LYUBEZNIK NUMBERS AND DEPTH

Matteo Varbaro

Bass numbers

Let R be a noetherian ring and M an R-module. Consider a minimal injective resolution:

$$
0 \rightarrow M \rightarrow E^{0} \rightarrow E^{1} \rightarrow E^{2} \rightarrow \ldots
$$

The indecomposable injective R-modules are $E_{R}(R / \mathfrak{p})$ for some $\mathfrak{p} \in \operatorname{Spec} R$. The Bass numbers of M are defined as the number $\mu_{i}(\mathfrak{p}, M)$ of copies of $E_{R}(R / \mathfrak{p})$ occurring in E^{i}. In other words:

$$
E^{i} \cong \bigoplus_{\mathfrak{p} \in \operatorname{Spec}(R)} E_{R}(R / \mathfrak{p})^{\mu_{i}(\mathfrak{p}, M)}
$$

Theorem: $\mu_{i}(\mathfrak{p}, M)=\operatorname{dim}_{\kappa(\mathfrak{p})} \operatorname{Ext}_{R_{\mathfrak{p}}}^{i}\left(\kappa(\mathfrak{p}), M_{\mathfrak{p}}\right)$, where $\kappa(\mathfrak{p})=\frac{R_{\mathfrak{p}}}{\mathfrak{p} R_{\mathfrak{p}}}$.
In particular, if M is finitely generated, each Bass number is finite.

Local cohomology modules

Throughout the talk all the rings we consider are noetherian.
Given an ideal I of an n-dimensional ring S and an S-module M, we will freely use the following facts on the local cohomology modules $H_{l}^{i}(M)$ (which are not finitely generated in general):
(i) (Grothendieck): $H_{l}^{i}(M)=0$ if $i>\operatorname{Supp}(M)$. If M is finitely generated, then $H_{l}^{i}(M)=0$ whenever $i<\operatorname{grade}(I, M)$.
(ii) (Hartshorne-Lichtenbaum) \Rightarrow If (S, \mathfrak{m}) is regular local, then

$$
H_{l}^{n}(S)=0 \Leftrightarrow \operatorname{dim} S / I>0
$$

(iii) (Peskine-Szpiro, Ogus, Huneke-Lyubeznik) \Rightarrow If (S, \mathfrak{m}) is regular, contains a field and $\operatorname{depth}(S / I) \geq 2$, then

$$
H_{l}^{n-1}(S)=H_{l}^{n}(S)=0
$$

Lyubeznik numbers

Theorem (Huneke-Sharp, Lyubeznik): If (S, \mathfrak{m}) is a regular local ring containing a field, $I \subseteq S$ is any ideal and j is any natural number, then each Bass number of $H_{l}^{j}(S)$ is finite.

Definition-Theorem (Lyubeznik): Let (R, \mathfrak{n}) be local containing a field. The completion \widehat{R} is isomorphic to S / I, where $I \subseteq S=$ $k\left[\left[x_{1}, \ldots, x_{n}\right]\right]$. The Bass numbers $\mu_{i}\left(\mathfrak{m}, H_{l}^{n-j}(S)\right)$ depend only on R, i and j. The Lyubeznik numbers of R are therefore defined as:

$$
\lambda_{i, j}(R)=\mu_{i}\left(\mathfrak{m}, H_{l}^{n-j}(S)\right)
$$

He also showed that $H_{\mathfrak{m}}^{i}\left(H_{l}^{n-j}(S)\right) \cong E_{S}(k)^{\lambda_{i, j}(R)}$.

Basic properties

For a while, (R, \mathfrak{n}) will be a local ring containing a field k, $S=k\left[\left[x_{1}, \ldots, x_{n}\right]\right], \mathfrak{m}=\left(x_{1}, \ldots, x_{n}\right)$ and $I \subseteq S$ s. t. $\widehat{R} \cong S / I$.

If $\operatorname{dim} R=d$, then $I \subseteq S$ has height $n-d$. In particular $H_{l}^{n-j}(S)$ vanishes whenever $j>d$, therefore:

$$
\lambda_{i, j}(R)=0 \quad \forall j>d
$$

If \mathfrak{p} is a height $c<n-j$ prime of S, then

$$
H_{l}^{n-j}(S)_{\mathfrak{p}}=H_{I S_{\mathfrak{p}}}^{n-j}\left(S_{\mathfrak{p}}\right)=0
$$

