Defining equations of algebraic sets

Matteo Varbaro (University of Genoa, Italy)

December 10th 2015, MPI-Oberseminar, Bonn, Germany

A (10) > (10) > (10)

- E - M

Matteo Varbaro (University of Genoa, Italy) Defining equations of algebraic sets

 $\mathbf{K} = \overline{\mathbf{K}}$ field,

Matteo Varbaro (University of Genoa, Italy) Defining equations of algebraic sets

・ロン ・四 と ・ ヨ と ・ ヨ と

Matteo Varbaro (University of Genoa, Italy) Defining equations of algebraic sets

Given a set $\mathcal{A} \subseteq S$ of homogeneous polynomials, its zero-locus is:

$$\mathcal{Z}(\mathcal{A}) = \{ P \in \mathbb{P}^n(K) : f(P) = 0 \ \forall \ f \in \mathcal{A} \} \subseteq \mathbb{P}^n(K).$$

Given a set $\mathcal{A} \subseteq S$ of homogeneous polynomials, its zero-locus is:

$$\mathcal{Z}(\mathcal{A}) = \{ P \in \mathbb{P}^n(K) : f(P) = 0 \ \forall \ f \in \mathcal{A} \} \subseteq \mathbb{P}^n(K).$$

Subsets of $\mathbb{P}^n = \mathbb{P}^n(K)$ as above are called **algebraic sets**.

(本部) (本語) (本語) (語)

Given a set $\mathcal{A} \subseteq S$ of homogeneous polynomials, its zero-locus is:

$$\mathcal{Z}(\mathcal{A}) = \{ P \in \mathbb{P}^n(K) : f(P) = 0 \ \forall \ f \in \mathcal{A} \} \subseteq \mathbb{P}^n(K).$$

Subsets of $\mathbb{P}^n = \mathbb{P}^n(K)$ as above are called **algebraic sets**.

Since $\mathcal{Z}(\mathcal{A}) = \mathcal{Z}((\mathcal{A}))$ (where (\mathcal{A}) means the ideal of S generated by \mathcal{A}) by the **Hilbert's basis theorem** every algebraic set is the zero-locus of finitely many (homogeneous) polynomials.

Given a set $\mathcal{A} \subseteq S$ of homogeneous polynomials, its zero-locus is:

$$\mathcal{Z}(\mathcal{A}) = \{ P \in \mathbb{P}^n(K) : f(P) = 0 \ \forall \ f \in \mathcal{A} \} \subseteq \mathbb{P}^n(K).$$

Subsets of $\mathbb{P}^n = \mathbb{P}^n(K)$ as above are called **algebraic sets**.

Since $\mathcal{Z}(\mathcal{A}) = \mathcal{Z}((\mathcal{A}))$ (where (\mathcal{A}) means the ideal of *S* generated by \mathcal{A}) by the **Hilbert's basis theorem** every algebraic set is the zero-locus of finitely many (homogeneous) polynomials. Today, we will discuss the following question:

How many polynomials are needed to define an algebraic set?

Algebraic sets

Given a subset $X \subseteq \mathbb{P}^n$, the set of polynomials vanishing at X is:

$$\mathcal{I}(X) = \{ f \in S : f(P) = 0 \ \forall \ P \in X \}.$$

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

$$\mathcal{I}(X) = \{ f \in S : f(P) = 0 \ \forall \ P \in X \}.$$

As it turns out, $\mathcal{I}(X)$ is a radical ideal of S and, by **Hilbert's Nullstellensatz**, for any ideal $I \subseteq S$ we have:

$$\mathcal{I}(\mathcal{Z}(I)) = \sqrt{I}$$

(4回) (1日) (日)

$$\mathcal{I}(X) = \{ f \in S : f(P) = 0 \ \forall \ P \in X \}.$$

As it turns out, $\mathcal{I}(X)$ is a radical ideal of S and, by **Hilbert's Nullstellensatz**, for any ideal $I \subseteq S$ we have:

$$\mathcal{I}(\mathcal{Z}(I)) = \sqrt{I}$$

Further, $\mathcal{Z}(\mathcal{I}(X)) = X$ whenever $X \subseteq \mathbb{P}^n$ is an algebraic set.

・ 回 と ・ ヨ と ・ ヨ と

$$\mathcal{I}(X) = \{ f \in S : f(P) = 0 \ \forall \ P \in X \}.$$

As it turns out, $\mathcal{I}(X)$ is a radical ideal of S and, by **Hilbert's Nullstellensatz**, for any ideal $I \subseteq S$ we have:

$$\mathcal{I}(\mathcal{Z}(I)) = \sqrt{I}$$

Further, $\mathcal{Z}(\mathcal{I}(X)) = X$ whenever $X \subseteq \mathbb{P}^n$ is an algebraic set.

At a first thought, one could imagine that the optimal number of polynomials defining an algebraic set $X = \mathcal{Z}(I) \subseteq \mathbb{P}^n$ is exactly the number of minimal generators of $\mathcal{I}(X) \subseteq S$.

$$\mathcal{I}(X) = \{ f \in S : f(P) = 0 \ \forall \ P \in X \}.$$

As it turns out, $\mathcal{I}(X)$ is a radical ideal of S and, by **Hilbert's Nullstellensatz**, for any ideal $I \subseteq S$ we have:

$$\mathcal{I}(\mathcal{Z}(I)) = \sqrt{I}$$

Further, $\mathcal{Z}(\mathcal{I}(X)) = X$ whenever $X \subseteq \mathbb{P}^n$ is an algebraic set.

At a first thought, one could imagine that the optimal number of polynomials defining an algebraic set $X = \mathcal{Z}(I) \subseteq \mathbb{P}^n$ is exactly the number of minimal generators of $\mathcal{I}(X) \subseteq S$.

(日) (部) (注) (注) (言)

This, however, is far to be true

$X_1 = \{[s^3, s^2t, st^2, t^3] : [s, t] \in \mathbb{P}^1\} \subseteq \mathbb{P}^3$ is an algebraic set and

(4回) (注) (注) (注) (注)

 $\begin{aligned} X_1 &= \{ [s^3, s^2t, st^2, t^3] : [s, t] \in \mathbb{P}^1 \} \subseteq \mathbb{P}^3 \text{ is an algebraic set and} \\ \mathcal{I}(X_1) &= (a, b, c) \subseteq S = \mathcal{K}[x_0, x_1, x_2, x_3], \end{aligned}$ where $a &= x_0 x_2 - x_1^2, \ b &= x_1 x_3 - x_2^2, \ c &= x_0 x_3 - x_1 x_2. \end{aligned}$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

