Determinantal facet ideals

Matteo Varbaro (University of Genoa, Italy)

Written Geometry: Commutative Algebra Luminy, 3-7 January, 2023

Let $X=\left(X_{i j}\right)$ be a $r \times n$ generic matrix with $r \leq n$, and set $S:=K[X]$ over a field K. Given $1 \leq i_{1}<i_{2}<\ldots<i_{r} \leq n$ we set

$$
\left[i_{1} i_{2} \ldots i_{r}\right]:=\operatorname{det}\left(\begin{array}{ccc}
X_{1 i_{1}} & \ldots & X_{1 i_{r}} \\
\vdots & & \vdots \\
X_{r i_{1}} & \ldots & X_{r i_{r}}
\end{array}\right) \in S
$$

Definition

Let $\mathcal{M}_{r}(X):=\left\{\left[i_{1} i_{2} \ldots i_{r}\right]: 1 \leq i_{1}<i_{2}<\ldots<i_{r} \leq n\right\}$ be the set of r-minors of X.

Determinantal facet ideals

Definition

The determinantal facet ideal of a subset $C \subseteq \mathcal{M}_{r}(X)$ is

$$
J_{C}:=(C) \subseteq S
$$

Remark

The name comes from the fact that the elements of C are (identifying $\left[i_{1} \ldots i_{r}\right]$ with $\left\{i_{1}, \ldots, i_{r}\right\}$) the facets of the simplicial complex $\langle C\rangle=\{\sigma \subseteq \tau: \tau \in C\}$.

Notice that there is the following 1-1 correspondence:

$$
\mathcal{Z}\left(J_{C}\right) \subseteq \mathbb{A}_{K}^{r \times n} \leftrightarrow\left\{\begin{array}{c}
\text { realization spaces over } K \text { of matroids on }[n] \\
\text { of rank } \leq r \text { with } C \subseteq\{\text { dependent sets }\}
\end{array}\right\}
$$

Determinantal facet ideals

In general, J_{C} is not radical:

Example

If $r=3, n=5$ and $C=\{[124],[145],[234],[345]\}$, one can check that J_{C} is not radical.

In the case $r=2$, determinantal facet ideals are known as binomial edge ideals. They were independently introduced by Ohtani and by Herzog, Hibi, Hreinsdóttir, Kahle, Rauh. Among other things they proved that they are radical. More precisely, they admit a squarefree initial ideal. They also described combinatorially the set of minimal primes for any binomial edge ideal.

Since binomial edge ideals admit a squarefree initial ideal:

Fact

If $\operatorname{char}(K)>0$, then S / J_{C} is F-injective ${ }^{a}$ whenever $r=2$.
${ }^{\text {a }}$ I.e. the Frobenius acts injectively on $H_{(X)}^{i}\left(S / J_{C}\right) \forall i \in \mathbb{N}$

Theorem (Matsuda, 2018)

If $\operatorname{char}(K)>0$ and $r=2$, then S / J_{C} is F-pure ${ }^{a}$ whenever C is weakly closed (aka co-comparable) ${ }^{b}$.
${ }^{\text {a }}$.e. the Frobenius map on S / J_{C} is pure

$$
{ }^{b}[i k] \in C \Longrightarrow[i j] \in C \text { or }[j k] \in C \text { whenever } i<j<k .
$$

F-singularities of binomial edge ideals

When $r=2$:

Conjecture (Matsuda, 2018)
S / J_{C} is F-pure whenever $\operatorname{char}(K) \gg 0$.

Conjecture (Matsuda, 2018)

If $\operatorname{char}(K)=2$, then S / J_{C} is F-pure $\Longleftrightarrow C$ is co-comparable (up to shuffling the columns of X).

$$
\text { Let } r=2, n=5, C=\{[12],[23],[34],[45],[15]\} .
$$

Remark

Notice that C is not co-comparable: $[15] \in C,[13],[35] \notin C$. No shuffling of the columns will give co-comparability for C.

In this case:

- If $\operatorname{char}(K)=2$, then S / J_{C} is not F-pure.
- If $\operatorname{char}(K)=3,5,7$, then S / J_{C} is F-pure.
- Is $S / J_{C} F$-pure whenever $\operatorname{char}(K)>2$?

Knutson ideals

Fix a monomial order $<$ on S. Let $f \in S$ be such that $\operatorname{in}(f)$ is a squarefree monomial.

Definition

We denote by \mathcal{C}_{f} the set of ideals of S built following the rules:

- $(f) \in \mathcal{C}_{f}$.
- $I \in \mathcal{C}_{f} \Longrightarrow I: J \in \mathcal{C}_{f} \quad \forall J \subseteq S$.
- $I, J \in \mathcal{C}_{f} \Longrightarrow I+J, I \cap J \in \mathcal{C}_{f}$.

