The dual graph of a ring

Fellowship of the ring seminar, MSRI

June 11, 2020

Matteo Varbaro (Università degli Studi di Genova) Based on 4 papers, BV, BBV, BDV, DV, jointly written with Bruno Benedetti, Barbara Bolognese, Michela Di Marca Fix a Noetherian ring R of dimension $d < \infty$. Its **dual graph** (a.k.a. **Hochster-Huneke graph**) G(R) is the simple graph with:

- The minimal prime ideals of R as vertices.
- As edges, $\{\mathfrak{p},\mathfrak{q}\}$ where $R/(\mathfrak{p}+\mathfrak{q})$ has Krull dimension d-1.

Example A

If $R = \mathbb{C}[X, Y, Z]/(XYZ)$, then $Min(R) = \{(\overline{X}), (\overline{Y}), (\overline{Z})\}$ and G(R) is a triangle, indeed R has dimension 2 and:

- $R/(\overline{X},\overline{Y}) \cong \mathbb{C}[Z]$ has dimension 1.
- $R/(\overline{X},\overline{Z}) \cong \mathbb{C}[Y]$ has dimension 1.
- $R/(\overline{Y},\overline{Z}) \cong \mathbb{C}[X]$ has dimension 1.

Exercise

The following properties come directly from the definition:

- $G(R) = G(R/\sqrt{\{0\}}).$
- If R is a domain, G(R) consists of a single point.
- If p ∈ Min(R) is such that dim R/p < d, then p is an isolated vertex in G(R) (i.e. it does not belong to any edge). In particular, if R is not equidimensional, G(R) is not connected.

Theorems

Let (R, \mathfrak{m}) be a Noetherian local ring.

- (Hartshorne, 1962) If R is Cohen-Macaulay, then G(R) is connected.
- (Grothendieck, 1968) If R is complete and G(R) is connected, then G(R/xR) is connected for any nonzero-divisor $x \in R$.
- (Hochster and Huneke, 2002) If R is complete, then G(R) is connected if and only if R is equidimensional and H^{dim R}_m(R) is an indecomposable R-module.

The dual graph of a ring: which graphs?

Our first aim is to understand which finite simple graphs can be realized as the dual graph of a ring. Several examples come from **Stanley-Reisner rings**, so let us quickly introduce them:

Let *n* be a positive integer and $[n] := \{0, ..., n\}$. A simplicial complex Δ on [n] is a subset of $2^{[n]}$ such that:

$$\sigma \in \Delta, \ \tau \subset \sigma \ \Rightarrow \ \tau \in \Delta.$$

Any element of Δ is called *face*, and a face maximal by inclusion is called *facet*. The set of facets is denoted by $\mathcal{F}(\Delta)$. The dimension of a face σ is dim $\sigma := |\sigma| - 1$, and the dimension of a simplicial complex Δ is

$$\dim \Delta := \sup \{\dim \sigma : \sigma \in \Delta\} = \sup \{\dim \sigma : \sigma \in \mathcal{F}(\Delta)\}.$$

The dual graph of a simplicial complex

The *dual graph* of a *d*-dimensional simplicial complex Δ is the simple graph $G(\Delta)$ with:

- The facets of Δ as vertices.
- As edges, $\{\sigma, \tau\}$ where dim $\sigma \cap \tau = d 1$.

Let K be a field and $S = K[X_0, ..., X_n]$ be the polynomial ring.

To a simplicial complex Δ on [n] we associate the ideal of S:

$$I_{\Delta} = (X_{i_1} \cdots X_{i_k} : \{i_1, \ldots, i_k\} \notin \Delta) \subset S.$$

 I_{Δ} is a square-free monomial ideal, and conversely to any such ideal $I \subset S$ we associate the simplicial complex on [n]:

$$\Delta(I) = \{\{i_1,\ldots,i_k\} \subset [n]: X_{i_1}\cdots X_{i_k} \notin I\} \subset 2^{[n]}.$$

It is straightforward to check that the operations above yield a 1-1 correspondence:

{simplicial complexes on [n]} \leftrightarrow {square-free monomial ideals of *S*}

For a simplicial complex Δ on [n]:

(i)
$$I_{\Delta} \subset S$$
 is called the **Stanley-Reisner ideal** of Δ ;

(ii) $K[\Delta] = S/I_{\Delta}$ is called the **Stanley-Reisner ring** of Δ .