 $X_{1} = \{[s^{3}, s^{2}t, st^{2}, t^{3}] : [s, t] \in \mathbb{P}^{1}\} \subseteq \mathbb{P}^{3} \text{ is an algebraic set and}$ $\mathcal{I}(X_{1}) = (a, b, c) \subseteq S = \mathcal{K}[x_{0}, x_{1}, x_{2}, x_{3}],$ where $a = x_{0}x_{2} - x_{1}^{2}$, $b = x_{1}x_{3} - x_{2}^{2}$, $c = x_{0}x_{3} - x_{1}x_{2}$. By setting: $f = a = x_{0}x_{2} - x_{1}^{2}$ and $g = x_{3}c - x_{2}b = x_{0}x_{2}^{2} - 2x_{1}x_{2}x_{3} + x_{3}^{3}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

 $X_{1} = \{[s^{3}, s^{2}t, st^{2}, t^{3}] : [s, t] \in \mathbb{P}^{1}\} \subseteq \mathbb{P}^{3} \text{ is an algebraic set and}$ $\mathcal{I}(X_{1}) = (a, b, c) \subseteq S = \mathcal{K}[x_{0}, x_{1}, x_{2}, x_{3}],$ where $a = x_{0}x_{2} - x_{1}^{2}$, $b = x_{1}x_{3} - x_{2}^{2}$, $c = x_{0}x_{3} - x_{1}x_{2}$. By setting: $f = a = x_{0}x_{2} - x_{1}^{2}$ and $g = x_{3}c - x_{2}b = x_{0}x_{3}^{2} - 2x_{1}x_{2}x_{3} + x_{2}^{3},$ we claim that $X_{1} = \mathcal{Z}(a, b, c) = \mathcal{Z}(f, g).$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

 $X_{1} = \{[s^{3}, s^{2}t, st^{2}, t^{3}] : [s, t] \in \mathbb{P}^{1}\} \subseteq \mathbb{P}^{3} \text{ is an algebraic set and}$ $\mathcal{I}(X_{1}) = (a, b, c) \subseteq S = \mathcal{K}[x_{0}, x_{1}, x_{2}, x_{3}],$ where $a = x_{0}x_{2} - x_{1}^{2}$, $b = x_{1}x_{3} - x_{2}^{2}$, $c = x_{0}x_{3} - x_{1}x_{2}$. By setting: $f = a = x_{0}x_{2} - x_{1}^{2}$ and $g = x_{3}c - x_{2}b = x_{0}x_{3}^{2} - 2x_{1}x_{2}x_{3} + x_{2}^{3},$ we claim that $X_{1} = \mathcal{Z}(a, b, c) = \mathcal{Z}(f, g)$. Obviously $\mathcal{Z}(a, b, c)$ is

contained in $\mathcal{Z}(f,g)$,

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 ○○○○

 $X_1 = \{[s^3, s^2t, st^2, t^3] : [s, t] \in \mathbb{P}^1\} \subseteq \mathbb{P}^3$ is an algebraic set and $\mathcal{I}(X_1) = (a, b, c) \subseteq S = K[x_0, x_1, x_2, x_3],$

where $a = x_0x_2 - x_1^2$, $b = x_1x_3 - x_2^2$, $c = x_0x_3 - x_1x_2$. By setting:

$$f = a = x_0x_2 - x_1^2$$
 and $g = x_3c - x_2b = x_0x_3^2 - 2x_1x_2x_3 + x_2^3$,

we claim that $X_1 = \mathcal{Z}(a, b, c) = \mathcal{Z}(f, g)$. Obviously $\mathcal{Z}(a, b, c)$ is contained in $\mathcal{Z}(f, g)$, for the other inclusion we have to prove that any point $P \in \mathcal{Z}(f, g)$ satisfies b(P) = c(P) = 0.

Matteo Varbaro (University of Genoa, Italy) Defining equations of algebraic sets

・ロ・ ・回・ ・ヨ・ ・ヨ・

Recall that $a = x_0x_2 - x_1^2$, $b = x_1x_3 - x_2^2$, $c = x_0x_3 - x_1x_2$ and

$$f = x_0 x_2 - x_1^2, \ g = x_0 x_3^2 - 2x_1 x_2 x_3 + x_2^3.$$

Recall that $a = x_0x_2 - x_1^2$, $b = x_1x_3 - x_2^2$, $c = x_0x_3 - x_1x_2$ and

$$f = x_0 x_2 - x_1^2, \ g = x_0 x_3^2 - 2x_1 x_2 x_3 + x_2^3.$$

Let $P = [P_0, P_1, P_2, P_3] \in \mathcal{Z}(f, g)$.

Recall that $a = x_0x_2 - x_1^2$, $b = x_1x_3 - x_2^2$, $c = x_0x_3 - x_1x_2$ and

$$f = x_0 x_2 - x_1^2, \ g = x_0 x_3^2 - 2x_1 x_2 x_3 + x_2^3.$$

Let
$$P = [P_0, P_1, P_2, P_3] \in \mathcal{Z}(f, g).$$

• $P_2 = 0 \xrightarrow{f(P)=0} P_1 = 0$

Recall that $a = x_0x_2 - x_1^2$, $b = x_1x_3 - x_2^2$, $c = x_0x_3 - x_1x_2$ and

$$f = x_0 x_2 - x_1^2, \ g = x_0 x_3^2 - 2x_1 x_2 x_3 + x_2^3.$$

Let
$$P = [P_0, P_1, P_2, P_3] \in \mathcal{Z}(f, g).$$

• $P_2 = 0 \xrightarrow{f(P)=0} P_1 = 0 \xrightarrow{g(P)=0} P_0 P_3^2 = P_0 P_3 = 0.$

Recall that $a = x_0x_2 - x_1^2$, $b = x_1x_3 - x_2^2$, $c = x_0x_3 - x_1x_2$ and

$$f = x_0 x_2 - x_1^2, \ g = x_0 x_3^2 - 2x_1 x_2 x_3 + x_2^3.$$

Let
$$P = [P_0, P_1, P_2, P_3] \in \mathcal{Z}(f, g)$$
.
• $P_2 = 0 \xrightarrow{f(P)=0} P_1 = 0 \xrightarrow{g(P)=0} P_0 P_3^2 = P_0 P_3 = 0$. So both b and c vanish at P.

Recall that $a = x_0x_2 - x_1^2$, $b = x_1x_3 - x_2^2$, $c = x_0x_3 - x_1x_2$ and

$$f = x_0 x_2 - x_1^2, \ g = x_0 x_3^2 - 2x_1 x_2 x_3 + x_2^3.$$

Let $P = [P_0, P_1, P_2, P_3] \in \mathcal{Z}(f, g).$ • $P_2 = 0 \xrightarrow{f(P)=0} P_1 = 0 \xrightarrow{g(P)=0} P_0 P_3^2 = P_0 P_3 = 0$. So both *b* and *c* vanish at *P*. • $P_2 = 1 \xrightarrow{f(P)=0} P_0 = P_1^2$

(《圖》 《문》 《문》 - 문

Recall that $a = x_0x_2 - x_1^2$, $b = x_1x_3 - x_2^2$, $c = x_0x_3 - x_1x_2$ and

$$f = x_0 x_2 - x_1^2, \ g = x_0 x_3^2 - 2x_1 x_2 x_3 + x_2^3.$$

Let $P = [P_0, P_1, P_2, P_3] \in \mathcal{Z}(f, g).$ • $P_2 = 0 \xrightarrow{f(P)=0} P_1 = 0 \xrightarrow{g(P)=0} P_0 P_3^2 = P_0 P_3 = 0$. So both *b* and *c* vanish at *P*. • $P_2 = 1 \xrightarrow{f(P)=0} P_0 = P_1^2 \xrightarrow{g(P)=0} (P_1 P_3)^2 - 2P_1 P_3 + 1 = 0$.

