SYMBOLIC POWERS AND MATROIDS

Matteo Varbaro

Dipartimento di Matematica Università di Genova

Let k be a field and $S := k[x_1, \ldots, x_n]$ a polynomial ring.

Let k be a field and $S := k[x_1, \ldots, x_n]$ a polynomial ring.

(*Cowsik, Nori*). Given $I \subseteq S$ homogeneous and radical, then

 S/I^k Cohen-Macaulay $\forall \ k \in \mathbb{N}_{>0} \iff I$ is a complete intersection.

Let k be a field and $S := k[x_1, \ldots, x_n]$ a polynomial ring.

(*Cowsik, Nori*). Given $I \subseteq S$ homogeneous and radical, then

 S/I^k Cohen-Macaulay $\forall \ k \in \mathbb{N}_{>0} \iff I$ is a complete intersection.

 $S/I^k \text{ CM} \Rightarrow I^k$ is equal to the *k*th symbolic power $I^{(k)}$ of *I*.

Let k be a field and $S := k[x_1, \ldots, x_n]$ a polynomial ring.

(*Cowsik, Nori*). Given $I \subseteq S$ homogeneous and radical, then

 S/I^k Cohen-Macaulay $\forall \ k \in \mathbb{N}_{>0} \iff I$ is a complete intersection.

 $S/I^k \text{ CM} \Rightarrow I^k$ is equal to the *k*th symbolic power $I^{(k)}$ of *I*.

Therefore it is natural to ask:

Let k be a field and $S := k[x_1, \ldots, x_n]$ a polynomial ring.

(*Cowsik, Nori*). Given $I \subseteq S$ homogeneous and radical, then

 S/I^k Cohen-Macaulay $\forall k \in \mathbb{N}_{>0} \Leftrightarrow I$ is a complete intersection.

 S/I^k CM $\Rightarrow I^k$ is equal to the *k*th symbolic power $I^{(k)}$ of *I*.

Therefore it is natural to ask:

When is $S/I^{(k)}$ Cohen-Macaulay for all $k \in \mathbb{N}_{>0}$???

In this talk, we'll give an answer to the above question when

In this talk, we'll give an answer to the above question when

I is a square-free monomial ideal.

In this talk, we'll give an answer to the above question when *I* is a square-free monomial ideal.

Let us recall the bijection of sets (throughout $[n] := \{1, \ldots, n\}$)

In this talk, we'll give an answer to the above question when *I* is a square-free monomial ideal.

Let us recall the bijection of sets (throughout $[n] := \{1, \ldots, n\}$)

{Square-free monomial ideals of S} \leftrightarrow {Simplicial complexes on [n]}

In this talk, we'll give an answer to the above question when *I* is a square-free monomial ideal.

Let us recall the bijection of sets (throughout $[n] := \{1, \ldots, n\}$)

 $\{$ Square-free monomial ideals of $S\} \leftrightarrow \{$ Simplicial complexes on $[n]\}$

$$I \dashrightarrow \Delta(I) := \{\{i_1, \ldots, i_k\} : x_{i_1} \cdots x_{i_k} \notin I\}$$

In this talk, we'll give an answer to the above question when *I* is a square-free monomial ideal.

Let us recall the bijection of sets (throughout $[n] := \{1, \ldots, n\}$)

 $\{$ Square-free monomial ideals of $S\} \leftrightarrow \{$ Simplicial complexes on $[n]\}$

$$I \dashrightarrow \Delta(I) := \{\{i_1, \dots, i_k\} : x_{i_1} \cdots x_{i_k} \notin I\}$$
$$I_{\Delta} := (x_{i_1} \cdots x_{i_k} : \{i_1, \dots, i_k\} \notin \Delta) \longleftarrow \Delta$$

In this talk, we'll give an answer to the above question when *I* is a square-free monomial ideal.

Let us recall the bijection of sets (throughout $[n] := \{1, \ldots, n\}$)

 $\{$ Square-free monomial ideals of $S\} \leftrightarrow \{$ Simplicial complexes on $[n]\}$

$$I \dashrightarrow \Delta(I) := \{\{i_1, \dots, i_k\} : x_{i_1} \cdots x_{i_k} \notin I\}$$
$$I_{\Delta} := (x_{i_1} \cdots x_{i_k} : \{i_1, \dots, i_k\} \notin \Delta) \leftarrow \Delta$$

We are going to show (- 2010; Minh, Trung 2010):

In this talk, we'll give an answer to the above question when *I* is a square-free monomial ideal.

Let us recall the bijection of sets (throughout $[n] := \{1, \ldots, n\}$)

 $\{$ Square-free monomial ideals of $S\} \leftrightarrow \{$ Simplicial complexes on $[n]\}$

$$I \dashrightarrow \Delta(I) := \{\{i_1, \dots, i_k\} : x_{i_1} \cdots x_{i_k} \notin I\}$$
$$I_{\Delta} := (x_{i_1} \cdots x_{i_k} : \{i_1, \dots, i_k\} \notin \Delta) \leftarrow \Delta$$

We are going to show (- 2010; Minh, Trung 2010):

 $S/I^{(k)}_{\Delta}$ is Cohen-Macaulay for any $k \in \mathbb{N}_{>0} \iff \Delta$ is a matroid

A simplicial complex Δ is a matroid if $(\mathcal{F}(\Delta) := \{ \text{facets of } \Delta \})$

A simplicial complex Δ is a matroid if $(\mathcal{F}(\Delta) := \{ \text{facets of } \Delta \})$ $\forall F, G \in \mathcal{F}(\Delta),$

A simplicial complex Δ is a matroid if $(\mathcal{F}(\Delta) := \{ \text{facets of } \Delta \})$ $\forall F, G \in \mathcal{F}(\Delta), \forall i \in F,$

A simplicial complex Δ is a matroid if $(\mathcal{F}(\Delta) := \{ \text{facets of } \Delta \})$ $\forall F, G \in \mathcal{F}(\Delta), \forall i \in F, \exists j \in G :$

A simplicial complex Δ is a matroid if $(\mathcal{F}(\Delta) := \{ \text{facets of } \Delta \})$ $\forall F, G \in \mathcal{F}(\Delta), \forall i \in F, \exists j \in G : (F \setminus \{i\}) \cup \{j\} \in \mathcal{F}(\Delta)$

A simplicial complex Δ is a matroid if $(\mathcal{F}(\Delta) := \{ \text{facets of } \Delta \})$ $\forall F, G \in \mathcal{F}(\Delta), \forall i \in F, \exists j \in G : (F \setminus \{i\}) \cup \{j\} \in \mathcal{F}(\Delta)$

(i) If Δ is a matroid, then S/I_{Δ} is Cohen-Macaulay.

A simplicial complex Δ is a matroid if $(\mathcal{F}(\Delta) := \{ \text{facets of } \Delta \})$ $\forall F, G \in \mathcal{F}(\Delta), \forall i \in F, \exists j \in G : (F \setminus \{i\}) \cup \{j\} \in \mathcal{F}(\Delta)$

(i) If Δ is a matroid, then S/I_{Δ} is Cohen-Macaulay.

(ii) Exchange property.

A simplicial complex Δ is a matroid if $(\mathcal{F}(\Delta) := \{ \text{facets of } \Delta \})$ $\forall F, G \in \mathcal{F}(\Delta), \forall i \in F, \exists j \in G : (F \setminus \{i\}) \cup \{j\} \in \mathcal{F}(\Delta)$

(i) If Δ is a matroid, then S/I_{Δ} is Cohen-Macaulay.

