SYMBOLIC POWERS AND MATROIDS

Matteo Varbaro

Dipartimento di Matematica
Università di Genova

Introduction to the problem

Introduction to the problem

Let \mathbb{k} be a field and $S:=\mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$ a polynomial ring.

Introduction to the problem

Let \mathbb{k} be a field and $S:=\mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$ a polynomial ring.
(Cowsik, Nori). Given $I \subseteq S$ homogeneous and radical, then
S / I^{k} Cohen-Macaulay $\forall k \in \mathbb{N}_{>0} \Leftrightarrow I$ is a complete intersection.

Introduction to the problem

Let \mathbb{k} be a field and $S:=\mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$ a polynomial ring.
(Cowsik, Nori). Given $I \subseteq S$ homogeneous and radical, then
S / I^{k} Cohen-Macaulay $\forall k \in \mathbb{N}_{>0} \Leftrightarrow I$ is a complete intersection.
$S / I^{k} \mathrm{CM} \Rightarrow I^{k}$ is equal to the k th symbolic power $I^{(k)}$ of I.

Introduction to the problem

Let \mathbb{k} be a field and $S:=\mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$ a polynomial ring.
(Cowsik, Nori). Given $I \subseteq S$ homogeneous and radical, then
S / I^{k} Cohen-Macaulay $\forall k \in \mathbb{N}_{>0} \Leftrightarrow I$ is a complete intersection.
$S / I^{k} \mathrm{CM} \Rightarrow I^{k}$ is equal to the k th symbolic power $I^{(k)}$ of I.
Therefore it is natural to ask:

Introduction to the problem

Let \mathbb{k} be a field and $S:=\mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$ a polynomial ring.
(Cowsik, Nori). Given $I \subseteq S$ homogeneous and radical, then
S / I^{k} Cohen-Macaulay $\forall k \in \mathbb{N}_{>0} \Leftrightarrow I$ is a complete intersection.
$S / I^{k} \mathrm{CM} \Rightarrow I^{k}$ is equal to the k th symbolic power $I^{(k)}$ of I.
Therefore it is natural to ask:
When is $S / I^{(k)}$ Cohen-Macaulay for all $k \in \mathbb{N}_{>0}$???

The result

The result

In this talk, we'll give an answer to the above question when

The result

In this talk, we'll give an answer to the above question when I is a square-free monomial ideal.

The result

In this talk, we'll give an answer to the above question when I is a square-free monomial ideal.

Let us recall the bijection of sets (throughout $[n]:=\{1, \ldots, n\}$)

The result

In this talk, we'll give an answer to the above question when I is a square-free monomial ideal.

Let us recall the bijection of sets (throughout $[n]:=\{1, \ldots, n\}$)
$\{$ Square-free monomial ideals of $S\} \leftrightarrow\{$ Simplicial complexes on $[n]\}$

The result

In this talk, we'll give an answer to the above question when I is a square-free monomial ideal.

Let us recall the bijection of sets (throughout $[n]:=\{1, \ldots, n\}$)
$\{$ Square-free monomial ideals of $S\} \leftrightarrow\{$ Simplicial complexes on $[n]\}$

$$
I \rightarrow \Delta(I):=\left\{\left\{i_{1}, \ldots, i_{k}\right\}: x_{i_{1}} \cdots x_{i_{k}} \notin I\right\}
$$

The result

In this talk, we'll give an answer to the above question when I is a square-free monomial ideal.

Let us recall the bijection of sets (throughout $[n]:=\{1, \ldots, n\}$)
$\{$ Square-free monomial ideals of $S\} \leftrightarrow\{$ Simplicial complexes on $[n]\}$

$$
\begin{gathered}
I \rightarrow \Delta(I):=\left\{\left\{i_{1}, \ldots, i_{k}\right\}: x_{i_{1}} \cdots x_{i_{k}} \notin I\right\} \\
I_{\Delta}:=\left(x_{i_{1}} \cdots x_{i_{k}}:\left\{i_{1}, \ldots, i_{k}\right\} \notin \Delta\right) \leftarrow-\Delta
\end{gathered}
$$

The result

In this talk, we'll give an answer to the above question when I is a square-free monomial ideal.

Let us recall the bijection of sets (throughout $[n]:=\{1, \ldots, n\}$)
$\{$ Square-free monomial ideals of $S\} \leftrightarrow\{$ Simplicial complexes on $[n]\}$

$$
\begin{gathered}
I \rightarrow \Delta(I):=\left\{\left\{i_{1}, \ldots, i_{k}\right\}: x_{i_{1}} \cdots x_{i_{k}} \notin I\right\} \\
I_{\Delta}:=\left(x_{i_{1}} \cdots x_{i_{k}}:\left\{i_{1}, \ldots, i_{k}\right\} \notin \Delta\right) \leftarrow-\Delta
\end{gathered}
$$

We are going to show (- 2010; Minh, Trung 2010):

The result

In this talk, we'll give an answer to the above question when I is a square-free monomial ideal.

Let us recall the bijection of sets (throughout $[n]:=\{1, \ldots, n\}$)
$\{$ Square-free monomial ideals of $S\} \leftrightarrow\{$ Simplicial complexes on $[n]\}$

$$
\begin{gathered}
I \rightarrow \Delta(I):=\left\{\left\{i_{1}, \ldots, i_{k}\right\}: x_{i_{1}} \cdots x_{i_{k}} \notin I\right\} \\
I_{\Delta}:=\left(x_{i_{1}} \cdots x_{i_{k}}:\left\{i_{1}, \ldots, i_{k}\right\} \notin \Delta\right) \leftarrow-\Delta
\end{gathered}
$$

We are going to show (- 2010; Minh, Trung 2010):
$S / I_{\Delta}^{(k)}$ is Cohen-Macaulay for any $k \in \mathbb{N}_{>0} \Leftrightarrow \Delta$ is a matroid

Definition and properties of matroids

Definition and properties of matroids

A simplicial complex Δ is a matroid if $(\mathcal{F}(\Delta):=\{$ facets of $\Delta\})$

Definition and properties of matroids

A simplicial complex Δ is a matroid if $(\mathcal{F}(\Delta):=\{$ facets of $\Delta\})$

$$
\forall F, G \in \mathcal{F}(\Delta),
$$

Definition and properties of matroids

A simplicial complex Δ is a matroid if $(\mathcal{F}(\Delta):=\{$ facets of $\Delta\})$

$$
\forall F, G \in \mathcal{F}(\Delta), \quad \forall i \in F,
$$

Definition and properties of matroids

A simplicial complex Δ is a matroid if $(\mathcal{F}(\Delta):=\{$ facets of $\Delta\})$

$$
\forall F, G \in \mathcal{F}(\Delta), \forall i \in F, \quad \exists j \in G:
$$

Definition and properties of matroids

A simplicial complex Δ is a matroid if $(\mathcal{F}(\Delta):=\{$ facets of $\Delta\})$

$$
\forall F, G \in \mathcal{F}(\Delta), \forall i \in F, \exists j \in G:(F \backslash\{i\}) \cup\{j\} \in \mathcal{F}(\Delta)
$$

Definition and properties of matroids

A simplicial complex Δ is a matroid if $(\mathcal{F}(\Delta):=\{$ facets of $\Delta\})$
$\forall F, G \in \mathcal{F}(\Delta), \forall i \in F, \exists j \in G:(F \backslash\{i\}) \cup\{j\} \in \mathcal{F}(\Delta)$
(i) If Δ is a matroid, then S / I_{Δ} is Cohen-Macaulay.

Definition and properties of matroids

A simplicial complex Δ is a matroid if $(\mathcal{F}(\Delta):=\{$ facets of $\Delta\})$
$\forall F, G \in \mathcal{F}(\Delta), \forall i \in F, \exists j \in G:(F \backslash\{i\}) \cup\{j\} \in \mathcal{F}(\Delta)$
(i) If Δ is a matroid, then S / I_{Δ} is Cohen-Macaulay.
(ii) Exchange property.