· < @ > < 문 > < 문 > · · 문

Recall that $a = x_0x_2 - x_1^2$, $b = x_1x_3 - x_2^2$, $c = x_0x_3 - x_1x_2$ and

$$f = x_0 x_2 - x_1^2, \ g = x_0 x_3^2 - 2x_1 x_2 x_3 + x_2^3.$$

Let $P = [P_0, P_1, P_2, P_3] \in \mathcal{Z}(f, g).$ • $P_2 = 0 \xrightarrow{f(P)=0} P_1 = 0 \xrightarrow{g(P)=0} P_0 P_3^2 = P_0 P_3 = 0$. So both *b* and *c* vanish at *P*. • $P_2 = 1 \xrightarrow{f(P)=0} P_0 = P_1^2 \xrightarrow{g(P)=0} (P_1 P_3)^2 - 2P_1 P_3 + 1 = 0$. So $P_1 P_3 = 1$ and b(P) = 0.

· < @ > < 문 > < 문 > · · 문

Recall that $a = x_0x_2 - x_1^2$, $b = x_1x_3 - x_2^2$, $c = x_0x_3 - x_1x_2$ and

$$f = x_0 x_2 - x_1^2$$
, $g = x_0 x_3^2 - 2x_1 x_2 x_3 + x_2^3$.

Let $P = [P_0, P_1, P_2, P_3] \in \mathcal{Z}(f, g)$. • $P_2 = 0 \xrightarrow{f(P)=0} P_1 = 0 \xrightarrow{g(P)=0} P_0 P_3^2 = P_0 P_3 = 0$. So both *b* and *c* vanish at *P*. • $P_2 = 1 \xrightarrow{f(P)=0} P_0 = P_1^2 \xrightarrow{g(P)=0} (P_1 P_3)^2 - 2P_1 P_3 + 1 = 0$. So $P_1 P_3 = 1$ and b(P) = 0. Further

$$c(P) = P_0P_3 - P_1P_2 = P_1^2P_3 - P_1 = P_1 - P_1 = 0.$$

· < @ > < 문 > < 문 > · · 문

Matteo Varbaro (University of Genoa, Italy) Defining equations of algebraic sets

・ロト ・回 ト ・ヨト ・ヨト

So we found out that $X_1 \subseteq \mathbb{P}^3$ is the zero-locus of 2 polynomials.

・ロト ・回ト ・ヨト ・ヨト

So we found out that $X_1 \subseteq \mathbb{P}^3$ is the zero-locus of 2 polynomials. Can we do better?

・ロト ・回ト ・ヨト ・ヨト

So we found out that $X_1 \subseteq \mathbb{P}^3$ is the zero-locus of 2 polynomials. Can we do better? No, because at least as many polynomials as the codimension are needed.

- 4 回 2 - 4 □ 2 - 4 □

So we found out that $X_1 \subseteq \mathbb{P}^3$ is the zero-locus of 2 polynomials. Can we do better? No, because at least as many polynomials as the codimension are needed. Let us be more precise

・ 同 ト ・ ヨ ト ・ ヨ ト

So we found out that $X_1 \subseteq \mathbb{P}^3$ is the zero-locus of 2 polynomials. Can we do better? No, because at least as many polynomials as the codimension are needed. Let us be more precise

The **arithmetical rank** of an algebraic set $X \subseteq \mathbb{P}^n$ is:

$$\operatorname{ara}_{\mathbb{P}^n} X = \min\{r \mid \exists f_1, \ldots, f_r \in S : X = \mathcal{Z}(f_1, \ldots, f_r)\}.$$

・ 同 ト ・ ヨ ト ・ ヨ ト

So we found out that $X_1 \subseteq \mathbb{P}^3$ is the zero-locus of 2 polynomials. Can we do better? No, because at least as many polynomials as the codimension are needed. Let us be more precise

The **arithmetical rank** of an algebraic set $X \subseteq \mathbb{P}^n$ is:

$$\operatorname{ara}_{\mathbb{P}^n} X = \min\{r \mid \exists f_1, \ldots, f_r \in S : X = \mathcal{Z}(f_1, \ldots, f_r)\}.$$

By the **Krull's Hauptidealsatz** $\operatorname{ara}_{\mathbb{P}^n} X \ge \operatorname{codim}_{\mathbb{P}^n} X$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Arithmetical rank

So we found out that $X_1 \subseteq \mathbb{P}^3$ is the zero-locus of 2 polynomials. Can we do better? No, because at least as many polynomials as the codimension are needed. Let us be more precise

The **arithmetical rank** of an algebraic set $X \subseteq \mathbb{P}^n$ is:

$$\operatorname{ara}_{\mathbb{P}^n} X = \min\{r \mid \exists f_1, \ldots, f_r \in S : X = \mathcal{Z}(f_1, \ldots, f_r)\}.$$

By the **Krull's Hauptidealsatz** ara_{\mathbb{P}^n} $X \ge \operatorname{codim}_{\mathbb{P}^n} X$.

We can therefore conclude that, in Example I:

$$\operatorname{ara}_{\mathbb{P}^3} X_1 = 2 = \operatorname{codim}_{\mathbb{P}^3} X_1.$$

・ 回 ・ ・ ヨ ・ ・ ヨ ・

Set-theoretic complete intersections

Matteo Varbaro (University of Genoa, Italy) Defining equations of algebraic sets

イロン 不同と 不同と 不同と

æ

Set-theoretic complete intersections

Wouldn't happen to be

 $\operatorname{ara}_{\mathbb{P}^n} X = \operatorname{codim}_{\mathbb{P}^n} X$

for any algebraic set $X \subseteq \mathbb{P}^n$?

・回 ・ ・ ヨ ・ ・ ヨ ・ ・

æ

Wouldn't happen to be

 $\operatorname{ara}_{\mathbb{P}^n} X = \operatorname{codim}_{\mathbb{P}^n} X$

for any algebraic set $X \subseteq \mathbb{P}^n$? No, for example:

(Faltings, 1980)

If $Y \subseteq \mathbb{P}^n$ is an irreducible *d*-dimensional algebraic set and $X \subseteq \mathbb{P}^n$ is the zero-locus of < d polynomials, then $X \cap Y$ must be connected.