(ii) Exchange property. If Δ is a matroid, then $\forall F, G \in \mathcal{F}(\Delta), \forall i \in F$, $\exists j \in G : (F \setminus \{i\}) \cup \{j\} \in \mathcal{F}(\Delta)$

A simplicial complex Δ is a matroid if $(\mathcal{F}(\Delta) := \{ \text{facets of } \Delta \})$ $\forall F, G \in \mathcal{F}(\Delta), \forall i \in F, \exists j \in G : (F \setminus \{i\}) \cup \{j\} \in \mathcal{F}(\Delta)$

(i) If Δ is a matroid, then S/I_{Δ} is Cohen-Macaulay.

(ii) Exchange property. If Δ is a matroid, then $\forall F, G \in \mathcal{F}(\Delta), \forall i \in F$, $\exists j \in G : (F \setminus \{i\}) \cup \{j\} \in \mathcal{F}(\Delta) \text{ and } (G \setminus \{j\}) \cup \{i\} \in \mathcal{F}(\Delta)!$

A simplicial complex Δ is a matroid if $(\mathcal{F}(\Delta) := \{ \text{facets of } \Delta \})$ $\forall F, G \in \mathcal{F}(\Delta), \forall i \in F, \exists j \in G : (F \setminus \{i\}) \cup \{j\} \in \mathcal{F}(\Delta)$

(i) If Δ is a matroid, then S/I_{Δ} is Cohen-Macaulay.

(ii) Exchange property. If Δ is a matroid, then $\forall F, G \in \mathcal{F}(\Delta), \forall i \in F$, $\exists j \in G : (F \setminus \{i\}) \cup \{j\} \in \mathcal{F}(\Delta) \text{ and } (G \setminus \{j\}) \cup \{i\} \in \mathcal{F}(\Delta)!$ (iii) Duality.

A simplicial complex Δ is a matroid if $(\mathcal{F}(\Delta) := \{ \text{facets of } \Delta \})$ $\forall F, G \in \mathcal{F}(\Delta), \forall i \in F, \exists j \in G : (F \setminus \{i\}) \cup \{j\} \in \mathcal{F}(\Delta)$

(i) If Δ is a matroid, then S/I_{Δ} is Cohen-Macaulay.

(ii) Exchange property. If Δ is a matroid, then $\forall F, G \in \mathcal{F}(\Delta), \forall i \in F$, $\exists j \in G : (F \setminus \{i\}) \cup \{j\} \in \mathcal{F}(\Delta) \text{ and } (G \setminus \{j\}) \cup \{i\} \in \mathcal{F}(\Delta)!$

(iii) *Duality*. For any simplicial complex Δ on [n], we have

A simplicial complex Δ is a matroid if $(\mathcal{F}(\Delta) := \{ \text{facets of } \Delta \})$ $\forall F, G \in \mathcal{F}(\Delta), \forall i \in F, \exists j \in G : (F \setminus \{i\}) \cup \{j\} \in \mathcal{F}(\Delta)$

(i) If Δ is a matroid, then S/I_{Δ} is Cohen-Macaulay.

(ii) Exchange property. If Δ is a matroid, then $\forall F, G \in \mathcal{F}(\Delta), \forall i \in F$, $\exists j \in G : (F \setminus \{i\}) \cup \{j\} \in \mathcal{F}(\Delta) \text{ and } (G \setminus \{j\}) \cup \{i\} \in \mathcal{F}(\Delta)!$ (iii) Duality. For any simplicial complex Δ on [n], we have

 Δ is a matroid $\Leftrightarrow \Delta^c$ is a matroid,

A simplicial complex Δ is a matroid if $(\mathcal{F}(\Delta) := \{ \text{facets of } \Delta \})$ $\forall F, G \in \mathcal{F}(\Delta), \forall i \in F, \exists j \in G : (F \setminus \{i\}) \cup \{j\} \in \mathcal{F}(\Delta)$

(i) If Δ is a matroid, then S/I_{Δ} is Cohen-Macaulay.

(ii) Exchange property. If Δ is a matroid, then ∀F, G ∈ F(Δ), ∀i ∈ F,
∃j ∈ G : (F \ {i}) ∪ {j} ∈ F(Δ) and (G \ {j}) ∪ {i} ∈ F(Δ)!
(iii) Duality. For any simplicial complex Δ on [n], we have
Δ is a matroid ⇔ Δ^c is a matroid,
where F(Δ^c) := {[n] \ F : F ∈ F(Δ)}.

SKETCH OF THE PROOF

For a simplicial complex Δ , its cover ideal is:

For a simplicial complex Δ , its cover ideal is:

$$J(\Delta) := \bigcap_{F \in \mathcal{F}(\Delta)} \wp_{F}$$

For a simplicial complex Δ , its cover ideal is:

$$J(\Delta) := \bigcap_{F \in \mathcal{F}(\Delta)} \wp_{F},$$

where $\wp_F := (x_i : i \in F) \subseteq S$.

For a simplicial complex Δ , its cover ideal is:

$$J(\Delta) := \bigcap_{F \in \mathcal{F}(\Delta)} \wp_{F}$$

where $\wp_F := (x_i : i \in F) \subseteq S$.

A subset $A \subseteq [n]$ is a vertex cover of Δ if

For a simplicial complex Δ , its cover ideal is:

$$J(\Delta) := \bigcap_{F \in \mathcal{F}(\Delta)} \wp_F,$$

where $\wp_F := (x_i : i \in F) \subseteq S$.

A subset $A \subseteq [n]$ is a vertex cover of Δ if for all $F \in \mathcal{F}(\Delta)$, then $A \cap F \neq \emptyset$.

For a simplicial complex Δ , its cover ideal is:

$$J(\Delta) := \bigcap_{F \in \mathcal{F}(\Delta)} \wp_F,$$

where $\wp_F := (x_i : i \in F) \subseteq S$.

A subset $A \subseteq [n]$ is a vertex cover of Δ if for all $F \in \mathcal{F}(\Delta)$, then $A \cap F \neq \emptyset$. One can check that $J(\Delta) = (x_{i_1} \cdots x_{i_k} : \{i_1, \dots, i_k\}$ is a vertex cover of Δ).

For a simplicial complex Δ , its cover ideal is:

$$J(\Delta) := \bigcap_{F \in \mathcal{F}(\Delta)} \wp_F,$$

where $\wp_F := (x_i : i \in F) \subseteq S$.

A subset $A \subseteq [n]$ is a vertex cover of Δ if for all $F \in \mathcal{F}(\Delta)$, then $A \cap F \neq \emptyset$. One can check that $J(\Delta) = (x_{i_1} \cdots x_{i_k} : \{i_1, \dots, i_k\}$ is a vertex cover of Δ).

By duality, because $J(\Delta) = I_{\Delta^c}$ and $I_{\Delta} = J(\Delta^c)$, we can pass

For a simplicial complex Δ , its cover ideal is:

$$J(\Delta) := \bigcap_{F \in \mathcal{F}(\Delta)} \wp_{F}$$

where $\wp_F := (x_i : i \in F) \subseteq S$.

A subset $A \subseteq [n]$ is a vertex cover of Δ if for all $F \in \mathcal{F}(\Delta)$, then $A \cap F \neq \emptyset$. One can check that $J(\Delta) = (x_{i_1} \cdots x_{i_k} : \{i_1, \dots, i_k\}$ is a vertex cover of Δ).