Definition and properties of matroids

A simplicial complex Δ is a matroid if $(\mathcal{F}(\Delta):=\{$ facets of $\Delta\})$
$\forall F, G \in \mathcal{F}(\Delta), \forall i \in F, \exists j \in G:(F \backslash\{i\}) \cup\{j\} \in \mathcal{F}(\Delta)$
(i) If Δ is a matroid, then S / I_{Δ} is Cohen-Macaulay.
(ii) Exchange property. If Δ is a matroid, then $\forall F, G \in \mathcal{F}(\Delta), \forall i \in F$, $\exists j \in G: \quad(F \backslash\{i\}) \cup\{j\} \in \mathcal{F}(\Delta)$

Definition and properties of matroids

A simplicial complex Δ is a matroid if $(\mathcal{F}(\Delta):=\{$ facets of $\Delta\})$

$$
\forall F, G \in \mathcal{F}(\Delta), \forall i \in F, \exists j \in G:(F \backslash\{i\}) \cup\{j\} \in \mathcal{F}(\Delta)
$$

(i) If Δ is a matroid, then S / I_{Δ} is Cohen-Macaulay.
(ii) Exchange property. If Δ is a matroid, then $\forall F, G \in \mathcal{F}(\Delta), \forall i \in F$,
$\exists j \in G: \quad(F \backslash\{i\}) \cup\{j\} \in \mathcal{F}(\Delta)$ and $(G \backslash\{j\}) \cup\{i\} \in \mathcal{F}(\Delta)!$

Definition and properties of matroids

A simplicial complex Δ is a matroid if $(\mathcal{F}(\Delta):=\{$ facets of $\Delta\})$

$$
\forall F, G \in \mathcal{F}(\Delta), \forall i \in F, \exists j \in G:(F \backslash\{i\}) \cup\{j\} \in \mathcal{F}(\Delta)
$$

(i) If Δ is a matroid, then S / I_{Δ} is Cohen-Macaulay.
(ii) Exchange property. If Δ is a matroid, then $\forall F, G \in \mathcal{F}(\Delta), \forall i \in F$, $\exists j \in G: \quad(F \backslash\{i\}) \cup\{j\} \in \mathcal{F}(\Delta)$ and $(G \backslash\{j\}) \cup\{i\} \in \mathcal{F}(\Delta)!$
(iii) Duality.

Definition and properties of matroids

A simplicial complex Δ is a matroid if $(\mathcal{F}(\Delta):=\{$ facets of $\Delta\})$

$$
\forall F, G \in \mathcal{F}(\Delta), \forall i \in F, \exists j \in G:(F \backslash\{i\}) \cup\{j\} \in \mathcal{F}(\Delta)
$$

(i) If Δ is a matroid, then S / I_{Δ} is Cohen-Macaulay.
(ii) Exchange property. If Δ is a matroid, then $\forall F, G \in \mathcal{F}(\Delta), \forall i \in F$,
$\exists j \in G: \quad(F \backslash\{i\}) \cup\{j\} \in \mathcal{F}(\Delta)$ and $(G \backslash\{j\}) \cup\{i\} \in \mathcal{F}(\Delta)!$
(iii) Duality. For any simplicial complex Δ on [n], we have

Definition and properties of matroids

A simplicial complex Δ is a matroid if $(\mathcal{F}(\Delta):=\{$ facets of $\Delta\})$

$$
\forall F, G \in \mathcal{F}(\Delta), \forall i \in F, \exists j \in G:(F \backslash\{i\}) \cup\{j\} \in \mathcal{F}(\Delta)
$$

(i) If Δ is a matroid, then S / I_{Δ} is Cohen-Macaulay.
(ii) Exchange property. If Δ is a matroid, then $\forall F, G \in \mathcal{F}(\Delta), \forall i \in F$,
$\exists j \in G: \quad(F \backslash\{i\}) \cup\{j\} \in \mathcal{F}(\Delta)$ and $(G \backslash\{j\}) \cup\{i\} \in \mathcal{F}(\Delta)!$
(iii) Duality. For any simplicial complex Δ on [n], we have Δ is a matroid $\Leftrightarrow \Delta^{c}$ is a matroid,

Definition and properties of matroids

A simplicial complex Δ is a matroid if $(\mathcal{F}(\Delta):=\{$ facets of $\Delta\})$

$$
\forall F, G \in \mathcal{F}(\Delta), \forall i \in F, \exists j \in G:(F \backslash\{i\}) \cup\{j\} \in \mathcal{F}(\Delta)
$$

(i) If Δ is a matroid, then S / I_{Δ} is Cohen-Macaulay.
(ii) Exchange property. If Δ is a matroid, then $\forall F, G \in \mathcal{F}(\Delta), \forall i \in F$,
$\exists j \in G: \quad(F \backslash\{i\}) \cup\{j\} \in \mathcal{F}(\Delta)$ and $(G \backslash\{j\}) \cup\{i\} \in \mathcal{F}(\Delta)!$
(iii) Duality. For any simplicial complex Δ on [n], we have Δ is a matroid $\Leftrightarrow \Delta^{c}$ is a matroid, where $\mathcal{F}\left(\Delta^{c}\right):=\{[n] \backslash F: F \in \mathcal{F}(\Delta)\}$.

SKETCH OF THE PROOF

The switch to the cover ideal

The switch to the cover ideal

For a simplicial complex Δ, its cover ideal is:

The switch to the cover ideal

For a simplicial complex Δ, its cover ideal is:

$$
J(\Delta):=\bigcap_{F \in \mathcal{F}(\Delta)} \wp_{F},
$$

The switch to the cover ideal

For a simplicial complex Δ, its cover ideal is:

$$
J(\Delta):=\bigcap_{F \in \mathcal{F}(\Delta)} \wp_{F},
$$

where $\wp_{\wp}:=\left(x_{i}: i \in F\right) \subseteq S$.

The switch to the cover ideal

For a simplicial complex Δ, its cover ideal is:

$$
J(\Delta):=\bigcap_{F \in \mathcal{F}(\Delta)} \wp_{F},
$$

where $\wp_{F}:=\left(x_{i}: i \in F\right) \subseteq S$.
A subset $A \subseteq[n]$ is a vertex cover of Δ if

The switch to the cover ideal

For a simplicial complex Δ, its cover ideal is:

$$
J(\Delta):=\bigcap_{F \in \mathcal{F}(\Delta)} \wp_{F},
$$

where $\wp_{\wp}:=\left(x_{i}: i \in F\right) \subseteq S$.
A subset $A \subseteq[n]$ is a vertex cover of Δ if for all $F \in \mathcal{F}(\Delta)$, then $A \cap F \neq \emptyset$.

The switch to the cover ideal

For a simplicial complex Δ, its cover ideal is:

$$
J(\Delta):=\bigcap_{F \in \mathcal{F}(\Delta)} \wp_{F},
$$

where $\wp_{\wp}:=\left(x_{i}: i \in F\right) \subseteq S$.
A subset $A \subseteq[n]$ is a vertex cover of Δ if for all $F \in \mathcal{F}(\Delta)$, then $A \cap F \neq \emptyset$. One can check that

$$
J(\Delta)=\left(x_{i_{1}} \cdots x_{i_{k}}:\left\{i_{1}, \ldots, i_{k}\right\} \text { is a vertex cover of } \Delta\right) .
$$

The switch to the cover ideal

For a simplicial complex Δ, its cover ideal is:

$$
J(\Delta):=\bigcap_{F \in \mathcal{F}(\Delta)} \wp_{F},
$$

where $\wp_{\wp}:=\left(x_{i}: i \in F\right) \subseteq S$.
A subset $A \subseteq[n]$ is a vertex cover of Δ if for all $F \in \mathcal{F}(\Delta)$, then $A \cap F \neq \emptyset$. One can check that

$$
J(\Delta)=\left(x_{i_{1}} \cdots x_{i_{k}}:\left\{i_{1}, \ldots, i_{k}\right\} \text { is a vertex cover of } \Delta\right) .
$$

By duality, because $J(\Delta)=I_{\Delta^{c}}$ and $I_{\Delta}=J\left(\Delta^{c}\right)$, we can pass

The switch to the cover ideal

For a simplicial complex Δ, its cover ideal is:

$$
J(\Delta):=\bigcap_{F \in \mathcal{F}(\Delta)} \wp_{F},
$$

where $\wp_{F}:=\left(x_{i}: i \in F\right) \subseteq S$.
A subset $A \subseteq[n]$ is a vertex cover of Δ if for all $F \in \mathcal{F}(\Delta)$, then $A \cap F \neq \emptyset$. One can check that

$$
J(\Delta)=\left(x_{i_{1}} \cdots x_{i_{k}}:\left\{i_{1}, \ldots, i_{k}\right\} \text { is a vertex cover of } \Delta\right) .
$$

By duality, because $J(\Delta)=I_{\Delta^{c}}$ and $I_{\Delta}=J\left(\Delta^{c}\right)$, we can pass from

$$
S / I_{\Delta}^{(k)} \text { is } C M \text { for any } k \in \mathbb{N}_{>0} \Leftrightarrow \Delta \text { is a matroid }
$$

The switch to the cover ideal

For a simplicial complex Δ, its cover ideal is:

$$
J(\Delta):=\bigcap_{F \in \mathcal{F}(\Delta)} \wp_{F},
$$

where $\wp_{\wp}:=\left(x_{i}: i \in F\right) \subseteq S$.
A subset $A \subseteq[n]$ is a vertex cover of Δ if for all $F \in \mathcal{F}(\Delta)$, then $A \cap F \neq \emptyset$. One can check that

$$
J(\Delta)=\left(x_{i_{1}} \cdots x_{i_{k}}:\left\{i_{1}, \ldots, i_{k}\right\} \text { is a vertex cover of } \Delta\right) .
$$