Wouldn't happen to be

 $\operatorname{ara}_{\mathbb{P}^n} X = \operatorname{codim}_{\mathbb{P}^n} X$

for any algebraic set $X \subseteq \mathbb{P}^n$? No, for example:

(Faltings, 1980)

If $Y \subseteq \mathbb{P}^n$ is an irreducible *d*-dimensional algebraic set and $X \subseteq \mathbb{P}^n$ is the zero-locus of < d polynomials, then $X \cap Y$ must be connected. In particular, $\operatorname{arg}_{\mathbb{P}^n} X < n \implies X$ is connected.

Wouldn't happen to be

 $\operatorname{ara}_{\mathbb{P}^n} X = \operatorname{codim}_{\mathbb{P}^n} X$

for any algebraic set $X \subseteq \mathbb{P}^n$? No, for example:

(Faltings, 1980)

If $Y \subseteq \mathbb{P}^n$ is an irreducible *d*-dimensional algebraic set and $X \subseteq \mathbb{P}^n$ is the zero-locus of < d polynomials, then $X \cap Y$ must be connected. In particular, $\operatorname{arg}_{\mathbb{P}^n} X < n \implies X$ is connected.

It therefore makes sense to name $X \subseteq \mathbb{P}^n$ a **set-theoretic** complete intersection if $\operatorname{ara}_{\mathbb{P}^n} X = \operatorname{codim}_{\mathbb{P}^n} X$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Let $X_2 = \{[s, t, 0, 0] : [s, t] \in \mathbb{P}^1\} \cup \{[0, 0, s, t] : [s, t] \in \mathbb{P}^1\} \subseteq \mathbb{P}^3.$

・ 回 と ・ ヨ と ・ ヨ と

 $\operatorname{ara}_{\mathbb{P}^3} X_2 \geq 3 > 2 = \operatorname{codim}_{\mathbb{P}^3} X_2.$

(《圖》 《문》 《문》 - 문

$$\operatorname{ara}_{\mathbb{P}^3} X_2 \geq 3 > 2 = \operatorname{codim}_{\mathbb{P}^3} X_2.$$

On the other hand, if $S = K[x_0, x_1, x_2, x_3]$, we have

$$\mathcal{I}(X_2) = (x_2, x_3) \cap (x_0, x_1) = (x_0 x_2, x_0 x_3, x_1 x_2, x_1 x_3) \subseteq S.$$

・ 同 ト ・ ヨ ト ・ ヨ ト

$$\operatorname{ara}_{\mathbb{P}^3} X_2 \geq 3 > 2 = \operatorname{codim}_{\mathbb{P}^3} X_2.$$

On the other hand, if $S = K[x_0, x_1, x_2, x_3]$, we have

$$\mathcal{I}(X_2) = (x_2, x_3) \cap (x_0, x_1) = (x_0 x_2, x_0 x_3, x_1 x_2, x_1 x_3) \subseteq S.$$

If $I = (a, b, c) \subseteq S$ with $a = x_0x_2 + x_0x_3 + x_1x_2 + x_1x_3$, $b = x_0x_1x_2 + x_0x_1x_3 + x_0x_2x_3 + x_1x_2x_3$ and $c = x_0x_1x_2x_3$, then $\sqrt{I} = \mathcal{I}(X_2)$.

$$\operatorname{ara}_{\mathbb{P}^3} X_2 \geq 3 > 2 = \operatorname{codim}_{\mathbb{P}^3} X_2.$$

On the other hand, if $S = K[x_0, x_1, x_2, x_3]$, we have

$$\mathcal{I}(X_2) = (x_2, x_3) \cap (x_0, x_1) = (x_0 x_2, x_0 x_3, x_1 x_2, x_1 x_3) \subseteq S.$$

If $I = (a, b, c) \subseteq S$ with $a = x_0x_2 + x_0x_3 + x_1x_2 + x_1x_3$, $b = x_0x_1x_2 + x_0x_1x_3 + x_0x_2x_3 + x_1x_2x_3$ and $c = x_0x_1x_2x_3$, then $\sqrt{I} = \mathcal{I}(X_2)$.

So
$$X_2 = \mathcal{Z}(I)$$
, and ara_{P³} $X_2 = 3$.

(4回) (注) (注) (注) (三)

A general upper bound

What happened before is not a case:

- 4 回 2 - 4 回 2 - 4 回 2 - 4

æ

Eisenbud-Evans, 1972

For any nonempty algebraic set $X \subseteq \mathbb{P}^n$:

 $\operatorname{ara}_{\mathbb{P}^n} X \leq n.$

Eisenbud-Evans, 1972

For any nonempty algebraic set $X \subseteq \mathbb{P}^n$:

 $\operatorname{ara}_{\mathbb{P}^n} X \leq n.$

Summarizing, so far we learnt that:

• $\operatorname{codim}_{\mathbb{P}^n} X \leq \operatorname{ara}_{\mathbb{P}^n} X \leq n$ for any algebraic set $\emptyset \neq X \subseteq \mathbb{P}^n$;

(4回) (4回) (4回)

Eisenbud-Evans, 1972

For any nonempty algebraic set $X \subseteq \mathbb{P}^n$:

 $\operatorname{ara}_{\mathbb{P}^n} X \leq n.$

Summarizing, so far we learnt that:

- $\operatorname{codim}_{\mathbb{P}^n} X \leq \operatorname{ara}_{\mathbb{P}^n} X \leq n$ for any algebraic set $\emptyset \neq X \subseteq \mathbb{P}^n$;
- $\operatorname{ara}_{\mathbb{P}^n} X = n$ whenever X is not connected.

▲□ ▶ ▲ □ ▶ ▲ □ ▶

Eisenbud-Evans, 1972

For any nonempty algebraic set $X \subseteq \mathbb{P}^n$:

 $\operatorname{ara}_{\mathbb{P}^n} X \leq n.$

Summarizing, so far we learnt that:

- $\operatorname{codim}_{\mathbb{P}^n} X \leq \operatorname{ara}_{\mathbb{P}^n} X \leq n$ for any algebraic set $\emptyset \neq X \subseteq \mathbb{P}^n$;
- $\operatorname{ara}_{\mathbb{P}^n} X = n$ whenever X is not connected.

How to produce other lower bounds?

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

Let $X \subseteq \mathbb{P}^n$ be an algebraic set such that $X = \mathcal{Z}(f_1, \ldots, f_r)$.

