The dual graph of a ring

Fellowship of the ring seminar, MSRI

June 11, 2020

Matteo Varbaro (Università degli Studi di Genova)
Based on 4 papers, BV, BBV, BDV, DV, jointly written with Bruno Benedetti, Barbara Bolognese, Michela Di Marca

The dual graph of a ring

Fix a Noetherian ring R of dimension $d<\infty$. Its dual graph (a.k.a. Hochster-Huneke graph) $G(R)$ is the simple graph with:

- The minimal prime ideals of R as vertices.
- As edges, $\{\mathfrak{p}, \mathfrak{q}\}$ where $R /(\mathfrak{p}+\mathfrak{q})$ has Krull dimension $d-1$.

Example A

If $R=\mathbb{C}[X, Y, Z] /(X Y Z)$, then $\operatorname{Min}(R)=\{(\bar{X}),(\bar{Y}),(\bar{Z})\}$ and $G(R)$ is a triangle, indeed R has dimension 2 and:

- $R /(\bar{X}, \bar{Y}) \cong \mathbb{C}[Z]$ has dimension 1 .
- $R /(\bar{X}, \bar{Z}) \cong \mathbb{C}[Y]$ has dimension 1 .
- $R /(\bar{Y}, \bar{Z}) \cong \mathbb{C}[X]$ has dimension 1 .

The dual graph of a ring: basic properties

Exercise

The following properties come directly from the definition:

- $G(R)=G(R / \sqrt{\{0\}})$.
- If R is a domain, $G(R)$ consists of a single point.
- If $\mathfrak{p} \in \operatorname{Min}(R)$ is such that $\operatorname{dim} R / \mathfrak{p}<d$, then \mathfrak{p} is an isolated vertex in $G(R)$ (i.e. it does not belong to any edge). In particular, if R is not equidimensional, $G(R)$ is not connected.

The dual graph of a ring: deep properties

Theorems

Let (R, \mathfrak{m}) be a Noetherian local ring.

- (Hartshorne, 1962) If R is Cohen-Macaulay, then $G(R)$ is connected.
- (Grothendieck, 1968) If R is complete and $G(R)$ is connected, then $G(R / x R)$ is connected for any nonzero-divisor $x \in R$.
- (Hochster and Huneke, 2002) If R is complete, then $G(R)$ is connected if and only if R is equidimensional and $H_{\mathfrak{m}}^{\operatorname{dim} R}(R)$ is an indecomposable R-module.

The dual graph of a ring: which graphs?

Our first aim is to understand which finite simple graphs can be realized as the dual graph of a ring. Several examples come from Stanley-Reisner rings, so let us quickly introduce them:

Let n be a positive integer and $[n]:=\{0, \ldots, n\}$. A simplicial complex Δ on $[n]$ is a subset of $2^{[n]}$ such that:

$$
\sigma \in \Delta, \tau \subset \sigma \Rightarrow \tau \in \Delta
$$

Any element of Δ is called face, and a face maximal by inclusion is called facet. The set of facets is denoted by $\mathcal{F}(\Delta)$. The dimension of a face σ is $\operatorname{dim} \sigma:=|\sigma|-1$, and the dimension of a simplicial complex Δ is

$$
\operatorname{dim} \Delta:=\sup \{\operatorname{dim} \sigma: \sigma \in \Delta\}=\sup \{\operatorname{dim} \sigma: \sigma \in \mathcal{F}(\Delta)\}
$$

The dual graph of a simplicial complex

The dual graph of a d-dimensional simplicial complex Δ is the simple graph $G(\Delta)$ with:

- The facets of Δ as vertices.
- As edges, $\{\sigma, \tau\}$ where $\operatorname{dim} \sigma \cap \tau=d-1$.