By duality, because $J(\Delta)=I_{\Delta^{c}}$ and $I_{\Delta}=J\left(\Delta^{c}\right)$, we can pass to

$$
S / J(\Delta)^{(k)} \text { is CM for any } k \in \mathbb{N}_{>0} \Leftrightarrow \Delta \text { is a matroid }
$$

Symbolic powers and k-covers

Symbolic powers and k-covers

It turns out that, for any simplicial complex Δ, we have:

Symbolic powers and k-covers

It turns out that, for any simplicial complex Δ, we have:

$$
J(\Delta)^{(k)}=\bigcap_{F \in \mathcal{F}(\Delta)} \wp_{F}^{k} \quad \forall k \in \mathbb{N} .
$$

Symbolic powers and k-covers

It turns out that, for any simplicial complex Δ, we have:

$$
J(\Delta)^{(k)}=\bigcap_{F \in \mathcal{F}(\Delta)} \wp_{F}^{k} \quad \forall k \in \mathbb{N} .
$$

We want to describe which monomials belong to $J(\Delta)^{(k)}$.

Symbolic powers and k-covers

It turns out that, for any simplicial complex Δ, we have:

$$
J(\Delta)^{(k)}=\bigcap_{F \in \mathcal{F}(\Delta)} \wp_{F}^{k} \quad \forall k \in \mathbb{N} .
$$

We want to describe which monomials belong to $J(\Delta)^{(k)}$. For each $k \in \mathbb{N}$, a nonzero function $\alpha:[n] \rightarrow \mathbb{N}$ is called a k-cover of a simplicial complex Δ on [n] if:

Symbolic powers and k-covers

It turns out that, for any simplicial complex Δ, we have:

$$
J(\Delta)^{(k)}=\bigcap_{F \in \mathcal{F}(\Delta)} \wp_{F}^{k} \quad \forall k \in \mathbb{N} .
$$

We want to describe which monomials belong to $J(\Delta)^{(k)}$. For each $k \in \mathbb{N}$, a nonzero function $\alpha:[n] \rightarrow \mathbb{N}$ is called a k-cover of a simplicial complex Δ on $[n]$ if: $\sum_{i \in F} \alpha(i) \geq k \forall F \in \mathcal{F}(\Delta)$.

Symbolic powers and k-covers

It turns out that, for any simplicial complex Δ, we have:

$$
J(\Delta)^{(k)}=\bigcap_{F \in \mathcal{F}(\Delta)} \wp_{F}^{k} \quad \forall k \in \mathbb{N} .
$$

We want to describe which monomials belong to $J(\Delta)^{(k)}$. For each $k \in \mathbb{N}$, a nonzero function $\alpha:[n] \rightarrow \mathbb{N}$ is called a k-cover of a simplicial complex Δ on $[n]$ if: $\sum_{i \in F} \alpha(i) \geq k \forall F \in \mathcal{F}(\Delta)$.

Notice that there is a one-to-one correspondence of sets
$\{$ vertex covers $\} \leftrightarrow\{1$-covers with entries in $\{0,1\}\}$.

Symbolic powers and k-covers

It turns out that, for any simplicial complex Δ, we have:

$$
J(\Delta)^{(k)}=\bigcap_{F \in \mathcal{F}(\Delta)} \wp_{F}^{k} \quad \forall k \in \mathbb{N} .
$$

We want to describe which monomials belong to $J(\Delta)^{(k)}$. For each $k \in \mathbb{N}$, a nonzero function $\alpha:[n] \rightarrow \mathbb{N}$ is called a k-cover of a simplicial complex Δ on [n] if: $\sum_{i \in F} \alpha(i) \geq k \forall F \in \mathcal{F}(\Delta)$.

For any $k \in \mathbb{N}_{>0}$, one can show:

Symbolic powers and k-covers

It turns out that, for any simplicial complex Δ, we have:

$$
J(\Delta)^{(k)}=\bigcap_{F \in \mathcal{F}(\Delta)} \wp_{F}^{k} \quad \forall k \in \mathbb{N} .
$$

We want to describe which monomials belong to $J(\Delta)^{(k)}$. For each $k \in \mathbb{N}$, a nonzero function $\alpha:[n] \rightarrow \mathbb{N}$ is called a k-cover of a simplicial complex Δ on $[n]$ if: $\sum_{i \in F} \alpha(i) \geq k \forall F \in \mathcal{F}(\Delta)$.

For any $k \in \mathbb{N}_{>0}$, one can show:

$$
J(\Delta)^{(k)}=\left(x^{\alpha}:=x_{1}^{\alpha(1)} \cdots x_{n}^{\alpha(n)}: \alpha \text { is a } k \text {-cover }\right)
$$

The algebra of basic covers

The algebra of basic covers

The symbolic Rees algebra of $J(\Delta)$,

The algebra of basic covers

The symbolic Rees algebra of $J(\Delta)$, i.e. $A(\Delta):=\bigoplus_{k \in \mathbb{N}} J(\Delta)^{(k)}$,

The algebra of basic covers

The symbolic Rees algebra of $J(\Delta)$, i.e. $A(\Delta):=\bigoplus_{k \in \mathbb{N}} J(\Delta)^{(k)}$, has an obvious interpretation in terms of k-covers.

The algebra of basic covers

The symbolic Rees algebra of $J(\Delta)$, i.e. $A(\Delta):=\bigoplus_{k \in \mathbb{N}} J(\Delta)^{(k)}$, has an obvious interpretation in terms of k-covers. It has been introduced by Herzog, Hibi and Trung,

The algebra of basic covers

The symbolic Rees algebra of $J(\Delta)$, i.e. $A(\Delta):=\bigoplus_{k \in \mathbb{N}} J(\Delta)^{(k)}$, has an obvious interpretation in terms of k-covers. It has been introduced by Herzog, Hibi and Trung, and it is called the vertex cover algebra of Δ.

The algebra of basic covers

The symbolic Rees algebra of $J(\Delta)$, i.e. $A(\Delta):=\bigoplus_{k \in \mathbb{N}} J(\Delta)^{(k)}$, has an obvious interpretation in terms of k-covers. It has been introduced by Herzog, Hibi and Trung, and it is called the vertex cover algebra of Δ. We need to deal with the special fiber of $A(\Delta)$:

The algebra of basic covers

The symbolic Rees algebra of $J(\Delta)$, i.e. $A(\Delta):=\bigoplus_{k \in \mathbb{N}} J(\Delta)^{(k)}$, has an obvious interpretation in terms of k-covers. It has been introduced by Herzog, Hibi and Trung, and it is called the vertex cover algebra of Δ. We need to deal with the special fiber of $A(\Delta)$:

$$
\bar{A}(\Delta):=A(\Delta) / \mathfrak{m} A(\Delta)=\bigoplus_{k \in \mathbb{N}} J(\Delta)^{(k)} / \mathfrak{m} J(\Delta)^{(k)}
$$

The algebra of basic covers

The symbolic Rees algebra of $J(\Delta)$, i.e. $A(\Delta):=\bigoplus_{k \in \mathbb{N}} J(\Delta)^{(k)}$, has an obvious interpretation in terms of k-covers. It has been introduced by Herzog, Hibi and Trung, and it is called the vertex cover algebra of Δ. We need to deal with the special fiber of $A(\Delta)$:

$$
\bar{A}(\Delta):=A(\Delta) / \mathfrak{m} A(\Delta)=\bigoplus_{k \in \mathbb{N}} J(\Delta)^{(k)} / \mathfrak{m} J(\Delta)^{(k)}
$$

where $\mathfrak{m}:=\left(x_{1}, \ldots, x_{n}\right) \subseteq S$.

