wz), R = S/\mathfrak{a}.$$

R is connected in codimension 2, but not in codimension 1, since

$$\mathfrak{a} = (x, y, z) \cap (x, z, v) \cap (y, v, w) = \wp_1 \cap \wp_2 \cap \wp_3$$

T.F.A.E.:

- (1) $c(R) \ge d;$
- (2) $\forall \wp', \wp'' \in \operatorname{Min} R$, are *d*-connected, *i.e* $\exists \wp' = \wp_0, \wp_1, \ldots, \wp_r = \wp'', \wp_i \in \operatorname{Min} R$ and $\dim R/(\wp_j + \wp_{j-1}) \ge d$.

We will say that R is connected in codimension dim R - d.

EXAMPLES

$$S = k[x, y, z, v, w], \mathfrak{a} = (xy, xv, xw, yv, yz, vz, wz), R = S/\mathfrak{a}.$$

R is connected in codimension 2, but not in codimension 1, since

$$\mathfrak{a} = (x, y, z) \cap (x, z, v) \cap (y, v, w) = \wp_1 \cap \wp_2 \cap \wp_3$$
$$\dim R = 2, \quad \dim S/(\wp_1 + \wp_2) = 1,$$
$$\dim S/(\wp_1 + \wp_3) = 0, \quad \dim S/(\wp_2 + \wp_3) = 0.$$

T.F.A.E.:

- (1) $c(R) \ge d;$
- (2) $\forall \wp', \wp'' \in \operatorname{Min} R$, are *d*-connected, i.e $\exists \wp' = \wp_0, \wp_1, \ldots, \wp_r = \wp'', \wp_i \in \operatorname{Min} R$ and $\dim R/(\wp_j + \wp_{j-1}) \ge d$.

We will say that R is connected in codimension dim R - d.

EXAMPLES

$$S = k[x, y, z, v, w], \mathfrak{a} = (zv, yv, xv, yw, yz, xz), R = S/\mathfrak{a}.$$

R is connected in codimension 1

T.F.A.E.:

- (1) $c(R) \ge d;$
- (2) $\forall \wp', \wp'' \in \operatorname{Min} R$, are *d*-connected, i.e $\exists \wp' = \wp_0, \wp_1, \ldots, \wp_r = \wp'', \wp_i \in \operatorname{Min} R$ and $\dim R/(\wp_j + \wp_{j-1}) \ge d$.

We will say that R is connected in codimension dim R - d.

EXAMPLES

$$S = k[x, y, z, v, w], \mathfrak{a} = (zv, yv, xv, yw, yz, xz), R = S/\mathfrak{a}.$$

R is connected in codimension 1, since

 $\mathfrak{a} = (x, y, z) \cap (y, z, v) \cap (z, v, w) \cap (x, y, v) = \wp_1 \cap \wp_2 \cap \wp_3 \cap \wp_4$

T.F.A.E.:

- (1) $c(R) \ge d;$
- (2) $\forall \wp', \wp'' \in \operatorname{Min} R$, are *d*-connected, *i.e* $\exists \wp' = \wp_0, \wp_1, \ldots, \wp_r = \wp'', \wp_i \in \operatorname{Min} R$ and $\dim R/(\wp_j + \wp_{j-1}) \ge d$.

We will say that R is connected in codimension dim R - d.

EXAMPLES

$$S = k[x, y, z, v, w], \mathfrak{a} = (zv, yv, xv, yw, yz, xz), R = S/\mathfrak{a}.$$

R is connected in codimension 1, since

 $\mathfrak{a} = (x, y, z) \cap (y, z, v) \cap (z, v, w) \cap (x, y, v) = \wp_1 \cap \wp_2 \cap \wp_3 \cap \wp_4$ $\dim R = 2, \quad \dim S/(\wp_1 + \wp_2) = 1,$ $\dim S/(\wp_2 + \wp_3) = 1, \quad \dim S/(\wp_3 + \wp_4) = 1.$

Let (R, \mathfrak{m}) be local and complete.

Let (R, \mathfrak{m}) be local and complete. Then

 $c(R/\mathfrak{a}) \geq \min\{c(R), \dim R - 1\} - cd(R, \mathfrak{a})$

Let (R, \mathfrak{m}) be local and complete. Then

 $c(R/\mathfrak{a}) \geq \min\{c(R), \dim R - 1\} - cd(R, \mathfrak{a})$

Let (R, \mathfrak{m}) be local and complete. Then

 $c(R/a) \ge \min\{c(R), \dim R - 1\} - cd(R, a)$

Corollary (Grothendieck)

 (R, \mathfrak{m}) complete and local. Then

 $c(R/\mathfrak{a}) \geq \min\{c(R), \dim R - 1\} - \operatorname{ara}(\mathfrak{a}).$

Let (R, \mathfrak{m}) be local and complete. Then

 $\operatorname{c}(R/\mathfrak{a}) \geq \min\{\operatorname{c}(R), \dim R - 1\} - \operatorname{cd}(R, \mathfrak{a})$

Corollary (Grothendieck)

 (R, \mathfrak{m}) complete and local. Then $c(R/\mathfrak{a}) \ge \min\{c(R), \dim R - 1\} - \operatorname{ara}(\mathfrak{a}).$ Proof of Corollary

Let (R, \mathfrak{m}) be local and complete. Then

 $c(R/\mathfrak{a}) \geq \min\{c(R), \dim R - 1\} - cd(R, \mathfrak{a})$

Corollary (Grothendieck)

 (R, \mathfrak{m}) complete and local. Then $c(R/\mathfrak{a}) \ge \min\{c(R), \dim R - 1\} - \operatorname{ara}(\mathfrak{a}).$ Proof of Corollary

 $\operatorname{ara}(\mathfrak{a}) \geq \operatorname{cd}(R,\mathfrak{a}).$

Let (R, \mathfrak{m}) be local and complete. Then

 $c(R/\mathfrak{a}) \geq \min\{c(R), \dim R - 1\} - cd(R, \mathfrak{a})$

Corollary (Hochster and Huneke)

 (R, \mathfrak{m}) complete, loc., equidimensional, $H_{\mathfrak{m}}^{\dim R}(R)$ indecomposable. If $\operatorname{cd}(R, \mathfrak{a}) \leq \dim R - 2$ then $\operatorname{Spec} R/\mathfrak{a} \setminus \{\mathfrak{m}\}$ is connected.

