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Algebraic sets

K = K field, S = K [x0, . . . , xn] polynomial ring.

Given a set A ⊆ S of homogeneous polynomials, its zero-locus is:

Z(A) = {P ∈ Pn(K ) : f (P) = 0 ∀ f ∈ A} ⊆ Pn(K ).

Subsets of Pn = Pn(K ) as above are called algebraic sets.

Since Z(A) = Z((A)) (where (A) means the ideal of S generated
by A) by the Hilbert’s basis theorem every algebraic set is the
zero-locus of finitely many (homogeneous) polynomials. Today, we
will discuss the following question:

How many polynomials are needed to define an algebraic set?
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Algebraic sets

Given a subset X ⊆ Pn, the set of polynomials vanishing at X is:

I(X ) = {f ∈ S : f (P) = 0 ∀ P ∈ X}.

As it turns out, I(X ) is a radical ideal of S and, by Hilbert’s
Nullstellensatz, for any ideal I ⊆ S we have:

I(Z(I )) =
√
I

Further, Z(I(X )) = X whenever X ⊆ Pn is an algebraic set.

At a first thought, one could imagine that the optimal number of
polynomials defining an algebraic set X = Z(I ) ⊆ Pn is exactly the
number of minimal generators of I(X ) ⊆ S .

This, however, is far to be true .....
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Example I

X1 = {[s3, s2t, st2, t3] : [s, t] ∈ P1} ⊆ P3 is an algebraic set and

I(X1) = (a, b, c) ⊆ S = K [x0, x1, x2, x3],

where a = x0x2 − x2
1 , b = x1x3 − x2

2 , c = x0x3 − x1x2. By setting:

f = a = x0x2 − x2
1 and g = x3c − x2b = x0x

2
3 − 2x1x2x3 + x3

2 ,

we claim that X1 = Z(a, b, c) = Z(f , g). Obviously Z(a, b, c) is
contained in Z(f , g), for the other inclusion we have to prove that
any point P ∈ Z(f , g) satisfies b(P) = c(P) = 0.
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Example I

Recall that a = x0x2 − x2
1 , b = x1x3 − x2

2 , c = x0x3 − x1x2 and

f = x0x2 − x2
1 , g = x0x

2
3 − 2x1x2x3 + x3

2 .

Let P = [P0,P1,P2,P3] ∈ Z(f , g).

P2 = 0
f (P)=0

=====⇒ P1 = 0
g(P)=0

=====⇒ P0P
2
3 = P0P3 = 0. So both b

and c vanish at P.

P2 = 1
f (P)=0

=====⇒ P0 = P2
1

g(P)=0
=====⇒ (P1P3)2 − 2P1P3 + 1 = 0.

So P1P3 = 1 and b(P) = 0. Further

c(P) = P0P3 − P1P2 = P2
1P3 − P1 = P1 − P1 = 0.
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Arithmetical rank

So we found out that X1 ⊆ P3 is the zero-locus of 2 polynomials.
Can we do better? No, because at least as many polynomials as
the codimension are needed. Let us be more precise .....

The arithmetical rank of an algebraic set X ⊆ Pn is:

araPn X = min{r | ∃ f1, . . . , fr ∈ S : X = Z(f1, . . . , fr )}.

By the Krull’s Hauptidealsatz araPn X ≥ codimPn X .

We can therefore conclude that, in Example I:

araP3 X1 = 2 = codimP3 X1.
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Set-theoretic complete intersections

Wouldn’t happen to be

araPn X = codimPn X

for any algebraic set X ⊆ Pn? No, for example:

(Faltings, 1980)

If Y ⊆ Pn is an irreducible d-dimensional algebraic set and X ⊆ Pn

is the zero-locus of < d polynomials, then X ∩ Y must be
connected. In particular, araPn X < n =⇒ X is connected.

It therefore makes sense to name X ⊆ Pn a set-theoretic
complete intersection if araPn X = codimPn X .
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Example II

Let X2 = {[s, t, 0, 0] : [s, t] ∈ P1} ∪ {[0, 0, s, t] : [s, t] ∈ P1} ⊆ P3.

For what said before, since X2 is not connected we have

araP3 X2 ≥ 3 > 2 = codimP3 X2.

On the other hand, if S = K [x0, x1, x2, x3], we have

I(X2) = (x2, x3) ∩ (x0, x1) = (x0x2, x0x3, x1x2, x1x3) ⊆ S .

If I = (a, b, c) ⊆ S with a = x0x2 + x0x3 + x1x2 + x1x3, b = x0x1x2

+ x0x1x3 + x0x2x3 + x1x2x3 and c = x0x1x2x3, then
√
I = I(X2).

So X2 = Z(I ), and araP3 X2 = 3.
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A general upper bound

What happened before is not a case:

Eisenbud-Evans, 1972

For any nonempty algebraic set X ⊆ Pn:

araPn X ≤ n.

Summarizing, so far we learnt that:

codimPn X ≤ araPn X ≤ n for any algebraic set ∅ 6= X ⊆ Pn;

araPn X = n whenever X is not connected.

How to produce other lower bounds?
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Cohomological dimension

Let X ⊆ Pn be an algebraic set such that X = Z(f1, . . . , fr ).

Notice that U(fi ) = Pn \ Z(fi ) is affine, and that:

Pn \ X = U(f1) ∪ . . . ∪ U(fr ).