Lemma

$$I_{\Delta} = \bigcap_{\sigma \in \mathcal{F}(\Delta)} (X_i : i \in [n] \setminus \sigma)$$
. Hence dim $\mathcal{K}[\Delta] = \dim \Delta + 1$

Proof: For any $\sigma \subset [n]$, the ideal $(X_i : i \in \sigma)$ contains I_Δ if and only if $[n] \setminus \sigma \in \Delta$. Being I_Δ a monomial ideal, its minimal primes are monomial prime ideals, i.e. ideals generated by variables. So, since I_Δ is radical, $I_\Delta = \bigcap_{\sigma \in \Delta} (X_i : i \in [n] \setminus \sigma)$. In the above intersection only the facets matter, so we conclude. \Box

Exercise

The previous proof shows that there is a 1-1 correspondence between the facets of Δ and the minimal prime ideals of $\mathcal{K}[\Delta]$. As it turns out, this correspondence gives an isomorphism of graphs $\mathcal{G}(\Delta) \cong \mathcal{G}(\mathcal{K}[\Delta])$.

To the simplicial complex Δ of Example B corresponds the ideal

$$egin{aligned} &\mathcal{A} = (X_1X_6, \ X_2X_4, \ X_3X_5) \subset \mathcal{K}[X_1, \dots, X_6] \ &= (X_1, X_2, X_3) \cap (X_1, X_2, X_5) \cap (X_1, X_4, X_3) \cap (X_1, X_4, X_5) \ &\cap (X_6, X_2, X_3) \cap (X_6, X_2, X_5) \cap (X_6, X_4, X_3) \cap (X_6, X_4, X_5) \end{aligned}$$

and one can directly check that the dual graph of $K[\Delta]$ is the same described in Example B.

Dual graph of a simplicial complex

The previous discussion shows that any finite simple graph which is dual to some simplicial complex is the dual graph of a ring. However, not all finite simple graphs are dual to some simplicial complex. Some discussions on this issue can be found in a paper by Sather-Watsgaff and Spiroff and in [BBV].

Example C - Exercise

Let \mathbb{P}^n denote the *n*-dimensional projective space over the field *K*, and $X \subset \mathbb{P}^n$ a union of lines. Precisely,

$$X=\bigcup_{i=1}^{s}L_{i}\subset\mathbb{P}^{n},$$

where the L_i are projective lines, i.e. projective varieties defined by ideals generated by n - 1 linear forms of $S = K[X_0, ..., X_n]$.

The *dual graph* of X is the simple graph G(X) with:

- The lines *L_i* as vertices.
- As edges, $\{L_i, L_j\}$ if L_i and L_j meet in a point.

Dual graph of a projective line arrangement

Example D

The simple graph of Example C, which was not dual to any simplicial complex, is dual to a line arrangement:

If $X = \bigcup_{i=1}^{s} L_i \subset \mathbb{P}^n$ and L_i is defined by the ideal

$$I_i = (\ell_{1,i},\ldots,\ell_{n-1,i}) \subset S = K[X_0,\ldots,X_n],$$

then G(X) is isomorphic to the dual graph of the 2-dimensional ring S/I where $I = \bigcap_{i=1}^{s} I_i$ under the correspondence between the L_i 's and the minimal prime ideals $\overline{I_i}$ of S/I. Indeed T.F.A.E.:

- L_i and L_j meet in a point.
- $S/(I_i + I_j)$ has dimension 1.

Dual graph of a projective line arrangement

If a simple graph is dual to a *d*-dimensional simplicial complex Δ , then it is also dual to a projective line arrangement:

Indeed, if $d \ge 1$ and all the facets of Δ has the same dimension, just take the Stanley-Reisner ring $K[\Delta]$ and go modulo d-1 general linear forms. The resulting ring R will be the coordinate ring of a line arrangement and have the same dual graph as $K[\Delta]$. However...

Summing up, so far we proved the following inclusions:

$$\left\{ \begin{array}{c} \mathrm{dual\ graphs} \\ \mathrm{of\ simplicial} \\ \mathrm{complexes} \end{array} \right\} \subsetneq \left\{ \begin{array}{c} \mathrm{dual\ graphs} \\ \mathrm{of\ projective} \\ \mathrm{line\ arr'ts} \end{array} \right\} \subsetneq \left\{ \begin{array}{c} \mathrm{dual\ graphs} \\ \mathrm{of\ rings} \end{array} \right\} \subseteq \left\{ \begin{array}{c} \mathrm{all\ finite} \\ \mathrm{simple\ graphs} \end{array} \right\}.$$

It turns out that the last inclusion is an equality. We show how to get a ring R such that G(R) is the graph of Example E, and this will give the flavour for the proof of the general case. The details can be found in [BBV].

