ON THE DUAL GRAPHS
 OF COMPLETE INTERSECTIONS

Matteo Varbaro

Università degli Studi di Genova

Notation

Notation

- K is an algebraically closed field.

Notation

- K is an algebraically closed field.
- $S=K\left[x_{0}, \ldots, x_{n}\right]$ the polynomial ring.

Notation

- K is an algebraically closed field.
- $S=K\left[x_{0}, \ldots, x_{n}\right]$ the polynomial ring.
- Given a homogeneous ideal $I \subseteq S$, its zero-locus is

$$
\mathcal{Z}(I)=\left\{P \in \mathbb{P}^{n}: f(P)=0 \forall f \in I\right\} \subseteq \mathbb{P}^{n} .
$$

Notation

- K is an algebraically closed field.
- $S=K\left[x_{0}, \ldots, x_{n}\right]$ the polynomial ring.
- Given a homogeneous ideal $I \subseteq S$, its zero-locus is

$$
\mathcal{Z}(I)=\left\{P \in \mathbb{P}^{n}: f(P)=0 \forall f \in I\right\} \subseteq \mathbb{P}^{n} .
$$

- Given a subset $X \subseteq \mathbb{P}^{n}$, we denote by

$$
\mathcal{I}(X)=\{f \in S: f(P)=0 \forall P \in X\} \subseteq S
$$

its corresponding homogeneous ideal.

Notation

- K is an algebraically closed field.
- $S=K\left[x_{0}, \ldots, x_{n}\right]$ the polynomial ring.
- Given a homogeneous ideal $I \subseteq S$, its zero-locus is

$$
\mathcal{Z}(I)=\left\{P \in \mathbb{P}^{n}: f(P)=0 \forall f \in I\right\} \subseteq \mathbb{P}^{n} .
$$

- Given a subset $X \subseteq \mathbb{P}^{n}$, we denote by

$$
\mathcal{I}(X)=\{f \in S: f(P)=0 \forall P \in X\} \subseteq S
$$

its corresponding homogeneous ideal.

- By the Nullstellensatz, we have $\mathcal{I}(\mathcal{Z}(I))=\sqrt{I}$.

Notation

Notation

A subset $X \subseteq \mathbb{P}^{n}$ is a (projective) algebraic variety if $\mathcal{Z}(\mathcal{I}(X))=X$.

Notation

A subset $X \subseteq \mathbb{P}^{n}$ is a (projective) algebraic variety if $\mathcal{Z}(\mathcal{I}(X))=X$. By the Nullstellensatz, there is a correspondence

$$
\begin{aligned}
\left\{\begin{array}{c}
\text { nonempty projective } \\
\text { algebraic varieties }
\end{array}\right\} & \leftrightarrow\left\{\begin{array}{c}
\text { radical homogeneous ideals } \\
\text { not containing }\left(x_{0}, \ldots, x_{n}\right)
\end{array}\right\} \\
X & \mapsto \mathcal{I}(X) \\
\mathcal{Z}(I) & \leftrightarrow I
\end{aligned}
$$

Notation

A subset $X \subseteq \mathbb{P}^{n}$ is a (projective) algebraic variety if $\mathcal{Z}(\mathcal{I}(X))=X$. By the Nullstellensatz, there is a correspondence

$$
\begin{aligned}
\left\{\begin{array}{c}
\text { nonempty projective } \\
\text { algebraic varieties }
\end{array}\right\} & \leftrightarrow\left\{\begin{array}{c}
\text { radical homogeneous ideals } \\
\text { not containing }\left(x_{0}, \ldots, x_{n}\right)
\end{array}\right\} \\
X & \mapsto \mathcal{I}(X) \\
\mathcal{Z}(I) & \leftrightarrow I
\end{aligned}
$$

An algebraic variety $X \subseteq \mathbb{P}^{n}$ of codimension c is a complete intersection (Cl) if $\mathcal{I}(X)$ is generated by c polynomials.