By duality, because $J(\Delta) = I_{\Delta^c}$ and $I_{\Delta} = J(\Delta^c)$, we can pass from

 $S/I^{(k)}_{\Delta}$ is CM for any $k\in\mathbb{N}_{>0}$ \Leftrightarrow Δ is a matroid

For a simplicial complex Δ , its cover ideal is:

$$J(\Delta) := \bigcap_{F \in \mathcal{F}(\Delta)} \wp_{F}$$

where $\wp_F := (x_i : i \in F) \subseteq S$.

A subset $A \subseteq [n]$ is a vertex cover of Δ if for all $F \in \mathcal{F}(\Delta)$, then $A \cap F \neq \emptyset$. One can check that $J(\Delta) = (x_{i_1} \cdots x_{i_k} : \{i_1, \dots, i_k\}$ is a vertex cover of Δ).

By duality, because $J(\Delta) = I_{\Delta^c}$ and $I_{\Delta} = J(\Delta^c)$, we can pass to

 $S/J(\Delta)^{(k)}$ is CM for any $k \in \mathbb{N}_{>0} \ \Leftrightarrow \ \Delta$ is a matroid

It turns out that, for any simplicial complex Δ , we have:

It turns out that, for any simplicial complex Δ , we have:

$$J(\Delta)^{(k)} = \bigcap_{F \in \mathcal{F}(\Delta)} \wp_F^k \quad \forall \ k \in \mathbb{N}.$$

It turns out that, for any simplicial complex Δ , we have:

$$J(\Delta)^{(k)} = \bigcap_{F \in \mathcal{F}(\Delta)} \wp_F^k \quad \forall \ k \in \mathbb{N}.$$

We want to describe which monomials belong to $J(\Delta)^{(k)}$.

It turns out that, for any simplicial complex Δ , we have:

$$J(\Delta)^{(k)} = \bigcap_{F \in \mathcal{F}(\Delta)} \wp_F^k \quad \forall \ k \in \mathbb{N}.$$

We want to describe which monomials belong to $J(\Delta)^{(k)}$. For each $k \in \mathbb{N}$, a nonzero function $\alpha : [n] \to \mathbb{N}$ is called a *k*-cover of a simplicial complex Δ on [n] if:

It turns out that, for any simplicial complex Δ , we have:

$$J(\Delta)^{(k)} = \bigcap_{F \in \mathcal{F}(\Delta)} \wp_F^k \quad \forall \ k \in \mathbb{N}.$$

We want to describe which monomials belong to $J(\Delta)^{(k)}$. For each $k \in \mathbb{N}$, a nonzero function $\alpha : [n] \to \mathbb{N}$ is called a *k*-cover of a simplicial complex Δ on [n] if: $\sum_{i \in F} \alpha(i) \ge k \quad \forall F \in \mathcal{F}(\Delta)$.

It turns out that, for any simplicial complex Δ , we have:

$$J(\Delta)^{(k)} = \bigcap_{F \in \mathcal{F}(\Delta)} \wp_F^k \quad \forall \ k \in \mathbb{N}.$$

We want to describe which monomials belong to $J(\Delta)^{(k)}$. For each $k \in \mathbb{N}$, a nonzero function $\alpha : [n] \to \mathbb{N}$ is called a *k*-cover of a simplicial complex Δ on [n] if: $\sum_{i \in F} \alpha(i) \ge k \quad \forall F \in \mathcal{F}(\Delta)$. Notice that there is a one-to-one correspondence of sets

 $\{ \text{vertex covers} \} \leftrightarrow \{ 1 \text{-covers with entries in } \{ 0, 1 \} \}.$

It turns out that, for any simplicial complex Δ , we have:

$$J(\Delta)^{(k)} = \bigcap_{F \in \mathcal{F}(\Delta)} \wp_F^k \quad \forall \ k \in \mathbb{N}.$$

We want to describe which monomials belong to $J(\Delta)^{(k)}$. For each $k \in \mathbb{N}$, a nonzero function $\alpha : [n] \to \mathbb{N}$ is called a *k*-cover of a simplicial complex Δ on [n] if: $\sum_{i \in F} \alpha(i) \ge k \quad \forall F \in \mathcal{F}(\Delta)$.

For any $k \in \mathbb{N}_{>0}$, one can show:

It turns out that, for any simplicial complex Δ , we have:

$$J(\Delta)^{(k)} = \bigcap_{F \in \mathcal{F}(\Delta)} \wp_F^k \quad \forall \ k \in \mathbb{N}.$$

We want to describe which monomials belong to $J(\Delta)^{(k)}$. For each $k \in \mathbb{N}$, a nonzero function $\alpha : [n] \to \mathbb{N}$ is called a *k*-cover of a simplicial complex Δ on [n] if: $\sum_{i \in F} \alpha(i) \ge k \quad \forall F \in \mathcal{F}(\Delta)$.

For any $k \in \mathbb{N}_{>0}$, one can show:

 $J(\Delta)^{(k)} = (\mathbf{x}^{\alpha} := x_1^{\alpha(1)} \cdots x_n^{\alpha(n)} : \alpha \text{ is a } k\text{-cover}).$

The symbolic Rees algebra of $J(\Delta)$,

The symbolic Rees algebra of $J(\Delta)$, i.e. $A(\Delta) := \bigoplus_{k \in \mathbb{N}} J(\Delta)^{(k)}$,

The symbolic Rees algebra of $J(\Delta)$, i.e. $A(\Delta) := \bigoplus_{k \in \mathbb{N}} J(\Delta)^{(k)}$, has an obvious interpretation in terms of k-covers.

The symbolic Rees algebra of $J(\Delta)$, i.e. $A(\Delta) := \bigoplus_{k \in \mathbb{N}} J(\Delta)^{(k)}$, has an obvious interpretation in terms of k-covers. It has been introduced by *Herzog*, *Hibi* and *Trung*,

The symbolic Rees algebra of $J(\Delta)$, i.e. $A(\Delta) := \bigoplus_{k \in \mathbb{N}} J(\Delta)^{(k)}$, has an obvious interpretation in terms of k-covers. It has been introduced by *Herzog*, *Hibi* and *Trung*, and it is called the vertex cover algebra of Δ .

The symbolic Rees algebra of $J(\Delta)$, i.e. $A(\Delta) := \bigoplus_{k \in \mathbb{N}} J(\Delta)^{(k)}$, has an obvious interpretation in terms of k-covers. It has been introduced by *Herzog*, *Hibi* and *Trung*, and it is called the vertex cover algebra of Δ . We need to deal with the special fiber of $A(\Delta)$:

The symbolic Rees algebra of $J(\Delta)$, i.e. $A(\Delta) := \bigoplus_{k \in \mathbb{N}} J(\Delta)^{(k)}$, has an obvious interpretation in terms of *k*-covers. It has been introduced by *Herzog*, *Hibi* and *Trung*, and it is called the vertex cover algebra of Δ . We need to deal with the special fiber of $A(\Delta)$: $\bar{A}(\Delta) := A(\Delta)/mA(\Delta) = \bigoplus_{k \in \mathbb{N}} J(\Delta)^{(k)}/mJ(\Delta)^{(k)}$,

The symbolic Rees algebra of $J(\Delta)$, i.e. $A(\Delta) := \bigoplus_{k \in \mathbb{N}} J(\Delta)^{(k)}$, has an obvious interpretation in terms of *k*-covers. It has been introduced by *Herzog*, *Hibi* and *Trung*, and it is called the vertex cover algebra of Δ . We need to deal with the special fiber of $A(\Delta)$: $\overline{A}(\Delta) := A(\Delta)/\mathfrak{m}A(\Delta) = \bigoplus_{k \in \mathbb{N}} J(\Delta)^{(k)}/\mathfrak{m}J(\Delta)^{(k)}$, where $\mathfrak{m} := (x_1, \ldots, x_n) \subseteq S$.