The algebra of basic covers

The symbolic Rees algebra of $J(\Delta)$, i.e. $A(\Delta):=\bigoplus_{k \in \mathbb{N}} J(\Delta)^{(k)}$, has an obvious interpretation in terms of k-covers. It has been introduced by Herzog, Hibi and Trung, and it is called the vertex cover algebra of Δ. We need to deal with the special fiber of $A(\Delta)$:

$$
\bar{A}(\Delta):=A(\Delta) / \mathfrak{m} A(\Delta)=\bigoplus_{k \in \mathbb{N}} J(\Delta)^{(k)} / \mathfrak{m} J(\Delta)^{(k)}
$$

where $\mathfrak{m}:=\left(x_{1}, \ldots, x_{n}\right) \subseteq S$.
A k-cover α is basic if for any k-cover β with $\beta(i) \leq \alpha(i) \forall i \in[n]$,

The algebra of basic covers

The symbolic Rees algebra of $J(\Delta)$, i.e. $A(\Delta):=\bigoplus_{k \in \mathbb{N}} J(\Delta)^{(k)}$, has an obvious interpretation in terms of k-covers. It has been introduced by Herzog, Hibi and Trung, and it is called the vertex cover algebra of Δ. We need to deal with the special fiber of $A(\Delta)$:

$$
\bar{A}(\Delta):=A(\Delta) / \mathfrak{m} A(\Delta)=\bigoplus_{k \in \mathbb{N}} J(\Delta)^{(k)} / \mathfrak{m} J(\Delta)^{(k)}
$$

where $\mathfrak{m}:=\left(x_{1}, \ldots, x_{n}\right) \subseteq S$.
A k-cover α is basic if for any k-cover β with $\beta(i) \leq \alpha(i) \forall i \in[n]$, then $\beta=\alpha$.

The algebra of basic covers

The symbolic Rees algebra of $J(\Delta)$, i.e. $A(\Delta):=\bigoplus_{k \in \mathbb{N}} J(\Delta)^{(k)}$, has an obvious interpretation in terms of k-covers. It has been introduced by Herzog, Hibi and Trung, and it is called the vertex cover algebra of Δ. We need to deal with the special fiber of $A(\Delta)$:

$$
\bar{A}(\Delta):=A(\Delta) / \mathfrak{m} A(\Delta)=\bigoplus_{k \in \mathbb{N}} J(\Delta)^{(k)} / \mathfrak{m} J(\Delta)^{(k)}
$$

where $\mathfrak{m}:=\left(x_{1}, \ldots, x_{n}\right) \subseteq S$.
A k-cover α is basic if for any k-cover β with $\beta(i) \leq \alpha(i) \forall i \in[n]$, then $\beta=\alpha$. This way, for all $k \in \mathbb{N}_{>0}$, we have:

$$
\bar{A}(\Delta)_{k}=<x^{\alpha}: \alpha \text { is a basic } k \text {-cover }>
$$

The algebra of basic covers

The symbolic Rees algebra of $J(\Delta)$, i.e. $A(\Delta):=\bigoplus_{k \in \mathbb{N}} J(\Delta)^{(k)}$, has an obvious interpretation in terms of k-covers. It has been introduced by Herzog, Hibi and Trung, and it is called the vertex cover algebra of Δ. We need to deal with the special fiber of $A(\Delta)$:

$$
\bar{A}(\Delta):=A(\Delta) / \mathfrak{m} A(\Delta)=\bigoplus_{k \in \mathbb{N}} J(\Delta)^{(k)} / \mathfrak{m} J(\Delta)^{(k)}
$$

where $\mathfrak{m}:=\left(x_{1}, \ldots, x_{n}\right) \subseteq S$.
A k-cover α is basic if for any k-cover β with $\beta(i) \leq \alpha(i) \forall i \in[n]$, then $\beta=\alpha$. This way, for all $k \in \mathbb{N}_{>0}$, we have:

$$
\bar{A}(\Delta)_{k}=<x^{\alpha}: \alpha \text { is a basic } k \text {-cover }>
$$

For this reason, $\bar{A}(\Delta)$ is called the algebra of basic covers of Δ.

The dimension of $\bar{A}(\Delta)$ comes into play

The dimension of $\bar{A}(\Delta)$ comes into play

$(H H T) . A(\Delta)$ is a Cohen-Macaulay, finitely generated S-algebra.

The dimension of $\bar{A}(\Delta)$ comes into play

$(H H T) . A(\Delta)$ is a Cohen-Macaulay, finitely generated S-algebra.
Using a theorem of Eisenbud and Huneke, the above result yields

The dimension of $\bar{A}(\Delta)$ comes into play

$(H H T) . A(\Delta)$ is a Cohen-Macaulay, finitely generated S-algebra.
Using a theorem of Eisenbud and Huneke, the above result yields

$$
\operatorname{dim}(\bar{A}(\Delta))=n-\min _{k \in \mathbb{N}>0}\left\{\operatorname{depth}\left(S / J(\Delta)^{(k)}\right)\right\}
$$

The dimension of $\bar{A}(\Delta)$ comes into play

$(H H T) . A(\Delta)$ is a Cohen-Macaulay, finitely generated S-algebra.
Using a theorem of Eisenbud and Huneke, the above result yields $\operatorname{dim}(\Delta)+1=\operatorname{ht}(J(\Delta)) \leq \operatorname{dim}(\bar{A}(\Delta))=n-\min _{k \in \mathbb{N}>0}\left\{\operatorname{depth}\left(S / J(\Delta)^{(k)}\right)\right\}$.

The dimension of $\bar{A}(\Delta)$ comes into play

$(H H T) . A(\Delta)$ is a Cohen-Macaulay, finitely generated S-algebra.
Using a theorem of Eisenbud and Huneke, the above result yields $\operatorname{dim}(\Delta)+1=\operatorname{ht}(J(\Delta)) \leq \operatorname{dim}(\bar{A}(\Delta))=n-\min _{k \in \mathbb{N}>0}\left\{\operatorname{depth}\left(S / J(\Delta)^{(k)}\right)\right\}$.

Therefore, since $\operatorname{dim}(S / J(\Delta))=n-\operatorname{dim}(\Delta)-1$, we get

The dimension of $\bar{A}(\Delta)$ comes into play

$(H H T) . A(\Delta)$ is a Cohen-Macaulay, finitely generated S-algebra.
Using a theorem of Eisenbud and Huneke, the above result yields $\operatorname{dim}(\Delta)+1=\operatorname{ht}(J(\Delta)) \leq \operatorname{dim}(\bar{A}(\Delta))=n-\min _{k \in \mathbb{N}>0}\left\{\operatorname{depth}\left(S / J(\Delta)^{(k)}\right)\right\}$.

Therefore, since $\operatorname{dim}(S / J(\Delta))=n-\operatorname{dim}(\Delta)-1$, we get
$S / J(\Delta)^{(k)}$ is CM for any $k \in \mathbb{N}_{>0} \Leftrightarrow \operatorname{dim}(\bar{A}(\Delta))=\operatorname{dim}(\Delta)+1$.

The dimension of $\bar{A}(\Delta)$ comes into play

(HHT). $A(\Delta)$ is a Cohen-Macaulay, finitely generated S-algebra.
Using a theorem of Eisenbud and Huneke, the above result yields $\operatorname{dim}(\Delta)+1=\operatorname{ht}(J(\Delta)) \leq \operatorname{dim}(\bar{A}(\Delta))=n-\min _{k \in \mathbb{N}>0}\left\{\operatorname{depth}\left(S / J(\Delta)^{(k)}\right)\right\}$.

Therefore, since $\operatorname{dim}(S / J(\Delta))=n-\operatorname{dim}(\Delta)-1$, we get
$S / J(\Delta)^{(k)}$ is CM for any $k \in \mathbb{N}_{>0} \Leftrightarrow \operatorname{dim}(\bar{A}(\Delta))=\operatorname{dim}(\Delta)+1$.

Our aim, thus, is to show that $\operatorname{dim}(\bar{A}(\Delta))=\operatorname{dim}(\Delta)+1$ whenever Δ is a matroid.

IF Δ IS A MATROID...

The claim

The claim

Set $d:=\operatorname{dim}(\Delta)+1$, that is the cardinality of each facet of Δ.

The claim

Set $d:=\operatorname{dim}(\Delta)+1$, that is the cardinality of each facet of Δ.

Claim: $\mid\{$ basic k-covers of $\Delta\} \mid=O\left(k^{d-1}\right)$.

The claim

Set $d:=\operatorname{dim}(\Delta)+1$, that is the cardinality of each facet of Δ.

Claim: $\mid\{$ basic k-covers of $\Delta\} \mid=O\left(k^{d-1}\right)$.

In fact, this would imply that $\operatorname{dim}_{\mathbb{k}}\left(\bar{A}(\Delta)_{k}\right)=O\left(k^{d-1}\right)$,

The claim

Set $d:=\operatorname{dim}(\Delta)+1$, that is the cardinality of each facet of Δ.

Claim: $\mid\{$ basic k-covers of $\Delta\} \mid=O\left(k^{d-1}\right)$.

In fact, this would imply that $\operatorname{dim}_{\mathbb{k}}\left(\bar{A}(\Delta)_{k}\right)=O\left(k^{d-1}\right)$,
which, from the Hilbert polynomial, gets $\operatorname{dim}(\bar{A}(\Delta))=d$.

The rigidity of the basic covers of a matroid

The rigidity of the basic covers of a matroid

Let α be a basic k-cover of Δ.