Let $X \subseteq \mathbb{P}^n$ be an algebraic set such that $X = \mathcal{Z}(f_1, \ldots, f_r)$. Notice that $U(f_i) = \mathbb{P}^n \setminus \mathcal{Z}(f_i)$ is affine,

イロト イヨト イヨト イヨト

Let $X \subseteq \mathbb{P}^n$ be an algebraic set such that $X = \mathcal{Z}(f_1, \ldots, f_r)$. Notice that $U(f_i) = \mathbb{P}^n \setminus \mathcal{Z}(f_i)$ is affine, and that:

$$\mathbb{P}^n \setminus X = U(f_1) \cup \ldots \cup U(f_r).$$

・ロン ・回 と ・ 回 と ・ 回 と

Let $X \subseteq \mathbb{P}^n$ be an algebraic set such that $X = \mathcal{Z}(f_1, \ldots, f_r)$. Notice that $U(f_i) = \mathbb{P}^n \setminus \mathcal{Z}(f_i)$ is affine, and that:

$$\mathbb{P}^n \setminus X = U(f_1) \cup \ldots \cup U(f_r).$$

Therefore, by means of the Čech cohomology, $H^i(\mathbb{P}^n \setminus X, \mathcal{F}) = 0$ for any $i \ge r$ and each quasi-coherent sheaf \mathcal{F} on \mathbb{P}^n .

・ 回 と く ヨ と く ヨ と

Let $X \subseteq \mathbb{P}^n$ be an algebraic set such that $X = \mathcal{Z}(f_1, \ldots, f_r)$. Notice that $U(f_i) = \mathbb{P}^n \setminus \mathcal{Z}(f_i)$ is affine, and that:

$$\mathbb{P}^n \setminus X = U(f_1) \cup \ldots \cup U(f_r).$$

Therefore, by means of the Čech cohomology, $H^i(\mathbb{P}^n \setminus X, \mathcal{F}) = 0$ for any $i \ge r$ and each quasi-coherent sheaf \mathcal{F} on \mathbb{P}^n .

The (coherent) **cohomological dimension** of an open set $U \subseteq \mathbb{P}^n$:

 $cd(U) = sup\{s : H^{s}(U, \mathcal{F}) \neq 0 \text{ for some coherent sheaf on } \mathbb{P}^{n}\}.$

Let $X \subseteq \mathbb{P}^n$ be an algebraic set such that $X = \mathcal{Z}(f_1, \ldots, f_r)$. Notice that $U(f_i) = \mathbb{P}^n \setminus \mathcal{Z}(f_i)$ is affine, and that:

$$\mathbb{P}^n \setminus X = U(f_1) \cup \ldots \cup U(f_r).$$

Therefore, by means of the Čech cohomology, $H^i(\mathbb{P}^n \setminus X, \mathcal{F}) = 0$ for any $i \ge r$ and each quasi-coherent sheaf \mathcal{F} on \mathbb{P}^n .

The (coherent) **cohomological dimension** of an open set $U \subseteq \mathbb{P}^n$:

 $cd(U) = sup\{s : H^{s}(U, \mathcal{F}) \neq 0 \text{ for some coherent sheaf on } \mathbb{P}^{n}\}.$

For what said above, for any algebraic set $X \subseteq \mathbb{P}^n$ we have:

 $\operatorname{ara}_{\mathbb{P}^n} X \geq \operatorname{cd}(\mathbb{P}^n \setminus X) + 1.$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへの

Let $X_3 \subseteq \mathbb{P}^7$ be the set of 2×4 matrices of rank at most 1.

< ロ > < 回 > < 回 > < 回 > < 回 > <

Let $X_3 \subseteq \mathbb{P}^7$ be the set of 2×4 matrices of rank at most 1. So S = K[Z] where

$$Z = \begin{pmatrix} z_{11} & z_{12} & z_{13} & z_{14} \\ z_{21} & z_{22} & z_{23} & z_{24} \end{pmatrix}$$

ヘロン 人間 とくほど 人間 と

Let $X_3 \subseteq \mathbb{P}^7$ be the set of 2×4 matrices of rank at most 1. So S = K[Z] where

$$Z = \begin{pmatrix} z_{11} & z_{12} & z_{13} & z_{14} \\ z_{21} & z_{22} & z_{23} & z_{24} \end{pmatrix}$$

and $\mathcal{I}(X_3) = I_2(Z)$ is minimally generated by the six 2-minors of Z, [i, j] with $1 \le i < j \le 4$.

ヘロン 人間 とくほど くほとう

Let $X_3 \subseteq \mathbb{P}^7$ be the set of 2×4 matrices of rank at most 1. So S = K[Z] where

$$Z = \begin{pmatrix} z_{11} & z_{12} & z_{13} & z_{14} \\ z_{21} & z_{22} & z_{23} & z_{24} \end{pmatrix}$$

and $\mathcal{I}(X_3) = I_2(Z)$ is minimally generated by the six 2-minors of Z, [i, j] with $1 \le i < j \le 4$. One can show that five polynomials are enough to generate $I_2(Z)$ up to radical, namely:

$$[1,2], [1,3], [1,4] + [2,3], [2,4], [3,4].$$

(4回) (1日) (日)

Let $X_3 \subseteq \mathbb{P}^7$ be the set of 2×4 matrices of rank at most 1. So $S = \mathcal{K}[Z]$ where

$$Z = \begin{pmatrix} z_{11} & z_{12} & z_{13} & z_{14} \\ z_{21} & z_{22} & z_{23} & z_{24} \end{pmatrix}$$

and $\mathcal{I}(X_3) = I_2(Z)$ is minimally generated by the six 2-minors of Z, [i, j] with $1 \le i < j \le 4$. One can show that five polynomials are enough to generate $I_2(Z)$ up to radical, namely:

$$[1,2], \ [1,3], \ [1,4]+[2,3], \ [2,4], \ [3,4].$$

In fact $[1,4]^2 = [1,4]([1,4] + [2,3]) + [1,2][3,4] - [1,3][2,4].$

(1日) (日) (日)

Let $X_3 \subseteq \mathbb{P}^7$ be the set of 2×4 matrices of rank at most 1. So $S = \mathcal{K}[Z]$ where

$$Z = \begin{pmatrix} z_{11} & z_{12} & z_{13} & z_{14} \\ z_{21} & z_{22} & z_{23} & z_{24} \end{pmatrix}$$

and $\mathcal{I}(X_3) = I_2(Z)$ is minimally generated by the six 2-minors of Z, [i, j] with $1 \le i < j \le 4$. One can show that five polynomials are enough to generate $I_2(Z)$ up to radical, namely:

$$[1,2], \ [1,3], \ [1,4]+[2,3], \ [2,4], \ [3,4].$$

In fact $[1,4]^2 = [1,4]([1,4] + [2,3]) + [1,2][3,4] - [1,3][2,4]$. We want to show that ara_{P7} $X_3 = 5$, however codim_{P7} $X_3 = 3$.