So $\operatorname{dim} \operatorname{Supp}\left(H_{l}^{n-j}(S)\right) \leq j$. In particular, $H_{\mathfrak{m}}^{i}\left(H_{l}^{n-j}(S)\right)=0$ whenever $i>j$, so that:

$$
\lambda_{i, j}(R)=0 \quad \forall i>j .
$$

The Lyubeznik table

Thus the following $(d+1) \times(d+1)$ upper triangular matrix is an invariant of a d-dimensional local ring R containing a field:

$$
\Lambda(R)=\left(\begin{array}{ccccc}
\lambda_{0,0} & \lambda_{0,1} & \lambda_{0,2} & \cdots & \lambda_{0, d} \\
0 & \lambda_{1,1} & \lambda_{1,2} & \cdots & \lambda_{1, d} \\
0 & 0 & \lambda_{2,2} & \cdots & \lambda_{2, d} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 0 & \lambda_{d, d}
\end{array}\right)
$$

(here $\lambda_{i, j}=\lambda_{i, j}(R)$). The above matrix is pretty mysterious, however there are various results describing some of the entries...

Easy statements

(i) Suppose that the ideal I for which $\widehat{R} \cong S / I$ has minimal primes of height at most $n-b$ (therefore $b \leq d$). Then:

$$
\lambda_{i, i}(R)=0 \quad \forall i<b
$$

Since $\sqrt{I S_{\mathfrak{p}}} \neq \mathfrak{p} S_{\mathfrak{p}}$ for any $\mathfrak{p} \in \operatorname{Spec}(S)$ of height $n-i$, we have $\operatorname{dim} \operatorname{Supp}\left(H_{l}^{n-i}(S)\right)<i$ for all $i<b$. So $H_{\mathfrak{m}}^{i}\left(H_{l}^{n-i}(S)\right)=0$.
(ii) If R is a complete intersection, then $H_{l}^{n-j}(S)=0$ for all $j<d$ because I is generated by $n-d$ elements. So $\lambda_{i, j}(R)=0$ if $j<d$. Furthermore, because the second page of the spectral sequence

$$
E_{2}^{i, j}=H_{\mathfrak{m}}^{i}\left(H_{l}^{n-j}(S)\right) \Rightarrow H_{\mathfrak{m}}^{n+i-j}(S)
$$

is full of zeroes, it is easy to infer that $\lambda_{i, d}(R)=\delta_{i, d}$.

More serious results

Theorem (Zhang): $\lambda_{d, d}(R)$ is the number of connected components of the codimension 1 graph of $(S / I) \otimes_{k} \bar{k}$.

Theorem (Blickle-Bondu): If $R_{\mathfrak{p}}$ is a complete intersection for any prime ideal $\mathfrak{p} \neq \mathfrak{n}$, then $\lambda_{i, d}(R)-\delta_{i, d}=\lambda_{0, d-i+1}(R)$ and $\lambda_{i, j}$ vanishes whenever $0<i$ and $j<d$.

Theorem (Garcia Lopez-Sabbah, Blickle-Bondu, Blickle): If, besides satisfying the condition above, $R=\mathcal{O}_{Y, y}$ for a closed k-subvariety of a smooth variety X, then

$$
\lambda_{0, j}(R)= \begin{cases}\operatorname{dim}_{\mathbb{C}} H_{\{y\}}^{j}\left(Y_{\text {an }}, \mathbb{C}\right) & \text { if } k=\mathbb{C} \\ \operatorname{dim}_{\mathbb{Z} / p \mathbb{Z}} H_{\{y\}}^{j}\left(Y_{\text {ét }}, \mathbb{Z} / p \mathbb{Z}\right) & \text { if } k=\mathbb{Z} / p \mathbb{Z}\end{cases}
$$

Geometric invariant?

Conjecture (Lyubeznik): Let X be a projective scheme over k. The Lyubeznik table of the coordinate ring of X (localized at the maximal irrelevant) is actually an invariant of X.

All the previous results provide evidence for the above conjecture.
(Zhang): True in positive characteristic!

Vanishing of $\lambda_{i, j}$ from the depth

Proposition: $\lambda_{i, j}(R)=0$ for all $j<\operatorname{depth}(R)$ and $i \geq j-1$.
Proof: If we pick a prime $\mathfrak{p} \in \operatorname{Spec}(S)$ of height $n-j+1$, then:

$$
\operatorname{Ext}_{S}^{r}(S / \mathfrak{p}, R)=0 \quad \forall r<\operatorname{depth}(R)-j+1 \leq 2
$$

In particular depth $\left(S_{\mathfrak{p}} / I S_{\mathfrak{p}}\right) \geq 2$, which thereby implies

$$
H_{l}^{n-j}(S)_{\mathfrak{p}} \cong H_{I S_{\mathfrak{p}}}^{n-j}\left(S_{\mathfrak{p}}\right)=0
$$

so that $\operatorname{dim} \operatorname{Supp}\left(H_{l}^{n-j}(S)\right)<j-1$.