Let (R, \mathfrak{m}) be local and complete. Then

 $c(R/a) \ge \min\{c(R), \dim R - 1\} - cd(R, a)$

Corollary (Hochster and Huneke)

 (R, \mathfrak{m}) complete, loc., equidimensional, $H_{\mathfrak{m}}^{\dim R}(R)$ indecomposable. If $\operatorname{cd}(R, \mathfrak{a}) \leq \dim R - 2$ then $\operatorname{Spec} R/\mathfrak{a} \setminus \{\mathfrak{m}\}$ is connected. Proof of Corollary

Let (R, \mathfrak{m}) be local and complete. Then

 $c(R/a) \ge \min\{c(R), \dim R - 1\} - cd(R, a)$

Corollary (Hochster and Huneke)

 (R, \mathfrak{m}) complete, loc., equidimensional, $H_{\mathfrak{m}}^{\dim R}(R)$ indecomposable. If $\operatorname{cd}(R, \mathfrak{a}) \leq \dim R - 2$ then $\operatorname{Spec} R/\mathfrak{a} \setminus \{\mathfrak{m}\}$ is connected.

Proof of Corollary

 $H_{\mathfrak{m}}^{\dim R}(R)$ indecomposable iff R connected in codimension 1.

Let (R, \mathfrak{m}) be local and complete. Then

 $c(R/\mathfrak{a}) \geq \min\{c(R), \dim R - 1\} - cd(R, \mathfrak{a})$

Corollary (Hochster and Huneke)

 (R, \mathfrak{m}) complete, loc., equidimensional, $H_{\mathfrak{m}}^{\dim R}(R)$ indecomposable. If $\operatorname{cd}(R, \mathfrak{a}) \leq \dim R - 2$ then $\operatorname{Spec} R/\mathfrak{a} \setminus {\mathfrak{m}}$ is connected.

Proof of Corollary

 $H_{\mathfrak{m}}^{\dim R}(R)$ indecomposable iff R connected in codimension 1.

 $\operatorname{c}(\operatorname{Spec} R/\mathfrak{a} \setminus \mathfrak{m}) = \operatorname{c}(R/\mathfrak{a}) - 1.$

 (R, \mathfrak{m}) local Cohen-Macaulay ring.

 (R, \mathfrak{m}) local Cohen-Macaulay ring. Then $c(R/\mathfrak{a}) \ge \dim R - cd(R, \mathfrak{a}) - 1$.

 (R, \mathfrak{m}) local Cohen-Macaulay ring. Then $c(R/\mathfrak{a}) \ge \dim R - cd(R, \mathfrak{a}) - 1$. Proof

 (R, \mathfrak{m}) local Cohen-Macaulay ring. Then $c(R/\mathfrak{a}) \ge \dim R - cd(R, \mathfrak{a}) - 1$. Proof

R Cohen-Macaulay $\Leftrightarrow \widehat{R}$ Cohen-Macaulay

 (R, \mathfrak{m}) local Cohen-Macaulay ring. Then $c(R/\mathfrak{a}) \ge \dim R - cd(R, \mathfrak{a}) - 1$. Proof

> R Cohen-Macaulay $\Leftrightarrow \widehat{R}$ Cohen-Macaulay Cohen-Macaulay \Rightarrow connected in codimension 1

 (R, \mathfrak{m}) local Cohen-Macaulay ring. Then $c(R/\mathfrak{a}) \ge \dim R - cd(R, \mathfrak{a}) - 1$. Proof

> R Cohen-Macaulay $\Leftrightarrow \widehat{R}$ Cohen-Macaulay Cohen-Macaulay \Rightarrow connected in codimension 1 $c(R/\mathfrak{a}) \ge c(\widehat{R}/\mathfrak{a}\widehat{R})$

 (R, \mathfrak{m}) local Cohen-Macaulay ring. Then $c(R/\mathfrak{a}) \ge \dim R - cd(R, \mathfrak{a}) - 1$. Proof

> R Cohen-Macaulay $\Leftrightarrow \widehat{R}$ Cohen-Macaulay Cohen-Macaulay \Rightarrow connected in codimension 1 $c(R/\mathfrak{a}) \ge c(\widehat{R}/\mathfrak{a}\widehat{R})$ $cd(R,\mathfrak{a}) = cd(\widehat{R},\mathfrak{a}\widehat{R})$

 (R, \mathfrak{m}) local Cohen-Macaulay ring. Then $c(R/\mathfrak{a}) \ge \dim R - cd(R, \mathfrak{a}) - 1$. Proof

> R Cohen-Macaulay $\Leftrightarrow \widehat{R}$ Cohen-Macaulay Cohen-Macaulay \Rightarrow connected in codimension 1 $c(R/\mathfrak{a}) \ge c(\widehat{R}/\mathfrak{a}\widehat{R})$ $cd(R,\mathfrak{a}) = cd(\widehat{R},\mathfrak{a}\widehat{R})$

R k-algebra finitely generated positively graded, a homogeneus.