The rigidity of the basic covers of a matroid

Let α be a basic k-cover of Δ. Since α is basic, $\exists F \in \mathcal{F}(\Delta)$:

The rigidity of the basic covers of a matroid

Let α be a basic k-cover of Δ. Since α is basic, $\exists F \in \mathcal{F}(\Delta)$:

$$
\sum_{i \in F} \alpha(i)=k
$$

The rigidity of the basic covers of a matroid

Let α be a basic k-cover of Δ. Since α is basic, $\exists F \in \mathcal{F}(\Delta)$:

$$
\sum_{i \in F} \alpha(i)=k
$$

Sub-claim: F fixes α. I.e., all the values of α are determined by those on F.

The rigidity of the basic covers of a matroid

Let α be a basic k-cover of Δ. Since α is basic, $\exists F \in \mathcal{F}(\Delta)$:

$$
\sum_{i \in F} \alpha(i)=k
$$

Sub-claim: F fixes α. I.e., all the values of α are determined by those on F. In fact, let j_{0} be in $[n] \backslash F$.

The rigidity of the basic covers of a matroid

Let α be a basic k-cover of Δ. Since α is basic, $\exists F \in \mathcal{F}(\Delta)$:

$$
\sum_{i \in F} \alpha(i)=k
$$

Sub-claim: F fixes α. I.e., all the values of α are determined by those on F. In fact, let j_{0} be in $[n] \backslash F$. Again, since α is basic, $\exists G \in \mathcal{F}(\Delta)$:

The rigidity of the basic covers of a matroid

Let α be a basic k-cover of Δ. Since α is basic, $\exists F \in \mathcal{F}(\Delta)$:

$$
\sum_{i \in F} \alpha(i)=k
$$

Sub-claim: F fixes α. I.e., all the values of α are determined by those on F.
In fact, let j_{0} be in $[n] \backslash F$. Again, since α is basic, $\exists G \in \mathcal{F}(\Delta)$:

$$
j_{0} \in G \quad \text { and } \quad \sum_{j \in G} \alpha(j)=k
$$

The rigidity of the basic covers of a matroid

Let α be a basic k-cover of Δ. Since α is basic, $\exists F \in \mathcal{F}(\Delta)$:

$$
\sum_{i \in F} \alpha(i)=k
$$

Sub-claim: F fixes α. I.e., all the values of α are determined by those on F.
In fact, let j_{0} be in $[n] \backslash F$. Again, since α is basic, $\exists G \in \mathcal{F}(\Delta)$:

$$
j_{0} \in G \quad \text { and } \quad \sum_{j \in G} \alpha(j)=k
$$

Exchange property for matroids \Rightarrow there exists $i_{0} \in F$ such that

The rigidity of the basic covers of a matroid

Let α be a basic k-cover of Δ. Since α is basic, $\exists F \in \mathcal{F}(\Delta)$:

$$
\sum_{i \in F} \alpha(i)=k
$$

Sub-claim: F fixes α. I.e., all the values of α are determined by those on F.
In fact, let j_{0} be in $[n] \backslash F$. Again, since α is basic, $\exists G \in \mathcal{F}(\Delta)$:

$$
j_{0} \in G \quad \text { and } \quad \sum_{j \in G} \alpha(j)=k
$$

Exchange property for matroids \Rightarrow there exists $i_{0} \in F$ such that
(I) $F^{\prime}:=\left(F \backslash\left\{i_{0}\right\}\right) \cup\left\{j_{0}\right\} \in \mathcal{F}(\Delta)$ and
(II) $G^{\prime}:=\left(G \backslash\left\{j_{0}\right\}\right) \cup\left\{i_{0}\right\} \in \mathcal{F}(\Delta)$.

The rigidity of the basic covers of a matroid

Let α be a basic k-cover of Δ. Since α is basic, $\exists F \in \mathcal{F}(\Delta)$:

$$
\sum_{i \in F} \alpha(i)=k
$$

Sub-claim: F fixes α. I.e., all the values of α are determined by those on F.
In fact, let j_{0} be in $[n] \backslash F$. Again, since α is basic, $\exists G \in \mathcal{F}(\Delta)$:

$$
j_{0} \in G \quad \text { and } \quad \sum_{j \in G} \alpha(j)=k .
$$

Exchange property for matroids \Rightarrow there exists $i_{0} \in F$ such that
(I) $F^{\prime}:=\left(F \backslash\left\{i_{0}\right\}\right) \cup\left\{j_{0}\right\} \in \mathcal{F}(\Delta)$ and
(II) $G^{\prime}:=\left(G \backslash\left\{j_{0}\right\}\right) \cup\left\{i_{0}\right\} \in \mathcal{F}(\Delta)$.
$(\mathrm{I}) \Longrightarrow \sum_{i \in F^{\prime}} \alpha(i) \geq k$

The rigidity of the basic covers of a matroid

Let α be a basic k-cover of Δ. Since α is basic, $\exists F \in \mathcal{F}(\Delta)$:

$$
\sum_{i \in F} \alpha(i)=k
$$

Sub-claim: F fixes α. I.e., all the values of α are determined by those on F.
In fact, let j_{0} be in $[n] \backslash F$. Again, since α is basic, $\exists G \in \mathcal{F}(\Delta)$:

$$
j_{0} \in G \quad \text { and } \quad \sum_{j \in G} \alpha(j)=k
$$

Exchange property for matroids \Rightarrow there exists $i_{0} \in F$ such that

$$
\begin{aligned}
& \text { (I) } F^{\prime}:=\left(F \backslash\left\{i_{0}\right\}\right) \cup\left\{j_{0}\right\} \in \mathcal{F}(\Delta) \quad \text { and } \quad \text { (II) } G^{\prime}:=\left(G \backslash\left\{j_{0}\right\}\right) \cup\left\{i_{0}\right\} \in \mathcal{F}(\Delta) . \\
& \text { (I) } \Longrightarrow \sum_{i \in F^{\prime}} \alpha(i) \geq k \Longrightarrow \alpha\left(j_{0}\right) \geq \alpha\left(i_{0}\right) .
\end{aligned}
$$

The rigidity of the basic covers of a matroid

Let α be a basic k-cover of Δ. Since α is basic, $\exists F \in \mathcal{F}(\Delta)$:

$$
\sum_{i \in F} \alpha(i)=k
$$

Sub-claim: F fixes α. I.e., all the values of α are determined by those on F.
In fact, let j_{0} be in $[n] \backslash F$. Again, since α is basic, $\exists G \in \mathcal{F}(\Delta)$:

$$
j_{0} \in G \quad \text { and } \quad \sum_{j \in G} \alpha(j)=k
$$

Exchange property for matroids \Rightarrow there exists $i_{0} \in F$ such that
(I) $F^{\prime}:=\left(F \backslash\left\{i_{0}\right\}\right) \cup\left\{j_{0}\right\} \in \mathcal{F}(\Delta)$ and
(II) $G^{\prime}:=\left(G \backslash\left\{j_{0}\right\}\right) \cup\left\{i_{0}\right\} \in \mathcal{F}(\Delta)$.
(II) $\Longrightarrow \sum_{j \in G^{\prime}} \alpha(j) \geq k$

The rigidity of the basic covers of a matroid

Let α be a basic k-cover of Δ. Since α is basic, $\exists F \in \mathcal{F}(\Delta)$:

$$
\sum_{i \in F} \alpha(i)=k
$$

Sub-claim: F fixes α. I.e., all the values of α are determined by those on F.
In fact, let j_{0} be in $[n] \backslash F$. Again, since α is basic, $\exists G \in \mathcal{F}(\Delta)$:

$$
j_{0} \in G \quad \text { and } \quad \sum_{j \in G} \alpha(j)=k .
$$

Exchange property for matroids \Rightarrow there exists $i_{0} \in F$ such that

$$
\begin{aligned}
& \text { (I) } F^{\prime}:=\left(F \backslash\left\{i_{0}\right\}\right) \cup\left\{j_{0}\right\} \in \mathcal{F}(\Delta) \text { and (II) } G^{\prime}:=\left(G \backslash\left\{j_{0}\right\}\right) \cup\left\{i_{0}\right\} \in \mathcal{F}(\Delta) . \\
& \text { (II) } \Longrightarrow \sum_{j \in G^{\prime}} \alpha(j) \geq k \Longrightarrow \alpha\left(i_{0}\right) \geq \alpha\left(j_{0}\right) .
\end{aligned}
$$

The rigidity of the basic covers of a matroid

Let α be a basic k-cover of Δ. Since α is basic, $\exists F \in \mathcal{F}(\Delta)$:

$$
\sum_{i \in F} \alpha(i)=k
$$

Sub-claim: F fixes α. I.e., all the values of α are determined by those on F.
In fact, let j_{0} be in $[n] \backslash F$. Again, since α is basic, $\exists G \in \mathcal{F}(\Delta)$:

$$
j_{0} \in G \quad \text { and } \quad \sum_{j \in G} \alpha(j)=k
$$

Exchange property for matroids \Rightarrow there exists $i_{0} \in F$ such that
(I) $F^{\prime}:=\left(F \backslash\left\{i_{0}\right\}\right) \cup\left\{j_{0}\right\} \in \mathcal{F}(\Delta)$ and
(II) $G^{\prime}:=\left(G \backslash\left\{j_{0}\right\}\right) \cup\left\{i_{0}\right\} \in \mathcal{F}(\Delta)$.