Example B

Stanley-Reisner correspondence

Let K be a field and $S=K\left[X_{0}, \ldots, X_{n}\right]$ be the polynomial ring.
To a simplicial complex Δ on $[n]$ we associate the ideal of S :

$$
I_{\Delta}=\left(X_{i_{1}} \cdots X_{i_{k}}:\left\{i_{1}, \ldots, i_{k}\right\} \notin \Delta\right) \subset S
$$

I_{Δ} is a square-free monomial ideal, and conversely to any such ideal $I \subset S$ we associate the simplicial complex on $[n]$:

$$
\Delta(I)=\left\{\left\{i_{1}, \ldots, i_{k}\right\} \subset[n]: X_{i_{1}} \cdots X_{i_{k}} \notin I\right\} \subset 2^{[n]} .
$$

It is straightforward to check that the operations above yield a 1-1 correspondence:
$\{$ simplicial complexes on $[n]\} \leftrightarrow\{$ square-free monomial ideals of $S\}$

Stanley-Reisner correspondence

For a simplicial complex Δ on $[n]$:
(i) $I_{\Delta} \subset S$ is called the Stanley-Reisner ideal of Δ;
(ii) $K[\Delta]=S / I_{\Delta}$ is called the Stanley-Reisner ring of Δ.

Lemma

$I_{\Delta}=\bigcap_{\sigma \in \mathcal{F}(\Delta)}\left(X_{i}: i \in[n] \backslash \sigma\right)$. Hence $\operatorname{dim} K[\Delta]=\operatorname{dim} \Delta+1$.
Proof: For any $\sigma \subset[n]$, the ideal $\left(X_{i}: i \in \sigma\right)$ contains I_{Δ} if and only if $[n] \backslash \sigma \in \Delta$. Being I_{Δ} a monomial ideal, its minimal primes are monomial prime ideals, i.e. ideals generated by variables. So, since I_{Δ} is radical, $I_{\Delta}=\bigcap_{\sigma \in \Delta}\left(X_{i}: i \in[n] \backslash \sigma\right)$. In the above intersection only the facets matter, so we conclude. \square

Stanley-Reisner correspondence

Exercise

The previous proof shows that there is a 1-1 correspondence between the facets of Δ and the minimal prime ideals of $K[\Delta]$. As it turns out, this correspondence gives an isomorphism of graphs $G(\Delta) \cong G(K[\Delta])$.

To the simplicial complex Δ of Example B corresponds the ideal

$$
\begin{aligned}
I_{\Delta} & =\left(X_{1} X_{6}, X_{2} X_{4}, X_{3} X_{5}\right) \subset K\left[X_{1}, \ldots, X_{6}\right] \\
& =\left(X_{1}, X_{2}, X_{3}\right) \cap\left(X_{1}, X_{2}, X_{5}\right) \cap\left(X_{1}, X_{4}, X_{3}\right) \cap\left(X_{1}, X_{4}, X_{5}\right) \\
& \cap\left(X_{6}, X_{2}, X_{3}\right) \cap\left(X_{6}, X_{2}, X_{5}\right) \cap\left(X_{6}, X_{4}, X_{3}\right) \cap\left(X_{6}, X_{4}, X_{5}\right)
\end{aligned}
$$

and one can directly check that the dual graph of $K[\Delta]$ is the same described in Example B.

Dual graph of a simplicial complex

The previous discussion shows that any finite simple graph which is dual to some simplicial complex is the dual graph of a ring. However, not all finite simple graphs are dual to some simplicial complex. Some discussions on this issue can be found in a paper by Sather-Watsgaff and Spiroff and in [BBV].

Example C - Exercise

Not dual to any simplicial complex.

Dual graph of a projective line arrangement

Let \mathbb{P}^{n} denote the n-dimensional projective space over the field K, and $X \subset \mathbb{P}^{n}$ a union of lines. Precisely,

$$
X=\bigcup_{i=1}^{s} L_{i} \subset \mathbb{P}^{n}
$$

where the L_{i} are projective lines, i.e. projective varieties defined by ideals generated by $n-1$ linear forms of $S=K\left[X_{0}, \ldots, X_{n}\right]$.

The dual graph of X is the simple graph $G(X)$ with:

- The lines L_{i} as vertices.
- As edges, $\left\{L_{i}, L_{j}\right\}$ if L_{i} and L_{j} meet in a point.