Vanishing of $\lambda_{i, j}$ from the depth

Notice that, if $\operatorname{char}(k)>0$, then $\lambda_{i, j}(R)=0$ for all $j<\operatorname{depth}(R)$. Proof: Peskine-Szpiro $\Rightarrow H_{l}^{n-j}(S)=0 \quad \forall j<\operatorname{depth}(S / I) . \quad \square$ That is false in characteristic 0 : consider $R=\left(k[X] / I_{t}(X)\right)_{(X)}$ where X is an $m \times n$-matrix. By Bruns-Schwänzl:

$$
\lambda_{i, j}(R)= \begin{cases}0 & \text { if } j<t^{2}-1 \\ 0 & \text { if } j=t^{2}-1 \text { and } i>0 \\ 1 & \text { if } j=t^{2}-1 \text { and } i=0 \\ ? ? ? & \text { otherwise }\end{cases}
$$

But R is Cohen-Macaulay of dimension $(t-1)(m+n-t+1)$.

Vanishing of $\lambda_{i, j}$ from the depth

Conjecture: $\lambda_{i, j}(R)=0 \quad \forall j<\operatorname{depth}(R)$ and $i \geq j-2$.
For example, according to this conjecture, the Lyubeznik table of a 7-dimensional local ring of depth 6 should look like:

$$
\Lambda(R)=\left(\begin{array}{llllllll}
0 & 0 & 0 & * & * & * & * & * \\
0 & 0 & 0 & 0 & * & * & * & * \\
0 & 0 & 0 & 0 & 0 & * & * & * \\
0 & 0 & 0 & 0 & 0 & 0 & * & * \\
0 & 0 & 0 & 0 & 0 & 0 & * & * \\
0 & 0 & 0 & 0 & 0 & 0 & * & * \\
0 & 0 & 0 & 0 & 0 & 0 & * & * \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & *
\end{array}\right)
$$

Vanishing from the depth

Proposition: The above conjecture is equivalent to show the following: If I is an ideal in an n-dimensional regular local ring S containing a field such that depth $(S / I) \geq 3$, then:

$$
H_{l}^{n-2}(S)=H_{l}^{n-1}(S)=H_{l}^{n}(S)=0 .
$$

Proof: \Rightarrow : In any case $H_{l}^{n-2}(S)$ is supported only at the maximal ideal, so $H_{l}^{n-2}(S) \cong E(k)^{s}$ (Lyubeznik), so $\lambda_{0,2}(S / I)=s$. For the converse implication argue like in the proof of few slides above.

Vanishing from the depth

Theorem (-): If $S=k\left[x_{1}, \ldots, x_{n}\right]$ and $I \subseteq S$ is homogeneous such that $\operatorname{depth}(S / I) \geq 3$, then

$$
H_{l}^{n-2}(S)=H_{l}^{n-1}(S)=H_{l}^{n}(S)=0
$$

Sketch of the proof: After some manipulations we see, thanks to a result of Ogus, that we need to show that $H_{\mathrm{DR}, \mathfrak{m}}^{2}(\operatorname{Spec}(S / I))=0$. In our setting, from a work of Harthorne this is equivalent to prove:

$$
H^{1}\left(X_{\mathrm{an}}, \mathbb{C}\right)=0
$$

where $X=\operatorname{Proj}(S / I)$ and we are assuming $k=\mathbb{C}$. The universal coefficient theorem and the exponential sequence make the job:

$$
H^{1}\left(X_{\mathrm{an}}, \mathbb{Z}\right) \hookrightarrow H^{1}\left(X_{\mathrm{an}}, \mathcal{O}_{X_{\mathrm{an}}}\right) \cong H_{\mathfrak{m}}^{2}(S / I)_{0}=0
$$

Set-theoretically Cohen-Macaulayness

Corollary: Let $X \subseteq \mathbb{P}^{n-1}$ be a smooth surface with irregularity $q(X)>0$ over a field of characteristic 0 . Then for any graded ideal $I \subseteq S$ defining X set-theoretically S / I is not Cohen-Macaulay.

Proof: One can show that $H_{l}^{n-2}(S)$ (which does not depend on the radical of $!$!) is not zero. \square

Question: Are there analog examples for connected curves? Can you find a graded ideal $I \subseteq \mathbb{C}[a, b, c, d]$ defining set-theoretically $X=\left\{\left[s^{4}, s^{3} t, s t^{3}, t^{4}\right]:[s, t] \in \mathbb{P}^{1}\right\} \subseteq \mathbb{P}^{3}$ such that $\mathbb{C}[a, b, c, d] / I$ is Cohen-Macaulay?

THANK YOU !!!