 (R, \mathfrak{m}) local Cohen-Macaulay ring. Then $c(R/\mathfrak{a}) \ge \dim R - cd(R, \mathfrak{a}) - 1$. Proof

> R Cohen-Macaulay $\Leftrightarrow \widehat{R}$ Cohen-Macaulay Cohen-Macaulay \Rightarrow connected in codimension 1 $c(R/\mathfrak{a}) \ge c(\widehat{R}/\mathfrak{a}\widehat{R})$ $cd(R,\mathfrak{a}) = cd(\widehat{R},\mathfrak{a}\widehat{R})$

R k-algebra finitely generated positively graded, a homogeneus. Then $c(R/a) \ge min\{c(R), \dim R - 1\} - cd(R, a)$.

Vanishing of local cohomology and connectedness (Hartshorne) (R, m) local ring. If $H^i_m(R) = 0$ for every $i \le k$,

(Hartshorne) (R, m) local ring. If $H^i_{\mathfrak{m}}(R) = 0$ for every $i \leq k$, then $c(R) \geq k$.

(Hartshorne) (R, \mathfrak{m}) local ring. If $H^i_{\mathfrak{m}}(R) = 0$ for every $i \leq k$, then $c(R) \geq k$. Equivalently $c(R) \geq \operatorname{depth}(R) - 1$.

(Hartshorne) (R, \mathfrak{m}) local ring. If $H^i_{\mathfrak{m}}(R) = 0$ for every $i \leq k$, then $c(R) \geq k$. Equivalently $c(R) \geq \operatorname{depth}(R) - 1$.

So, if R is a positively graded n-dimensional k-algebra connected in codimension 1 and $\mathfrak{m} = \bigoplus_{d>0} R_d$,

(Hartshorne) (R, \mathfrak{m}) local ring. If $H^{i}_{\mathfrak{m}}(R) = 0$ for every $i \leq k$, then $c(R) \geq k$. Equivalently $c(R) \geq \operatorname{depth}(R) - 1$.

So, if R is a positively graded n-dimensional k-algebra connected in codimension 1 and $\mathfrak{m} = \bigoplus_{d>0} R_d$,

 $H^{n-i}_{\mathfrak{a}}(R) = 0 \quad \forall i \leq k \Rightarrow c(R/\mathfrak{a}) \geq k$

(Hartshorne) (R, m) local ring. If $H^i_{\mathfrak{m}}(R) = 0$ for every $i \leq k$, then $c(R) \geq k$. Equivalently $c(R) \geq \operatorname{depth}(R) - 1$.

So, if R is a positively graded n-dimensional k-algebra connected in codimension 1 and $\mathfrak{m} = \bigoplus_{d>0} R_d$,

$$H^{n-i}_{\mathfrak{a}}(R) = 0 \ \forall i \leq k \Rightarrow \mathrm{c}(R/\mathfrak{a}) \geq k$$

 $H^i_{\mathfrak{m}}(R/\mathfrak{a}) = 0 \quad \forall i \leq k \Rightarrow \mathrm{c}(R/\mathfrak{a}) \geq k$

PART 2 APPLICATIONS TO INITIAL IDEALS
$\blacktriangleright S := k[x_1, \ldots, x_n];$

- $\blacktriangleright S := k[x_1, \ldots, x_n];$
- $I \subseteq S$ ideal;

- $\blacktriangleright S := k[x_1, \ldots, x_n];$
- $I \subseteq S$ ideal;
- we will say *I* Cohen-Macaulay for S/I Cohen-Macaulay;

- $\blacktriangleright S := k[x_1, \ldots, x_n];$
- $I \subseteq S$ ideal;
- we will say *I* Cohen-Macaulay for S/I Cohen-Macaulay;
- \blacktriangleright \prec term order on *S*;

- $\blacktriangleright S := k[x_1, \ldots, x_n];$
- $I \subseteq S$ ideal;
- ▶ we will say *I* Cohen-Macaulay for *S*/*I* Cohen-Macaulay;
- \blacktriangleright \prec term order on *S*;
- ▶ $LT_{\prec}(I) \subseteq S$ ideal of leading terms of I with respect to \prec ;

- $\blacktriangleright S := k[x_1, \ldots, x_n];$
- $I \subseteq S$ ideal;
- ▶ we will say *I* Cohen-Macaulay for *S*/*I* Cohen-Macaulay;
- \blacktriangleright \prec term order on *S*;
- ▶ $LT_{\prec}(I) \subseteq S$ ideal of leading terms of I with respect to \prec ;
- $\omega = (\omega_1, \dots, \omega_n) \in (\mathbb{Z}_+)^n$ weight vector;

- $f \in S$, $\operatorname{in}_{\omega}(f) \in S$ is the leading coefficient of $f(x_1 t^{\omega_1}, \ldots, x_n t^{\omega_n}) \in S[t]$

- $f \in S$, $\operatorname{in}_{\omega}(f) \in S$ is the leading coefficient of $f(x_1t^{\omega_1},\ldots,x_nt^{\omega_n}) \in S[t]$

E. g., $f = 2x_1x_2^3 + x_1x_3^3 + 3x_2^4x_3 \in k[x_1, x_2, x_3]$ and $\omega = (3, 2, 1)$;

- $f \in S$, $in_{\omega}(f) \in S$ is the leading coefficient of $f(x_1t^{\omega_1}, \dots, x_nt^{\omega_n}) \in S[t]$ E. g., $f = 2x_1x_2^3 + x_1x_3^3 + 3x_2^4x_3 \in k[x_1, x_2, x_3]$ and $\omega = (3, 2, 1)$; then $f(x_1t^3, x_2t^2, x_3t) = 2x_1x_2^3t^9 + x_1x_3^3t^6 + 3x_2^4x_3t^9$