ロトス回とスヨトスヨト

Let $X_3 \subseteq \mathbb{P}^7$ be the set of 2×4 matrices of rank at most 1. So $S = \mathcal{K}[Z]$ where

$$Z = \begin{pmatrix} z_{11} & z_{12} & z_{13} & z_{14} \\ z_{21} & z_{22} & z_{23} & z_{24} \end{pmatrix}$$

and $\mathcal{I}(X_3) = I_2(Z)$ is minimally generated by the six 2-minors of Z, [i, j] with $1 \le i < j \le 4$. One can show that five polynomials are enough to generate $I_2(Z)$ up to radical, namely:

$$[1,2], \ [1,3], \ [1,4]+[2,3], \ [2,4], \ [3,4].$$

In fact $[1,4]^2 = [1,4]([1,4] + [2,3]) + [1,2][3,4] - [1,3][2,4]$. We want to show that $\arg_{\mathbb{P}^7} X_3 = 5$, however $\operatorname{codim}_{\mathbb{P}^7} X_3 = 3$. In characteristic 0, we can prove that $\operatorname{cd}(\mathbb{P}^7 \setminus X_3) = 4$

▲祠 ▶ ▲ 臣 ▶ ★ 臣 ▶

Notice that $H^4(\mathbb{P}^7 \setminus X_3, \mathcal{O}(k)) \cong H^5_{\mathcal{I}(X_3)}(S)_k$ for any $k \in \mathbb{Z}$.

・ロン ・回 と ・ 回 と ・ 回 と

Notice that $H^4(\mathbb{P}^7 \setminus X_3, \mathcal{O}(k)) \cong H^5_{\mathcal{I}(X_3)}(S)_k$ for any $k \in \mathbb{Z}$. The *K*-algebra $R = K[[i, j] : 1 \le i < j \le 4] \subseteq S$ is the coordinate ring of the Grassmannian of lines in \mathbb{P}^3 .

- 4 回 2 - 4 □ 2 - 4 □

Notice that $H^4(\mathbb{P}^7 \setminus X_3, \mathcal{O}(k)) \cong H^5_{\mathcal{I}(X_3)}(S)_k$ for any $k \in \mathbb{Z}$. The *K*-algebra $R = K[[i, j] : 1 \le i < j \le 4] \subseteq S$ is the coordinate ring of the Grassmannian of lines in \mathbb{P}^3 . In particular dim(R) = 5.

(4月) (4日) (4日)

Notice that $H^4(\mathbb{P}^7 \setminus X_3, \mathcal{O}(k)) \cong H^5_{\mathcal{I}(X_3)}(S)_k$ for any $k \in \mathbb{Z}$. The *K*-algebra $R = K[[i, j] : 1 \le i < j \le 4] \subseteq S$ is the coordinate ring of the Grassmannian of lines in \mathbb{P}^3 . In particular dim(R) = 5. Moreover in characteristic zero R is a direct summand of S.

(4月) (4日) (4日)

Notice that $H^4(\mathbb{P}^7 \setminus X_3, \mathcal{O}(k)) \cong H^5_{\mathcal{I}(X_3)}(S)_k$ for any $k \in \mathbb{Z}$. The *K*-algebra $R = K[[i, j] : 1 \le i < j \le 4] \subseteq S$ is the coordinate ring of the Grassmannian of lines in \mathbb{P}^3 . In particular dim(R) = 5. Moreover in characteristic zero R is a direct summand of S. So

$$H^5_{\mathcal{I}(X_3)}(S) = H^5_{(\mathcal{I}(X_3) \cap R)S}(S) \cong H^5_{\mathcal{I}(X_3) \cap R}(S) \longleftrightarrow H^5_{\mathcal{I}(X_3) \cap R}(R).$$

(4月) (4日) (4日)

Notice that $H^4(\mathbb{P}^7 \setminus X_3, \mathcal{O}(k)) \cong H^5_{\mathcal{I}(X_3)}(S)_k$ for any $k \in \mathbb{Z}$. The *K*-algebra $R = K[[i, j] : 1 \le i < j \le 4] \subseteq S$ is the coordinate ring of the Grassmannian of lines in \mathbb{P}^3 . In particular dim(R) = 5. Moreover in characteristic zero *R* is a direct summand of *S*. So

$$H^5_{\mathcal{I}(X_3)}(S) = H^5_{(\mathcal{I}(X_3) \cap R)S}(S) \cong H^5_{\mathcal{I}(X_3) \cap R}(S) \hookrightarrow H^5_{\mathcal{I}(X_3) \cap R}(R).$$

Thus $H^4(\mathbb{P}^7 \setminus X_3, \mathcal{O}(k)) \neq 0 \ \forall \ k \ll 0$, so that in characteristic 0:

 $5 \leq \operatorname{cd}(\mathbb{P}^7 \setminus X_3) + 1 \leq \operatorname{ara}_{\mathbb{P}^7} X_3 \leq 5.$

・ 同 ト ・ ヨ ト ・ ヨ ト

Notice that $H^4(\mathbb{P}^7 \setminus X_3, \mathcal{O}(k)) \cong H^5_{\mathcal{I}(X_3)}(S)_k$ for any $k \in \mathbb{Z}$. The *K*-algebra $R = K[[i, j] : 1 \le i < j \le 4] \subseteq S$ is the coordinate ring of the Grassmannian of lines in \mathbb{P}^3 . In particular dim(R) = 5. Moreover in characteristic zero R is a direct summand of S. So

$$H^{5}_{\mathcal{I}(X_{3})}(S) = H^{5}_{(\mathcal{I}(X_{3})\cap R)S}(S) \cong H^{5}_{\mathcal{I}(X_{3})\cap R}(S) \hookrightarrow H^{5}_{\mathcal{I}(X_{3})\cap R}(R).$$

Thus $H^4(\mathbb{P}^7 \setminus X_3, \mathcal{O}(k)) \neq 0 \ \forall \ k \ll 0$, so that in characteristic 0:

 $5 \leq \operatorname{cd}(\mathbb{P}^7 \setminus X_3) + 1 \leq \operatorname{ara}_{\mathbb{P}^7} X_3 \leq 5.$

How can we do in positive characteristic?