The ideals in \mathcal{C}_{f} are called Knutson ideals. In 2009 Allen Knutson proved remarkable facts about ideals in \mathcal{C}_{f} in the case $K=\mathbb{Z} / p \mathbb{Z}$. The following has been generalized to any field K by Lisa Seccia:

Theorem (Knutson 2009, Seccia, 2021)

If $I \in \mathcal{C}_{f}$, then:

- in (I) (and so I) is radical.
- If $\operatorname{char}(K)>0$, then S / I is F-pure.

Knutson ideals

Lemma

If I and J are ideals of S, TFAE:

- $\operatorname{in}(I+J)=\operatorname{in}(I)+\operatorname{in}(J)$.
- in $(I \cap J)=\operatorname{in}(I) \cap \operatorname{in}(J)$.

If in $(I \cap J)$ is radical, then in $(I \cap J)=\operatorname{in}(I) \cap \operatorname{in}(J)$.
This simple lemma implies a surprising fact:

Corollary

If I and J are ideals in C_{f}, then $\operatorname{in}(I+J)=\operatorname{in}(I)+\operatorname{in}(J)$. In other words, the union of the Gröbner bases of I and J is a Gröbner basis of the sum $I+J$.

Let $I_{r}=I_{r}(X) \subseteq S$ the ideal of maximal minors of X. Then I_{r} is a prime ideal of height $n-r+1$, and contains the complete intersection $C=\left(\delta_{1}, \ldots, \delta_{n-r+1}\right) \subseteq S$, where the δ_{i} 's are the maximal minors insisting on consecutive columns of X :

Put $f=\prod_{i=1}^{n-r+1} \delta_{i} \in S$. If $<$ is the degrevlex term order with

$$
X_{11}>X_{12}>\ldots>X_{1 n}>X_{21}>\ldots>X_{2 n}>\ldots>X_{r n}, 1
$$

then $\operatorname{in}(f)=\prod_{i=1}^{n-r+1} \operatorname{in}\left(\delta_{i}\right)$, and $\operatorname{in}\left(\delta_{i}\right)= \pm \prod_{a+b=r+i} X_{a b}$. In particular, in (f) is squarefree.

As factors of f, the principal ideals generated by the δ_{i} 's are in \mathcal{C}_{f}. So $C=\left(\delta_{1}, \ldots, \delta_{s-r+1}\right)$, being the sum of ideals in \mathcal{C}_{f}, is in \mathcal{C}_{f}. Since I_{r} is a prime ideal containing C and height $I_{r}=$ height C, then $I_{r}=C: g$ for some $g \in S$. So $I_{r} \in \mathcal{C}_{f}$ as well.
${ }^{1}$ From now on we fix such a monomial order

Knutson ideals

From now on:

$$
\Delta:=\prod_{i=1}^{r-1} \alpha_{i} \prod_{i=1}^{n-r+1} \delta_{i} \prod_{i=1}^{r-1} \beta_{i} \in S
$$

Since $\operatorname{in}(\Delta)= \pm \prod_{i, j} X_{i j}$ is squarefree, it makes sense to study \mathcal{C}_{Δ} :

Theorem (Seccia, 2021)

For any $1 \leq t \leq r$, the ideals of t-minors insisting on consecutive (resp. all) rows and all (resp. consecutive) columns are in \mathcal{C}_{Δ}. In particular $I_{t}(X)$ belongs to \mathcal{C}_{Δ}.

She also characterized all the ideals in C_{Δ} when $r=2$. As a consequence:

Theorem (Seccia, 2022)

The binomial edge ideals in $\mathcal{C}_{\Delta}(r=2)$ are exactly those corresponding to the co-comparable collections of 2-minors.

Determinantal facet ideals - Reducedness

Definition (Benedetti, Seccia, V (2022))

A subset $C \subseteq \mathcal{M}_{r}(X)$ is semi-closed if whenever $\left[i_{1} i_{2} \ldots i_{r}\right] \in C$, one of the following two conditions hold:
(1) either $\left[i_{1} a_{2} \ldots a_{r}\right] \in C$ whenever $a_{j} \leq i_{j}$ for all $j=2, \ldots, r$.
(2) or $\left[z_{1} \ldots z_{r-1} i_{r}\right] \in C$ whenever $i_{j} \leq z_{j}$ for all $j=1, \ldots, r-1$.

By taking sums and intersections of ideals of minors insisting on consecutive columns we can prove:

Theorem (Benedetti, Seccia, V, 2022)

If C is semi-closed, then $J_{C} \in C_{\Delta}$. In particular in $\left(J_{C}\right)$ (and so J_{C}) is radical and S / J_{C} is F-pure whenever $\operatorname{char}(K)>0$.