Dual graphs of rings VS finite simple graphs

Assuming that K is infinite, we can pick 6 linear forms ℓ_1, \ldots, ℓ_6 of S = K[X, Y, Z] such that ℓ_i, ℓ_j, ℓ_k are linearly independent for all $1 \le i < j < k \le 6$. With this choice the corresponding 6 lines of \mathbb{P}^2 will meet in 15 distinct points.

Consider the ideal $J = (\ell_2, \ell_3) \cap (\ell_5, \ell_6) \subset S$ and the ring $A = K[J_3] \subset S$. Now let I be the ideal $(\ell_1 \cdots \ell_6) \cap A \subset A$. Then the dual graph of R = A/I is isomorphic to the one of Example E (check it as exercise!).

Remark

Geometrically, A is the coordinate ring of the blow-up of \mathbb{P}^2 along the intersection points P_{23} and P_{56} , and R is the coordinate ring of the strict transform of the line arrangement given by the original 6 lines of \mathbb{P}^2 .

Given a simple graph G on s vertices and an integer r less than s, we say that G is r-connected if the removal of less than r vertices of G does not disconnect it. The valency of a vertex v of G is:

 $\delta(v) = |\{w : \{v, w\} \text{ is an edge of } G\}|.$

• 2-connected, not 3-connected.

- $\delta(\text{inner}) = \delta(\text{inner}) = 6.$
- $\delta(\text{boundary}) = \delta(\text{boundary}) = 3.$

Remark

(i) G is 1-connected \Leftrightarrow G is connected and has at least 2 vertices.

- (ii) G is r-connected \Rightarrow G is r'-connected for all $r' \leq r$.
- (iii) G is r-connected $\Rightarrow \delta(v) \ge r$ for all vertices v of G.

G is said to be r-regular if each vertex has valency r.

3-regular, 1-connected, not 2-connected.

Given a line arrangement $X = \bigcup_{i=1}^{s} L_i \subset \mathbb{P}^n$ there is a unique radical ideal $I \subset S = K[X_0, \ldots, X_n]$ defining X. The ideal I has the form

$$I = I_1 \cap I_2 \cap \ldots \cap I_s$$

where $I_j \subset S$ is the ideal generated by the n-1 linear forms defining the line L_j . For simplicity we will call such ideals $I \subset S$ line arrangement ideals.

Of course there are many other homogeneous ideals $J \subset S$ defining $X \subset \mathbb{P}^n$ set-theoretically, namely those for which $\sqrt{J} = I$, but to our purposes the interesting one is $I \dots$

Theorem [BV]

Let $I \subset S$ be a line arrangement ideal such that S/I is Gorenstein. Then G(S/I) is *r*-connected where $r = \operatorname{reg} S/I$.

The main ingredient of the proof is liaison theory.

Somewhat in contrast, we have the following:

Theorem (Mohan Kumar, 1990)

For any connected line arrangement ideal $I \subset K[X_0, X_1, X_2, X_3] = S$, there is a homogeneous complete intersection $J = (f, g) \subset S$ such that $\sqrt{J} = I$ (in particular G(S/J) = G(S/I)). Hence, any connected simple graph which is dual to a line arrangement is also dual to a complete intersection.

In view of the result of Mohan Kumar it is natural to ask the following:

Question

Is any connected simple graph dual to a complete intersection?

Coming back to our purposes, the previous result in [BV] is not optimal, in the sense that one can easily produce examples of line arrangement ideals $I \subset S$ such that S/I is Gorenstein of regularity r and G(S/I) is k-connected for k > r.

However there are natural situations where the result is actually optimal ...

27 lines

Let $Z \subset \mathbb{P}^3$ be a smooth cubic, and $X = \bigcup_{i=1}^{27} X_i$ be the union of all the lines on Z. Below is a representation of the Clebsch's cubic:

$$x_0^3 + x_1^3 + x_2^3 + x_3^3 = (x_0 + x_1 + x_2 + x_3)^3.$$

One can realize that the line arrangement ideal $I \subset S$ defining $X \subset \mathbb{P}^3$ is a complete intersection of the cubic defining Z and a product of 9 linear forms. So S/I is Gorenstein of regularity 3+9-2=10. From the description of a smooth cubic as the blow up of \mathbb{P}^2 along 6 points one can check that:

- G(S/I) = G(X) is **10**-connected (we already knew this from the theorem of [BV]).
- G(X) is **10**-regular (in particular G(X) is not 11-connected).