Notation

A subset $X \subseteq \mathbb{P}^{n}$ is a (projective) algebraic variety if $\mathcal{Z}(\mathcal{I}(X))=X$. By the Nullstellensatz, there is a correspondence

$$
\begin{aligned}
\left\{\begin{array}{c}
\text { nonempty projective } \\
\text { algebraic varieties }
\end{array}\right\} & \leftrightarrow\left\{\begin{array}{c}
\text { radical homogeneous ideals } \\
\text { not containing }\left(x_{0}, \ldots, x_{n}\right)
\end{array}\right\} \\
X & \mapsto \mathcal{I}(X) \\
\mathcal{Z}(I) & \leftrightarrow I
\end{aligned}
$$

An algebraic variety $X \subseteq \mathbb{P}^{n}$ of codimension c is a complete intersection (Cl) if $\mathcal{I}(X)$ is generated by c polynomials.

An algebraic variety $X \subseteq \mathbb{P}^{n}$ is called a subspace arrangement if it is the union of linear subspaces of \mathbb{P}^{n}.

Line arrangements in \mathbb{P}^{3}

Line arrangements in \mathbb{P}^{3}

Let C be a line arrangement in \mathbb{P}^{3}, i.e.

$$
C=C_{1} \cup \ldots \cup C_{s}
$$

where C_{i} is a line in \mathbb{P}^{3}.

Line arrangements in \mathbb{P}^{3}

Let C be a line arrangement in \mathbb{P}^{3}, i.e.

$$
C=C_{1} \cup \ldots \cup C_{s}
$$

where C_{i} is a line in \mathbb{P}^{3}. Let's form the dual graph $G(C)$ as follow:

Line arrangements in \mathbb{P}^{3}

Let C be a line arrangement in \mathbb{P}^{3}, i.e.

$$
C=C_{1} \cup \ldots \cup C_{s}
$$

where C_{i} is a line in \mathbb{P}^{3}. Let's form the dual graph $G(C)$ as follow:

- $V(G(C))=\{1, \ldots, s\}$.

Line arrangements in \mathbb{P}^{3}

Let C be a line arrangement in \mathbb{P}^{3}, i.e.

$$
C=C_{1} \cup \ldots \cup C_{s}
$$

where C_{i} is a line in \mathbb{P}^{3}. Let's form the dual graph $G(C)$ as follow:

- $V(G(C))=\{1, \ldots, s\}$.
- $E(G(C))=\left\{\{i, j\}: C_{i} \cap C_{j} \neq \varnothing\right\}$.

Line arrangements in \mathbb{P}^{3}

Let C be a line arrangement in \mathbb{P}^{3}, i.e.

$$
C=C_{1} \cup \ldots \cup C_{s}
$$

where C_{i} is a line in \mathbb{P}^{3}. Let's form the dual graph $G(C)$ as follow:

- $V(G(C))=\{1, \ldots, s\}$.
- $E(G(C))=\left\{\{i, j\}: C_{i} \cap C_{j} \neq \varnothing\right\}$.

We are going to inquire on the connectedness properties of $G(C)$ given global properties of C.

Line arrangements in \mathbb{P}^{3}

Line arrangements in \mathbb{P}^{3}

Suppose that C is a complete intersection,

Line arrangements in \mathbb{P}^{3}

Suppose that C is a complete intersection, that is $\mathcal{I}(C)=(f, g)$ for two homogeneous polynomials $f, g \in S$.

Line arrangements in \mathbb{P}^{3}

Suppose that C is a complete intersection, that is $\mathcal{I}(C)=(f, g)$ for two homogeneous polynomials $f, g \in S$.

A classical result of Hartshorne implies that, in such a situation, $G(X)$ is connected.

Line arrangements in \mathbb{P}^{3}

Suppose that C is a complete intersection, that is $\mathcal{I}(C)=(f, g)$ for two homogeneous polynomials $f, g \in S$.

A classical result of Hartshorne implies that, in such a situation, $G(X)$ is connected. In a recent work joint with Bruno Benedetti, we quantified more precisely this connectedness...

Line arrangements in \mathbb{P}^{3}

Suppose that C is a complete intersection, that is $\mathcal{I}(C)=(f, g)$ for two homogeneous polynomials $f, g \in S$.