Determinantal facet ideals - Gröbner bases

Definition

A subset $C \subseteq \mathcal{M}_{r}(X)$ is unit-interval if whenever $\left[i_{1} i_{2} \ldots i_{r}\right] \in C$, then $\left[a_{1} a_{2} \ldots a_{r}\right] \in C$ for all $i_{1} \leq a_{1}<a_{2}<\ldots<a_{r} \leq i_{r}$.

Remark

Of course semi-closed implies unit-interval. Notice that C is unit-interval if and only if J_{C} is a sum of ideals of r-minors insisting on consecutive columns.

As a consequence of what previously said, if C is unit-interval then C is a Gröbner basis. Clearly C is a $G B$ also when C is closed:

Definition (Ene, Herzog, Hibi, 2013)

A subset $C \subseteq \mathcal{M}_{r}(X)$ is closed if whenever $\left[i_{1} i_{2} \ldots i_{r}\right] \in C$ and $\left[j_{1} j_{2} \ldots j_{r}\right] \in C$ with $i_{k}=j_{k}$ for some k, then $\left[a_{1} a_{2} \ldots a_{r}\right] \in C$ for any r-subset $\left\{a_{1}, \ldots, a_{r}\right\} \subset\left\{i_{1}, \ldots, i_{r}, j_{1}, \ldots, j_{r}\right\}$.

Determinantal facet ideals - Gröbner bases

Proposition (Benedetti, Seccia, V, 2022)

Let C be strongly connected. If C is closed, then C is unit-interval.

Remark

The converse is false: if $r=3, n=5$, then the subset of 3-minors $C=\mathcal{M}_{3}\left(X^{[1,4]}\right) \cup \mathcal{M}_{3}\left(X^{[2,5]}\right)$ is unit-interval, strongly connetced but not closed (take [134], [235] $\in C$).

Theorem (Benedetti, Seccia, V, 2022)

Suppose that $\delta_{i}=[i \ldots i+d-1] \in C$ for all $i=1, \ldots, n-d+1$. Then C is a Gröbner basis if and only if C is unit-interval.

Determinantal facet ideals - Gröbner bases

Remark

Almousa and VandeBogert defined Icm-closed determinantal facet ideals, a combinatorial notion simultaneously generalizing "closed" and "unit-interval", and conjectured it is equivalent to C being a Gröbner basis. It can be seen that under the assumption that $\delta_{i}=[i \ldots i+d-1] \in C$ for all $i=1, \ldots, n-d+1$, then the collection C is unit-interval if and only if it is Icm-closed.

Theorem (De Stefani, Montaño, Núñez-Betancourt, Seccia, V)

For any $1 \leq t \leq r$, the ideals of t-minors contained in a top-left (resp. bottom-right) corner of the matrix X are in \mathcal{C}_{Δ}.

Since any matrix Schubert determinantal ideal can be written as sum of ideals of minors contained in top-left corners of a generic matrix, they are in \mathcal{C}_{Δ} and the minors generating them are a Gröbner basis. The latter fact had been proved by Knutson and Miller in 2005.
Another interesting consequence is that matrix Schubert determinantal ideals define F-pure rings whenever $\operatorname{char}(K)>0$, as proved by Brion and Kumar in 2005.
Indeed, as noticed by Knutson, a similar argument to the one used by Brion and Kumar shows that matrix Schubert ideals are in \mathcal{C}_{Δ}.

Further developments

Denote with $\mathcal{M}(X)=\mathcal{M}_{1}(X) \cup \mathcal{M}_{2}(X) \cup \ldots \cup \mathcal{M}_{r}(X)$ be the set of minors of X endowed with the partial order making determinantal rings graded ASL, i.e.:

$$
\begin{aligned}
& {\left[a_{1} \ldots a_{s} \mid b_{1} \ldots b_{s}\right] \leq\left[c_{1} \ldots c_{t} \mid d_{1} \ldots d_{t}\right] \Longleftrightarrow \quad s \geq t \text { and } \forall i \in 1, \ldots, t } \\
& a_{i} \leq c_{i} \text { and } b_{i} \leq d_{i} .
\end{aligned}
$$

Since ideals of $K[X]$ generated by any poset ideal of $\mathcal{M}(X)$ can be written as intersection of sums of ideals of minors contained in top-left corners of X :

Corollary (De Stefani, Montaño, Núñez-Betancourt, Seccia, V)

Ideals $I \subseteq K[X]$ generated by any poset ideal of $\mathcal{M}(X)$ belongs to \mathcal{C}_{Δ}. In particular $K[X] / I$ is F-pure whenever $\operatorname{char}(K)>0$.

Remark

Any graded ASL over a field of positive characteristic is F-injective, but some are not F-pure.

THANKS FOR YOUR ATTENTION!