The symbolic Rees algebra of $J(\Delta)$, i.e. $A(\Delta) := \bigoplus_{k \in \mathbb{N}} J(\Delta)^{(k)}$, has an obvious interpretation in terms of *k*-covers. It has been introduced by *Herzog*, *Hibi* and *Trung*, and it is called the vertex cover algebra of Δ . We need to deal with the special fiber of $A(\Delta)$: $\overline{A}(\Delta) := A(\Delta)/\mathfrak{m}A(\Delta) = \bigoplus_{k \in \mathbb{N}} J(\Delta)^{(k)}/\mathfrak{m}J(\Delta)^{(k)}$, where $\mathfrak{m} := (x_1, \ldots, x_n) \subseteq S$.

A k-cover α is basic if for any k-cover β with $\beta(i) \leq \alpha(i) \forall i \in [n]$,

The symbolic Rees algebra of $J(\Delta)$, i.e. $A(\Delta) := \bigoplus_{k \in \mathbb{N}} J(\Delta)^{(k)}$, has an obvious interpretation in terms of *k*-covers. It has been introduced by *Herzog*, *Hibi* and *Trung*, and it is called the vertex cover algebra of Δ . We need to deal with the special fiber of $A(\Delta)$: $\overline{A}(\Delta) := A(\Delta)/\mathfrak{m}A(\Delta) = \bigoplus_{k \in \mathbb{N}} J(\Delta)^{(k)}/\mathfrak{m}J(\Delta)^{(k)}$, where $\mathfrak{m} := (x_1, \ldots, x_n) \subseteq S$.

A k-cover α is basic if for any k-cover β with $\beta(i) \leq \alpha(i) \forall i \in [n]$, then $\beta = \alpha$.

.

The symbolic Rees algebra of $J(\Delta)$, i.e. $A(\Delta) := \bigoplus_{k \in \mathbb{N}} J(\Delta)^{(k)}$, has an obvious interpretation in terms of *k*-covers. It has been introduced by *Herzog*, *Hibi* and *Trung*, and it is called the vertex cover algebra of Δ . We need to deal with the special fiber of $A(\Delta)$: $\overline{A}(\Delta) := A(\Delta)/\mathfrak{m}A(\Delta) = \bigoplus_{k \in \mathbb{N}} J(\Delta)^{(k)}/\mathfrak{m}J(\Delta)^{(k)}$, where $\mathfrak{m} := (x_1, \ldots, x_n) \subseteq S$.

A k-cover α is basic if for any k-cover β with $\beta(i) \leq \alpha(i) \ \forall i \in [n]$, then $\beta = \alpha$. This way, for all $k \in \mathbb{N}_{>0}$, we have: $\overline{A}(\Delta)_k = \langle x^{\alpha} : \alpha \text{ is a basic } k\text{-cover} >$

.

The symbolic Rees algebra of $J(\Delta)$, i.e. $A(\Delta) := \bigoplus_{k \in \mathbb{N}} J(\Delta)^{(k)}$, has an obvious interpretation in terms of *k*-covers. It has been introduced by *Herzog*, *Hibi* and *Trung*, and it is called the vertex cover algebra of Δ . We need to deal with the special fiber of $A(\Delta)$: $\overline{A}(\Delta) := A(\Delta)/\mathfrak{m}A(\Delta) = \bigoplus_{k \in \mathbb{N}} J(\Delta)^{(k)}/\mathfrak{m}J(\Delta)^{(k)}$, where $\mathfrak{m} := (x_1, \ldots, x_n) \subseteq S$.

A k-cover α is basic if for any k-cover β with $\beta(i) \leq \alpha(i) \forall i \in [n]$, then $\beta = \alpha$. This way, for all $k \in \mathbb{N}_{>0}$, we have: $\overline{A}(\Delta)_k = \langle x^{\alpha} : \alpha \text{ is a basic } k\text{-cover} >$

For this reason, $\overline{A}(\Delta)$ is called the algebra of basic covers of Δ .

(HHT). $A(\Delta)$ is a Cohen-Macaulay, finitely generated S-algebra.

(HHT). $A(\Delta)$ is a Cohen-Macaulay, finitely generated S-algebra.

Using a theorem of Eisenbud and Huneke, the above result yields

(HHT). $A(\Delta)$ is a Cohen-Macaulay, finitely generated S-algebra.

Using a theorem of Eisenbud and Huneke, the above result yields

 $\dim(\bar{A}(\Delta)) = n - \min_{k \in \mathbb{N}_{>0}} \{ \operatorname{depth}(S/J(\Delta)^{(k)}) \}$

(HHT). $A(\Delta)$ is a Cohen-Macaulay, finitely generated S-algebra.

Using a theorem of *Eisenbud* and *Huneke*, the above result yields $\dim(\Delta) + 1 = \operatorname{ht}(J(\Delta)) \leq \dim(\overline{A}(\Delta)) = n - \min_{k \in \mathbb{N}_{> n}} \{\operatorname{depth}(S/J(\Delta)^{(k)})\}.$

(HHT). $A(\Delta)$ is a Cohen-Macaulay, finitely generated S-algebra. Using a theorem of *Eisenbud* and *Huneke*, the above result yields $\dim(\Delta) + 1 = \operatorname{ht}(J(\Delta)) \leq \dim(\overline{A}(\Delta)) = n - \min_{k \in \mathbb{N}_{>0}} \{\operatorname{depth}(S/J(\Delta)^{(k)})\}.$

Therefore, since $\dim(S/J(\Delta)) = n - \dim(\Delta) - 1$, we get

(HHT). $A(\Delta)$ is a Cohen-Macaulay, finitely generated S-algebra. Using a theorem of Eisenbud and Huneke, the above result yields $\dim(\Delta) + 1 = \operatorname{ht}(J(\Delta)) \leq \dim(\overline{A}(\Delta)) = n - \min_{k \in \mathbb{N}_{>0}} \{\operatorname{depth}(S/J(\Delta)^{(k)})\}.$ Therefore, since $\dim(S/J(\Delta)) = n - \dim(\Delta) - 1$, we get

 $S/J(\Delta)^{(k)}$ is CM for any $k \in \mathbb{N}_{>0} \iff \dim(\bar{A}(\Delta)) = \dim(\Delta) + 1.$

(HHT). $A(\Delta)$ is a Cohen-Macaulay, finitely generated S-algebra. Using a theorem of Eisenbud and Huneke, the above result yields $\dim(\Delta) + 1 = \operatorname{ht}(J(\Delta)) \leq \dim(\overline{A}(\Delta)) = n - \min_{k \in \mathbb{N}_{>0}} \{\operatorname{depth}(S/J(\Delta)^{(k)})\}.$ Therefore, since $\dim(S/J(\Delta)) = n - \dim(\Delta) - 1$, we get $S/J(\Delta)^{(k)}$ is CM for any $k \in \mathbb{N}_{>0} \Leftrightarrow \dim(\overline{A}(\Delta)) = \dim(\Delta) + 1$.

Our aim, thus, is to show that $\dim(\overline{A}(\Delta)) = \dim(\Delta) + 1$ whenever Δ is a matroid.

IF Δ IS A MATROID...

Set $d := \dim(\Delta) + 1$, that is the cardinality of each facet of Δ .

Set $d := \dim(\Delta) + 1$, that is the cardinality of each facet of Δ .

Claim: $|\{\text{basic } k\text{-covers of } \Delta\}| = O(k^{d-1}).$

Set $d := \dim(\Delta) + 1$, that is the cardinality of each facet of Δ .

Claim:
$$|\{\text{basic } k\text{-covers of } \Delta\}| = O(k^{d-1}).$$

In fact, this would imply that $\dim_{\Bbbk}(\bar{A}(\Delta)_k) = O(k^{d-1})$,

Set $d := \dim(\Delta) + 1$, that is the cardinality of each facet of Δ .

Claim: $|\{\text{basic }k\text{-covers of }\Delta\}| = O(k^{d-1}).$

In fact, this would imply that $\dim_{\Bbbk}(\bar{A}(\Delta)_k) = O(k^{d-1})$,

which, from the Hilbert polynomial, gets $\dim(\overline{A}(\Delta)) = d$.

Let α be a basic *k*-cover of Δ .

Let α be a basic *k*-cover of Δ . Since α is basic, $\exists F \in \mathcal{F}(\Delta)$:

Let α be a basic *k*-cover of Δ . Since α is basic, $\exists F \in \mathcal{F}(\Delta)$:

 $\sum_{i\in F} \alpha(i) = k.$

Let α be a basic k-cover of Δ . Since α is basic, $\exists F \in \mathcal{F}(\Delta)$: $\sum_{i \in F} \alpha(i) = k.$

Sub-claim: F fixes α . I.e., all the values of α are determined by those on F.

Let α be a basic k-cover of Δ . Since α is basic, $\exists F \in \mathcal{F}(\Delta)$: $\sum_{i \in F} \alpha(i) = k.$

Sub-claim: F fixes α . I.e., all the values of α are determined by those on F.

In fact, let j_0 be in $[n] \setminus F$.

Let α be a basic k-cover of Δ . Since α is basic, $\exists F \in \mathcal{F}(\Delta)$: $\sum_{i \in F} \alpha(i) = k.$

Sub-claim: F fixes α . I.e., all the values of α are determined by those on F. In fact, let j_0 be in $[n] \setminus F$. Again, since α is basic, $\exists G \in \mathcal{F}(\Delta)$:

Let α be a basic k-cover of Δ . Since α is basic, $\exists F \in \mathcal{F}(\Delta)$: $\sum_{i \in F} \alpha(i) = k.$

Sub-claim: F fixes α . I.e., all the values of α are determined by those on F. In fact, let j_0 be in $[n] \setminus F$. Again, since α is basic, $\exists \ G \in \mathcal{F}(\Delta)$: $j_0 \in G$ and $\sum_{i \in G} \alpha(j) = k$.

Let α be a basic k-cover of Δ . Since α is basic, $\exists F \in \mathcal{F}(\Delta)$: $\sum_{i \in F} \alpha(i) = k.$

Sub-claim: F fixes α . I.e., all the values of α are determined by those on F.

In fact, let j_0 be in $[n] \setminus F$. Again, since α is basic, $\exists \ G \in \mathcal{F}(\Delta)$: $j_0 \in G$ and $\sum_{j \in G} \alpha(j) = k$. Exchange property for matroids \Rightarrow there exists $i_0 \in F$ such that

Let α be a basic k-cover of Δ . Since α is basic, $\exists F \in \mathcal{F}(\Delta)$: $\sum_{i \in F} \alpha(i) = k.$

Sub-claim: F fixes α . I.e., all the values of α are determined by those on F.

In fact, let j_0 be in $[n] \setminus F$. Again, since α is basic, $\exists G \in \mathcal{F}(\Delta)$: $j_0 \in G$ and $\sum_{j \in G} \alpha(j) = k$.

Exchange property for matroids \Rightarrow there exists $i_0 \in F$ such that

 $(\mathsf{I}) \quad \mathsf{F}' := (\mathsf{F} \setminus \{i_0\}) \cup \{j_0\} \in \mathcal{F}(\Delta) \quad \text{and} \quad (\mathsf{II}) \quad \mathsf{G}' := (\mathsf{G} \setminus \{j_0\}) \cup \{i_0\} \in \mathcal{F}(\Delta).$

Let α be a basic k-cover of Δ . Since α is basic, $\exists F \in \mathcal{F}(\Delta)$: $\sum_{i \in F} \alpha(i) = k.$

Sub-claim: F fixes α . I.e., all the values of α are determined by those on F.

In fact, let j_0 be in $[n] \setminus F$. Again, since α is basic, $\exists G \in \mathcal{F}(\Delta)$: $j_0 \in G$ and $\sum_{j \in G} \alpha(j) = k$.

Exchange property for matroids \Rightarrow there exists $i_0 \in F$ such that

 $(\mathsf{I}) \quad \mathsf{F}' := (\mathsf{F} \setminus \{i_0\}) \cup \{j_0\} \in \mathcal{F}(\Delta) \quad \text{and} \quad (\mathsf{II}) \quad \mathsf{G}' := (\mathsf{G} \setminus \{j_0\}) \cup \{i_0\} \in \mathcal{F}(\Delta).$

 $(\mathsf{I}) \Longrightarrow \sum_{i \in \mathsf{F}'} \alpha(i) \ge k$

Let α be a basic k-cover of Δ . Since α is basic, $\exists F \in \mathcal{F}(\Delta)$: $\sum_{i \in F} \alpha(i) = k.$

Sub-claim: F fixes α . I.e., all the values of α are determined by those on F.

In fact, let j_0 be in $[n] \setminus F$. Again, since α is basic, $\exists G \in \mathcal{F}(\Delta)$: $j_0 \in G$ and $\sum_{j \in G} \alpha(j) = k$.

Exchange property for matroids \Rightarrow there exists $i_0 \in F$ such that

 $(\mathsf{I}) \quad \mathsf{F}' := (\mathsf{F} \setminus \{i_0\}) \cup \{j_0\} \in \mathcal{F}(\Delta) \quad \text{and} \quad (\mathsf{II}) \quad \mathsf{G}' := (\mathsf{G} \setminus \{j_0\}) \cup \{i_0\} \in \mathcal{F}(\Delta).$

(I) $\Longrightarrow \sum_{i \in F'} \alpha(i) \ge k \Longrightarrow \alpha(j_0) \ge \alpha(i_0).$

Let α be a basic k-cover of Δ . Since α is basic, $\exists F \in \mathcal{F}(\Delta)$: $\sum_{i \in F} \alpha(i) = k.$

Sub-claim: F fixes α . I.e., all the values of α are determined by those on F.

In fact, let j_0 be in $[n] \setminus F$. Again, since α is basic, $\exists G \in \mathcal{F}(\Delta)$: $j_0 \in G$ and $\sum_{j \in G} \alpha(j) = k$.

Exchange property for matroids \Rightarrow there exists $i_0 \in F$ such that

 $(\mathsf{I}) \quad \mathsf{F}' := (\mathsf{F} \setminus \{i_0\}) \cup \{j_0\} \in \mathcal{F}(\Delta) \quad \text{and} \quad (\mathsf{II}) \quad \mathsf{G}' := (\mathsf{G} \setminus \{j_0\}) \cup \{i_0\} \in \mathcal{F}(\Delta).$

 $(\mathsf{II}) \Longrightarrow \sum_{j \in G'} \alpha(j) \ge k$

Let α be a basic k-cover of Δ . Since α is basic, $\exists F \in \mathcal{F}(\Delta)$: $\sum_{i \in F} \alpha(i) = k.$

Sub-claim: F fixes α . I.e., all the values of α are determined by those on F.

In fact, let j_0 be in $[n] \setminus F$. Again, since α is basic, $\exists G \in \mathcal{F}(\Delta)$: $j_0 \in G$ and $\sum_{j \in G} \alpha(j) = k$.

Exchange property for matroids \Rightarrow there exists $i_0 \in F$ such that

 $(\mathsf{I}) \quad \mathsf{F}' := (\mathsf{F} \setminus \{i_0\}) \cup \{j_0\} \in \mathcal{F}(\Delta) \quad \text{and} \quad (\mathsf{II}) \quad \mathsf{G}' := (\mathsf{G} \setminus \{j_0\}) \cup \{i_0\} \in \mathcal{F}(\Delta).$

$$(\mathsf{II}) \Longrightarrow \sum_{j \in \mathsf{G}'} \alpha(j) \ge k \Longrightarrow \alpha(i_0) \ge \alpha(j_0).$$

Let α be a basic k-cover of Δ . Since α is basic, $\exists F \in \mathcal{F}(\Delta)$: $\sum_{i \in F} \alpha(i) = k.$

Sub-claim: F fixes α . I.e., all the values of α are determined by those on F. In fact, let j_0 be in $[n] \setminus F$. Again, since α is basic, $\exists \ G \in \mathcal{F}(\Delta)$: $j_0 \in G$ and $\sum_{j \in G} \alpha(j) = k$. Exchange property for matroids \Rightarrow there exists $i_0 \in F$ such that

 $(\mathsf{I}) \quad \mathsf{F}' := (\mathsf{F} \setminus \{i_0\}) \cup \{j_0\} \in \mathcal{F}(\Delta) \quad \text{and} \quad (\mathsf{II}) \quad \mathsf{G}' := (\mathsf{G} \setminus \{j_0\}) \cup \{i_0\} \in \mathcal{F}(\Delta).$

Therefore (I) and (II) together yield $\alpha(j_0) = \alpha(i_0)$.

Let us recall that, since $F \in \mathcal{F}(\Delta)$, |F| = d.

Let us recall that, since $F \in \mathcal{F}(\Delta)$, |F| = d.

$$|\{(a_1,\ldots,a_d)\in\mathbb{N}^d:a_1+\ldots+a_d=k\}|=inom{k+d-1}{d-1}.$$

Let us recall that, since $F \in \mathcal{F}(\Delta)$, |F| = d.

$$|\{(a_1,\ldots,a_d)\in\mathbb{N}^d:a_1+\ldots+a_d=k\}|={k+d-1\choose d-1}.$$

So

Let us recall that, since $F \in \mathcal{F}(\Delta)$, |F| = d.

$$|\{(a_1,\ldots,a_d)\in\mathbb{N}^d:a_1+\ldots+a_d=k\}|=\binom{k+d-1}{d-1}.$$

So

$$|\{\text{basic }k\text{-covers}\}| \leq |\mathcal{F}(\Delta)| \binom{k+d-1}{d-1}$$

Let us recall that, since $F \in \mathcal{F}(\Delta)$, |F| = d.

$$|\{(a_1,\ldots,a_d)\in\mathbb{N}^d:a_1+\ldots+a_d=k\}|=\binom{k+d-1}{d-1}.$$

So

$$|\{\text{basic }k\text{-covers}\}| \leq |\mathcal{F}(\Delta)| \binom{k+d-1}{d-1} = O(k^{d-1}).$$

Let us recall that, since $F \in \mathcal{F}(\Delta)$, |F| = d.

$$|\{(a_1,\ldots,a_d)\in\mathbb{N}^d:a_1+\ldots+a_d=k\}|=\binom{k+d-1}{d-1}.$$

So

$$|\{\text{basic }k\text{-covers}\}| \leq |\mathcal{F}(\Delta)| \binom{k+d-1}{d-1} = O(k^{d-1}).$$

Therefore $\dim(\overline{A}(\Delta)) = \dim(\Delta) + 1$.

Let us recall that, since $F \in \mathcal{F}(\Delta)$, |F| = d.

$$|\{(a_1,\ldots,a_d)\in\mathbb{N}^d:a_1+\ldots+a_d=k\}|=\binom{k+d-1}{d-1}.$$

So

{basic k-covers}|
$$\leq |\mathcal{F}(\Delta)| \binom{k+d-1}{d-1} = O(k^{d-1}).$$

Therefore $\dim(\overline{A}(\Delta)) = \dim(\Delta) + 1$.

Hence $S/J(\Delta)^{(k)}$ and $S/I_{\Delta}^{(k)}$ are Cohen-Macaulay for any $k \in \mathbb{N}_{>0}$!

IF $S/J(\Delta)^{(k)}$ IS COHEN-MACAULAY FOR ALL $k \in \mathbb{N}_{>0}$...

IF $S/J(\Delta)^{(k)}$ IS COHEN-MACAULAY FOR ALL $k \in \mathbb{N}_{>0}$...

...OR RATHER, IF $S/J(\Delta)^{(\dim(\Delta)+2)}$ IS COHEN-MACAULAY...

The trick is in understanding the polarization of $J(\Delta)^{(k)}$;

The trick is in understanding the polarization of $J(\Delta)^{(k)}$; we denote it by $\widetilde{J(\Delta)^{(k)}} \subseteq \widetilde{S} := \Bbbk[x_{i,j} : i \in [n], j \in [k]].$

The trick is in understanding the polarization of $J(\Delta)^{(k)}$; we denote it by $\widetilde{J(\Delta)^{(k)}} \subseteq \widetilde{S} := \Bbbk[x_{i,j} : i \in [n], j \in [k]].$

Since $\widetilde{J(\Delta)^{(k)}} = \bigcap_{F \in \mathcal{F}(\Delta)} \widetilde{\wp_F^k}$,

The trick is in understanding the polarization of $J(\Delta)^{(k)}$; we denote it by $\widetilde{J(\Delta)^{(k)}} \subseteq \widetilde{S} := \Bbbk[x_{i,j} : i \in [n], j \in [k]].$

Since $\widetilde{J(\Delta)^{(k)}} = \bigcap_{F \in \mathcal{F}(\Delta)} \widetilde{\wp_F^k}$, we can focus in understanding $\widetilde{\wp_F^k} = (x_{i_1,1} \cdots x_{i_1,k}, x_{i_1,1} \cdots x_{i_1,k-1} x_{i_2,1}, \dots, x_{i_d,1} \cdots x_{i_d,k}).$

The trick is in understanding the polarization of $J(\Delta)^{(k)}$; we denote it by $\widetilde{J(\Delta)^{(k)}} \subseteq \widetilde{S} := \Bbbk[x_{i,j} : i \in [n], j \in [k]].$

Since $\widetilde{J(\Delta)^{(k)}} = \bigcap_{F \in \mathcal{F}(\Delta)} \widetilde{\wp_F^k}$, we can focus in understanding $\widetilde{\wp_F^k} = (x_{i_1,1} \cdots x_{i_1,k}, x_{i_1,1} \cdots x_{i_1,k-1} x_{i_2,1}, \dots, x_{i_d,1} \cdots x_{i_d,k}).$ where $F := \{i_1, \dots, i_d\}.$

The trick is in understanding the polarization of $J(\Delta)^{(k)}$; we denote it by $\widetilde{J(\Delta)^{(k)}} \subseteq \widetilde{S} := \Bbbk[x_{i,j} : i \in [n], j \in [k]].$

Since $\widetilde{J(\Delta)^{(k)}} = \bigcap_{F \in \mathcal{F}(\Delta)} \widetilde{\wp_F^k}$, we can focus in understanding $\widetilde{\wp_F^k} = (x_{i_1,1} \cdots x_{i_1,k}, x_{i_1,1} \cdots x_{i_1,k-1} x_{i_2,1}, \dots, x_{i_d,1} \cdots x_{i_d,k}).$ where $F := \{i_1, \dots, i_d\}$. We need to describe $\operatorname{Ass}(\widetilde{\wp_F^k})$:

The trick is in understanding the polarization of $J(\Delta)^{(k)}$; we denote it by $\widetilde{J(\Delta)^{(k)}} \subseteq \widetilde{S} := \Bbbk[x_{i,j} : i \in [n], j \in [k]].$

Since $\widetilde{J(\Delta)^{(k)}} = \bigcap_{F \in \mathcal{F}(\Delta)} \widetilde{\wp_F^k}$, we can focus in understanding $\widetilde{\wp_F^k} = (x_{i_1,1} \cdots x_{i_1,k}, x_{i_1,1} \cdots x_{i_1,k-1} x_{i_2,1}, \dots, x_{i_d,1} \cdots x_{i_d,k}).$ where $F := \{i_1, \dots, i_d\}$. We need to describe $\operatorname{Ass}(\widetilde{\wp_F^k})$:

For each vector $\mathbf{a} = (a_1, \dots, a_d) \in \mathbb{N}^d$ with $1 \le a_i \le k$, set $\wp_{F,\mathbf{a}} := (x_{i_1,a_1}, x_{i_2,a_2}, \dots, x_{i_d,a_d}) \subseteq \widetilde{S}.$

The trick is in understanding the polarization of $J(\Delta)^{(k)}$; we denote it by $\widetilde{J(\Delta)^{(k)}} \subseteq \widetilde{S} := \Bbbk[x_{i,j} : i \in [n], j \in [k]].$

Since $\widetilde{J(\Delta)^{(k)}} = \bigcap_{F \in \mathcal{F}(\Delta)} \widetilde{\wp_F^k}$, we can focus in understanding $\widetilde{\wp_F^k} = (x_{i_1,1} \cdots x_{i_1,k}, x_{i_1,1} \cdots x_{i_1,k-1} x_{i_2,1}, \dots, x_{i_d,1} \cdots x_{i_d,k}).$ where $F := \{i_1, \dots, i_d\}$. We need to describe $\operatorname{Ass}(\widetilde{\wp_F^k})$:

For each vector $\mathbf{a} = (a_1, \dots, a_d) \in \mathbb{N}^d$ with $1 \le a_i \le k$, set

$$\wp_{\boldsymbol{F},\boldsymbol{\mathsf{a}}} := (x_{i_1,a_1}, x_{i_2,a_2}, \ldots, x_{i_d,a_d}) \subseteq \boldsymbol{S}.$$

One can prove that for any prime ideal $\wp \subseteq \widetilde{S}$,

The trick is in understanding the polarization of $J(\Delta)^{(k)}$; we denote it by $\widetilde{J(\Delta)^{(k)}} \subseteq \widetilde{S} := \Bbbk[x_{i,j} : i \in [n], j \in [k]].$

Since $\widetilde{J(\Delta)^{(k)}} = \bigcap_{F \in \mathcal{F}(\Delta)} \widetilde{\wp_F^k}$, we can focus in understanding $\widetilde{\wp_F^k} = (x_{i_1,1} \cdots x_{i_1,k}, x_{i_1,1} \cdots x_{i_1,k-1} x_{i_2,1}, \dots, x_{i_d,1} \cdots x_{i_d,k}).$ where $F := \{i_1, \dots, i_d\}$. We need to describe $\operatorname{Ass}(\widetilde{\wp_F^k})$:

For each vector $\mathbf{a} = (a_1, \dots, a_d) \in \mathbb{N}^d$ with $1 \le a_i \le k$, set

$$\wp_{F,\mathbf{a}} := (x_{i_1,a_1}, x_{i_2,a_2}, \ldots, x_{i_d,a_d}) \subseteq \widetilde{S}.$$

One can prove that for any prime ideal $\wp \subseteq \widetilde{S}$,

 $\wp \in \operatorname{Ass}(\wp_F^k) \Leftrightarrow \wp = \wp_{F,\mathbf{a}} \text{ with } |\mathbf{a}| = a_1 + \ldots + a_d \leq k + d - 1.$

Assume by contradiction that Δ is not a matroid.

Assume by contradiction that Δ is not a matroid. Then there exist $F, G \in \mathcal{F}(\Delta)$, $i \in F$, such that:

Assume by contradiction that Δ is not a matroid. Then there exist $F, G \in \mathcal{F}(\Delta)$, $i \in F$, such that: $(F \setminus \{i\}) \cup \{j\}$ is not a facet of Δ for every $j \in G$.

Assume by contradiction that Δ is not a matroid. Then there exist $F, G \in \mathcal{F}(\Delta)$, $i \in F$, such that:

 $(F \setminus \{i\}) \cup \{j\}$ is not a facet of Δ for every $j \in G$.

Let us assume that $F = \{i_1, \ldots, i_d\}$, $G = \{j_1, \ldots, j_d\}$ and $i = i_1$.

Assume by contradiction that Δ is not a matroid. Then there exist $F, G \in \mathcal{F}(\Delta)$, $i \in F$, such that: $(F \setminus \{i\}) \cup \{j\}$ is not a facet of Δ for every $j \in G$. Let us assume that $F = \{i_1, \ldots, i_d\}$, $G = \{j_1, \ldots, j_d\}$ and $i = i_1$. Eventually, consider $\mathcal{H} := J(\Delta)^{(d+1)}$. (d + 1 + d - 1 = 2d).

Assume by contradiction that Δ is not a matroid. Then there exist $F, G \in \mathcal{F}(\Delta)$, $i \in F$, such that: $(F \setminus \{i\}) \cup \{j\}$ is not a facet of Δ for every $j \in G$. Let us assume that $F = \{i_1, \ldots, i_d\}$, $G = \{j_1, \ldots, j_d\}$ and $i = i_1$. Eventually, consider $\mathcal{H} := J(\Delta)^{(d+1)}$. (d + 1 + d - 1 = 2d).

By the previous slide, $\wp_{F,\mathbf{a}}$ and $\wp_{G,\mathbf{b}}$ belong to $\operatorname{Ass}(\mathcal{H})$, where $\mathbf{a} := (d+1, 1, \dots, 1) \in \mathbb{N}^d$ and $\mathbf{b} := (2, 2, \dots, 2) \in \mathbb{N}^d$ $(|\mathbf{a}| = |\mathbf{b}| = 2d)$.

Assume by contradiction that Δ is not a matroid. Then there exist $F, G \in \mathcal{F}(\Delta)$, $i \in F$, such that: $(F \setminus \{i\}) \cup \{j\}$ is not a facet of Δ for every $j \in G$. Let us assume that $F = \{i_1, \ldots, i_d\}$, $G = \{j_1, \ldots, j_d\}$ and $i = i_1$. Eventually, consider $\mathcal{H} := J(\Delta)^{(d+1)}$. (d + 1 + d - 1 = 2d).

By the previous slide, $\wp_{F,\mathbf{a}}$ and $\wp_{G,\mathbf{b}}$ belong to $\operatorname{Ass}(\mathcal{H})$, where $\mathbf{a} := (d+1, 1, \dots, 1) \in \mathbb{N}^d$ and $\mathbf{b} := (2, 2, \dots, 2) \in \mathbb{N}^d$ $(|\mathbf{a}| = |\mathbf{b}| = 2d)$.

Assume by contradiction that Δ is not a matroid. Then there exist $F, G \in \mathcal{F}(\Delta)$, $i \in F$, such that: $(F \setminus \{i\}) \cup \{j\}$ is not a facet of Δ for every $j \in G$. Let us assume that $F = \{i_1, \dots, i_d\}$, $G = \{j_1, \dots, j_d\}$ and $i = i_1$.

Eventually, consider $\mathcal{H} := J(\Delta)^{(d+1)}$. (d+1+d-1=2d).

By the previous slide, $\wp_{F,\mathbf{a}}$ and $\wp_{G,\mathbf{b}}$ belong to $Ass(\mathcal{H})$, where $\mathbf{a} := (d+1, 1, \dots, 1) \in \mathbb{N}^d$ and $\mathbf{b} := (2, 2, \dots, 2) \in \mathbb{N}^d$ $(|\mathbf{a}| = |\mathbf{b}| = 2d)$.

We will show that $\mathbf{R} := \widetilde{S}/\mathcal{H}$ is not Cohen-Macaulay:

Assume by contradiction that Δ is not a matroid. Then there exist $F, G \in \mathcal{F}(\Delta)$, $i \in F$, such that: $(F \setminus \{i\}) \cup \{j\}$ is not a facet of Δ for every $j \in G$. Let us assume that $F = \{i_1, \ldots, i_d\}$, $G = \{j_1, \ldots, j_d\}$ and $i = i_1$.

Eventually, consider $\mathcal{H} := J(\Delta)^{(d+1)}$. (d+1+d-1=2d).

By the previous slide, $\wp_{F,\mathbf{a}}$ and $\wp_{G,\mathbf{b}}$ belong to $\operatorname{Ass}(\mathcal{H})$, where $\mathbf{a} := (d + 1, 1, \dots, 1) \in \mathbb{N}^d$ and $\mathbf{b} := (2, 2, \dots, 2) \in \mathbb{N}^d$ ($|\mathbf{a}| = |\mathbf{b}| = 2d$).

We will show that $\mathbf{R} := \widetilde{S}/\mathcal{H}$ is not Cohen-Macaulay:

Were it, $R_{\wp_{F,a}+\wp_{G,b}}$ would be Cohen-Macaulay too.

Assume by contradiction that Δ is not a matroid. Then there exist $F, G \in \mathcal{F}(\Delta)$, $i \in F$, such that: $(F \setminus \{i\}) \cup \{j\}$ is not a facet of Δ for every $j \in G$. Let us assume that $F = \{i_1, \dots, i_d\}$, $G = \{j_1, \dots, j_d\}$ and $i = i_1$.

Eventually, consider $\mathcal{H} := J(\Delta)^{(d+1)}$. (d+1+d-1=2d).

By the previous slide, $\wp_{F,\mathbf{a}}$ and $\wp_{G,\mathbf{b}}$ belong to $\operatorname{Ass}(\mathcal{H})$, where $\mathbf{a} := (d+1, 1, \dots, 1) \in \mathbb{N}^d$ and $\mathbf{b} := (2, 2, \dots, 2) \in \mathbb{N}^d$ $(|\mathbf{a}| = |\mathbf{b}| = 2d)$.

We will show that $\mathbf{R} := \widetilde{S}/\mathcal{H}$ is not Cohen-Macaulay:

Were it, $R_{\wp_{F,a}+\wp_{G,b}}$ would be Cohen-Macaulay too. Particularly, $R_{\wp_{F,a}+\wp_{G,b}}$ would be connected in codimension 1.

So, there should be a prime $\wp \in Ass(\mathcal{H})$ such that:

So, there should be a prime $\wp \in Ass(\mathcal{H})$ such that:

(i) $\wp \subseteq \wp_{F,\mathbf{a}} + \wp_{G,\mathbf{b}};$

So, there should be a prime $\wp \in Ass(\mathcal{H})$ such that:

(i)
$$\wp \subseteq \wp_{F,\mathbf{a}} + \wp_{G,\mathbf{b}};$$

(ii) $\operatorname{ht}(\wp + \wp_{F,\mathbf{a}}) = d + 1.$

So, there should be a prime $\wp \in Ass(\mathcal{H})$ such that:

(i)
$$\wp \subseteq \wp_{F,\mathbf{a}} + \wp_{G,\mathbf{b}};$$

(ii) $\operatorname{ht}(\wp + \wp_{F,\mathbf{a}}) = d + 1.$

In other words, there should be $p, q \in [d]$ such that:

So, there should be a prime $\wp \in Ass(\mathcal{H})$ such that:

(i)
$$\wp \subseteq \wp_{F,\mathbf{a}} + \wp_{G,\mathbf{b}};$$

(ii) $\operatorname{ht}(\wp + \wp_{F,\mathbf{a}}) = d + 1.$

In other words, there should be $p, q \in [d]$ such that:

$$\wp = (x_{i_s,a_s}, x_{j_q,b_q} : s \in [d] \setminus \{p\})$$

So, there should be a prime $\wp \in Ass(\mathcal{H})$ such that:

(i)
$$\wp \subseteq \wp_{F,\mathbf{a}} + \wp_{G,\mathbf{b}};$$

(ii) $\operatorname{ht}(\wp + \wp_{F,\mathbf{a}}) = d + 1.$

In other words, there should be $p, q \in [d]$ such that:

$$\wp = (x_{i_s,a_s}, x_{j_q,b_q} : s \in [d] \setminus \{p\}).$$

But this is impossible:

So, there should be a prime $\wp \in Ass(\mathcal{H})$ such that:

In other words, there should be $p, q \in [d]$ such that:

$$\wp = (x_{i_s,a_s}, x_{j_q,b_q} : s \in [d] \setminus \{p\}).$$

But this is impossible:

If p = 1, then $(F \setminus \{i_1\}) \cup \{j_q\} \in \mathcal{F}(\Delta)$, a contradiction.

So, there should be a prime $\wp \in Ass(\mathcal{H})$ such that:

In other words, there should be $p, q \in [d]$ such that:

$$\wp = (x_{i_s,a_s}, x_{j_q,b_q} : s \in [d] \setminus \{p\}).$$

But this is impossible:

If p = 1, then $(F \setminus \{i_1\}) \cup \{j_q\} \in \mathcal{F}(\Delta)$, a contradiction. If $p \neq 1$, then $(d + 1) + \underbrace{1 + \ldots + 1}_{d-2} + 2 \leq 2d$, a contradiction.

So, there should be a prime $\wp \in Ass(\mathcal{H})$ such that:

(i)
$$\wp \subseteq \wp_{F,\mathbf{a}} + \wp_{G,\mathbf{b}};$$

(ii) $\operatorname{ht}(\wp + \wp_{F,\mathbf{a}}) = d + 1$

In other words, there should be $p, q \in [d]$ such that:

$$\wp = (x_{i_s,a_s}, x_{j_q,b_q} : s \in [d] \setminus \{p\}).$$

But this is impossible:

If p = 1, then $(F \setminus \{i_1\}) \cup \{j_q\} \in \mathcal{F}(\Delta)$, a contradiction.

If $p \neq 1$, then $(d+1) + \underbrace{1 + \ldots + 1}_{d-2} + 2 \leq 2d$, a contradiction.

So, Δ has to be a matroid!

References

- Herzog, Hibi, Trung, *Symbolic powers of monomial ideals and vertex cover algebras*, Adv. Math. (2007).
- Minh, Trung, *Cohen-Macaulayness of monomial ideals and symbolic powers of Stanley-Reisner ideals*, to appear in Adv. Math., available online on ArXiv.
- Varbaro, *Symbolic powers and matroids*, to appear in Proc. AMS, available online on ArXiv.