Defining equations of algebraic sets

Matteo Varbaro (University of Genoa, Italy)

December 10th 2015, MPI-Oberseminar, Bonn, Germany

Algebraic sets

Algebraic sets

$$
K=\bar{K} \text { field, }
$$

Algebraic sets

$K=\bar{K}$ field, $S=K\left[x_{0}, \ldots, x_{n}\right]$ polynomial ring.

Algebraic sets

$K=\bar{K}$ field, $S=K\left[x_{0}, \ldots, x_{n}\right]$ polynomial ring.
Given a set $\mathcal{A} \subseteq S$ of homogeneous polynomials, its zero-locus is:

$$
\mathcal{Z}(\mathcal{A})=\left\{P \in \mathbb{P}^{n}(K): f(P)=0 \forall f \in \mathcal{A}\right\} \subseteq \mathbb{P}^{n}(K) .
$$

Algebraic sets

$K=\bar{K}$ field, $S=K\left[x_{0}, \ldots, x_{n}\right]$ polynomial ring.
Given a set $\mathcal{A} \subseteq S$ of homogeneous polynomials, its zero-locus is:

$$
\mathcal{Z}(\mathcal{A})=\left\{P \in \mathbb{P}^{n}(K): f(P)=0 \forall f \in \mathcal{A}\right\} \subseteq \mathbb{P}^{n}(K) .
$$

Subsets of $\mathbb{P}^{n}=\mathbb{P}^{n}(K)$ as above are called algebraic sets.

Algebraic sets

$K=\bar{K}$ field, $S=K\left[x_{0}, \ldots, x_{n}\right]$ polynomial ring.
Given a set $\mathcal{A} \subseteq S$ of homogeneous polynomials, its zero-locus is:

$$
\mathcal{Z}(\mathcal{A})=\left\{P \in \mathbb{P}^{n}(K): f(P)=0 \forall f \in \mathcal{A}\right\} \subseteq \mathbb{P}^{n}(K) .
$$

Subsets of $\mathbb{P}^{n}=\mathbb{P}^{n}(K)$ as above are called algebraic sets.
Since $\mathcal{Z}(\mathcal{A})=\mathcal{Z}((\mathcal{A}))$ (where (\mathcal{A}) means the ideal of S generated by \mathcal{A}) by the Hilbert's basis theorem every algebraic set is the zero-locus of finitely many (homogeneous) polynomials.

Algebraic sets

$K=\bar{K}$ field, $S=K\left[x_{0}, \ldots, x_{n}\right]$ polynomial ring.
Given a set $\mathcal{A} \subseteq S$ of homogeneous polynomials, its zero-locus is:

$$
\mathcal{Z}(\mathcal{A})=\left\{P \in \mathbb{P}^{n}(K): f(P)=0 \forall f \in \mathcal{A}\right\} \subseteq \mathbb{P}^{n}(K) .
$$

Subsets of $\mathbb{P}^{n}=\mathbb{P}^{n}(K)$ as above are called algebraic sets.
Since $\mathcal{Z}(\mathcal{A})=\mathcal{Z}((\mathcal{A}))$ (where (\mathcal{A}) means the ideal of S generated by \mathcal{A}) by the Hilbert's basis theorem every algebraic set is the zero-locus of finitely many (homogeneous) polynomials. Today, we will discuss the following question:

How many polynomials are needed to define an algebraic set?

Algebraic sets

Given a subset $X \subseteq \mathbb{P}^{n}$, the set of polynomials vanishing at X is:

$$
\mathcal{I}(X)=\{f \in S: f(P)=0 \forall P \in X\} .
$$

Algebraic sets

Given a subset $X \subseteq \mathbb{P}^{n}$, the set of polynomials vanishing at X is:

$$
\mathcal{I}(X)=\{f \in S: f(P)=0 \forall P \in X\} .
$$

As it turns out, $\mathcal{I}(X)$ is a radical ideal of S and, by Hilbert's Nullstellensatz, for any ideal $I \subseteq S$ we have:

$$
\mathcal{I}(\mathcal{Z}(I))=\sqrt{I}
$$

Algebraic sets

Given a subset $X \subseteq \mathbb{P}^{n}$, the set of polynomials vanishing at X is:

$$
\mathcal{I}(X)=\{f \in S: f(P)=0 \forall P \in X\} .
$$

As it turns out, $\mathcal{I}(X)$ is a radical ideal of S and, by Hilbert's Nullstellensatz, for any ideal $I \subseteq S$ we have:

$$
\mathcal{I}(\mathcal{Z}(I))=\sqrt{I}
$$

Further, $\mathcal{Z}(\mathcal{I}(X))=X$ whenever $X \subseteq \mathbb{P}^{n}$ is an algebraic set.

Algebraic sets

Given a subset $X \subseteq \mathbb{P}^{n}$, the set of polynomials vanishing at X is:

$$
\mathcal{I}(X)=\{f \in S: f(P)=0 \forall P \in X\} .
$$

As it turns out, $\mathcal{I}(X)$ is a radical ideal of S and, by Hilbert's Nullstellensatz, for any ideal $I \subseteq S$ we have:

$$
\mathcal{I}(\mathcal{Z}(I))=\sqrt{I}
$$

Further, $\mathcal{Z}(\mathcal{I}(X))=X$ whenever $X \subseteq \mathbb{P}^{n}$ is an algebraic set.
At a first thought, one could imagine that the optimal number of polynomials defining an algebraic set $X=\mathcal{Z}(I) \subseteq \mathbb{P}^{n}$ is exactly the number of minimal generators of $\mathcal{I}(X) \subseteq S$.

Algebraic sets

Given a subset $X \subseteq \mathbb{P}^{n}$, the set of polynomials vanishing at X is:

$$
\mathcal{I}(X)=\{f \in S: f(P)=0 \forall P \in X\} .
$$

As it turns out, $\mathcal{I}(X)$ is a radical ideal of S and, by Hilbert's Nullstellensatz, for any ideal $I \subseteq S$ we have:

$$
\mathcal{I}(\mathcal{Z}(I))=\sqrt{I}
$$

Further, $\mathcal{Z}(\mathcal{I}(X))=X$ whenever $X \subseteq \mathbb{P}^{n}$ is an algebraic set.
At a first thought, one could imagine that the optimal number of polynomials defining an algebraic set $X=\mathcal{Z}(I) \subseteq \mathbb{P}^{n}$ is exactly the number of minimal generators of $\mathcal{I}(X) \subseteq S$.