- $f \in S$, $in_{\omega}(f) \in S$ is the leading coefficient of $f(x_1t^{\omega_1}, \dots, x_nt^{\omega_n}) \in S[t]$ E. g., $f = 2x_1x_2^3 + x_1x_3^3 + 3x_2^4x_3 \in k[x_1, x_2, x_3]$ and $\omega = (3, 2, 1)$; then $f(x_1t^3, x_2t^2, x_3t) = 2x_1x_2^3t^9 + x_1x_3^3t^6 + 3x_2^4x_3t^9$, so $in_{\omega}(f) = 2x_1x_2^3 + 3x_2^4x_3$

- $f \in S$, $\operatorname{in}_{\omega}(f) \in S$ is the leading coefficient of $f(x_1t^{\omega_1}, \ldots, x_nt^{\omega_n}) \in S[t]$

- $\operatorname{in}_{\omega}(I)$:= $(\operatorname{in}_{\omega}(f) : f \in I) \subseteq S$

- $f \in S$, $\operatorname{in}_{\omega}(f) \in S$ is the leading coefficient of $f(x_1t^{\omega_1},\ldots,x_nt^{\omega_n}) \in S[t]$

- $\operatorname{in}_{\omega}(I) := (\operatorname{in}_{\omega}(f) : f \in I) \subseteq S$

for every I, \prec there exists ω such that $LT_{\prec}(I) = in_{\omega}(I)$

- $f \in S$, $\operatorname{in}_{\omega}(f) \in S$ is the leading coefficient of $f(x_1t^{\omega_1}, \ldots, x_nt^{\omega_n}) \in S[t]$

- $\operatorname{in}_{\omega}(I)$:= $(\operatorname{in}_{\omega}(f) : f \in I) \subseteq S$

for every I, \prec there exists ω such that $LT_{\prec}(I) = in_{\omega}(I)$

$$- {}^{\omega} f(x_1, \ldots, x_n, t) := f(\frac{x_1}{t^{\omega_1}}, \ldots, \frac{x_n}{t^{\omega_n}}) t^{\deg_{\omega} f} \in S[t]$$

- $f \in S$, $\operatorname{in}_{\omega}(f) \in S$ is the leading coefficient of $f(x_1 t^{\omega_1}, \ldots, x_n t^{\omega_n}) \in S[t]$

-
$$\operatorname{in}_{\omega}(I)$$
:= $(\operatorname{in}_{\omega}(f) : f \in I) \subseteq S$

for every I, \prec there exists ω such that $LT_{\prec}(I) = in_{\omega}(I)$

- $\deg_{\omega} f := \max\{\sum_{i=1}^{n} \omega_i a_i : x_1^{a_1} \cdots x_n^{a_n} \text{ term of } f\}$

$$- {}^{\omega} f(x_1,\ldots,x_n,t) := f(\frac{x_1}{t^{\omega_1}},\ldots,\frac{x_n}{t^{\omega_n}})t^{\deg_{\omega} f} \in S[t]$$

- $f \in S$, $\operatorname{in}_{\omega}(f) \in S$ is the leading coefficient of $f(x_1 t^{\omega_1}, \ldots, x_n t^{\omega_n}) \in S[t]$

-
$$\operatorname{in}_{\omega}(I)$$
:= $(\operatorname{in}_{\omega}(f) : f \in I) \subseteq S$

for every I, \prec there exists ω such that $LT_{\prec}(I) = in_{\omega}(I)$

- $\deg_{\omega} f := \max\{\sum_{i=1}^{n} \omega_i a_i : x_1^{a_1} \cdots x_n^{a_n} \text{ term of } f\}$

$$- {}^{\omega} f(x_1,\ldots,x_n,t) := f(\frac{x_1}{t^{\omega_1}},\ldots,\frac{x_n}{t^{\omega_n}})t^{\deg_{\omega} f} \in S[t]$$

- ${}^{\omega}I := ({}^{\omega}f : f \in I) \subseteq S[t]$

For every I and ω

For every I and ω

 $c(S/in_{\omega}(I)) \ge min\{c(S/I), \dim S/I - 1\}$

For every I and ω

$$\operatorname{c}(S/\operatorname{in}_{\omega}(I)) \geq \min\{\operatorname{c}(S/I), \dim S/I - 1\}$$

Corollary

For every I and ω

 $\operatorname{c}(S/\operatorname{in}_{\omega}(I)) \geq \min\{\operatorname{c}(S/I), \dim S/I - 1\}$

Corollary (Kalkbrener and Sturmfels).

For every ω and I, if I is prime, then

 $S/in_{\omega}(I)$ is connected in codimension 1.

For every I and ω

 $\operatorname{c}(S/\operatorname{in}_{\omega}(I)) \geq \min\{\operatorname{c}(S/I), \dim S/I - 1\}$

Corollary (Kalkbrener and Sturmfels).

For every ω and I, if I is prime, then

 $S/in_{\omega}(I)$ is connected in codimension 1.

Proof of Corollary

For every I and ω

 $c(S/in_{\omega}(I)) \ge \min\{c(S/I), \dim S/I - 1\}$

Corollary (Kalkbrener and Sturmfels).

For every ω and I, if I is prime, then

 $S/in_{\omega}(I)$ is connected in codimension 1.

Proof of Corollary

I prime \Rightarrow c(*S*/*I*) = dim *S*/*I*.