A line arrangement $X \subset \mathbb{P}^n$ has planar singularities if all the lines of X meeting at a single point are co-planar. This is automatically satisfied if no more than two lines meet at the same point, or if X lies on a smooth surface.

Theorem [BDV]

Let $I \subset S$ be a line arrangement ideal such that S/I is Gorenstein. If the corresponding line arrangement has planar singularities, then G(S/I) is *r*-regular where $r = \operatorname{reg} S/I$. In particular G(S/I) is not (r + 1)-connected (though it is *r*-connected).

Once again, the main ingredient of the proof is *liaison theory*.

The diameter of a graph

Given two vertices v, w of a simple graph G, their distance d(v, w) is the minimum length of a path connecting them; if such a path does not exists, $d(v, w) = +\infty$. The diameter of G is then

diam $G = \max\{d(v, w) : v \neq w \text{ are vertices of } G\}$

(diam $G = -\infty$ if G consists of a single vertex).

The Hirsch conjecture is a conjecture from 1957 in discrete geometry. An equivalent formulation of it is that, if Δ is the boundary of a simplicial *d*-polytope with vertex set [n], then

diam $G(\Delta) \leq n+1-d$.

This conjecture has recently been disproved by Francisco Santos, however the statement is known to be true in some special cases:

Theorem (Adiprasito, Benedetti)

The conjecture of Hirsch is true if Δ is flag.

If Δ is the boundary of a *d*-polytope with vertex set [n], then $K[\Delta]$ is Gorenstein of dimension *d*, and $I_{\Delta} \subset S = K[X_0, \ldots, X_n]$ has height n + 1 - d. Furthermore, Δ being flag means that I_{Δ} is generated by quadrics.

In view of such considerations, it is natural to define a homogeneous ideal $I \subset S = K[X_0, ..., X_n]$ Hirsch if

diam $G(S/I) \leq \operatorname{ht} I$.

We proposed the following, maybe too pretentious, conjecture:

Conjecture [BV]

Let $I \subset S$ be a radical homogeneous ideal generated by quadrics. If S/I is Cohen-Macaulay, then I is Hirsch.

Theorem [DV]

The above conjecture is true if S/I is Gorenstein and $ht I \leq 4$.

Once again, the main ingredient of the proof is *liaison theory*.

Actually we can also prove that the conjecture is true if S/I is Gorenstein, ht I = 5, but I is not a complete intersection. If I is a radical complete intersection of 5 quadrics, we are only able to say that diam $G(S/I) \leq 7$... If *K* has characteristic p > 0, let us recall that by the Fedder criterion the following are equivalent for a homogeneous ideal $I \subset S = K[X_0, \ldots, X_n]$:

- *S*/*I* is *F*-pure.
- There exists a polynomial $f \in I^{[p]} : I$ with $X_0^{p-1}X_1^{p-1}\cdots X_n^{p-1}$ in its support.

If, furthermore, $X_0^{p-1}X_1^{p-1}\cdots X_n^{p-1}$ is the initial monomial of f with respect to some monomial order, then one can show that the respective initial ideals of I and of all the intersections of the minimal prime ideals of I are square-free monomial ideals. So, as a consequence, by the results in [DV] one gets...

Proposition

If
$$S/I$$
 is F-pure and $in(f) = X_0^{p-1}X_1^{p-1}\cdots X_n^{p-1}$, then

diam
$$G(S/I) \leq \operatorname{diam}(G(S/\operatorname{in}(I))).$$

Corollary

Let
$$S/I$$
 be F -pure and $in(f) = X_0^{p-1}X_1^{p-1}\cdots X_n^{p-1}$. If S/I is Cohen-Macaulay and $ht I \leq 3$, then I is Hirsch.

The proof uses the recent results of Conca and myself on square-free Gröbner degenerations and a study by Brent Holmes on the diameter of simplicial complexes of small codimension...

Conjecture

Let $I \subset S$ be a height 2 homogeneous ideal such that S/I is F-pure and Cohen-Macaulay. Then I is Hirsch.

Schläfli double six

If, among the 27 lines on a smooth cubic, we take only the 6 corresponding to the exceptional divisors and the 6 corresponding to the strict transforms of the conics, we get a line arrangement $X \subset \mathbb{P}^3$ known as **Schläfli double six**. One can check that the corresponding line arrangement ideal $I \subset S$ is a complete intersection of the cubic and of a quartic; we have the following:

As predicted, $G(S_{I})$ is 5-regular and 5-connected (reg $(S_{I})=5$). Furthermore, I is a height 2 radical homogeneous ideal such that S_{I} is Gorenstein. Though, I is not Hirsch (diam $G(S_{I})=3$).