Dual graph of a projective line arrangement

Example D
The simple graph of Example C, which was not dual to any simplicial complex, is dual to a line arrangement:

Choose:

- $L_{1}, L_{2}, L_{4} \in \mathbb{P}^{3}$ coplanar (H) meeting in 3 different points (P_{12}, P_{24}, P_{14}).
- L_{3} not in H but passing through P_{24};
- L_{5} any line meeting L_{3} in a point different from P_{24} and L_{1} in a point different from P_{12}, P_{14}.
Then $X=\bigcup_{i=1}^{S} L_{i}$ is such that $G(X)=G$

Dual graph of a projective line arrangement

If $X=\cup_{i=1}^{s} L_{i} \subset \mathbb{P}^{n}$ and L_{i} is defined by the ideal

$$
I_{i}=\left(\ell_{1, i}, \ldots, \ell_{n-1, i}\right) \subset S=K\left[X_{0}, \ldots, X_{n}\right]
$$

then $G(X)$ is isomorphic to the dual graph of the 2-dimensional ring S / I where $I=\cap_{i=1}^{S} I_{i}$ under the correspondence between the L_{i} 's and the minimal prime ideals \bar{T}_{i} of S / I. Indeed T.F.A.E.:

- L_{i} and L_{j} meet in a point.
- $S /\left(I_{i}+l_{j}\right)$ has dimension 1 .

Dual graph of a projective line arrangement

If a simple graph is dual to a d-dimensional simplicial complex Δ, then it is also dual to a projective line arrangement: Indeed, if $d \geq 1$ and all the facets of Δ has the same dimension, just take the Stanley-Reisner ring $K[\Delta]$ and go modulo $d-1$ general linear forms. The resulting ring R will be the coordinate ring of a line arrangement and have the same dual graph as $K[\Delta]$. However...

Example E - Exercise

Not dual to any line arrangement.

Dual graphs of rings VS finite simple graphs

Summing up, so far we proved the following inclusions:
$\left\{\begin{array}{c}\text { dual graphs } \\ \text { of simplicial } \\ \text { complexes }\end{array}\right\} \subsetneq\left\{\begin{array}{c}\text { dual graphs } \\ \text { of projective } \\ \text { line arr'ts }\end{array}\right\} \subsetneq\left\{\begin{array}{c}\text { dual graphs } \\ \text { of rings }\end{array}\right\} \subseteq\left\{\begin{array}{c}\text { all finite } \\ \text { simple graphs }\end{array}\right\}$.
It turns out that the last inclusion is an equality. We show how to get a ring R such that $G(R)$ is the graph of Example E , and this will give the flavour for the proof of the general case. The details can be found in [BBV].

Dual graphs of rings VS finite simple graphs

Assuming that K is infinite, we can pick 6 linear forms $\ell_{1}, \ldots, \ell_{6}$ of $S=K[X, Y, Z]$ such that $\ell_{i}, \ell_{j}, \ell_{k}$ are linearly independent for all $1 \leq i<j<k \leq 6$. With this choice the corresponding 6 lines of \mathbb{P}^{2} will meet in 15 distinct points.

Consider the ideal $J=\left(\ell_{2}, \ell_{3}\right) \cap\left(\ell_{5}, \ell_{6}\right) \subset S$ and the ring $A=K\left[J_{3}\right] \subset S$. Now let I be the ideal $\left(\ell_{1} \cdots \ell_{6}\right) \cap A \subset A$. Then the dual graph of $R=A / I$ is isomorphic to the one of Example E (check it as exercise!).

Remark

Geometrically, A is the coordinate ring of the blow-up of \mathbb{P}^{2} along the intersection points P_{23} and P_{56}, and R is the coordinate ring of the strict transform of the line arrangement given by the original 6 lines of \mathbb{P}^{2}.

Notions from graph theory

Given a simple graph G on s vertices and an integer r less than s, we say that G is r-connected if the removal of less than r vertices of G does not disconnect it. The valency of a vertex v of G is:

$$
\delta(v)=\mid\{w:\{v, w\} \text { is an edge of } G\} \mid .
$$

- 2-connected, not 3-connected.
- $\delta(\bullet)=5$.
- $\delta($ inner $)=\delta($ inner $)=6$.
- $\delta($ boundary $)=\delta($ boundary $)=3$.