For every I and ω

 $\operatorname{c}(S/\operatorname{in}_\omega(I)) \geq \min\{\operatorname{c}(S/I), \dim S/I - 1\}$

Corollary For every \prec and I, then

 $c(S/LT_{\prec}(I)) \geq \min\{c(S/I), \dim S/I - 1\}.$

For every I and ω

 $\operatorname{c}(S/\operatorname{in}_\omega(I)) \geq \min\{\operatorname{c}(S/I), \dim S/I - 1\}$

Corollary For every \prec and I, then

 $c(S/LT_{\prec}(I)) \geq \min\{c(S/I), \dim S/I - 1\}.$

Proof of Corollary

For every I and ω

 $\operatorname{c}(S/\operatorname{in}_\omega(I)) \geq \min\{\operatorname{c}(S/I), \dim S/I - 1\}$

Corollary For every \prec and I, then

 $c(S/LT_{\prec}(I)) \geq \min\{c(S/I), \dim S/I - 1\}.$

Proof of Corollary

Choose ω such that $in_{\omega}(I) = LT_{\prec}(I)$.

For every I and ω

 $\operatorname{c}(S/\operatorname{in}_{\omega}(I)) \geq \min\{\operatorname{c}(S/I), \dim S/I - 1\}$

Corollary For every ω and graded I, the following holds:

 $c(S/in_{\omega}(I)) \ge depth(S/I) - 1.$

For every I and ω

 $\operatorname{c}(S/\operatorname{in}_\omega(I)) \geq \min\{\operatorname{c}(S/I), \dim S/I - 1\}$

Corollary For every ω and graded I, the following holds:

 $c(S/in_{\omega}(I)) \ge depth(S/I) - 1.$

So, I Cohen-Macaulay \Rightarrow S/in_{ω}(I) connected in codimension 1.

For every I and ω

 $\operatorname{c}(S/\operatorname{in}_\omega(I)) \geq \min\{\operatorname{c}(S/I), \dim S/I - 1\}$

Corollary For every ω and graded I, the following holds:

 $c(S/in_{\omega}(I)) \ge depth(S/I) - 1.$

So, I Cohen-Macaulay \Rightarrow S/in_{ω}(I) connected in codimension 1.

Proof of Corollary

For every I and ω

 $\operatorname{c}(S/\operatorname{in}_\omega(I)) \geq \min\{\operatorname{c}(S/I), \dim S/I - 1\}$

Corollary For every ω and graded I, the following holds:

 $c(S/in_{\omega}(I)) \ge depth(S/I) - 1.$

So, I Cohen-Macaulay \Rightarrow S/in_{ω}(I) connected in codimension 1.

Proof of Corollary

Follows from the fact that $c(S/I) \ge depth(S/I) - 1$.

For every I and ω

 $c(S/in_{\omega}(I)) \ge \min\{c(S/I), \dim S/I - 1\}$

Corollary For every \prec and graded I, the following holds:

 $\operatorname{depth}(S/I) \geq 2 \Rightarrow \operatorname{depth}(S/\sqrt{LT_{\prec}(I)}) \geq 2.$

For every I and ω

 $\operatorname{c}(S/\operatorname{in}_\omega(I)) \geq \min\{\operatorname{c}(S/I), \dim S/I - 1\}$

Corollary For every \prec and graded I, the following holds:

 $\operatorname{depth}(S/I) \geq 2 \Rightarrow \operatorname{depth}(S/\sqrt{LT_{\prec}(I)}) \geq 2.$

Proof of Corollary

For every I and ω

 $c(S/in_{\omega}(I)) \ge \min\{c(S/I), \dim S/I - 1\}$

Corollary For every \prec and graded I, the following holds:

 $\operatorname{depth}(S/I) \geq 2 \Rightarrow \operatorname{depth}(S/\sqrt{LT_{\prec}(I)}) \geq 2.$

Proof of Corollary

 $\operatorname{depth}(S/I) \geq 2 \Rightarrow \operatorname{c}(S/I) \geq 1 \Rightarrow \operatorname{c}(S/LT_{\prec}(I)) \geq 1$

For every I and ω

 $\operatorname{c}(S/\operatorname{in}_{\omega}(I)) \geq \min\{\operatorname{c}(S/I), \dim S/I - 1\}$

Corollary For every \prec and graded I, the following holds:

 $\operatorname{depth}(S/I) \geq 2 \Rightarrow \operatorname{depth}(S/\sqrt{LT_{\prec}(I)}) \geq 2.$

Proof of Corollary

$$\begin{split} \operatorname{depth}(S/I) &\geq 2 \Rightarrow \operatorname{c}(S/I) \geq 1 \Rightarrow \operatorname{c}(S/LT_{\prec}(I)) \geq 1 \\ \Rightarrow \operatorname{depth}(S/\sqrt{LT_{\prec}(I)}) \geq 2. \end{split}$$

Idea of the proof
Let be $R := S[t]/\omega l$ and $\mathfrak{a} := (\omega l + t)/\omega l \subseteq R$.

Let be $R := S[t]/\omega l$ and $\mathfrak{a} := (\omega l + t)/\omega l \subseteq R$.

 $S/\operatorname{in}_{\omega}(I)\cong R/\mathfrak{a}$

Let be $R := S[t]/{}^{\omega}I$ and $\mathfrak{a} := ({}^{\omega}I + t)/{}^{\omega}I \subseteq R$.

 $S/\operatorname{in}_{\omega}(I)\cong R/\mathfrak{a}$

Give a positive graduation to R s.t. a is homogeneus as follows:

Let be $R := S[t]/{}^{\omega}I$ and $\mathfrak{a} := ({}^{\omega}I + t)/{}^{\omega}I \subseteq R$.

 $S/\operatorname{in}_{\omega}(I)\cong R/\mathfrak{a}$

Give a positive graduation to R s.t. \mathfrak{a} is homogeneus as follows:

$$\deg \bar{x_i} = \omega_i, \quad \deg \bar{t} = 1$$

Let be $R := S[t]/{}^{\omega}I$ and $\mathfrak{a} := ({}^{\omega}I + t)/{}^{\omega}I \subseteq R$.