This, however, is far to be true

Example I

$$
X_{1}=\left\{\left[s^{3}, s^{2} t, s t^{2}, t^{3}\right]:[s, t] \in \mathbb{P}^{1}\right\} \subseteq \mathbb{P}^{3} \text { is an algebraic set and }
$$

$$
\begin{gathered}
X_{1}=\left\{\left[s^{3}, s^{2} t, s t^{2}, t^{3}\right]:[s, t] \in \mathbb{P}^{1}\right\} \subseteq \mathbb{P}^{3} \text { is an algebraic set and } \\
\mathcal{I}\left(X_{1}\right)=(a, b, c) \subseteq S=K\left[x_{0}, x_{1}, x_{2}, x_{3}\right],
\end{gathered}
$$

where $a=x_{0} x_{2}-x_{1}^{2}, b=x_{1} x_{3}-x_{2}^{2}, c=x_{0} x_{3}-x_{1} x_{2}$.
$X_{1}=\left\{\left[s^{3}, s^{2} t, s t^{2}, t^{3}\right]:[s, t] \in \mathbb{P}^{1}\right\} \subseteq \mathbb{P}^{3}$ is an algebraic set and

$$
\mathcal{I}\left(X_{1}\right)=(a, b, c) \subseteq S=K\left[x_{0}, x_{1}, x_{2}, x_{3}\right],
$$

where $a=x_{0} x_{2}-x_{1}^{2}, b=x_{1} x_{3}-x_{2}^{2}, c=x_{0} x_{3}-x_{1} x_{2}$. By setting:

$$
f=a=x_{0} x_{2}-x_{1}^{2} \text { and } g=x_{3} c-x_{2} b=x_{0} x_{3}^{2}-2 x_{1} x_{2} x_{3}+x_{2}^{3},
$$

$X_{1}=\left\{\left[s^{3}, s^{2} t, s t^{2}, t^{3}\right]:[s, t] \in \mathbb{P}^{1}\right\} \subseteq \mathbb{P}^{3}$ is an algebraic set and

$$
\mathcal{I}\left(X_{1}\right)=(a, b, c) \subseteq S=K\left[x_{0}, x_{1}, x_{2}, x_{3}\right],
$$

where $a=x_{0} x_{2}-x_{1}^{2}, b=x_{1} x_{3}-x_{2}^{2}, c=x_{0} x_{3}-x_{1} x_{2}$. By setting:

$$
f=a=x_{0} x_{2}-x_{1}^{2} \text { and } g=x_{3} c-x_{2} b=x_{0} x_{3}^{2}-2 x_{1} x_{2} x_{3}+x_{2}^{3},
$$

we claim that $X_{1}=\mathcal{Z}(a, b, c)=\mathcal{Z}(f, g)$.
$X_{1}=\left\{\left[s^{3}, s^{2} t, s t^{2}, t^{3}\right]:[s, t] \in \mathbb{P}^{1}\right\} \subseteq \mathbb{P}^{3}$ is an algebraic set and

$$
\mathcal{I}\left(X_{1}\right)=(a, b, c) \subseteq S=K\left[x_{0}, x_{1}, x_{2}, x_{3}\right],
$$

where $a=x_{0} x_{2}-x_{1}^{2}, b=x_{1} x_{3}-x_{2}^{2}, c=x_{0} x_{3}-x_{1} x_{2}$. By setting:

$$
f=a=x_{0} x_{2}-x_{1}^{2} \text { and } g=x_{3} c-x_{2} b=x_{0} x_{3}^{2}-2 x_{1} x_{2} x_{3}+x_{2}^{3},
$$

we claim that $X_{1}=\mathcal{Z}(a, b, c)=\mathcal{Z}(f, g)$. Obviously $\mathcal{Z}(a, b, c)$ is contained in $\mathcal{Z}(f, g)$,
$X_{1}=\left\{\left[s^{3}, s^{2} t, s t^{2}, t^{3}\right]:[s, t] \in \mathbb{P}^{1}\right\} \subseteq \mathbb{P}^{3}$ is an algebraic set and

$$
\mathcal{I}\left(X_{1}\right)=(a, b, c) \subseteq S=K\left[x_{0}, x_{1}, x_{2}, x_{3}\right],
$$

where $a=x_{0} x_{2}-x_{1}^{2}, b=x_{1} x_{3}-x_{2}^{2}, c=x_{0} x_{3}-x_{1} x_{2}$. By setting:

$$
f=a=x_{0} x_{2}-x_{1}^{2} \text { and } g=x_{3} c-x_{2} b=x_{0} x_{3}^{2}-2 x_{1} x_{2} x_{3}+x_{2}^{3},
$$

we claim that $X_{1}=\mathcal{Z}(a, b, c)=\mathcal{Z}(f, g)$. Obviously $\mathcal{Z}(a, b, c)$ is contained in $\mathcal{Z}(f, g)$, for the other inclusion we have to prove that any point $P \in \mathcal{Z}(f, g)$ satisfies $b(P)=c(P)=0$.

Example I

Example I

Recall that $a=x_{0} x_{2}-x_{1}^{2}, b=x_{1} x_{3}-x_{2}^{2}, c=x_{0} x_{3}-x_{1} x_{2}$ and

$$
f=x_{0} x_{2}-x_{1}^{2}, \quad g=x_{0} x_{3}^{2}-2 x_{1} x_{2} x_{3}+x_{2}^{3} .
$$

Recall that $a=x_{0} x_{2}-x_{1}^{2}, b=x_{1} x_{3}-x_{2}^{2}, c=x_{0} x_{3}-x_{1} x_{2}$ and

$$
f=x_{0} x_{2}-x_{1}^{2}, \quad g=x_{0} x_{3}^{2}-2 x_{1} x_{2} x_{3}+x_{2}^{3} .
$$

Let $P=\left[P_{0}, P_{1}, P_{2}, P_{3}\right] \in \mathcal{Z}(f, g)$.

Recall that $a=x_{0} x_{2}-x_{1}^{2}, b=x_{1} x_{3}-x_{2}^{2}, c=x_{0} x_{3}-x_{1} x_{2}$ and

$$
f=x_{0} x_{2}-x_{1}^{2}, \quad g=x_{0} x_{3}^{2}-2 x_{1} x_{2} x_{3}+x_{2}^{3} .
$$

Let $P=\left[P_{0}, P_{1}, P_{2}, P_{3}\right] \in \mathcal{Z}(f, g)$.

- $P_{2}=0 \xlongequal{f(P)=0} P_{1}=0$

Recall that $a=x_{0} x_{2}-x_{1}^{2}, b=x_{1} x_{3}-x_{2}^{2}, c=x_{0} x_{3}-x_{1} x_{2}$ and

$$
f=x_{0} x_{2}-x_{1}^{2}, \quad g=x_{0} x_{3}^{2}-2 x_{1} x_{2} x_{3}+x_{2}^{3} .
$$

Let $P=\left[P_{0}, P_{1}, P_{2}, P_{3}\right] \in \mathcal{Z}(f, g)$.

- $P_{2}=0 \xlongequal{f(P)=0} P_{1}=0 \xrightarrow{g(P)=0} P_{0} P_{3}^{2}=P_{0} P_{3}=0$.

Recall that $a=x_{0} x_{2}-x_{1}^{2}, b=x_{1} x_{3}-x_{2}^{2}, c=x_{0} x_{3}-x_{1} x_{2}$ and

$$
f=x_{0} x_{2}-x_{1}^{2}, \quad g=x_{0} x_{3}^{2}-2 x_{1} x_{2} x_{3}+x_{2}^{3} .
$$

Let $P=\left[P_{0}, P_{1}, P_{2}, P_{3}\right] \in \mathcal{Z}(f, g)$.

- $P_{2}=0 \xlongequal{f(P)=0} P_{1}=0 \xlongequal{g(P)=0} P_{0} P_{3}^{2}=P_{0} P_{3}=0$. So both b and c vanish at P.

Recall that $a=x_{0} x_{2}-x_{1}^{2}, b=x_{1} x_{3}-x_{2}^{2}, c=x_{0} x_{3}-x_{1} x_{2}$ and

$$
f=x_{0} x_{2}-x_{1}^{2}, \quad g=x_{0} x_{3}^{2}-2 x_{1} x_{2} x_{3}+x_{2}^{3} .
$$

Let $P=\left[P_{0}, P_{1}, P_{2}, P_{3}\right] \in \mathcal{Z}(f, g)$.