Positive characteristic

Matteo Varbaro (University of Genoa, Italy) Defining equations of algebraic sets

・ロン ・回 と ・ ヨン ・ ヨン

æ

If char(K) > 0, then for any algebraic set $X = \mathcal{Z}(I) \subseteq \mathbb{P}^n$:

 $cd(\mathbb{P}^n \setminus X) \leq projdim(I).$

イロン イ部ン イヨン イヨン 三日

If char(K) > 0, then for any algebraic set $X = \mathcal{Z}(I) \subseteq \mathbb{P}^n$:

 $cd(\mathbb{P}^n \setminus X) \leq projdim(I).$

In the previous example $\operatorname{projdim}(I_2(Z)) = 2$,

<ロ> (四) (四) (三) (三) (三)

If char(K) > 0, then for any algebraic set $X = \mathcal{Z}(I) \subseteq \mathbb{P}^n$:

 $cd(\mathbb{P}^n \setminus X) \leq projdim(I).$

In the previous example $projdim(I_2(Z)) = 2$, therefore we have

$$\mathsf{cd}(\mathbb{P}^7 \setminus X_3) = egin{cases} 2 & ext{if } \mathsf{char}(K) > 0 \ 4 & ext{if } \mathsf{char}(K) = 0 \end{cases}$$

イロン イボン イヨン イヨン 三日

If char(K) > 0, then for any algebraic set $X = \mathcal{Z}(I) \subseteq \mathbb{P}^n$:

 $cd(\mathbb{P}^n \setminus X) \leq projdim(I).$

In the previous example $projdim(I_2(Z)) = 2$, therefore we have

$$\mathsf{cd}(\mathbb{P}^7 \setminus X_3) = egin{cases} 2 & ext{if } \mathsf{char}(\mathcal{K}) > 0 \ 4 & ext{if } \mathsf{char}(\mathcal{K}) = 0 \end{cases}$$

However, in 1990 Bruns and Schwänzl managed to prove that $\operatorname{ara}_{\mathbb{P}^7} X_3 = 5$ also in positive characteristic

イロン イ部ン イヨン イヨン 三日

So far we considered the **Zariski topology** on \mathbb{P}^n , which has as closed sets the algebraic sets.

▲□ ▶ ▲ □ ▶ ▲ □ ▶

So far we considered the **Zariski topology** on \mathbb{P}^n , which has as closed sets the algebraic sets. Another useful topology is the **étale topology**.

個 と く ヨ と く ヨ と

So far we considered the **Zariski topology** on \mathbb{P}^n , which has as closed sets the algebraic sets. Another useful topology is the **étale topology**. For a Zariski-open subset $U \subseteq \mathbb{P}^n$, denote by $U_{\text{ét}}$ the set U equipped with the étale topology

回 と く ヨ と く ヨ と

So far we considered the **Zariski topology** on \mathbb{P}^n , which has as closed sets the algebraic sets. Another useful topology is the **étale topology**. For a Zariski-open subset $U \subseteq \mathbb{P}^n$, denote by $U_{\text{ét}}$ the set U equipped with the étale topology and define its **étale cohomological dimension** as:

$$\begin{split} \operatorname{\acute{e}cd}_{\ell}(U) &= \sup\{s : H^{i}(U_{\operatorname{\acute{e}t}}, \mathcal{F}) \neq 0 \quad \text{for some } \ell\text{-torsion sheaf on } \mathbb{P}^{n}\} \\ \operatorname{\acute{e}cd}(U) &= \max\{\operatorname{\acute{e}cd}_{\ell}(U) : \operatorname{GCD}(\ell, \operatorname{char}(K)) = 1\} \end{split}$$

(1日) (日) (日)

So far we considered the **Zariski topology** on \mathbb{P}^n , which has as closed sets the algebraic sets. Another useful topology is the **étale topology**. For a Zariski-open subset $U \subseteq \mathbb{P}^n$, denote by $U_{\text{ét}}$ the set U equipped with the étale topology and define its **étale cohomological dimension** as:

$$\begin{split} \operatorname{\acute{e}cd}_{\ell}(U) &= \sup\{s : H^{i}(U_{\operatorname{\acute{e}t}}, \mathcal{F}) \neq 0 \quad \text{for some } \ell\text{-torsion sheaf on } \mathbb{P}^{n}\} \\ & \operatorname{\acute{e}cd}(U) = \max\{\operatorname{\acute{e}cd}_{\ell}(U) : \operatorname{GCD}(\ell, \operatorname{char}(\mathcal{K})) = 1\} \end{split}$$

Because $\operatorname{\acute{e}cd}(U) \leq n$ whenever U is affine, Mayer-Vietoris yields:

 $\operatorname{ara}_{\mathbb{P}^n} X \ge \operatorname{\acute{e}cd}(U) - n + 1$ for any algebraic set $X \subseteq \mathbb{P}^n$.

(ロ) (同) (E) (E) (E)

Étale VS Coherent

Matteo Varbaro (University of Genoa, Italy) Defining equations of algebraic sets

・ロン ・雪 と ・ ヨ と ・ ヨ と

æ

Étale VS Coherent

So far we have learnt that, given an algebraic set $X \subseteq \mathbb{P}^n$:

 $\operatorname{ara}_{\mathbb{P}^n} X \ge \max\{\operatorname{cd}(\mathbb{P}^n \setminus X) + 1, \ \operatorname{\acute{e}cd}(\mathbb{P}^n \setminus X) - n + 1\}.$

◆ロ > ◆母 > ◆臣 > ◆臣 > ○臣 - のへで

 $\operatorname{ara}_{\mathbb{P}^n} X \ge \max{\operatorname{cd}(\mathbb{P}^n \setminus X) + 1, \quad \operatorname{\acute{e}cd}(\mathbb{P}^n \setminus X) - n + 1}.$

Instance in which the above maximum is $> cd(\mathbb{P}^n \setminus X) + 1$ are known in any characteristic.

 $\operatorname{ara}_{\mathbb{P}^n} X \ge \max{\operatorname{cd}(\mathbb{P}^n \setminus X) + 1, \quad \operatorname{\acute{e}cd}(\mathbb{P}^n \setminus X) - n + 1}.$

Instance in which the above maximum is $> \operatorname{cd}(\mathbb{P}^n \setminus X) + 1$ are known in any characteristic. However, nowadays there is no example in which $\operatorname{cd}(\mathbb{P}^n \setminus X) > \operatorname{\acute{e}cd}(\mathbb{P}^n \setminus X) - n$.

· < @ > < 문 > < 문 > _ 문

 $\operatorname{ara}_{\mathbb{P}^n} X \ge \max{\operatorname{cd}(\mathbb{P}^n \setminus X) + 1, \quad \operatorname{\acute{e}cd}(\mathbb{P}^n \setminus X) - n + 1}.$

Instance in which the above maximum is $> \operatorname{cd}(\mathbb{P}^n \setminus X) + 1$ are known in any characteristic. However, nowadays there is no example in which $\operatorname{cd}(\mathbb{P}^n \setminus X) > \operatorname{\acute{e}cd}(\mathbb{P}^n \setminus X) - n$. In fact, in 2002 Lyubeznik conjectured that $\operatorname{cd}(\mathbb{P}^n \setminus X) \le \operatorname{\acute{e}cd}(\mathbb{P}^n \setminus X) - n$.

(1日) (日) (日)

 $\operatorname{ara}_{\mathbb{P}^n} X \ge \max{\operatorname{cd}(\mathbb{P}^n \setminus X) + 1, \quad \operatorname{\acute{e}cd}(\mathbb{P}^n \setminus X) - n + 1}.$

Instance in which the above maximum is $> \operatorname{cd}(\mathbb{P}^n \setminus X) + 1$ are known in any characteristic. However, nowadays there is no example in which $\operatorname{cd}(\mathbb{P}^n \setminus X) > \operatorname{\acute{e}cd}(\mathbb{P}^n \setminus X) - n$. In fact, in 2002 Lyubeznik conjectured that $\operatorname{cd}(\mathbb{P}^n \setminus X) \le \operatorname{\acute{e}cd}(\mathbb{P}^n \setminus X) - n$.