 $S/\operatorname{in}_{\omega}(I)\cong R/\mathfrak{a}$

Give a positive graduation to R s.t. a is homogeneus as follows:

$$\deg \bar{x_i} = \omega_i, \quad \deg \bar{t} = 1$$

Graded version of the main result of the first part let us conclude!

J = (ua, za, ya, xa, uv, zv, yv, xv, xyu, xyz, xzu, yzu)

J = (ua, za, ya, xa, uv, zv, yv, xv, xyu, xyz, xzu, yzu)The minimal primes of $J \subseteq S := k[x, y, z, u, v, w, a]$ are: $\wp_1 = (x, y, z, u)$, $\wp_2 = (x, y, v, a)$, $\wp_3 = (x, z, v, a)$, $\wp_4 = (x, u, v, a)$, $\wp_5 = (y, z, v, a)$, $\wp_6 = (y, u, v, a)$, $\wp_7 = (z, u, v, a)$.

J = (ua, za, ya, xa, uv, zv, yv, xv, xyu, xyz, xzu, yzu)The minimal primes of $J \subseteq S := k[x, y, z, u, v, w, a]$ are: $\wp_1 = (x, y, z, u)$, $\wp_2 = (x, y, v, a)$, $\wp_3 = (x, z, v, a)$, $\wp_4 = (x, u, v, a)$, $\wp_5 = (y, z, v, a)$, $\wp_6 = (y, u, v, a)$, $\wp_7 = (z, u, v, a)$.

Note that dim $S/(\wp_1 + \wp_i) = 1$

J = (ua, za, ya, xa, uv, zv, yv, xv, xyu, xyz, xzu, yzu)The minimal primes of $J \subseteq S := k[x, y, z, u, v, w, a]$ are: $\wp_1 = (x, y, z, u)$, $\wp_2 = (x, y, v, a)$, $\wp_3 = (x, z, v, a)$, $\wp_4 = (x, u, v, a)$, $\wp_5 = (y, z, v, a)$, $\wp_6 = (y, u, v, a)$, $\wp_7 = (z, u, v, a)$.

Note that dim $S/(\wp_1 + \wp_i) = 1$ whereas dim S/J = 3.

J = (ua, za, ya, xa, uv, zv, yv, xv, xyu, xyz, xzu, yzu)The minimal primes of $J \subseteq S := k[x, y, z, u, v, w, a]$ are: $\wp_1 = (x, y, z, u)$, $\wp_2 = (x, y, v, a)$, $\wp_3 = (x, z, v, a)$, $\wp_4 = (x, u, v, a)$, $\wp_5 = (y, z, v, a)$, $\wp_6 = (y, u, v, a)$, $\wp_7 = (z, u, v, a)$.

Note that dim $S/(\wp_1 + \wp_i) = 1$ whereas dim S/J = 3.

So S/J is not connected in codimension 1,

J = (ua, za, ya, xa, uv, zv, yv, xv, xyu, xyz, xzu, yzu)The minimal primes of $J \subseteq S := k[x, y, z, u, v, w, a]$ are: $\wp_1 = (x, y, z, u)$, $\wp_2 = (x, y, v, a)$, $\wp_3 = (x, z, v, a)$, $\wp_4 = (x, u, v, a)$, $\wp_5 = (y, z, v, a)$, $\wp_6 = (y, u, v, a)$, $\wp_7 = (z, u, v, a)$.

Note that dim $S/(\wp_1 + \wp_i) = 1$ whereas dim S/J = 3.

So S/J is not connected in codimension 1, therefore

cannot exist $I \subseteq S$ Cohen-Macaulay and \prec s. t. $\sqrt{LT_{\prec}(I)} = J!$

$S := \mathbb{C}[x_1, \ldots, x_7]$

$$S := \mathbb{C}[x_1,\ldots,x_7]$$

$$\boldsymbol{X} := \begin{pmatrix} x_1 + x_2 & x_5 & x_4 \\ x_6 - x_5 & x_3 + x_7 & x_5 \\ x_4 + x_7 & x_1 - x_3 & x_5 + x_7 \end{pmatrix}$$

$$S := \mathbb{C}[x_1,\ldots,x_7]$$

$$\mathbf{X} := \begin{pmatrix} x_1 + x_2 & x_5 & x_4 \\ x_6 - x_5 & x_3 + x_7 & x_5 \\ x_4 + x_7 & x_1 - x_3 & x_5 + x_7 \end{pmatrix}$$

 $I := I_2(X)$ is a prime ideal of codimension 4,

$$S := \mathbb{C}[x_1,\ldots,x_7]$$

$$\mathbf{X} := \begin{pmatrix} x_1 + x_2 & x_5 & x_4 \\ x_6 - x_5 & x_3 + x_7 & x_5 \\ x_4 + x_7 & x_1 - x_3 & x_5 + x_7 \end{pmatrix}$$

 $I := I_2(X)$ is a prime ideal of codimension 4, so S/I is a Gorenstein domain of dimension 3.

$$S := \mathbb{C}[x_1,\ldots,x_7]$$

$$\boldsymbol{X} := \left(\begin{array}{cccc} x_1 + x_2 & x_5 & x_4 \\ x_6 - x_5 & x_3 + x_7 & x_5 \\ x_4 + x_7 & x_1 - x_3 & x_5 + x_7 \end{array} \right)$$

I := I₂(X) is a prime ideal of codimension 4,
so S/I is a Gorenstein domain of dimension 3.
Moreover Proj(S/I) is a smooth surface.

$$S := \mathbb{C}[x_1,\ldots,x_7]$$

$$\boldsymbol{X} := \begin{pmatrix} x_1 + x_2 & x_5 & x_4 \\ x_6 - x_5 & x_3 + x_7 & x_5 \\ x_4 + x_7 & x_1 - x_3 & x_5 + x_7 \end{pmatrix}$$

I := I₂(X) is a prime ideal of codimension 4,
so S/I is a Gorenstein domain of dimension 3.
Moreover Proj(S/I) is a smooth surface.