- $P_{2}=0 \xlongequal{f(P)=0} P_{1}=0 \xlongequal{g(P)=0} P_{0} P_{3}^{2}=P_{0} P_{3}=0$. So both b and c vanish at P.
- $P_{2}=1 \xlongequal{f(P)=0} P_{0}=P_{1}^{2}$

Recall that $a=x_{0} x_{2}-x_{1}^{2}, b=x_{1} x_{3}-x_{2}^{2}, c=x_{0} x_{3}-x_{1} x_{2}$ and

$$
f=x_{0} x_{2}-x_{1}^{2}, \quad g=x_{0} x_{3}^{2}-2 x_{1} x_{2} x_{3}+x_{2}^{3} .
$$

Let $P=\left[P_{0}, P_{1}, P_{2}, P_{3}\right] \in \mathcal{Z}(f, g)$.

- $P_{2}=0 \xlongequal{f(P)=0} P_{1}=0 \xlongequal{g(P)=0} P_{0} P_{3}^{2}=P_{0} P_{3}=0$. So both b and c vanish at P.
- $P_{2}=1 \xlongequal{f(P)=0} P_{0}=P_{1}^{2} \xrightarrow{g(P)=0}\left(P_{1} P_{3}\right)^{2}-2 P_{1} P_{3}+1=0$.

Recall that $a=x_{0} x_{2}-x_{1}^{2}, b=x_{1} x_{3}-x_{2}^{2}, c=x_{0} x_{3}-x_{1} x_{2}$ and

$$
f=x_{0} x_{2}-x_{1}^{2}, \quad g=x_{0} x_{3}^{2}-2 x_{1} x_{2} x_{3}+x_{2}^{3} .
$$

Let $P=\left[P_{0}, P_{1}, P_{2}, P_{3}\right] \in \mathcal{Z}(f, g)$.

- $P_{2}=0 \xlongequal{f(P)=0} P_{1}=0 \xlongequal{g(P)=0} P_{0} P_{3}^{2}=P_{0} P_{3}=0$. So both b and c vanish at P.
- $P_{2}=1 \xlongequal{f(P)=0} P_{0}=P_{1}^{2} \xrightarrow{g(P)=0}\left(P_{1} P_{3}\right)^{2}-2 P_{1} P_{3}+1=0$.

So $P_{1} P_{3}=1$ and $b(P)=0$.

Recall that $a=x_{0} x_{2}-x_{1}^{2}, b=x_{1} x_{3}-x_{2}^{2}, c=x_{0} x_{3}-x_{1} x_{2}$ and

$$
f=x_{0} x_{2}-x_{1}^{2}, \quad g=x_{0} x_{3}^{2}-2 x_{1} x_{2} x_{3}+x_{2}^{3} .
$$

Let $P=\left[P_{0}, P_{1}, P_{2}, P_{3}\right] \in \mathcal{Z}(f, g)$.

- $P_{2}=0 \xlongequal{f(P)=0} P_{1}=0 \xlongequal{g(P)=0} P_{0} P_{3}^{2}=P_{0} P_{3}=0$. So both b and c vanish at P.
- $P_{2}=1 \xlongequal{f(P)=0} P_{0}=P_{1}^{2} \xrightarrow{g(P)=0}\left(P_{1} P_{3}\right)^{2}-2 P_{1} P_{3}+1=0$.

So $P_{1} P_{3}=1$ and $b(P)=0$. Further

$$
c(P)=P_{0} P_{3}-P_{1} P_{2}=P_{1}^{2} P_{3}-P_{1}=P_{1}-P_{1}=0 .
$$

Arithmetical rank

Arithmetical rank

So we found out that $X_{1} \subseteq \mathbb{P}^{3}$ is the zero-locus of 2 polynomials.

Arithmetical rank

So we found out that $X_{1} \subseteq \mathbb{P}^{3}$ is the zero-locus of 2 polynomials. Can we do better?

Arithmetical rank

So we found out that $X_{1} \subseteq \mathbb{P}^{3}$ is the zero-locus of 2 polynomials. Can we do better? No, because at least as many polynomials as the codimension are needed.

Arithmetical rank

So we found out that $X_{1} \subseteq \mathbb{P}^{3}$ is the zero-locus of 2 polynomials. Can we do better? No, because at least as many polynomials as the codimension are needed. Let us be more precise

Arithmetical rank

So we found out that $X_{1} \subseteq \mathbb{P}^{3}$ is the zero-locus of 2 polynomials. Can we do better? No, because at least as many polynomials as the codimension are needed. Let us be more precise

The arithmetical rank of an algebraic set $X \subseteq \mathbb{P}^{n}$ is:

$$
\operatorname{ara}_{\mathbb{P}^{n}} X=\min \left\{r \mid \exists f_{1}, \ldots, f_{r} \in S: X=\mathcal{Z}\left(f_{1}, \ldots, f_{r}\right)\right\} .
$$

So we found out that $X_{1} \subseteq \mathbb{P}^{3}$ is the zero-locus of 2 polynomials. Can we do better? No, because at least as many polynomials as the codimension are needed. Let us be more precise

The arithmetical rank of an algebraic set $X \subseteq \mathbb{P}^{n}$ is:

$$
\operatorname{ara}_{\mathbb{P}^{n}} X=\min \left\{r \mid \exists f_{1}, \ldots, f_{r} \in S: X=\mathcal{Z}\left(f_{1}, \ldots, f_{r}\right)\right\} .
$$

By the Krull's Hauptidealsatz $\operatorname{ara}_{\mathbb{P}^{n}} X \geq \operatorname{codim}_{\mathbb{P}^{n}} X$.

So we found out that $X_{1} \subseteq \mathbb{P}^{3}$ is the zero-locus of 2 polynomials. Can we do better? No, because at least as many polynomials as the codimension are needed. Let us be more precise

The arithmetical rank of an algebraic set $X \subseteq \mathbb{P}^{n}$ is:

$$
\operatorname{ara}_{\mathbb{P}^{n}} X=\min \left\{r \mid \exists f_{1}, \ldots, f_{r} \in S: X=\mathcal{Z}\left(f_{1}, \ldots, f_{r}\right)\right\} .
$$

By the Krull's Hauptidealsatz $\operatorname{ara}_{\mathbb{P}^{n}} X \geq \operatorname{codim}_{\mathbb{P}^{n}} X$.
We can therefore conclude that, in Example I:

$$
\operatorname{ara}_{\mathbb{P}^{3}} X_{1}=2=\operatorname{codim}_{\mathbb{P}^{3}} X_{1} .
$$

Set-theoretic complete intersections

Wouldn't happen to be

$$
\operatorname{ara}_{\mathbb{P}^{n}} X=\operatorname{codim}_{\mathbb{P}^{n}} X
$$

for any algebraic set $X \subseteq \mathbb{P}^{n}$?

Wouldn't happen to be

$$
\operatorname{ara}_{\mathbb{P}^{n}} X=\operatorname{codim}_{\mathbb{P}^{n}} X
$$

for any algebraic set $X \subseteq \mathbb{P}^{n}$? No, for example:

(Faltings, 1980)

If $Y \subseteq \mathbb{P}^{n}$ is an irreducible d-dimensional algebraic set and $X \subseteq \mathbb{P}^{n}$ is the zero-locus of $<d$ polynomials, then $X \cap Y$ must be connected.

Wouldn't happen to be

$$
\operatorname{ara}_{\mathbb{P}^{n}} X=\operatorname{codim}_{\mathbb{P}^{n}} X
$$

for any algebraic set $X \subseteq \mathbb{P}^{n}$? No, for example:

(Faltings, 1980)

If $Y \subseteq \mathbb{P}^{n}$ is an irreducible d-dimensional algebraic set and $X \subseteq \mathbb{P}^{n}$ is the zero-locus of $<d$ polynomials, then $X \cap Y$ must be connected. In particular, $\operatorname{ara}_{\mathbb{P}^{n}} X<n \Longrightarrow X$ is connected.

