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S/I% Cohen-Macaulay ¥ k € Nsg < | is a complete intersection.
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A simplicial complex A is a matroid if (F(A) := {facets of A})
VE,GEF(A), VieF, 3j€6G : (F\{i)U{j}eFQA)

(i) If A is a matroid, then S/Ia is Cohen-Macaulay.

(i) Exchange property. If A is a matroid, then VF, G € F(A), Vi € F,
JeG: (F\{iH)Uu{j} e F(A)and (G\ {j})U{i} € F(A)!

(i) Duality. For any simplicial complex A on [n], we have
A is a matroid < A€ is a matroid,

where F(A) :={[n]\ F : Fe F(A)}.
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It turns out that, for any simplicial complex A, we have:

JAW = () of VkeN
FeF(D)

We want to describe which monomials belong to J(A)(%). For each

k € N, a nonzero function « : [n] — N is called a k-cover of

a simplicial complex A on [n] if: > . .pa(i) > k ¥V F € F(A).
For any k € N5, one can show:

)R = (x = Xil(l) cax@ ) g is a k-cover).
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The symbolic Rees algebra of J(A), i.e. A(A) == By J(A)H),
has an obvious interpretation in terms of k-covers. It has been
introduced by Herzog, Hibi and Trung, and it is called the vertex
cover algebra of A. We need to deal with the special fiber of A(A):

A(D) = A(D) /mA(D) = Bjers J(A)H) /mI(A) ),
where m := (x1,...,x,) C S.
A k-cover « is basic if for any k-cover (5 with 8(i) < a(i) ¥ i € [n],
then G = «. This way, for all k € N5y, we have:

A(A)x =< x* : ais a basic k-cover >

For this reason, A(A) is called the algebra of basic covers of A.
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(HHT). A(A) is a Cohen-Macaulay, finitely generated S-algebra.
Using a theorem of Eisenbud and Huneke, the above result yields

dim(A) + 1 = ht(J(A)) <dim(A(A)) = n — min {depth(S/J(A))}.

Therefore, since dim(S/J(A)) = n—dim(A) — 1, we get
S/J(A)K) is CM for any k € Nxg < dim(A(A)) = dim(A) + 1.

Our aim, thus, is to show that dim(A(A)) = dim(A) + 1 whenever

A is a matroid.
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The claim

Set d :=dim(A) + 1, that is the cardinality of each facet of A.
Claim: |{basic k-covers of A}| = O(k971).

In fact, this would imply that dimy(A(A)x) = O(k971),

which, from the Hilbert polynomial, gets dim(A(A)) = d.
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Let « be a basic k-cover of A. Since « is basic, 3 F € F(A):
>icrali) =k
Sub-claim: F fixes «v. l.e., all the values of « are determined by those on F.

In fact, let jo be in [n] \ F. Again, since « is basic, 3 G € F(A):

Jo€G and i ca(j) =k
Exchange property for matroids = there exists iy € F such that

() F=(F\{})u{i} € F(A) and () 6" :=(G\{jo})U{i} € F(A).

Therefore (1) and (II) together yield a(jo) = a(ip).
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The conclusion

Let us recall that, since F € F(A), |F| =d.

k+d-—-1
|{(317--~aad)ENd:31+~~-+ad:k}|:< >

d—1
So

|{basic k-covers}| < |F(A)] (k JC; i; 1>: O(k9=1).

Therefore dim(A(A)) = dim(A) + 1.

Hence S/J(A)) and S/IX() are Cohen-Macaulay for any k € N !
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...OR RATHER, IF S/J(A)im(£)+2) 1S COHEN-MACAULAY...
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The associated primes of the polarization of J(A)*)

The trick is in understanding the polarization of J(A)®);

we denote it by J(A)K) C S :=K[x, : i € [n],j € []].

Since J(A)(K) = Neera) E’f- we can focus in understanding

K = (X1 Xipks Xi 1 Xig ke1Xip 1s - Xigd® " Xig k)-
where F := {i1,...,ig}. We need to describe Ass(pk):
For each vector a = (a1, ...,a4) € N7 with 1 < a; < k, set

PFa = (Xil,ap Xig,any =+ Xid,ad) c S.

One can prove that for any prime ideal p C S,

p € Ass(pf) < p=prawith|a|=a1+...+ag < k+d—1.
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The lack of connectedness

Assume by contradiction that A is not a matroid.
Then there exist F, G € F(A), i € F, such that:
(F\{i})u{j} is not a facet of A for every j € G.

Let us assume that F = {i,...,ig}, G ={j1,...,Ja} and i = 1.

Eventually, consider H := J(A)(d+1). (d +1+d — 1 = 2d).
By the previous slide, pra and pgp belong to Ass(H), where

a:=(d+1,1,...,1)eN?and b := (2,2,...,2) € N? (]a| = |b| = 2d).

We will show that R := E/H is not Cohen-Macaulay:
Were it, Rpp,a+pc,b would be Cohen-Macaulay too.

Particularly, R/ ,+¢¢, would be connected in codimension 1.
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The conclusion

So, there should be a prime p € Ass(H) such that:

() © € PFa+ 06 .b;

(i) ht(p + pra) = d + 1.

In other words, there should be p, g € [d] such that:
0= (X Xjgbg = 5 € [d]\{p}).

But this is impossible:

If p=1, then (F\ {i})U{jg} € F(A), a contradiction.

If p#£1, then (d+1)+1+4...+ 142 < 2d, a contradiction.
—_—
d—2

So, A has to be a matroid!
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