Notions from graph theory

Remark

(i) G is 1 -connected $\Leftrightarrow G$ is connected and has at least 2 vertices.
(ii) G is r-connected $\Rightarrow G$ is r^{\prime}-connected for all $r^{\prime} \leq r$.
(iii) G is r-connected $\Rightarrow \delta(v) \geq r$ for all vertices v of G.
G is said to be r-regular if each vertex has valency r.

3-regular, 1-connected, not 2-connected.

Line arrangements algebraically

Given a line arrangement $X=\cup_{i=1}^{s} L_{i} \subset \mathbb{P}^{n}$ there is a unique radical ideal $I \subset S=K\left[X_{0}, \ldots, X_{n}\right]$ defining X. The ideal I has the form

$$
I=I_{1} \cap I_{2} \cap \ldots \cap I_{s}
$$

where $I_{j} \subset S$ is the ideal generated by the $n-1$ linear forms defining the line L_{j}. For simplicity we will call such ideals $I \subset S$ line arrangement ideals.

Of course there are many other homogeneous ideals $J \subset S$ defining $X \subset \mathbb{P}^{n}$ set-theoretically, namely those for which $\sqrt{J}=I$, but to our purposes the interesting one is $/$...

Gorenstein line arrangements

Theorem [BV]

Let $I \subset S$ be a line arrangement ideal such that S / I is Gorenstein. Then $G(S / I)$ is r-connected where $r=$ reg S / I.

The main ingredient of the proof is liaison theory.
Somewhat in contrast, we have the following:

Theorem (Mohan Kumar, 1990)

For any connected line arrangement ideal
$I \subset K\left[X_{0}, X_{1}, X_{2}, X_{3}\right]=S$, there is a homogeneous complete intersection $J=(f, g) \subset S$ such that $\sqrt{J}=I$ (in particular $G(S / J)=G(S / I))$. Hence, any connected simple graph which is dual to a line arrangement is also dual to a complete intersection.

Gorenstein line arrangements

In view of the result of Mohan Kumar it is natural to ask the following:

Question

Is any connected simple graph dual to a complete intersection?

Coming back to our purposes, the previous result in [BV] is not optimal, in the sense that one can easily produce examples of line arrangement ideals $I \subset S$ such that S / I is Gorenstein of regularity r and $G(S / I)$ is k-connected for $k>r$.

However there are natural situations where the result is actually optimal ...

Let $Z \subset \mathbb{P}^{3}$ be a smooth cubic, and $X=\bigcup_{i=1}^{27} X_{i}$ be the union of all the lines on Z. Below is a representation of the Clebsch's cubic:

$$
x_{0}^{3}+x_{1}^{3}+x_{2}^{3}+x_{3}^{3}=\left(x_{0}+x_{1}+x_{2}+x_{3}\right)^{3}
$$

One can realize that the line arrangement ideal $I \subset S$ defining $X \subset \mathbb{P}^{3}$ is a complete intersection of the cubic defining Z and a product of 9 linear forms. So S / I is Gorenstein of regularity $3+9-2=\mathbf{1 0}$. From the description of a smooth cubic as the blow up of \mathbb{P}^{2} along 6 points one can check that:

- $G(S / I)=G(X)$ is $\mathbf{1 0}$-connected (we already knew this from the theorem of $[B V]$).
- $G(X)$ is 10-regular (in particular $G(X)$ is not 11-connected).

Line arrangements with planar singularities

A line arrangement $X \subset \mathbb{P}^{n}$ has planar singularities if all the lines of X meeting at a single point are co-planar. This is automatically satisfied if no more than two lines meet at the same point, or if X lies on a smooth surface.

Theorem [BDV]

Let $I \subset S$ be a line arrangement ideal such that S / I is Gorenstein. If the corresponding line arrangement has planar singularities, then $G(S / I)$ is r-regular where $r=$ reg S / I. In particular $G(S / I)$ is not ($r+1$)-connected (though it is r-connected).

Once again, the main ingredient of the proof is liaison theory.