Wouldn't happen to be

$$
\operatorname{ara}_{\mathbb{P}^{n}} X=\operatorname{codim}_{\mathbb{P}^{n}} X
$$

for any algebraic set $X \subseteq \mathbb{P}^{n}$? No, for example:

(Faltings, 1980)

If $Y \subseteq \mathbb{P}^{n}$ is an irreducible d-dimensional algebraic set and $X \subseteq \mathbb{P}^{n}$ is the zero-locus of $<d$ polynomials, then $X \cap Y$ must be connected. In particular, $\operatorname{ara}_{\mathbb{P}^{n}} X<n \Longrightarrow X$ is connected.

It therefore makes sense to name $X \subseteq \mathbb{P}^{n}$ a set-theoretic complete intersection if $\operatorname{ara}_{\mathbb{P}^{n}} X=\operatorname{codim}_{\mathbb{P}^{n}} X$.

Example II

Let $X_{2}=\left\{[s, t, 0,0]:[s, t] \in \mathbb{P}^{1}\right\} \cup\left\{[0,0, s, t]:[s, t] \in \mathbb{P}^{1}\right\} \subseteq \mathbb{P}^{3}$.

Let $X_{2}=\left\{[s, t, 0,0]:[s, t] \in \mathbb{P}^{1}\right\} \cup\left\{[0,0, s, t]:[s, t] \in \mathbb{P}^{1}\right\} \subseteq \mathbb{P}^{3}$.
For what said before, since X_{2} is not connected we have

$$
\operatorname{ara}_{\mathbb{P}^{3}} X_{2} \geq 3>2=\operatorname{codim}_{\mathbb{P}^{3}} X_{2} .
$$

Let $X_{2}=\left\{[s, t, 0,0]:[s, t] \in \mathbb{P}^{1}\right\} \cup\left\{[0,0, s, t]:[s, t] \in \mathbb{P}^{1}\right\} \subseteq \mathbb{P}^{3}$.
For what said before, since X_{2} is not connected we have

$$
\operatorname{ara}_{\mathbb{P}^{3}} X_{2} \geq 3>2=\operatorname{codim}_{\mathbb{P}^{3}} X_{2} .
$$

On the other hand, if $S=K\left[x_{0}, x_{1}, x_{2}, x_{3}\right]$, we have

$$
\mathcal{I}\left(X_{2}\right)=\left(x_{2}, x_{3}\right) \cap\left(x_{0}, x_{1}\right)=\left(x_{0} x_{2}, x_{0} x_{3}, x_{1} x_{2}, x_{1} x_{3}\right) \subseteq S .
$$

Let $X_{2}=\left\{[s, t, 0,0]:[s, t] \in \mathbb{P}^{1}\right\} \cup\left\{[0,0, s, t]:[s, t] \in \mathbb{P}^{1}\right\} \subseteq \mathbb{P}^{3}$.
For what said before, since X_{2} is not connected we have

$$
\operatorname{ara}_{\mathbb{P}^{3}} X_{2} \geq 3>2=\operatorname{codim}_{\mathbb{P}^{3}} X_{2} .
$$

On the other hand, if $S=K\left[x_{0}, x_{1}, x_{2}, x_{3}\right]$, we have

$$
\mathcal{I}\left(X_{2}\right)=\left(x_{2}, x_{3}\right) \cap\left(x_{0}, x_{1}\right)=\left(x_{0} x_{2}, x_{0} x_{3}, x_{1} x_{2}, x_{1} x_{3}\right) \subseteq S .
$$

If $I=(a, b, c) \subseteq S$ with $a=x_{0} x_{2}+x_{0} x_{3}+x_{1} x_{2}+x_{1} x_{3}, b=x_{0} x_{1} x_{2}$
$+x_{0} x_{1} x_{3}+x_{0} x_{2} x_{3}+x_{1} x_{2} x_{3}$ and $c=x_{0} x_{1} x_{2} x_{3}$, then $\sqrt{I}=\mathcal{I}\left(X_{2}\right)$.

Let $X_{2}=\left\{[s, t, 0,0]:[s, t] \in \mathbb{P}^{1}\right\} \cup\left\{[0,0, s, t]:[s, t] \in \mathbb{P}^{1}\right\} \subseteq \mathbb{P}^{3}$.
For what said before, since X_{2} is not connected we have

$$
\operatorname{ara}_{\mathbb{P}^{3}} X_{2} \geq 3>2=\operatorname{codim}_{\mathbb{P}^{3}} X_{2} .
$$

On the other hand, if $S=K\left[x_{0}, x_{1}, x_{2}, x_{3}\right]$, we have

$$
\mathcal{I}\left(X_{2}\right)=\left(x_{2}, x_{3}\right) \cap\left(x_{0}, x_{1}\right)=\left(x_{0} x_{2}, x_{0} x_{3}, x_{1} x_{2}, x_{1} x_{3}\right) \subseteq S .
$$

If $I=(a, b, c) \subseteq S$ with $a=x_{0} x_{2}+x_{0} x_{3}+x_{1} x_{2}+x_{1} x_{3}, b=x_{0} x_{1} x_{2}$
$+x_{0} x_{1} x_{3}+x_{0} x_{2} x_{3}+x_{1} x_{2} x_{3}$ and $c=x_{0} x_{1} x_{2} x_{3}$, then $\sqrt{I}=\mathcal{I}\left(X_{2}\right)$.
So $X_{2}=\mathcal{Z}(I)$, and arap $X_{2}=3$.

A general upper bound

What happened before is not a case:

A general upper bound

What happened before is not a case:

Eisenbud-Evans, 1972

For any nonempty algebraic set $X \subseteq \mathbb{P}^{n}$:

$$
\operatorname{ara}_{\mathbb{P}^{n}} X \leq n .
$$

A general upper bound

What happened before is not a case:

Eisenbud-Evans, 1972

For any nonempty algebraic set $X \subseteq \mathbb{P}^{n}$:

$$
\operatorname{ara}_{\mathbb{P}^{n}} X \leq n .
$$

Summarizing, so far we learnt that:

- $\operatorname{codim}_{\mathbb{P}^{n}} X \leq \operatorname{ara}_{\mathbb{P}^{n}} X \leq n$ for any algebraic set $\emptyset \neq X \subseteq \mathbb{P}^{n}$;

A general upper bound

What happened before is not a case:

Eisenbud-Evans, 1972

For any nonempty algebraic set $X \subseteq \mathbb{P}^{n}$:

$$
\operatorname{ara}_{\mathbb{P}^{n}} X \leq n .
$$

Summarizing, so far we learnt that:

- $\operatorname{codim}_{\mathbb{P}^{n}} X \leq \operatorname{ara}_{\mathbb{P}^{n}} X \leq n$ for any algebraic set $\emptyset \neq X \subseteq \mathbb{P}^{n}$;
- $\operatorname{arap}^{\mathrm{p}} X=n$ whenever X is not connected.

A general upper bound

What happened before is not a case:

Eisenbud-Evans, 1972

For any nonempty algebraic set $X \subseteq \mathbb{P}^{n}$:

$$
\operatorname{ara}_{\mathbb{P}^{n}} X \leq n .
$$

Summarizing, so far we learnt that:

- $\operatorname{codim}_{\mathbb{P}^{n}} X \leq \operatorname{ara}_{\mathbb{P}^{n}} X \leq n$ for any algebraic set $\emptyset \neq X \subseteq \mathbb{P}^{n}$;
- $\operatorname{arap}^{\mathrm{p}} X=n$ whenever X is not connected.