Therefore (I) and (II) together yield $\alpha\left(j_{0}\right)=\alpha\left(i_{0}\right)$.

The conclusion

The conclusion

Let us recall that, since $F \in \mathcal{F}(\Delta),|F|=d$.

The conclusion

Let us recall that, since $F \in \mathcal{F}(\Delta),|F|=d$.

$$
\left|\left\{\left(a_{1}, \ldots, a_{d}\right) \in \mathbb{N}^{d}: a_{1}+\ldots+a_{d}=k\right\}\right|=\binom{k+d-1}{d-1} .
$$

The conclusion

Let us recall that, since $F \in \mathcal{F}(\Delta),|F|=d$.

$$
\left|\left\{\left(a_{1}, \ldots, a_{d}\right) \in \mathbb{N}^{d}: a_{1}+\ldots+a_{d}=k\right\}\right|=\binom{k+d-1}{d-1} .
$$

So

The conclusion

Let us recall that, since $F \in \mathcal{F}(\Delta),|F|=d$.

$$
\left|\left\{\left(a_{1}, \ldots, a_{d}\right) \in \mathbb{N}^{d}: a_{1}+\ldots+a_{d}=k\right\}\right|=\binom{k+d-1}{d-1} .
$$

So

$$
\left\lvert\,\{\text { basic } k \text {-covers }\}\left|\leq|\mathcal{F}(\Delta)|\binom{k+d-1}{d-1}\right.\right.
$$

The conclusion

Let us recall that, since $F \in \mathcal{F}(\Delta),|F|=d$.

$$
\left|\left\{\left(a_{1}, \ldots, a_{d}\right) \in \mathbb{N}^{d}: a_{1}+\ldots+a_{d}=k\right\}\right|=\binom{k+d-1}{d-1} .
$$

So

$$
\left\lvert\,\{\text { basic } k \text {-covers }\}\left|\leq|\mathcal{F}(\Delta)|\binom{k+d-1}{d-1}=O\left(k^{d-1}\right)\right.\right.
$$

The conclusion

Let us recall that, since $F \in \mathcal{F}(\Delta),|F|=d$.

$$
\left|\left\{\left(a_{1}, \ldots, a_{d}\right) \in \mathbb{N}^{d}: a_{1}+\ldots+a_{d}=k\right\}\right|=\binom{k+d-1}{d-1} .
$$

So

$$
\left\lvert\,\{\text { basic } k \text {-covers }\}\left|\leq|\mathcal{F}(\Delta)|\binom{k+d-1}{d-1}=O\left(k^{d-1}\right)\right.\right.
$$

Therefore $\operatorname{dim}(\bar{A}(\Delta))=\operatorname{dim}(\Delta)+1$.

The conclusion

Let us recall that, since $F \in \mathcal{F}(\Delta),|F|=d$.

$$
\left|\left\{\left(a_{1}, \ldots, a_{d}\right) \in \mathbb{N}^{d}: a_{1}+\ldots+a_{d}=k\right\}\right|=\binom{k+d-1}{d-1} .
$$

So

$$
\left\lvert\,\{\text { basic } k \text {-covers }\}\left|\leq|\mathcal{F}(\Delta)|\binom{k+d-1}{d-1}=O\left(k^{d-1}\right)\right.\right.
$$

Therefore $\operatorname{dim}(\bar{A}(\Delta))=\operatorname{dim}(\Delta)+1$.
Hence $S / J(\Delta)^{(k)}$ and $S / I_{\Delta}^{(k)}$ are Cohen-Macaulay for any $k \in \mathbb{N}_{>0}$!

IF $S / J(\Delta)^{(k)}$ IS COHEN-MACAULAY FOR ALL $k \in \mathbb{N}_{>0} \ldots$

IF $S / J(\Delta)^{(k)}$ IS COHEN-MACAULAY FOR ALL $k \in \mathbb{N}_{>0} \ldots$...OR RATHER, IF $S / J(\Delta)^{(\operatorname{dim}(\Delta)+2)}$ IS COHEN-MACAULAY...

The associated primes of the polarization of $J(\Delta)^{(k)}$

The associated primes of the polarization of $J(\Delta)^{(k)}$

The trick is in understanding the polarization of $J(\Delta)^{(k)}$;

The associated primes of the polarization of $J(\Delta)^{(k)}$

The trick is in understanding the polarization of $J(\Delta)^{(k)}$;
we denote it by $J(\Delta)^{(k)} \subseteq \widetilde{S}:=\mathbb{k}\left[x_{i, j}: i \in[n], j \in[k]\right]$.

The associated primes of the polarization of $J(\Delta)^{(k)}$

The trick is in understanding the polarization of $J(\Delta)^{(k)}$;
we denote it by $J(\Delta)^{(k)} \subseteq \widetilde{S}:=\mathbb{k}\left[x_{i, j}: i \in[n], j \in[k]\right]$.
Since $\widetilde{J(\Delta)^{(k)}}=\bigcap_{F \in \mathcal{F}(\Delta)} \widetilde{\wp_{F}^{k}}$,

The associated primes of the polarization of $J(\Delta)^{(k)}$

The trick is in understanding the polarization of $J(\Delta)^{(k)}$;
we denote it by $J(\Delta)^{(k)} \subseteq \widetilde{S}:=\mathbb{k}\left[x_{i, j}: i \in[n], j \in[k]\right]$.
Since $\widetilde{J(\Delta)^{(k)}}=\bigcap_{F \in \mathcal{F}(\Delta)} \widetilde{\wp_{F}^{k}}$, we can focus in understanding

$$
\widetilde{\wp_{F}^{k}}=\left(x_{i_{1}, 1} \cdots x_{i_{1}, k}, \quad x_{i_{1}, 1} \cdots x_{i_{1}, k-1} x_{i_{2}, 1}, \quad \cdots, \quad x_{i_{d}, 1} \cdots x_{i_{d}, k}\right)
$$

The associated primes of the polarization of $J(\Delta)^{(k)}$

The trick is in understanding the polarization of $J(\Delta)^{(k)}$;
we denote it by $\widetilde{J(\Delta)^{(k)}} \subseteq \widetilde{S}:=\mathbb{k}\left[x_{i, j}: i \in[n], j \in[k]\right]$.
Since $\widetilde{J(\Delta)^{(k)}}=\bigcap_{F \in \mathcal{F}(\Delta)} \widetilde{\wp_{F}^{k}}$, we can focus in understanding

$$
\widetilde{\wp_{F}^{k}}=\left(x_{i_{1}, 1} \cdots x_{i_{1}, k}, \quad x_{i_{1}, 1} \cdots x_{i_{1}, k-1} x_{i_{2}, 1}, \quad \cdots, \quad x_{i_{d}, 1} \cdots x_{i_{d}, k}\right) .
$$

where $F:=\left\{i_{1}, \ldots, i_{d}\right\}$.

The associated primes of the polarization of $J(\Delta)^{(k)}$

The trick is in understanding the polarization of $J(\Delta)^{(k)}$;
we denote it by $\widetilde{J(\Delta)^{(k)}} \subseteq \widetilde{S}:=\mathbb{k}\left[x_{i, j}: i \in[n], j \in[k]\right]$.
Since $\widetilde{J(\Delta)^{(k)}}=\bigcap_{F \in \mathcal{F}(\Delta)} \widetilde{\wp_{F}^{k}}$, we can focus in understanding

$$
\widetilde{\wp_{F}^{k}}=\left(x_{i_{1}, 1} \cdots x_{i_{1}, k}, \quad x_{i_{1}, 1} \cdots x_{i_{1}, k-1} x_{i_{2}, 1}, \quad \cdots, \quad x_{i_{d}, 1} \cdots x_{i_{d}, k}\right) .
$$

where $F:=\left\{i_{1}, \ldots, i_{d}\right\}$. We need to describe $\operatorname{Ass}\left(\widetilde{\wp_{F}^{k}}\right)$:

The associated primes of the polarization of $J(\Delta)^{(k)}$

The trick is in understanding the polarization of $J(\Delta)^{(k)}$; we denote it by $\widetilde{J(\Delta)^{(k)}} \subseteq \widetilde{S}:=\mathbb{k}\left[x_{i, j}: i \in[n], j \in[k]\right]$.