A classical result of Hartshorne implies that, in such a situation, $G(X)$ is connected. In a recent work joint with Bruno Benedetti, we quantified more precisely this connectedness...

A graph G is r-connected if it has at least $r+1$ vertices and removing $<r$ vertices yields a connected graph.

Line arrangements in \mathbb{P}^{3}

Suppose that C is a complete intersection, that is $\mathcal{I}(C)=(f, g)$ for two homogeneous polynomials $f, g \in S$.

A classical result of Hartshorne implies that, in such a situation, $G(X)$ is connected. In a recent work joint with Bruno Benedetti, we quantified more precisely this connectedness...

A graph G is r-connected if it has at least $r+1$ vertices and removing $<r$ vertices yields a connected graph. In particular:

- G is connected $\Leftrightarrow G$ is 1 -connected;
- G is $(r+1)$-connected $\Rightarrow G$ is r-connected.

Examples of r-connectivity

2 -ametes
mat 3-conmectad

1-connected
not 2 -comnertal

3- connected
not
4-canne ated

Line arrangements in \mathbb{P}^{3}

Line arrangements in \mathbb{P}^{3}

As we said, if $C \subseteq \mathbb{P}^{3}$ is a complete intersection, that is $\mathcal{I}(C)=(f, g)$ for two homogeneous polynomials $f, g \in S$,

Line arrangements in \mathbb{P}^{3}

As we said, if $C \subseteq \mathbb{P}^{3}$ is a complete intersection, that is
$\mathcal{I}(C)=(f, g)$ for two homogeneous polynomials $f, g \in S$, then $G(C)$ is connected by a result of Hartshorne.

Line arrangements in \mathbb{P}^{3}

As we said, if $C \subseteq \mathbb{P}^{3}$ is a complete intersection, that is $\mathcal{I}(C)=(f, g)$ for two homogeneous polynomials $f, g \in S$, then $G(C)$ is connected by a result of Hartshorne.

THEOREM (Benedetti, -): In the above situation, if $\operatorname{deg}(f)=d$ and $\operatorname{deg}(g)=e$, then $G(C)$ is $(d+e-2)$-connected.

Line arrangements in \mathbb{P}^{3}

As we said, if $C \subseteq \mathbb{P}^{3}$ is a complete intersection, that is $\mathcal{I}(C)=(f, g)$ for two homogeneous polynomials $f, g \in S$, then $G(C)$ is connected by a result of Hartshorne.

THEOREM (Benedetti, -): In the above situation, if $\operatorname{deg}(f)=d$ and $\operatorname{deg}(g)=e$, then $G(C)$ is $(d+e-2)$-connected.

For example, if the ideal of definition of C is defined by 2 cubics, then $G(C)$ will be 4-connected.

Cl line arrangements in \mathbb{P}^{3}

Cl line arrangements in \mathbb{P}^{3}

Given positive integers d, e, there always is a line arrangement $C \subseteq \mathbb{P}^{3}$ such that $\mathcal{I}(C)=(f, g)$ with $\operatorname{deg}(f)=d, \operatorname{deg}(g)=e$.

Cl line arrangements in \mathbb{P}^{3}

Given positive integers d, e, there always is a line arrangement $C \subseteq \mathbb{P}^{3}$ such that $\mathcal{I}(C)=(f, g)$ with $\operatorname{deg}(f)=d, \operatorname{deg}(g)=e$. To construct it, one has to choose linear forms

$$
\ell_{11}, \ldots, \ell_{1 d}, \ell_{21}, \ldots, \ell_{2 e} \in S=K\left[x_{0}, \ldots, x_{3}\right]
$$

such that:

Cl line arrangements in \mathbb{P}^{3}

Given positive integers d, e, there always is a line arrangement $C \subseteq \mathbb{P}^{3}$ such that $\mathcal{I}(C)=(f, g)$ with $\operatorname{deg}(f)=d, \operatorname{deg}(g)=e$. To construct it, one has to choose linear forms

$$
\ell_{11}, \ldots, \ell_{1 d}, \ell_{21}, \ldots, \ell_{2 e} \in S=K\left[x_{0}, \ldots, x_{3}\right]
$$

such that:

- $\operatorname{dim}_{K}\left\langle\ell_{1 i}, \ell_{2 j}\right\rangle=2$ for all $i=1, \ldots, d$ and $j=1, \ldots, e$.