How to produce other lower bounds?

Cohomological dimension

Let $X \subseteq \mathbb{P}^{n}$ be an algebraic set such that $X=\mathcal{Z}\left(f_{1}, \ldots, f_{r}\right)$.

Cohomological dimension

Let $X \subseteq \mathbb{P}^{n}$ be an algebraic set such that $X=\mathcal{Z}\left(f_{1}, \ldots, f_{r}\right)$. Notice that $U\left(f_{i}\right)=\mathbb{P}^{n} \backslash \mathcal{Z}\left(f_{i}\right)$ is affine,

Cohomological dimension

Let $X \subseteq \mathbb{P}^{n}$ be an algebraic set such that $X=\mathcal{Z}\left(f_{1}, \ldots, f_{r}\right)$. Notice that $U\left(f_{i}\right)=\mathbb{P}^{n} \backslash \mathcal{Z}\left(f_{i}\right)$ is affine, and that:

$$
\mathbb{P}^{n} \backslash X=U\left(f_{1}\right) \cup \ldots \cup U\left(f_{r}\right)
$$

Cohomological dimension

Let $X \subseteq \mathbb{P}^{n}$ be an algebraic set such that $X=\mathcal{Z}\left(f_{1}, \ldots, f_{r}\right)$. Notice that $U\left(f_{i}\right)=\mathbb{P}^{n} \backslash \mathcal{Z}\left(f_{i}\right)$ is affine, and that:

$$
\mathbb{P}^{n} \backslash X=U\left(f_{1}\right) \cup \ldots \cup U\left(f_{r}\right)
$$

Therefore, by means of the Čech cohomology, $H^{i}\left(\mathbb{P}^{n} \backslash X, \mathcal{F}\right)=0$ for any $i \geq r$ and each quasi-coherent sheaf \mathcal{F} on \mathbb{P}^{n}.

Cohomological dimension

Let $X \subseteq \mathbb{P}^{n}$ be an algebraic set such that $X=\mathcal{Z}\left(f_{1}, \ldots, f_{r}\right)$.
Notice that $U\left(f_{i}\right)=\mathbb{P}^{n} \backslash \mathcal{Z}\left(f_{i}\right)$ is affine, and that:

$$
\mathbb{P}^{n} \backslash X=U\left(f_{1}\right) \cup \ldots \cup U\left(f_{r}\right)
$$

Therefore, by means of the Čech cohomology, $H^{i}\left(\mathbb{P}^{n} \backslash X, \mathcal{F}\right)=0$ for any $i \geq r$ and each quasi-coherent sheaf \mathcal{F} on \mathbb{P}^{n}.

The (coherent) cohomological dimension of an open set $U \subseteq \mathbb{P}^{n}$:
$\operatorname{cd}(U)=\sup \left\{s: H^{s}(U, \mathcal{F}) \neq 0 \quad\right.$ for some coherent sheaf on $\left.\mathbb{P}^{n}\right\}$.

Cohomological dimension

Let $X \subseteq \mathbb{P}^{n}$ be an algebraic set such that $X=\mathcal{Z}\left(f_{1}, \ldots, f_{r}\right)$.
Notice that $U\left(f_{i}\right)=\mathbb{P}^{n} \backslash \mathcal{Z}\left(f_{i}\right)$ is affine, and that:

$$
\mathbb{P}^{n} \backslash X=U\left(f_{1}\right) \cup \ldots \cup U\left(f_{r}\right)
$$

Therefore, by means of the Čech cohomology, $H^{i}\left(\mathbb{P}^{n} \backslash X, \mathcal{F}\right)=0$ for any $i \geq r$ and each quasi-coherent sheaf \mathcal{F} on \mathbb{P}^{n}.

The (coherent) cohomological dimension of an open set $U \subseteq \mathbb{P}^{n}$:

$$
\operatorname{cd}(U)=\sup \left\{s: H^{s}(U, \mathcal{F}) \neq 0 \quad \text { for some coherent sheaf on } \mathbb{P}^{n}\right\}
$$

For what said above, for any algebraic set $X \subseteq \mathbb{P}^{n}$ we have:

$$
\operatorname{ara}_{\mathbb{P}^{n}} X \geq \operatorname{cd}\left(\mathbb{P}^{n} \backslash X\right)+1
$$

Example III

Let $X_{3} \subseteq \mathbb{P}^{7}$ be the set of 2×4 matrices of rank at most 1 .

Example III

Let $X_{3} \subseteq \mathbb{P}^{7}$ be the set of 2×4 matrices of rank at most 1 . So $S=K[Z]$ where

$$
Z=\left(\begin{array}{llll}
z_{11} & z_{12} & z_{13} & z_{14} \\
z_{21} & z_{22} & z_{23} & z_{24}
\end{array}\right)
$$

Let $X_{3} \subseteq \mathbb{P}^{7}$ be the set of 2×4 matrices of rank at most 1 . So $S=K[Z]$ where

$$
Z=\left(\begin{array}{llll}
z_{11} & z_{12} & z_{13} & z_{14} \\
z_{21} & z_{22} & z_{23} & z_{24}
\end{array}\right)
$$

and $\mathcal{I}\left(X_{3}\right)=I_{2}(Z)$ is minimally generated by the six 2-minors of $Z,[i, j]$ with $1 \leq i<j \leq 4$.

Let $X_{3} \subseteq \mathbb{P}^{7}$ be the set of 2×4 matrices of rank at most 1 . So $S=K[Z]$ where

$$
Z=\left(\begin{array}{llll}
z_{11} & z_{12} & z_{13} & z_{14} \\
z_{21} & z_{22} & z_{23} & z_{24}
\end{array}\right)
$$

and $\mathcal{I}\left(X_{3}\right)=I_{2}(Z)$ is minimally generated by the six 2-minors of $Z,[i, j]$ with $1 \leq i<j \leq 4$. One can show that five polynomials are enough to generate $I_{2}(Z)$ up to radical, namely:

$$
[1,2], \quad[1,3], \quad[1,4]+[2,3], \quad[2,4], \quad[3,4] .
$$

Let $X_{3} \subseteq \mathbb{P}^{7}$ be the set of 2×4 matrices of rank at most 1 . So $S=K[Z]$ where

$$
Z=\left(\begin{array}{llll}
z_{11} & z_{12} & z_{13} & z_{14} \\
z_{21} & z_{22} & z_{23} & z_{24}
\end{array}\right)
$$

and $\mathcal{I}\left(X_{3}\right)=I_{2}(Z)$ is minimally generated by the six 2-minors of $Z,[i, j]$ with $1 \leq i<j \leq 4$. One can show that five polynomials are enough to generate $I_{2}(Z)$ up to radical, namely:

$$
[1,2], \quad[1,3], \quad[1,4]+[2,3], \quad[2,4], \quad[3,4] .
$$

In fact $[1,4]^{2}=[1,4]([1,4]+[2,3])+[1,2][3,4]-[1,3][2,4]$.

Let $X_{3} \subseteq \mathbb{P}^{7}$ be the set of 2×4 matrices of rank at most 1 . So $S=K[Z]$ where

$$
Z=\left(\begin{array}{llll}
z_{11} & z_{12} & z_{13} & z_{14} \\
z_{21} & z_{22} & z_{23} & z_{24}
\end{array}\right)
$$

and $\mathcal{I}\left(X_{3}\right)=I_{2}(Z)$ is minimally generated by the six 2-minors of $Z,[i, j]$ with $1 \leq i<j \leq 4$. One can show that five polynomials are enough to generate $I_{2}(Z)$ up to radical, namely:

$$
[1,2], \quad[1,3], \quad[1,4]+[2,3], \quad[2,4], \quad[3,4] .
$$

In fact $[1,4]^{2}=[1,4]([1,4]+[2,3])+[1,2][3,4]-[1,3][2,4]$. We want to show that $\operatorname{ara}_{\mathbb{P}^{7}} X_{3}=5$, however $\operatorname{codim}_{\mathbb{P}^{7}} X_{3}=3$.

Let $X_{3} \subseteq \mathbb{P}^{7}$ be the set of 2×4 matrices of rank at most 1 . So $S=K[Z]$ where

$$
Z=\left(\begin{array}{llll}
z_{11} & z_{12} & z_{13} & z_{14} \\
z_{21} & z_{22} & z_{23} & z_{24}
\end{array}\right)
$$

and $\mathcal{I}\left(X_{3}\right)=I_{2}(Z)$ is minimally generated by the six 2 -minors of $Z,[i, j]$ with $1 \leq i<j \leq 4$. One can show that five polynomials are enough to generate $I_{2}(Z)$ up to radical, namely:

$$
[1,2], \quad[1,3], \quad[1,4]+[2,3], \quad[2,4], \quad[3,4] .
$$

In fact $[1,4]^{2}=[1,4]([1,4]+[2,3])+[1,2][3,4]-[1,3][2,4]$. We want to show that $\operatorname{ara}_{\mathbb{P}^{7}} X_{3}=5$, however $\operatorname{codim}_{\mathbb{P}^{7}} X_{3}=3$. In characteristic 0 , we can prove that $\operatorname{cd}\left(\mathbb{P}^{7} \backslash X_{3}\right)=4 \ldots .$.

Example III

Notice that $H^{4}\left(\mathbb{P}^{7} \backslash X_{3}, \mathcal{O}(k)\right) \cong H_{\mathcal{I}\left(X_{3}\right)}^{5}(S)_{k}$ for any $k \in \mathbb{Z}$.

Notice that $H^{4}\left(\mathbb{P}^{7} \backslash X_{3}, \mathcal{O}(k)\right) \cong H_{\mathcal{I}\left(X_{3}\right)}^{5}(S)_{k}$ for any $k \in \mathbb{Z}$. The K-algebra $R=K[[i, j]: 1 \leq i<j \leq 4] \subseteq S$ is the coordinate ring of the Grassmannian of lines in \mathbb{P}^{3}.

Notice that $H^{4}\left(\mathbb{P}^{7} \backslash X_{3}, \mathcal{O}(k)\right) \cong H_{\mathcal{I}\left(X_{3}\right)}^{5}(S)_{k}$ for any $k \in \mathbb{Z}$. The K-algebra $R=K[[i, j]: 1 \leq i<j \leq 4] \subseteq S$ is the coordinate ring of the Grassmannian of lines in \mathbb{P}^{3}. In particular $\operatorname{dim}(R)=5$.

Notice that $H^{4}\left(\mathbb{P}^{7} \backslash X_{3}, \mathcal{O}(k)\right) \cong H_{\mathcal{I}\left(X_{3}\right)}^{5}(S)_{k}$ for any $k \in \mathbb{Z}$. The K-algebra $R=K[[i, j]: 1 \leq i<j \leq 4] \subseteq S$ is the coordinate ring of the Grassmannian of lines in \mathbb{P}^{3}. In particular $\operatorname{dim}(R)=5$. Moreover in characteristic zero R is a direct summand of S.

Notice that $H^{4}\left(\mathbb{P}^{7} \backslash X_{3}, \mathcal{O}(k)\right) \cong H_{\mathcal{I}\left(X_{3}\right)}^{5}(S)_{k}$ for any $k \in \mathbb{Z}$. The K-algebra $R=K[[i, j]: 1 \leq i<j \leq 4] \subseteq S$ is the coordinate ring of the Grassmannian of lines in \mathbb{P}^{3}. In particular $\operatorname{dim}(R)=5$. Moreover in characteristic zero R is a direct summand of S. So

$$
H_{\mathcal{I}\left(X_{3}\right)}^{5}(S)=H_{\left(\mathcal{I}\left(X_{3}\right) \cap R\right) S}^{5}(S) \cong H_{\mathcal{I}\left(X_{3}\right) \cap R}^{5}(S) \hookleftarrow H_{\mathcal{I}\left(X_{3}\right) \cap R}^{5}(R)
$$

Notice that $H^{4}\left(\mathbb{P}^{\boldsymbol{7}} \backslash X_{3}, \mathcal{O}(k)\right) \cong H_{\mathcal{I}\left(X_{3}\right)}^{5}(S)_{k}$ for any $k \in \mathbb{Z}$. The K-algebra $R=K[[i, j]: 1 \leq i<j \leq 4] \subseteq S$ is the coordinate ring of the Grassmannian of lines in \mathbb{P}^{3}. In particular $\operatorname{dim}(R)=5$. Moreover in characteristic zero R is a direct summand of S. So

$$
H_{\mathcal{I}\left(X_{3}\right)}^{5}(S)=H_{\left(\mathcal{I}\left(X_{3}\right) \cap R\right) S}^{5}(S) \cong H_{\mathcal{I}\left(X_{3}\right) \cap R}^{5}(S) \hookleftarrow H_{\mathcal{I}\left(X_{3}\right) \cap R}^{5}(R) .
$$

Thus $H^{4}\left(\mathbb{P}^{7} \backslash X_{3}, \mathcal{O}(k)\right) \neq 0 \forall k \ll 0$, so that in characteristic 0 :

$$
5 \leq \operatorname{cd}\left(\mathbb{P}^{7} \backslash X_{3}\right)+1 \leq \operatorname{ara}_{\mathbb{P}^{7}} X_{3} \leq 5 .
$$

Notice that $H^{4}\left(\mathbb{P}^{7} \backslash X_{3}, \mathcal{O}(k)\right) \cong H_{\mathcal{I}\left(X_{3}\right)}^{5}(S)_{k}$ for any $k \in \mathbb{Z}$. The K-algebra $R=K[[i, j]: 1 \leq i<j \leq 4] \subseteq S$ is the coordinate ring of the Grassmannian of lines in \mathbb{P}^{3}. In particular $\operatorname{dim}(R)=5$. Moreover in characteristic zero R is a direct summand of S. So

$$
H_{\mathcal{I}\left(X_{3}\right)}^{5}(S)=H_{\left(\mathcal{I}\left(X_{3}\right) \cap R\right) S}^{5}(S) \cong H_{\mathcal{I}\left(X_{3}\right) \cap R}^{5}(S) \hookleftarrow H_{\mathcal{I}\left(X_{3}\right) \cap R}^{5}(R) .
$$

Thus $H^{4}\left(\mathbb{P}^{7} \backslash X_{3}, \mathcal{O}(k)\right) \neq 0 \forall k \ll 0$, so that in characteristic 0 :

$$
5 \leq \operatorname{cd}\left(\mathbb{P}^{7} \backslash X_{3}\right)+1 \leq \operatorname{ara} \mathbb{P}^{7} X_{3} \leq 5 .
$$

How can we do in positive characteristic?