Given two vertices v, w of a simple graph G, their distance $d(v, w)$ is the minimum length of a path connecting them; if such a path does not exists, $d(v, w)=+\infty$. The diameter of G is then

$$
\operatorname{diam} G=\max \{d(v, w): v \neq w \text { are vertices of } G\}
$$

(diam $G=-\infty$ if G consists of a single vertex).

$$
\begin{aligned}
& d(1,3)=2 \\
& d(4,6)=3 \\
& \operatorname{diam} G=3
\end{aligned}
$$

Hirsch conjecture

The Hirsch conjecture is a conjecture from 1957 in discrete geometry. An equivalent formulation of it is that, if Δ is the boundary of a simplicial d-polytope with vertex set [n], then

$$
\operatorname{diam} G(\Delta) \leq n+1-d
$$

This conjecture has recently been disproved by Francisco Santos, however the statement is known to be true in some special cases:

Theorem (Adiprasito, Benedetti)

The conjecture of Hirsch is true if Δ is flag.

Algebraic Hirsch conjecture

If Δ is the boundary of a d-polytope with vertex set [n], then $K[\Delta]$ is Gorenstein of dimension d, and $I_{\Delta} \subset S=K\left[X_{0}, \ldots, X_{n}\right]$ has height $n+1-d$. Furthermore, Δ being flag means that I_{Δ} is generated by quadrics.

In view of such considerations, it is natural to define a homogeneous ideal $I \subset S=K\left[X_{0}, \ldots, X_{n}\right]$ Hirsch if

$$
\operatorname{diam} G(S / I) \leq \text { ht } I
$$

We proposed the following, maybe too pretentious, conjecture:

Conjecture [BV]

Let $I \subset S$ be a radical homogeneous ideal generated by quadrics. If S / I is Cohen-Macaulay, then I is Hirsch.

Algebraic Hirsch conjecture

Theorem [DV]

The above conjecture is true if S / I is Gorenstein and ht $I \leq 4$.
Once again, the main ingredient of the proof is liaison theory.
Actually we can also prove that the conjecture is true if S / I is Gorenstein, ht $I=5$, but I is not a complete intersection. If I is a radical complete intersection of 5 quadrics, we are only able to say that $\operatorname{diam} G(S / I) \leq 7 \ldots$

Hirsch ideals

If K has characteristic $p>0$, let us recall that by the Fedder criterion the following are equivalent for a homogeneous ideal $I \subset S=K\left[X_{0}, \ldots, X_{n}\right]:$

- S / I is F-pure.
- There exists a polynomial $f \in I^{[p]}: I$ with $X_{0}^{p-1} X_{1}^{p-1} \cdots X_{n}^{p-1}$ in its support.
If, furthermore, $X_{0}^{p-1} X_{1}^{p-1} \cdots X_{n}^{p-1}$ is the initial monomial of f with respect to some monomial order, then one can show that the respective initial ideals of I and of all the intersections of the minimal prime ideals of I are square-free monomial ideals. So, as a consequence, by the results in [DV] one gets...

Hirsch ideals

Proposition

If S / I is F-pure and $\operatorname{in}(f)=X_{0}^{p-1} X_{1}^{p-1} \cdots X_{n}^{p-1}$, then

$$
\operatorname{diam} G(S / I) \leq \operatorname{diam}(G(S / \operatorname{in}(I)))
$$

Corollary

Let S / I be F-pure and $\operatorname{in}(f)=X_{0}^{p-1} X_{1}^{p-1} \ldots X_{n}^{p-1}$. If S / I is Cohen-Macaulay and ht $I \leq 3$, then I is Hirsch.

The proof uses the recent results of Conca and myself on square-free Gröbner degenerations and a study by Brent Holmes on the diameter of simplicial complexes of small codimension...

Conjecture

Let $I \subset S$ be a height 2 homogeneous ideal such that S / I is F-pure and Cohen-Macaulay. Then I is Hirsch.

Schläfli double six

If, among the 27 lines on a smooth cubic, we take only the 6 corresponding to the exceptional divisors and the 6 corresponding to the strict transforms of the conics, we get a line arrangement $X \subset \mathbb{P}^{3}$ known as Schläfli double six. One can check that the corresponding line arrangement ideal $I \subset S$ is a complete intersection of the cubic and of a quartic; we have the following:

