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Introduction to the problem

Let k be a field and S := k[x1, . . . , xn] a polynomial ring.

(Cowsik, Nori). Given I ⊆ S homogeneous and radical, then

S/I k Cohen-Macaulay ∀ k ∈ N>0 ⇔ I is a complete intersection.

S/I k CM ⇒ I k is equal to the kth symbolic power I (k) of I .

Therefore it is natural to ask:

When is S/I (k) Cohen-Macaulay for all k ∈ N>0???
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The result

In this talk, we’ll give an answer to the above question when

I is a square-free monomial ideal.

Let us recall the bijection of sets (throughout [n] := {1, . . . , n})

{Square-free monomial ideals of S} ↔ {Simplicial complexes on [n]}

I 99K ∆(I ) := {{i1, . . . , ik} : xi1 · · · xik /∈ I}

I∆ := (xi1 · · · xik : {i1, . . . , ik} /∈ ∆) L99 ∆

We are going to show (- 2010; Minh, Trung 2010):

S/I
(k)
∆ is Cohen-Macaulay for any k ∈ N>0 ⇔ ∆ is a matroid
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Definition and properties of matroids

A simplicial complex ∆ is a matroid if (F(∆) := {facets of ∆})

∀ F ,G ∈ F(∆), ∀ i ∈ F , ∃ j ∈ G : (F \ {i}) ∪ {j} ∈ F(∆)

(i) If ∆ is a matroid, then S/I∆ is Cohen-Macaulay.

(ii) Exchange property. If ∆ is a matroid, then ∀F ,G ∈ F(∆), ∀i ∈ F ,

∃j ∈ G : (F \ {i}) ∪ {j} ∈ F(∆) and (G \ {j}) ∪ {i} ∈ F(∆)!

(iii) Duality. For any simplicial complex ∆ on [n], we have

∆ is a matroid ⇔ ∆c is a matroid,

where F(∆c) := {[n] \ F : F ∈ F(∆)}.
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SKETCH OF THE PROOF



The switch to the cover ideal

For a simplicial complex ∆, its cover ideal is:

J(∆) :=
⋂

F∈F(∆)

℘F ,

where ℘F := (xi : i ∈ F ) ⊆ S .

A subset A ⊆ [n] is a vertex cover of ∆ if for all F ∈ F(∆), then

A ∩ F 6= ∅. One can check that

J(∆) = (xi1 · · · xik : {i1, . . . , ik} is a vertex cover of ∆).
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Symbolic powers and k-covers

It turns out that, for any simplicial complex ∆, we have:

J(∆)(k) =
⋂

F∈F(∆)

℘k
F ∀ k ∈ N.

We want to describe which monomials belong to J(∆)(k). For each

k ∈ N, a nonzero function α : [n]→ N is called a k-cover of
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The algebra of basic covers

The symbolic Rees algebra of J(∆), i.e. A(∆) :=
⊕

k∈N J(∆)(k),

has an obvious interpretation in terms of k-covers. It has been

introduced by Herzog, Hibi and Trung, and it is called the vertex

cover algebra of ∆. We need to deal with the special fiber of A(∆):

Ā(∆) := A(∆)/mA(∆) =
⊕

k∈N J(∆)(k)/mJ(∆)(k),

where m := (x1, . . . , xn) ⊆ S .

A k-cover α is basic if for any k-cover β with β(i) ≤ α(i) ∀ i ∈ [n],

then β = α. This way, for all k ∈ N>0, we have:

Ā(∆)k =< xα : α is a basic k-cover >
.

For this reason, Ā(∆) is called the algebra of basic covers of ∆.
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The dimension of Ā(∆) comes into play

(HHT). A(∆) is a Cohen-Macaulay, finitely generated S-algebra.

Using a theorem of Eisenbud and Huneke, the above result yields

dim(∆) + 1 = ht(J(∆)) ≤

dim(Ā(∆)) = n − min
k∈N>0

{depth(S/J(∆)(k))}

.

Therefore, since dim(S/J(∆)) = n − dim(∆)− 1, we get

S/J(∆)(k) is CM for any k ∈ N>0 ⇔ dim(Ā(∆)) = dim(∆) + 1.

Our aim, thus, is to show that dim(Ā(∆)) = dim(∆) + 1 whenever

∆ is a matroid.
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k∈N>0

{depth(S/J(∆)(k))}.

Therefore, since dim(S/J(∆)) = n − dim(∆)− 1, we get

S/J(∆)(k) is CM for any k ∈ N>0 ⇔ dim(Ā(∆)) = dim(∆) + 1.
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IF ∆ IS A MATROID...



The claim

Set d := dim(∆) + 1, that is the cardinality of each facet of ∆.

Claim: |{basic k-covers of ∆}| = O(kd−1).

In fact, this would imply that dimk(Ā(∆)k) = O(kd−1),

which, from the Hilbert polynomial, gets dim(Ā(∆)) = d .
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The rigidity of the basic covers of a matroid

Let α be a basic k-cover of ∆. Since α is basic, ∃ F ∈ F(∆):∑
i∈F α(i) = k.

Sub-claim: F fixes α. I.e., all the values of α are determined by those on F .

In fact, let j0 be in [n] \ F . Again, since α is basic, ∃ G ∈ F(∆):

j0 ∈ G and
∑

j∈G α(j) = k .

Exchange property for matroids ⇒ there exists i0 ∈ F such that

(I) F ′ := (F \ {i0}) ∪ {j0} ∈ F(∆) and (II) G ′ := (G \ {j0}) ∪ {i0} ∈ F(∆).
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The conclusion

Let us recall that, since F ∈ F(∆), |F | = d .

|{(a1, . . . , ad) ∈ Nd : a1 + . . .+ ad = k}| =

(
k + d − 1

d − 1

)
.

So

|{basic k-covers}| ≤ |F(∆)|
(

k + d − 1

d − 1

)
= O(kd−1).

Therefore dim(Ā(∆)) = dim(∆) + 1.

Hence S/J(∆)(k) and S/I
(k)
∆ are Cohen-Macaulay for any k ∈ N>0!
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IF S/J(∆)(k) IS COHEN-MACAULAY FOR ALL k ∈ N>0...



IF S/J(∆)(k) IS COHEN-MACAULAY FOR ALL k ∈ N>0...

...OR RATHER, IF S/J(∆)(dim(∆)+2) IS COHEN-MACAULAY...



The associated primes of the polarization of J(∆)(k)

The trick is in understanding the polarization of J(∆)(k);

we denote it by ˜J(∆)(k) ⊆ S̃ := k[xi ,j : i ∈ [n], j ∈ [k]].

Since ˜J(∆)(k) =
⋂

F∈F(∆) ℘̃
k
F , we can focus in understanding

℘̃k
F = (xi1,1 · · · xi1,k , xi1,1 · · · xi1,k−1xi2,1, . . . , xid ,1 · · · xid ,k).

where F := {i1, . . . , id}. We need to describe Ass(℘̃k
F ):

For each vector a = (a1, . . . , ad) ∈ Nd with 1 ≤ ai ≤ k, set

℘F ,a := (xi1,a1 , xi2,a2 , . . . , xid ,ad
) ⊆ S̃ .

One can prove that for any prime ideal ℘ ⊆ S̃ ,

℘ ∈ Ass(℘̃k
F )⇔ ℘ = ℘F ,a with |a| = a1 + . . .+ ad ≤ k + d − 1.
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The lack of connectedness

Assume by contradiction that ∆ is not a matroid.

Then there exist F ,G ∈ F(∆), i ∈ F , such that:

(F \ {i}) ∪ {j} is not a facet of ∆ for every j ∈ G .

Let us assume that F = {i1, . . . , id}, G = {j1, . . . , jd} and i = i1.

Eventually, consider H := ˜J(∆)(d+1). (d + 1 + d − 1 = 2d).

By the previous slide, ℘F ,a and ℘G ,b belong to Ass(H), where

a := (d + 1, 1, . . . , 1) ∈ Nd and b := (2, 2, . . . , 2) ∈ Nd (|a| = |b| = 2d).

We will show that R := S̃/H is not Cohen-Macaulay:

Were it, R℘F ,a+℘G ,b would be Cohen-Macaulay too.

Particularly, R℘F ,a+℘G ,b would be connected in codimension 1.
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The conclusion

So, there should be a prime ℘ ∈ Ass(H) such that:

(i) ℘ ⊆ ℘F ,a + ℘G ,b;

(ii) ht(℘+ ℘F ,a) = d + 1.

In other words, there should be p, q ∈ [d ] such that:

℘ = (xis ,as , xjq ,bq : s ∈ [d ] \ {p}).

But this is impossible:

If p = 1, then (F \ {i1}) ∪ {jq} ∈ F(∆), a contradiction.

If p 6= 1, then (d + 1) + 1 + . . .+ 1︸ ︷︷ ︸
d−2

+2 ≤ 2d , a contradiction.

So, ∆ has to be a matroid!



The conclusion

So, there should be a prime ℘ ∈ Ass(H) such that:

(i) ℘ ⊆ ℘F ,a + ℘G ,b;

(ii) ht(℘+ ℘F ,a) = d + 1.

In other words, there should be p, q ∈ [d ] such that:

℘ = (xis ,as , xjq ,bq : s ∈ [d ] \ {p}).

But this is impossible:

If p = 1, then (F \ {i1}) ∪ {jq} ∈ F(∆), a contradiction.

If p 6= 1, then (d + 1) + 1 + . . .+ 1︸ ︷︷ ︸
d−2

+2 ≤ 2d , a contradiction.

So, ∆ has to be a matroid!



The conclusion

So, there should be a prime ℘ ∈ Ass(H) such that:

(i) ℘ ⊆ ℘F ,a + ℘G ,b;

(ii) ht(℘+ ℘F ,a) = d + 1.

In other words, there should be p, q ∈ [d ] such that:

℘ = (xis ,as , xjq ,bq : s ∈ [d ] \ {p}).

But this is impossible:

If p = 1, then (F \ {i1}) ∪ {jq} ∈ F(∆), a contradiction.

If p 6= 1, then (d + 1) + 1 + . . .+ 1︸ ︷︷ ︸
d−2

+2 ≤ 2d , a contradiction.

So, ∆ has to be a matroid!



The conclusion

So, there should be a prime ℘ ∈ Ass(H) such that:

(i) ℘ ⊆ ℘F ,a + ℘G ,b;

(ii) ht(℘+ ℘F ,a) = d + 1.

In other words, there should be p, q ∈ [d ] such that:

℘ = (xis ,as , xjq ,bq : s ∈ [d ] \ {p}).

But this is impossible:

If p = 1, then (F \ {i1}) ∪ {jq} ∈ F(∆), a contradiction.

If p 6= 1, then (d + 1) + 1 + . . .+ 1︸ ︷︷ ︸
d−2

+2 ≤ 2d , a contradiction.

So, ∆ has to be a matroid!



The conclusion

So, there should be a prime ℘ ∈ Ass(H) such that:

(i) ℘ ⊆ ℘F ,a + ℘G ,b;

(ii) ht(℘+ ℘F ,a) = d + 1.

In other words, there should be p, q ∈ [d ] such that:

℘ = (xis ,as , xjq ,bq : s ∈ [d ] \ {p}).

But this is impossible:

If p = 1, then (F \ {i1}) ∪ {jq} ∈ F(∆), a contradiction.

If p 6= 1, then (d + 1) + 1 + . . .+ 1︸ ︷︷ ︸
d−2

+2 ≤ 2d , a contradiction.

So, ∆ has to be a matroid!



The conclusion

So, there should be a prime ℘ ∈ Ass(H) such that:

(i) ℘ ⊆ ℘F ,a + ℘G ,b;

(ii) ht(℘+ ℘F ,a) = d + 1.

In other words, there should be p, q ∈ [d ] such that:

℘ = (xis ,as , xjq ,bq : s ∈ [d ] \ {p}).

But this is impossible:

If p = 1, then (F \ {i1}) ∪ {jq} ∈ F(∆), a contradiction.

If p 6= 1, then (d + 1) + 1 + . . .+ 1︸ ︷︷ ︸
d−2

+2 ≤ 2d , a contradiction.

So, ∆ has to be a matroid!



The conclusion

So, there should be a prime ℘ ∈ Ass(H) such that:

(i) ℘ ⊆ ℘F ,a + ℘G ,b;

(ii) ht(℘+ ℘F ,a) = d + 1.

In other words, there should be p, q ∈ [d ] such that:

℘ = (xis ,as , xjq ,bq : s ∈ [d ] \ {p}).

But this is impossible:

If p = 1, then (F \ {i1}) ∪ {jq} ∈ F(∆), a contradiction.

If p 6= 1, then (d + 1) + 1 + . . .+ 1︸ ︷︷ ︸
d−2

+2 ≤ 2d , a contradiction.

So, ∆ has to be a matroid!



The conclusion

So, there should be a prime ℘ ∈ Ass(H) such that:

(i) ℘ ⊆ ℘F ,a + ℘G ,b;

(ii) ht(℘+ ℘F ,a) = d + 1.

In other words, there should be p, q ∈ [d ] such that:

℘ = (xis ,as , xjq ,bq : s ∈ [d ] \ {p}).

But this is impossible:

If p = 1, then (F \ {i1}) ∪ {jq} ∈ F(∆), a contradiction.

If p 6= 1, then (d + 1) + 1 + . . .+ 1︸ ︷︷ ︸
d−2

+2 ≤ 2d , a contradiction.

So, ∆ has to be a matroid!



The conclusion

So, there should be a prime ℘ ∈ Ass(H) such that:

(i) ℘ ⊆ ℘F ,a + ℘G ,b;

(ii) ht(℘+ ℘F ,a) = d + 1.

In other words, there should be p, q ∈ [d ] such that:

℘ = (xis ,as , xjq ,bq : s ∈ [d ] \ {p}).

But this is impossible:

If p = 1, then (F \ {i1}) ∪ {jq} ∈ F(∆), a contradiction.

If p 6= 1, then (d + 1) + 1 + . . .+ 1︸ ︷︷ ︸
d−2

+2 ≤ 2d , a contradiction.

So, ∆ has to be a matroid!



References

- Herzog, Hibi, Trung, Symbolic powers of monomial ideals and
vertex cover algebras, Adv. Math. (2007).

- Minh, Trung, Cohen-Macaulayness of monomial ideals and
symbolic powers of Stanley-Reisner ideals, to appear in Adv.
Math., available online on ArXiv.

- Varbaro, Symbolic powers and matroids, to appear in Proc.
AMS, available online on ArXiv.