Peskine-Szpiro, 1973

If $\operatorname{char}(K)>0$, then for any algebraic set $X=\mathcal{Z}(I) \subseteq \mathbb{P}^{n}$:

$$
\operatorname{cd}\left(\mathbb{P}^{n} \backslash X\right) \leq \operatorname{projdim}(I)
$$

Peskine-Szpiro, 1973

If $\operatorname{char}(K)>0$, then for any algebraic set $X=\mathcal{Z}(I) \subseteq \mathbb{P}^{n}$:

$$
\operatorname{cd}\left(\mathbb{P}^{n} \backslash X\right) \leq \operatorname{projdim}(I)
$$

In the previous example $\operatorname{projdim}\left(I_{2}(Z)\right)=2$,

Peskine-Szpiro, 1973

If $\operatorname{char}(K)>0$, then for any algebraic set $X=\mathcal{Z}(I) \subseteq \mathbb{P}^{n}$:

$$
\operatorname{cd}\left(\mathbb{P}^{n} \backslash X\right) \leq \operatorname{projdim}(I)
$$

In the previous example projdim $\left(I_{2}(Z)\right)=2$, therefore we have

$$
\operatorname{cd}\left(\mathbb{P}^{7} \backslash X_{3}\right)= \begin{cases}2 & \text { if } \operatorname{char}(K)>0 \\ 4 & \text { if } \operatorname{char}(K)=0\end{cases}
$$

Peskine-Szpiro, 1973

If $\operatorname{char}(K)>0$, then for any algebraic set $X=\mathcal{Z}(I) \subseteq \mathbb{P}^{n}$:

$$
\operatorname{cd}\left(\mathbb{P}^{n} \backslash X\right) \leq \operatorname{projdim}(I)
$$

In the previous example projdim $\left(I_{2}(Z)\right)=2$, therefore we have

$$
\operatorname{cd}\left(\mathbb{P}^{7} \backslash X_{3}\right)= \begin{cases}2 & \text { if } \operatorname{char}(K)>0 \\ 4 & \text { if } \operatorname{char}(K)=0\end{cases}
$$

However, in 1990 Bruns and Schwänzl managed to prove that $\operatorname{ara}_{\mathbb{P}^{7}} X_{3}=5$ also in positive characteristic

Étale cohomology

So far we considered the Zariski topology on \mathbb{P}^{n}, which has as closed sets the algebraic sets.

Étale cohomology

So far we considered the Zariski topology on \mathbb{P}^{n}, which has as closed sets the algebraic sets. Another useful topology is the étale topology.

So far we considered the Zariski topology on \mathbb{P}^{n}, which has as closed sets the algebraic sets. Another useful topology is the étale topology. For a Zariski-open subset $U \subseteq \mathbb{P}^{n}$, denote by $U_{\text {ét }}$ the set U equipped with the étale topology

So far we considered the Zariski topology on \mathbb{P}^{n}, which has as closed sets the algebraic sets. Another useful topology is the étale topology. For a Zariski-open subset $U \subseteq \mathbb{P}^{n}$, denote by $U_{\text {ét }}$ the set U equipped with the étale topology and define its étale cohomological dimension as:

$$
\begin{gathered}
\text { écd }_{\ell}(U)=\sup \left\{s: H^{i}\left(U_{\text {ét }}, \mathcal{F}\right) \neq 0 \quad \text { for some } \ell \text {-torsion sheaf on } \mathbb{P}^{n}\right\} \\
\operatorname{écd}(U)=\max \{\text { écd }(U): \operatorname{GCD}(\ell, \operatorname{char}(K))=1\}
\end{gathered}
$$

So far we considered the Zariski topology on \mathbb{P}^{n}, which has as closed sets the algebraic sets. Another useful topology is the étale topology. For a Zariski-open subset $U \subseteq \mathbb{P}^{n}$, denote by $U_{\text {ét }}$ the set U equipped with the étale topology and define its étale cohomological dimension as:
écd $\ell(U)=\sup \left\{s: H^{i}\left(U_{\text {ét }}, \mathcal{F}\right) \neq 0 \quad\right.$ for some ℓ-torsion sheaf on $\left.\mathbb{P}^{n}\right\}$ écd $(U)=\max \left\{\right.$ écd $\left._{\ell}(U): \operatorname{GCD}(\ell, \operatorname{char}(K))=1\right\}$

Because écd $(U) \leq n$ whenever U is affine, Mayer-Vietoris yields:

$$
\operatorname{ara}_{\mathbb{P}^{n}} X \geq \operatorname{écd}(U)-n+1 \quad \text { for any algebraic set } X \subseteq \mathbb{P}^{n} .
$$

Étale VS Coherent

Étale VS Coherent

So far we have learnt that, given an algebraic set $X \subseteq \mathbb{P}^{n}$:

$$
\operatorname{ara}_{\mathbb{P}^{n}} X \geq \max \left\{\operatorname{cd}\left(\mathbb{P}^{n} \backslash X\right)+1, \quad \text { écd }\left(\mathbb{P}^{n} \backslash X\right)-n+1\right\} .
$$

So far we have learnt that, given an algebraic set $X \subseteq \mathbb{P}^{n}$:

$$
\operatorname{ara}_{\mathbb{P}^{n}} X \geq \max \left\{\operatorname{cd}\left(\mathbb{P}^{n} \backslash X\right)+1, \quad \text { écd }\left(\mathbb{P}^{n} \backslash X\right)-n+1\right\}
$$

Instance in which the above maximum is $>\operatorname{cd}\left(\mathbb{P}^{n} \backslash X\right)+1$ are known in any characteristic.

So far we have learnt that, given an algebraic set $X \subseteq \mathbb{P}^{n}$:

$$
\operatorname{ara}_{\mathbb{P}^{n}} X \geq \max \left\{\operatorname{cd}\left(\mathbb{P}^{n} \backslash X\right)+1, \quad \text { écd }\left(\mathbb{P}^{n} \backslash X\right)-n+1\right\}
$$

Instance in which the above maximum is $>\operatorname{cd}\left(\mathbb{P}^{n} \backslash X\right)+1$ are known in any characteristic. However, nowadays there is no example in which $\operatorname{cd}\left(\mathbb{P}^{n} \backslash X\right)>\operatorname{écd}\left(\mathbb{P}^{n} \backslash X\right)-n$.

So far we have learnt that, given an algebraic set $X \subseteq \mathbb{P}^{n}$:

$$
\operatorname{ara}_{\mathbb{P}^{n}} X \geq \max \left\{\operatorname{cd}\left(\mathbb{P}^{n} \backslash X\right)+1, \quad \text { écd }\left(\mathbb{P}^{n} \backslash X\right)-n+1\right\}
$$

Instance in which the above maximum is $>\operatorname{cd}\left(\mathbb{P}^{n} \backslash X\right)+1$ are known in any characteristic. However, nowadays there is no example in which $\operatorname{cd}\left(\mathbb{P}^{n} \backslash X\right)>\operatorname{écd}\left(\mathbb{P}^{n} \backslash X\right)-n$. In fact, in 2002 Lyubeznik conjectured that $\operatorname{cd}\left(\mathbb{P}^{n} \backslash X\right) \leq$ écd $\left(\mathbb{P}^{n} \backslash X\right)-n$.

So far we have learnt that, given an algebraic set $X \subseteq \mathbb{P}^{n}$:

$$
\operatorname{ara}_{\mathbb{P}^{n}} X \geq \max \left\{\operatorname{cd}\left(\mathbb{P}^{n} \backslash X\right)+1, \quad \text { écd }\left(\mathbb{P}^{n} \backslash X\right)-n+1\right\}
$$

Instance in which the above maximum is $>\operatorname{cd}\left(\mathbb{P}^{n} \backslash X\right)+1$ are known in any characteristic. However, nowadays there is no example in which $\operatorname{cd}\left(\mathbb{P}^{n} \backslash X\right)>\operatorname{écd}\left(\mathbb{P}^{n} \backslash X\right)-n$. In fact, in 2002 Lyubeznik conjectured that $\operatorname{cd}\left(\mathbb{P}^{n} \backslash X\right) \leq$ écd $\left(\mathbb{P}^{n} \backslash X\right)-n$.