If \prec is the lexicographic order, then $LT_{\prec}(I) \neq \sqrt{LT_{\prec}(I)} = (x_1, x_3x_5, x_2x_5, x_3x_4, x_4x_5, x_2x_3x_6, x_2x_4x_7, x_2x_6x_7)$

$$S := \mathbb{C}[x_1,\ldots,x_7]$$

$$\boldsymbol{X} := \begin{pmatrix} x_1 + x_2 & x_5 & x_4 \\ x_6 - x_5 & x_3 + x_7 & x_5 \\ x_4 + x_7 & x_1 - x_3 & x_5 + x_7 \end{pmatrix}$$

I := I₂(X) is a prime ideal of codimension 4,
so S/I is a Gorenstein domain of dimension 3.
Moreover Proj(S/I) is a smooth surface.

If \prec is the lexicographic order, then $LT_{\prec}(I) \neq \sqrt{LT_{\prec}(I)} = (x_1, x_3x_5, x_2x_5, x_3x_4, x_4x_5, x_2x_3x_6, x_2x_4x_7, x_2x_6x_7)$ $S/\sqrt{LT_{\prec}(I)}$ is not Cohen-Macaulay !

$$S := \mathbb{C}[x_1,\ldots,x_6]$$

$$S := \mathbb{C}[x_1, \dots, x_6]$$
$$I := (x_1x_5 + x_2x_6 + x_4^2, x_1x_4 + x_3^2 - x_4x_5, x_1^2 + x_1x_2 + x_2x_5)$$

$$S := \mathbb{C}[x_1,\ldots,x_6]$$

$$I := (x_1x_5 + x_2x_6 + x_4^2, x_1x_4 + x_3^2 - x_4x_5, x_1^2 + x_1x_2 + x_2x_5)$$

I is a prime complete intersection of codimension 3,

$$S := \mathbb{C}[x_1,\ldots,x_6]$$

 $I := (x_1x_5 + x_2x_6 + x_4^2, x_1x_4 + x_3^2 - x_4x_5, x_1^2 + x_1x_2 + x_2x_5)$

I is a prime complete intersection of codimension 3, Proj(S/I) is a normal surface with 3 singular points.

If \prec is the lexicographic order, then $LT_{\prec}(I) \neq \sqrt{LT_{\prec}(I)} = (x_1, x_3x_5, x_2x_3x_4, x_2x_4x_6, x_2x_5x_6)$

$$S := \mathbb{C}[x_1,\ldots,x_6]$$

 $I := (x_1x_5 + x_2x_6 + x_4^2, x_1x_4 + x_3^2 - x_4x_5, x_1^2 + x_1x_2 + x_2x_5)$

I is a prime complete intersection of codimension 3, Proj(S/I) is a normal surface with 3 singular points.

If \prec is the lexicographic order, then $LT_{\prec}(I) \neq \sqrt{LT_{\prec}(I)} = (x_1, x_3x_5, x_2x_3x_4, x_2x_4x_6, x_2x_5x_6)$

 $S/\sqrt{LT_{\prec}(I)}$ is not Cohen-Macaulay !

$$S := \mathbb{C}[x_1,\ldots,x_6]$$

 $I := (x_1x_5 + x_2x_6 + x_4^2, x_1x_4 + x_3^2 - x_4x_5, x_1^2 + x_1x_2 + x_2x_5)$

I is a prime complete intersection of codimension 3, Proj(S/I) is a normal surface with 3 singular points.

If \prec is the lexicographic order, then $LT_{\prec}(I) \neq \sqrt{LT_{\prec}(I)} = (x_1, x_3x_5, x_2x_3x_4, x_2x_4x_6, x_2x_5x_6)$

 $S/\sqrt{LT_{\prec}(I)}$ is not Cohen-Macaulay !

In this case we have also that $cd(S, I) < cd(S, LT_{\prec}(I))!$

(1) Does there exist a Cohen-Macaulay ideal *I* of codimension 2 and a term order \prec such that $\sqrt{LT_{\prec}(I)}$ is not Cohen-Macaulay?

(1) Does there exist a Cohen-Macaulay ideal *I* of codimension 2 and a term order \prec such that $\sqrt{LT_{\prec}(I)}$ is not Cohen-Macaulay?

Notice that there are squarefree monomial ideals of codimension 2 connected in codimension one and not Cohen-Macaulay, in spite of those of dimension 2.

(1) Does there exist a Cohen-Macaulay ideal I of codimension 2 and a term order \prec such that $\sqrt{LT_{\prec}(I)}$ is not Cohen-Macaulay?

Notice that there are squarefree monomial ideals of codimension 2 connected in codimension one and not Cohen-Macaulay, in spite of those of dimension 2.

(2) Does there exist a Cohen-Macaulay ideal I and a term order \prec such that $LT_{\prec}(I) = \sqrt{LT_{\prec}(I)}$ is not Cohen-Macaulay?

(1) Does there exist a Cohen-Macaulay ideal *I* of codimension 2 and a term order \prec such that $\sqrt{LT_{\prec}(I)}$ is not Cohen-Macaulay?

Notice that there are squarefree monomial ideals of codimension 2 connected in codimension one and not Cohen-Macaulay, in spite of those of dimension 2.

(2) Does there exist a Cohen-Macaulay ideal I and a term order \prec such that $LT_{\prec}(I) = \sqrt{LT_{\prec}(I)}$ is not Cohen-Macaulay?