Since $\widetilde{J(\Delta)^{(k)}}=\bigcap_{F \in \mathcal{F}(\Delta)} \widetilde{\wp_{F}^{k}}$, we can focus in understanding

$$
\widetilde{\wp_{F}^{k}}=\left(x_{i_{1}, 1} \cdots x_{i_{1}, k}, \quad x_{i_{1}, 1} \cdots x_{i_{1}, k-1} x_{i_{2}, 1}, \quad \cdots, \quad x_{i_{d}, 1} \cdots x_{i_{d}, k}\right) .
$$

where $F:=\left\{i_{1}, \ldots, i_{d}\right\}$. We need to describe $\operatorname{Ass}\left(\widetilde{\wp_{F}^{k}}\right)$:
For each vector $\mathbf{a}=\left(a_{1}, \ldots, a_{d}\right) \in \mathbb{N}^{d}$ with $1 \leq a_{i} \leq k$, set

$$
\wp F, \mathrm{a}:=\left(\begin{array}{llll}
x_{i_{1}, a_{1}} & x_{i_{2}, a_{2}}, & \ldots, & x_{i_{d}, a_{d}}
\end{array}\right) \subseteq \widetilde{S} .
$$

The associated primes of the polarization of $J(\Delta)^{(k)}$

The trick is in understanding the polarization of $J(\Delta)^{(k)}$; we denote it by $\widetilde{J(\Delta)^{(k)}} \subseteq \widetilde{S}:=\mathbb{k}\left[x_{i, j}: i \in[n], j \in[k]\right]$.

Since $\widetilde{J(\Delta)^{(k)}}=\bigcap_{F \in \mathcal{F}(\Delta)} \widetilde{\wp_{F}^{k}}$, we can focus in understanding

$$
\widetilde{\wp_{F}^{k}}=\left(x_{i_{1}, 1} \cdots x_{i_{1}, k}, \quad x_{i_{1}, 1} \cdots x_{i_{1}, k-1} x_{i_{2}, 1}, \quad \cdots, \quad x_{i_{d}, 1} \cdots x_{i_{d}, k}\right) .
$$

where $F:=\left\{i_{1}, \ldots, i_{d}\right\}$. We need to describe $\operatorname{Ass}\left(\widetilde{\wp_{F}^{k}}\right)$:
For each vector $\mathbf{a}=\left(a_{1}, \ldots, a_{d}\right) \in \mathbb{N}^{d}$ with $1 \leq a_{i} \leq k$, set

$$
\wp F, \mathrm{a}:=\left(\begin{array}{lll}
x_{i_{1}, a_{1}} & x_{i_{2}, a_{2}}, & \ldots, \\
x_{i_{d}, a_{d}}
\end{array}\right) \subseteq \widetilde{S} .
$$

One can prove that for any prime ideal $\wp \subseteq \widetilde{S}$,

The associated primes of the polarization of $J(\Delta)^{(k)}$

The trick is in understanding the polarization of $J(\Delta)^{(k)}$; we denote it by $\widetilde{J(\Delta)^{(k)}} \subseteq \widetilde{S}:=\mathbb{k}\left[x_{i, j}: i \in[n], j \in[k]\right]$.

Since $\widetilde{J(\Delta)^{(k)}}=\bigcap_{F \in \mathcal{F}(\Delta)} \widetilde{\wp_{F}^{k}}$, we can focus in understanding

$$
\widetilde{\wp_{F}^{k}}=\left(x_{i_{1}, 1} \cdots x_{i_{1}, k}, \quad x_{i_{1}, 1} \cdots x_{i_{1}, k-1} x_{i_{2}, 1}, \quad \cdots, \quad x_{i_{d}, 1} \cdots x_{i_{d}, k}\right) .
$$

where $F:=\left\{i_{1}, \ldots, i_{d}\right\}$. We need to describe $\operatorname{Ass}\left(\widetilde{\wp_{F}^{k}}\right)$:
For each vector $\mathbf{a}=\left(a_{1}, \ldots, a_{d}\right) \in \mathbb{N}^{d}$ with $1 \leq a_{i} \leq k$, set

$$
\wp F, \mathrm{a}:=\left(x_{i_{1}, a_{1}}, \quad x_{i_{2}, a_{2}}, \ldots, \quad x_{i_{d}, a_{d}}\right) \subseteq \widetilde{S} .
$$

One can prove that for any prime ideal $\wp \subseteq \widetilde{S}$,

$$
\wp \in \operatorname{Ass}\left(\widetilde{\wp_{F}^{k}}\right) \Leftrightarrow \wp=\wp F, \mathbf{a} \text { with }|\mathbf{a}|=a_{1}+\ldots+a_{d} \leq k+d-1 .
$$

The lack of connectedness

The lack of connectedness

Assume by contradiction that Δ is not a matroid.

The lack of connectedness

Assume by contradiction that Δ is not a matroid.
Then there exist $F, G \in \mathcal{F}(\Delta)$, $i \in F$, such that:

The lack of connectedness

Assume by contradiction that Δ is not a matroid.
Then there exist $F, G \in \mathcal{F}(\Delta), i \in F$, such that:

$$
(F \backslash\{i\}) \cup\{j\} \text { is not a facet of } \Delta \text { for every } j \in G
$$

The lack of connectedness

Assume by contradiction that Δ is not a matroid.
Then there exist $F, G \in \mathcal{F}(\Delta)$, $i \in F$, such that:

$$
(F \backslash\{i\}) \cup\{j\} \text { is not a facet of } \Delta \text { for every } j \in G
$$

Let us assume that $F=\left\{i_{1}, \ldots, i_{d}\right\}, G=\left\{j_{1}, \ldots, j_{d}\right\}$ and $i=i_{1}$.

The lack of connectedness

Assume by contradiction that Δ is not a matroid.
Then there exist $F, G \in \mathcal{F}(\Delta), i \in F$, such that:

$$
(F \backslash\{i\}) \cup\{j\} \text { is not a facet of } \Delta \text { for every } j \in G .
$$

Let us assume that $F=\left\{i_{1}, \ldots, i_{d}\right\}, G=\left\{j_{1}, \ldots, j_{d}\right\}$ and $i=i_{1}$.
Eventually, consider $\mathcal{H}:=J(\Delta)^{(d+1)} .(d+1+d-1=2 d)$.

The lack of connectedness

Assume by contradiction that Δ is not a matroid.
Then there exist $F, G \in \mathcal{F}(\Delta), i \in F$, such that:

$$
(F \backslash\{i\}) \cup\{j\} \text { is not a facet of } \Delta \text { for every } j \in G
$$

Let us assume that $F=\left\{i_{1}, \ldots, i_{d}\right\}, G=\left\{j_{1}, \ldots, j_{d}\right\}$ and $i=i_{1}$.
Eventually, consider $\mathcal{H}:=J\left(\widetilde{\Delta)^{(d+1)}} .(d+1+d-1=2 d)\right.$.
By the previous slide, $\wp_{F, \mathbf{a}}$ and \wp_{G},b belong to $\operatorname{Ass}(\mathcal{H})$, where

$$
\mathbf{a}:=(d+1,1, \ldots, 1) \in \mathbb{N}^{d} \text { and } \mathbf{b}:=(2,2, \ldots, 2) \in \mathbb{N}^{d}(|\mathbf{a}|=|\mathbf{b}|=2 d) .
$$

The lack of connectedness

Assume by contradiction that Δ is not a matroid.
Then there exist $F, G \in \mathcal{F}(\Delta), i \in F$, such that:

$$
(F \backslash\{i\}) \cup\{j\} \text { is not a facet of } \Delta \text { for every } j \in G
$$

Let us assume that $F=\left\{i_{1}, \ldots, i_{d}\right\}, G=\left\{j_{1}, \ldots, j_{d}\right\}$ and $i=i_{1}$.
Eventually, consider $\mathcal{H}:=J\left(\widetilde{\Delta)^{(d+1)}} .(d+1+d-1=2 d)\right.$.
By the previous slide, $\wp_{F, \mathbf{a}}$ and \wp_{G},b belong to $\operatorname{Ass}(\mathcal{H})$, where

$$
\mathbf{a}:=(d+1,1, \ldots, 1) \in \mathbb{N}^{d} \text { and } \mathbf{b}:=(2,2, \ldots, 2) \in \mathbb{N}^{d}(|\mathbf{a}|=|\mathbf{b}|=2 d) .
$$

The lack of connectedness

Assume by contradiction that Δ is not a matroid.
Then there exist $F, G \in \mathcal{F}(\Delta), i \in F$, such that:

$$
(F \backslash\{i\}) \cup\{j\} \text { is not a facet of } \Delta \text { for every } j \in G .
$$