(- , 2012)

For any nonsingular algebraic set $X \subseteq \mathbb{P}^{n}$, if $\operatorname{char}(K)=0$, then

$$
\operatorname{cd}\left(\mathbb{P}^{n} \backslash X\right) \leq \operatorname{écd}\left(\mathbb{P}^{n} \backslash X\right)-n
$$

So far we have learnt that, given an algebraic set $X \subseteq \mathbb{P}^{n}$:

$$
\operatorname{ara}_{\mathbb{P}^{n}} X \geq \max \left\{\operatorname{cd}\left(\mathbb{P}^{n} \backslash X\right)+1, \quad \text { écd }\left(\mathbb{P}^{n} \backslash X\right)-n+1\right\}
$$

Instance in which the above maximum is $>\operatorname{cd}\left(\mathbb{P}^{n} \backslash X\right)+1$ are known in any characteristic. However, nowadays there is no example in which $\operatorname{cd}\left(\mathbb{P}^{n} \backslash X\right)>\operatorname{écd}\left(\mathbb{P}^{n} \backslash X\right)-n$. In fact, in 2002 Lyubeznik conjectured that $\operatorname{cd}\left(\mathbb{P}^{n} \backslash X\right) \leq$ écd $\left(\mathbb{P}^{n} \backslash X\right)-n$.

(- , 2012)

For any nonsingular algebraic set $X \subseteq \mathbb{P}^{n}$, if $\operatorname{char}(K)=0$, then

$$
\operatorname{cd}\left(\mathbb{P}^{n} \backslash X\right) \leq \operatorname{écd}\left(\mathbb{P}^{n} \backslash X\right)-n
$$

Étale VS Coherent

Lyubeznik probably has a counterexample to his conjecture in positive characteristic.

Lyubeznik probably has a counterexample to his conjecture in positive characteristic.

Recently, I realized that, for singular algebraic sets $X \subseteq \mathbb{P}^{n}$, it seems not even known that écd $\left(\mathbb{P}^{n} \backslash X\right) \geq \operatorname{codim}_{\mathbb{P}^{n}} X+n-1$,

Lyubeznik probably has a counterexample to his conjecture in positive characteristic.

Recently, I realized that, for singular algebraic sets $X \subseteq \mathbb{P}^{n}$, it seems not even known that écd $\left(\mathbb{P}^{n} \backslash X\right) \geq \operatorname{codim}_{\mathbb{P}^{n}} X+n-1$, whereas the analog inequality $\operatorname{cd}\left(\mathbb{P}^{n} \backslash X\right) \geq \operatorname{codim}_{\mathbb{P}^{n}} X-1$ is well-known.

Lyubeznik probably has a counterexample to his conjecture in positive characteristic.

Recently, I realized that, for singular algebraic sets $X \subseteq \mathbb{P}^{n}$, it seems not even known that écd $\left(\mathbb{P}^{n} \backslash X\right) \geq \operatorname{codim}_{\mathbb{P}^{n}} X+n-1$, whereas the analog inequality $\operatorname{cd}\left(\mathbb{P}^{n} \backslash X\right) \geq \operatorname{codim}_{\mathbb{P}^{n}} X-1$ is well-known. So I wish to make a question:

Is écd $\left(\mathbb{P}^{n} \backslash X\right) \geq \operatorname{codim}_{\mathbb{P}^{n}} X+n-1 \quad \forall$ algebraic set $X \subseteq \mathbb{P}^{n}$?

Open problems

Open problems

Coming back to the defining equations of algebraic sets $X \subseteq \mathbb{P}^{n}$,

Open problems

Coming back to the defining equations of algebraic sets $X \subseteq \mathbb{P}^{n}$, to my knowledge it is not known any example for which:

$$
\operatorname{ara}_{\mathbb{P}^{n}} X>\max \left\{\operatorname{cd}\left(\mathbb{P}^{n} \backslash X\right)+1, \operatorname{écd}\left(\mathbb{P}^{n} \backslash X\right)-n+1\right\} \quad ?
$$

Open problems

Coming back to the defining equations of algebraic sets $X \subseteq \mathbb{P}^{n}$, to my knowledge it is not known any example for which:

$$
\operatorname{ara}_{\mathbb{P}^{n}} X>\max \left\{\operatorname{cd}\left(\mathbb{P}^{n} \backslash X\right)+1, \text { écd }\left(\mathbb{P}^{n} \backslash X\right)-n+1\right\} \quad ?
$$

In particular, it is not known any connected curve in \mathbb{P}^{3} which is not a set-theoretic complete intersection.

Open problems

Coming back to the defining equations of algebraic sets $X \subseteq \mathbb{P}^{n}$, to my knowledge it is not known any example for which:

$$
\operatorname{ara}_{\mathbb{P}^{n}} X>\max \left\{\operatorname{cd}\left(\mathbb{P}^{n} \backslash X\right)+1, \text { écd }\left(\mathbb{P}^{n} \backslash X\right)-n+1\right\} \quad ?
$$

In particular, it is not known any connected curve in \mathbb{P}^{3} which is not a set-theoretic complete intersection. For example:

Is $C=\left\{\left[s^{4}, s^{3} t, s t^{3}, t^{4}\right]:[s, t] \in \mathbb{P}^{1}\right\} \subseteq \mathbb{P}^{3}$ a set-theoretic complete intersection when $\operatorname{char}(K)=0$?

Open problems

Coming back to the defining equations of algebraic sets $X \subseteq \mathbb{P}^{n}$, to my knowledge it is not known any example for which:

$$
\operatorname{ara}_{\mathbb{P}^{n}} X>\max \left\{\operatorname{cd}\left(\mathbb{P}^{n} \backslash X\right)+1, \text { écd }\left(\mathbb{P}^{n} \backslash X\right)-n+1\right\} \quad ?
$$

In particular, it is not known any connected curve in \mathbb{P}^{3} which is not a set-theoretic complete intersection. For example:

Is $C=\left\{\left[s^{4}, s^{3} t, s t^{3}, t^{4}\right]:[s, t] \in \mathbb{P}^{1}\right\} \subseteq \mathbb{P}^{3}$ a set-theoretic complete intersection when $\operatorname{char}(K)=0$?

The above question was originally stated by Hartshorne in 1979, when he proved that the above rational curve is a set-theoretic complete intersection in positive characteristic

- W. Bruns, R. Schwänzl, The number of equations defining a determinantal variety, Bull. Lond. Math. Soc. 22, 1990.
- G. Faltings, Some theorems about formal functions, Publ. of R.I.M.S. Kyoto 16, 1980.
- D. Eisenbud, E.G. Evans, Every Algebraic Set in n-Space is the Intersection of n Hypersurface, Invent. Math. 19, 1972.
- G. Lyubeznik, A Partial Survey of Local Cohomology, Lect. notes in pure and appl. math. 226, 2002.
- R. Hartshorne, Complete intersections in characteristic $p>0$, Amer. J. Math. 101, 1979.
- C. Peskine, L. Szpiro, Dimension projective finie et cohomologie locale. Applications à la démonstration de conjectures de M. Auslander, H. Bass et A. Grothendieck, Inst. Hautes Études Sci. Publ. Math. 42, 1973.
- M. Varbaro, Arithmetical rank of certain Segre embeddings, Trans. Amer. Math. Soc. 364, 2012.