Notice that there are squarefree monomial ideals connected in codimension one with *h*-vector with negative coefficients, so they cannot be the initial ideal of any Cohen-Macaulay ideal.

Dalbec. $J \subseteq S = k[x_0, \ldots, x_n]$ squarefree monomial ideal

Dalbec. $J \subseteq S = k[x_0, ..., x_n]$ squarefree monomial ideal such that $\Delta(J)$ is the *d*-skeleton of the *n*-simplex,

Dalbec. $J \subseteq S = k[x_0, ..., x_n]$ squarefree monomial ideal such that $\Delta(J)$ is the *d*-skeleton of the *n*-simplex, then there exists a prime ideal *I*, and a term order \prec such that
Dalbec. $J \subseteq S = k[x_0, ..., x_n]$ squarefree monomial ideal such that $\Delta(J)$ is the *d*-skeleton of the *n*-simplex, then there exists a prime ideal *I*, and a term order \prec such that $\sqrt{LT_{\prec}(I)} = J.$

Dalbec. $J \subseteq S = k[x_0, ..., x_n]$ squarefree monomial ideal such that $\Delta(J)$ is the *d*-skeleton of the *n*-simplex, then there exists a prime ideal *I*, and a term order \prec such that $\sqrt{LT_{\prec}(I)} = J.$

Taylor. $J \subseteq S = k[x_0, ..., x_n]$ squarefree monomial ideal

Dalbec. $J \subseteq S = k[x_0, ..., x_n]$ squarefree monomial ideal such that $\Delta(J)$ is the *d*-skeleton of the *n*-simplex, then there exists a prime ideal *I*, and a term order \prec such that $\sqrt{LT_{\prec}(I)} = J.$

Taylor. $J \subseteq S = k[x_0, ..., x_n]$ squarefree monomial ideal of codimension 2 and Cohen-Macaulay.

Dalbec. $J \subseteq S = k[x_0, ..., x_n]$ squarefree monomial ideal such that $\Delta(J)$ is the *d*-skeleton of the *n*-simplex, then there exists a prime ideal *I*, and a term order \prec such that $\sqrt{LT_{\prec}(I)} = J.$

Taylor. $J \subseteq S = k[x_0, ..., x_n]$ squarefree monomial ideal of codimension 2 and Cohen-Macaulay.

Then, for every term order respecting the total degree,

Dalbec. $J \subseteq S = k[x_0, ..., x_n]$ squarefree monomial ideal such that $\Delta(J)$ is the *d*-skeleton of the *n*-simplex, then there exists a prime ideal *I*, and a term order \prec such that $\sqrt{LT_{\prec}(I)} = J.$

Taylor. $J \subseteq S = k[x_0, ..., x_n]$ squarefree monomial ideal of codimension 2 and Cohen-Macaulay.

Then, for every term order respecting the total degree,

there exist $k \subseteq K$ and a graded prime $I \subseteq S \otimes_k K$ such that

Dalbec. $J \subseteq S = k[x_0, ..., x_n]$ squarefree monomial ideal such that $\Delta(J)$ is the *d*-skeleton of the *n*-simplex, then there exists a prime ideal *I*, and a term order \prec such that $\sqrt{LT_{\prec}(I)} = J.$

Taylor. $J \subseteq S = k[x_0, ..., x_n]$ squarefree monomial ideal of codimension 2 and Cohen-Macaulay.

Then, for every term order respecting the total degree,

there exist $k \subseteq K$ and a graded prime $I \subseteq S \otimes_k K$ such that

 $\sqrt{LT_{\prec}(I)} = J(S \otimes_k K)$

In the above theorems $LT_{\prec}(I)$ is not radical.

In the above theorems $LT_{\prec}(I)$ is not radical.

But one can show that

In the above theorems $LT_{\prec}(I)$ is not radical.

But one can show that

If a squarefree monomial ideal $J \subseteq S = k[x_0, \ldots, x_n]$

In the above theorems $LT_{\prec}(I)$ is not radical. But one can show that

If a squarefree monomial ideal $J \subseteq S = k[x_0, \ldots, x_n]$

is such that $\Delta(J)$ is the *d*-skeleton of the (n-1)-simplex,

In the above theorems $LT_{\prec}(I)$ is not radical. But one can show that

If a squarefree monomial ideal $J \subseteq S = k[x_0, ..., x_n]$ is such that $\Delta(J)$ is the *d*-skeleton of the (n-1)-simplex, then there exists a graded prime ideal *I*, and a term order \prec s. t.

In the above theorems $LT_{\prec}(I)$ is not radical. But one can show that

If a squarefree monomial ideal $J \subseteq S = k[x_0, ..., x_n]$ is such that $\Delta(J)$ is the *d*-skeleton of the (n-1)-simplex, then there exists a graded prime ideal *I*, and a term order \prec s. t. $LT_{\prec}(I) = J.$

In the above theorems $LT_{\prec}(I)$ is not radical. But one can show that

If a squarefree monomial ideal $J \subseteq S = k[x_0, ..., x_n]$ is such that $\Delta(J)$ is the *d*-skeleton of the (n-1)-simplex, then there exists a graded prime ideal *I*, and a term order \prec s. t. $LT_{\prec}(I) = J.$

The proof is by using a recent result of Sturmfels and Sullivant

In the above theorems $LT_{\prec}(I)$ is not radical. But one can show that

If a squarefree monomial ideal $J \subseteq S = k[x_0, ..., x_n]$ is such that $\Delta(J)$ is the *d*-skeleton of the (n-1)-simplex, then there exists a graded prime ideal *I*, and a term order \prec s. t. $LT_{\prec}(I) = J.$

The proof is by using a recent result of Sturmfels and Sullivant and *I* defines the *d*-th secant variety of the rational normal curve.