(_ , 2012)

For any nonsingular algebraic set $X \subseteq \mathbb{P}^n$, if char(K) = 0, then

$$\operatorname{cd}(\mathbb{P}^n\setminus X)\leq\operatorname{\acute{e}cd}(\mathbb{P}^n\setminus X)-n.$$

イロン イヨン イヨン イヨン

 $\operatorname{ara}_{\mathbb{P}^n} X \ge \max{\operatorname{cd}(\mathbb{P}^n \setminus X) + 1, \quad \operatorname{\acute{e}cd}(\mathbb{P}^n \setminus X) - n + 1}.$

Instance in which the above maximum is $> \operatorname{cd}(\mathbb{P}^n \setminus X) + 1$ are known in any characteristic. However, nowadays there is no example in which $\operatorname{cd}(\mathbb{P}^n \setminus X) > \operatorname{\acute{e}cd}(\mathbb{P}^n \setminus X) - n$. In fact, in 2002 Lyubeznik conjectured that $\operatorname{cd}(\mathbb{P}^n \setminus X) \le \operatorname{\acute{e}cd}(\mathbb{P}^n \setminus X) - n$.

(_ , 2012)

For any nonsingular algebraic set $X \subseteq \mathbb{P}^n$, if char(K) = 0, then

$$\operatorname{cd}(\mathbb{P}^n\setminus X)\leq\operatorname{\acute{e}cd}(\mathbb{P}^n\setminus X)-n.$$

イロン イヨン イヨン イヨン

- - 4 回 ト - 4 回 ト

æ

Recently, I realized that, for singular algebraic sets $X \subseteq \mathbb{P}^n$, it seems not even known that $\operatorname{\acute{e}cd}(\mathbb{P}^n \setminus X) \ge \operatorname{codim}_{\mathbb{P}^n} X + n - 1$,

(1日) (日) (日)

Recently, I realized that, for singular algebraic sets $X \subseteq \mathbb{P}^n$, it seems not even known that $\operatorname{\acute{e}cd}(\mathbb{P}^n \setminus X) \ge \operatorname{codim}_{\mathbb{P}^n} X + n - 1$, whereas the analog inequality $\operatorname{cd}(\mathbb{P}^n \setminus X) \ge \operatorname{codim}_{\mathbb{P}^n} X - 1$ is well-known.

・回 と く ヨ と く ヨ と

Recently, I realized that, for singular algebraic sets $X \subseteq \mathbb{P}^n$, it seems not even known that $\operatorname{\acute{e}cd}(\mathbb{P}^n \setminus X) \ge \operatorname{codim}_{\mathbb{P}^n} X + n - 1$, whereas the analog inequality $\operatorname{cd}(\mathbb{P}^n \setminus X) \ge \operatorname{codim}_{\mathbb{P}^n} X - 1$ is well-known. So I wish to make a question:

Is $\operatorname{\acute{e}cd}(\mathbb{P}^n \setminus X) \geq \operatorname{codim}_{\mathbb{P}^n} X + n - 1 \quad \forall \text{ algebraic set } X \subseteq \mathbb{P}^n$?

・回 ・ ・ ヨ ・ ・ ヨ ・

Open problems

Matteo Varbaro (University of Genoa, Italy) Defining equations of algebraic sets

æ

Coming back to the defining equations of algebraic sets $X \subseteq \mathbb{P}^n$,

(1日) (日) (日)

æ

 $\operatorname{ara}_{\mathbb{P}^n} X > \max\{\operatorname{cd}(\mathbb{P}^n \setminus X) + 1, \operatorname{\acute{e}cd}(\mathbb{P}^n \setminus X) - n + 1\}$?

(김희) (종) (종) 등

 $\operatorname{ara}_{\mathbb{P}^n} X > \max\{\operatorname{cd}(\mathbb{P}^n \setminus X) + 1, \operatorname{\acute{e}cd}(\mathbb{P}^n \setminus X) - n + 1\}$?

In particular, it is not known any connected curve in \mathbb{P}^3 which is not a set-theoretic complete intersection.

 $\operatorname{ara}_{\mathbb{P}^n} X > \max\{\operatorname{cd}(\mathbb{P}^n \setminus X) + 1, \operatorname{\acute{e}cd}(\mathbb{P}^n \setminus X) - n + 1\}$?

In particular, it is not known any connected curve in \mathbb{P}^3 which is not a set-theoretic complete intersection. For example:

Is $C = \{[s^4, s^3t, st^3, t^4] : [s, t] \in \mathbb{P}^1\} \subseteq \mathbb{P}^3$ a set-theoretic complete intersection when $char(\mathcal{K}) = 0$?

(4回) (注) (注) (注) (三)

 $\operatorname{ara}_{\mathbb{P}^n} X > \max\{\operatorname{cd}(\mathbb{P}^n \setminus X) + 1, \operatorname{\acute{e}cd}(\mathbb{P}^n \setminus X) - n + 1\}$?

In particular, it is not known any connected curve in \mathbb{P}^3 which is not a set-theoretic complete intersection. For example:

Is $C = \{[s^4, s^3t, st^3, t^4] : [s, t] \in \mathbb{P}^1\} \subseteq \mathbb{P}^3$ a set-theoretic complete intersection when $char(\mathcal{K}) = 0$?

The above question was originally stated by Hartshorne in 1979, when he proved that the above rational curve is a set-theoretic complete intersection in positive characteristic

(ロ) (同) (E) (E) (E)

- W. Bruns, R. Schwänzl, *The number of equations defining a determinantal variety*, Bull. Lond. Math. Soc. 22, 1990.
- G. Faltings, Some theorems about formal functions, Publ. of R.I.M.S. Kyoto 16, 1980.
- D. Eisenbud, E.G. Evans, *Every Algebraic Set in n-Space is the Intersection of n Hypersurface*, Invent. Math. 19, 1972.
- G. Lyubeznik, A Partial Survey of Local Cohomology, Lect. notes in pure and appl. math. 226, 2002.
- R. Hartshorne, *Complete intersections in characteristic* p > 0, Amer. J. Math. 101, 1979.
- C. Peskine, L. Szpiro, Dimension projective finie et cohomologie locale. Applications à la démonstration de conjectures de M. Auslander, H. Bass et A. Grothendieck, Inst. Hautes Études Sci. Publ. Math. 42, 1973.

・ロット (四) (日) (日)

3

 M. Varbaro, Arithmetical rank of certain Segre embeddings, Trans. Amer. Math. Soc. 364, 2012.