Let us assume that $F=\left\{i_{1}, \ldots, i_{d}\right\}, G=\left\{j_{1}, \ldots, j_{d}\right\}$ and $i=i_{1}$.
Eventually, consider $\mathcal{H}:=J\left(\widetilde{\Delta)^{(d+1)}} .(d+1+d-1=2 d)\right.$.
By the previous slide, $\wp_{F, \mathbf{a}}$ and \wp_{G},b belong to $\operatorname{Ass}(\mathcal{H})$, where

$$
\mathbf{a}:=(d+1,1, \ldots, 1) \in \mathbb{N}^{d} \text { and } \mathbf{b}:=(2,2, \ldots, 2) \in \mathbb{N}^{d}(|\mathbf{a}|=|\mathbf{b}|=2 d) .
$$

We will show that $R:=\widetilde{S} / \mathcal{H}$ is not Cohen-Macaulay:

The lack of connectedness

Assume by contradiction that Δ is not a matroid.
Then there exist $F, G \in \mathcal{F}(\Delta)$, $i \in F$, such that:

$$
(F \backslash\{i\}) \cup\{j\} \text { is not a facet of } \Delta \text { for every } j \in G .
$$

Let us assume that $F=\left\{i_{1}, \ldots, i_{d}\right\}, G=\left\{j_{1}, \ldots, j_{d}\right\}$ and $i=i_{1}$.
Eventually, consider $\mathcal{H}:=J\left(\widetilde{\Delta)^{(d+1)}} .(d+1+d-1=2 d)\right.$.
By the previous slide, $\wp_{F, \mathbf{a}}$ and \wp_{G},b belong to $\operatorname{Ass}(\mathcal{H})$, where $\mathbf{a}:=(d+1,1, \ldots, 1) \in \mathbb{N}^{d}$ and $\mathbf{b}:=(2,2, \ldots, 2) \in \mathbb{N}^{d}(|\mathbf{a}|=|\mathbf{b}|=2 d)$.

We will show that $R:=\widetilde{S} / \mathcal{H}$ is not Cohen-Macaulay:
Were it, $R_{\wp_{F, \mathrm{a}}+\wp_{G, \mathrm{~b}}}$ would be Cohen-Macaulay too.

The lack of connectedness

Assume by contradiction that Δ is not a matroid.
Then there exist $F, G \in \mathcal{F}(\Delta)$, $i \in F$, such that:

$$
(F \backslash\{i\}) \cup\{j\} \text { is not a facet of } \Delta \text { for every } j \in G .
$$

Let us assume that $F=\left\{i_{1}, \ldots, i_{d}\right\}, G=\left\{j_{1}, \ldots, j_{d}\right\}$ and $i=i_{1}$.
Eventually, consider $\mathcal{H}:=J\left(\widetilde{\Delta)^{(d+1)}} .(d+1+d-1=2 d)\right.$.
By the previous slide, $\wp_{F, \mathbf{a}}$ and \wp_{G}, \mathbf{b} belong to $\operatorname{Ass}(\mathcal{H})$, where $\mathbf{a}:=(d+1,1, \ldots, 1) \in \mathbb{N}^{d}$ and $\mathbf{b}:=(2,2, \ldots, 2) \in \mathbb{N}^{d}(|\mathbf{a}|=|\mathbf{b}|=2 d)$.

We will show that $R:=\widetilde{S} / \mathcal{H}$ is not Cohen-Macaulay:
Were it, $R_{\wp_{F, \mathrm{a}}+\wp_{G, \mathrm{~b}}}$ would be Cohen-Macaulay too.
Particularly, $R_{\wp \wp F, \mathrm{a}+}+\wp_{G, \mathrm{~b}}$ would be connected in codimension 1.

The conclusion

So, there should be a prime $\wp \in \operatorname{Ass}(\mathcal{H})$ such that:

The conclusion

So, there should be a prime $\wp \in \operatorname{Ass}(\mathcal{H})$ such that:
(i) $\wp \subseteq \wp_{F, \mathbf{a}}+\wp_{G, \mathbf{b}}$;

The conclusion

So, there should be a prime $\wp \in \operatorname{Ass}(\mathcal{H})$ such that:
(i) $\wp \subseteq \wp_{F, \mathbf{a}}+\wp_{G, \mathbf{b}}$;
(ii) $\operatorname{ht}(\wp+\wp F, \mathrm{a})=d+1$.

The conclusion

So, there should be a prime $\wp \in \operatorname{Ass}(\mathcal{H})$ such that:
(i) $\wp \subseteq \wp_{F, \mathbf{a}}+\wp G, \mathbf{b}$;
(ii) $\operatorname{ht}(\wp+\wp F, \mathrm{a})=d+1$.

In other words, there should be $p, q \in[d]$ such that:

The conclusion

So, there should be a prime $\wp \in \operatorname{Ass}(\mathcal{H})$ such that:
(i) $\wp \subseteq \wp_{F, \mathbf{a}}+\wp_{G, \mathbf{b}}$;
(ii) $\operatorname{ht}\left(\wp+\wp_{F, \mathrm{a}}\right)=d+1$.

In other words, there should be $p, q \in[d]$ such that:

$$
\wp=\left(x_{i_{s}, a_{s}}, \quad x_{j_{q}, b_{q}}: s \in[d] \backslash\{p\}\right) .
$$

The conclusion

So, there should be a prime $\wp \in \operatorname{Ass}(\mathcal{H})$ such that:
(i) $\wp \subseteq \wp_{F, \mathbf{a}}+\wp_{G, \mathbf{b}}$;
(ii) $\operatorname{ht}(\wp+\wp F, \mathrm{a})=d+1$.

In other words, there should be $p, q \in[d]$ such that:

$$
\wp=\left(x_{i_{s}, a_{s}}, \quad x_{j_{q}, b_{q}}: s \in[d] \backslash\{p\}\right) .
$$

But this is impossible:

The conclusion

So, there should be a prime $\wp \in \operatorname{Ass}(\mathcal{H})$ such that:
(i) $\wp \subseteq \wp_{F, \mathbf{a}}+\wp_{G, \mathbf{b}}$;
(ii) $\operatorname{ht}(\wp+\wp F, \mathrm{a})=d+1$.

In other words, there should be $p, q \in[d]$ such that:

$$
\wp=\left(x_{i_{s}, a_{s}}, \quad x_{j q, b_{q}}: s \in[d] \backslash\{p\}\right) .
$$

But this is impossible:
If $p=1$, then $\left(F \backslash\left\{i_{1}\right\}\right) \cup\left\{j_{q}\right\} \in \mathcal{F}(\Delta)$, a contradiction.

The conclusion

So, there should be a prime $\wp \in \operatorname{Ass}(\mathcal{H})$ such that:
(i) $\wp \subseteq \wp_{F, \mathbf{a}}+\wp_{G, \mathbf{b}}$;
(ii) $\operatorname{ht}\left(\wp+\wp_{F, \mathrm{a}}\right)=d+1$.

In other words, there should be $p, q \in[d]$ such that:

$$
\wp=\left(x_{i_{s}, a_{s}}, \quad x_{j_{q}, b_{q}}: s \in[d] \backslash\{p\}\right) .
$$

But this is impossible:
If $p=1$, then $\left(F \backslash\left\{i_{1}\right\}\right) \cup\left\{j_{q}\right\} \in \mathcal{F}(\Delta)$, a contradiction.
If $p \neq 1$, then $(d+1)+\underbrace{1+\ldots+1}_{d-2}+2 \leq 2 d$, a contradiction.

The conclusion

So, there should be a prime $\wp \in \operatorname{Ass}(\mathcal{H})$ such that:
(i) $\wp \subseteq \wp_{F, \mathbf{a}}+\wp_{G, \mathbf{b}}$;
(ii) $\operatorname{ht}\left(\wp+\wp_{F, \mathrm{a}}\right)=d+1$.

In other words, there should be $p, q \in[d]$ such that:

$$
\wp=\left(x_{i_{s}, a_{s}}, \quad x_{j_{q}, b_{q}}: s \in[d] \backslash\{p\}\right) .
$$

But this is impossible:
If $p=1$, then $\left(F \backslash\left\{i_{1}\right\}\right) \cup\left\{j_{q}\right\} \in \mathcal{F}(\Delta)$, a contradiction.
If $p \neq 1$, then $(d+1)+\underbrace{1+\ldots+1}_{d-2}+2 \leq 2 d$, a contradiction.
So, Δ has to be a matroid!

References

- Herzog, Hibi, Trung, Symbolic powers of monomial ideals and vertex cover algebras, Adv. Math. (2007).
- Minh, Trung, Cohen-Macaulayness of monomial ideals and symbolic powers of Stanley-Reisner ideals, to appear in Adv. Math., available online on ArXiv.
- Varbaro, Symbolic powers and matroids, to appear in Proc. AMS, available online on ArXiv.