Therefore, by means of the C̆ech cohomology, H i (Pn \ X ,F) = 0
for any i ≥ r and each quasi-coherent sheaf F on Pn.

The (coherent) cohomological dimension of an open set U ⊆ Pn:

cd(U) = sup{s : Hs(U,F) 6= 0 for some coherent sheaf on Pn}.

For what said above, for any algebraic set X ⊆ Pn we have:

araPn X ≥ cd(Pn \ X ) + 1.
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Example III

Let X3 ⊆ P7 be the set of 2× 4 matrices of rank at most 1.

So
S = K [Z ] where

Z =

(
z11 z12 z13 z14

z21 z22 z23 z24

)
and I(X3) = I2(Z ) is minimally generated by the six 2-minors of
Z , [i , j ] with 1 ≤ i < j ≤ 4. One can show that five polynomials
are enough to generate I2(Z ) up to radical, namely:

[1, 2], [1, 3], [1, 4] + [2, 3], [2, 4], [3, 4].

In fact [1, 4]2 = [1, 4]([1, 4] + [2, 3])+[1, 2][3, 4]− [1, 3][2, 4]. We
want to show that araP7 X3 = 5, however codimP7 X3 = 3. In
characteristic 0, we can prove that cd(P7 \ X3) = 4 .....
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Example III

Notice that H4(P7 \ X3,O(k)) ∼= H5
I(X3)(S)k for any k ∈ Z.

The

K -algebra R = K [[i , j ] : 1 ≤ i < j ≤ 4] ⊆ S is the coordinate ring
of the Grassmannian of lines in P3. In particular dim(R) = 5.
Moreover in characteristic zero R is a direct summand of S . So

H5
I(X3)(S) = H5

(I(X3)∩R)S(S) ∼= H5
I(X3)∩R(S)←↩ H5

I(X3)∩R(R).

Thus H4(P7 \ X3,O(k)) 6= 0 ∀ k � 0, so that in characteristic 0:

5 ≤ cd(P7 \ X3) + 1 ≤ araP7 X3 ≤ 5.

How can we do in positive characteristic?
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Positive characteristic

Peskine-Szpiro, 1973

If char(K ) > 0, then for any algebraic set X = Z(I ) ⊆ Pn:

cd(Pn \ X ) ≤ projdim(I ).

In the previous example projdim(I2(Z )) = 2, therefore we have

cd(P7 \ X3) =

{
2 if char(K ) > 0

4 if char(K ) = 0

However, in 1990 Bruns and Schwänzl managed to prove that
araP7 X3 = 5 also in positive characteristic .....
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Étale cohomology

So far we considered the Zariski topology on Pn, which has as
closed sets the algebraic sets.

Another useful topology is the étale
topology. For a Zariski-open subset U ⊆ Pn, denote by Uét the
set U equipped with the étale topology and define its étale
cohomological dimension as:

écd`(U) = sup{s : H i (Uét,F) 6= 0 for some `-torsion sheaf on Pn}
écd(U) = max{écd`(U) : GCD(`, char(K )) = 1}

Because écd(U) ≤ n whenever U is affine, Mayer-Vietoris yields:

araPn X ≥ écd(U)− n + 1 for any algebraic set X ⊆ Pn.
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Étale VS Coherent

So far we have learnt that, given an algebraic set X ⊆ Pn:

araPn X ≥ max{cd(Pn \ X ) + 1, écd(Pn \ X )− n + 1}.

Instance in which the above maximum is > cd(Pn \ X ) + 1 are
known in any characteristic. However, nowadays there is no
example in which cd(Pn \ X ) > écd(Pn \ X )− n. In fact, in 2002
Lyubeznik conjectured that cd(Pn \ X ) ≤ écd(Pn \ X )− n.

( , 2012)

For any nonsingular algebraic set X ⊆ Pn, if char(K ) = 0, then

cd(Pn \ X ) ≤ écd(Pn \ X )− n.
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Étale VS Coherent

Lyubeznik probably has a counterexample to his conjecture in
positive characteristic.

Recently, I realized that, for singular algebraic sets X ⊆ Pn, it
seems not even known that écd(Pn \ X ) ≥ codimPn X + n − 1,
whereas the analog inequality cd(Pn \ X ) ≥ codimPn X − 1 is
well-known. So I wish to make a question:

Is écd(Pn \ X ) ≥ codimPn X + n − 1 ∀ algebraic set X ⊆ Pn?
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Is écd(Pn \ X ) ≥ codimPn X + n − 1 ∀ algebraic set X ⊆ Pn?

Matteo Varbaro (University of Genoa, Italy) Defining equations of algebraic sets
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Open problems

Coming back to the defining equations of algebraic sets X ⊆ Pn, to
my knowledge it is not known any example for which:

araPn X > max{cd(Pn \ X ) + 1, écd(Pn \ X )− n + 1} ?

In particular, it is not known any connected curve in P3 which is
not a set-theoretic complete intersection. For example:

Is C = {[s4, s3t, st3, t4] : [s, t] ∈ P1} ⊆ P3 a set-theoretic
complete intersection when char(K ) = 0 ?

The above question was originally stated by Hartshorne in 1979,
when he proved that the above rational curve is a set-theoretic
complete intersection in positive characteristic .....
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