Cl line arrangements in \mathbb{P}^{3}

Given positive integers d, e, there always is a line arrangement $C \subseteq \mathbb{P}^{3}$ such that $\mathcal{I}(C)=(f, g)$ with $\operatorname{deg}(f)=d, \operatorname{deg}(g)=e$. To construct it, one has to choose linear forms

$$
\ell_{11}, \ldots, \ell_{1 d}, \ell_{21}, \ldots, \ell_{2 e} \in S=K\left[x_{0}, \ldots, x_{3}\right]
$$

such that:

- $\operatorname{dim}_{K}\left\langle\ell_{1 i}, \ell_{2 j}\right\rangle=2$ for all $i=1, \ldots, d$ and $j=1, \ldots, e$.
- $\left\langle\ell_{1 i}, \ell_{2 j}\right\rangle=\left\langle\ell_{1 h}, \ell_{2 k}\right\rangle \Leftrightarrow i=h$ and $j=k$.

Cl line arrangements in \mathbb{P}^{3}

Given positive integers d, e, there always is a line arrangement $C \subseteq \mathbb{P}^{3}$ such that $\mathcal{I}(C)=(f, g)$ with $\operatorname{deg}(f)=d, \operatorname{deg}(g)=e$. To construct it, one has to choose linear forms

$$
\ell_{11}, \ldots, \ell_{1 d}, \ell_{21}, \ldots, \ell_{2 e} \in S=K\left[x_{0}, \ldots, x_{3}\right]
$$

such that:

- $\operatorname{dim}_{K}\left\langle\ell_{1 i}, \ell_{2 j}\right\rangle=2$ for all $i=1, \ldots, d$ and $j=1, \ldots, e$.
- $\left\langle\ell_{1 i}, \ell_{2 j}\right\rangle=\left\langle\ell_{1 h}, \ell_{2 k}\right\rangle \Leftrightarrow i=h$ and $j=k$.

In this case $f=\ell_{11} \cdots \ell_{1 d}$ and $g=\ell_{21} \cdots \ell_{2 e}$ will do the job.

Cl line arrangements in \mathbb{P}^{3}

Given positive integers d, e, there always is a line arrangement $C \subseteq \mathbb{P}^{3}$ such that $\mathcal{I}(C)=(f, g)$ with $\operatorname{deg}(f)=d, \operatorname{deg}(g)=e$. To construct it, one has to choose linear forms

$$
\ell_{11}, \ldots, \ell_{1 d}, \ell_{21}, \ldots, \ell_{2 e} \in S=K\left[x_{0}, \ldots, x_{3}\right]
$$

such that:

- $\operatorname{dim}_{K}\left\langle\ell_{1 i}, \ell_{2 j}\right\rangle=2$ for all $i=1, \ldots, d$ and $j=1, \ldots, e$.
- $\left\langle\ell_{1 i}, \ell_{2 j}\right\rangle=\left\langle\ell_{1 h}, \ell_{2 k}\right\rangle \Leftrightarrow i=h$ and $j=k$.

In this case $f=\ell_{11} \cdots \ell_{1 d}$ and $g=\ell_{21} \cdots \ell_{2 e}$ will do the job. If the $\ell_{i j}$'s are general enough, precisely if each four of them are linearly independent, then it turns out that the dual graph of C is not ($d+e-1$)-connected.

Cl line arrangements in \mathbb{P}^{3}

Cl line arrangements in \mathbb{P}^{3}

QUESTION: Are all the CI line arrangements $C \subseteq \mathbb{P}^{3}$ (under some genericity condition) as above?

Cl line arrangements in \mathbb{P}^{3}

QUESTION: Are all the CI line arrangements $C \subseteq \mathbb{P}^{3}$ (under some genericity condition) as above? That is, is $\mathcal{I}(C)$ generated by products?

Cl line arrangements in \mathbb{P}^{3}

QUESTION: Are all the CI line arrangements $C \subseteq \mathbb{P}^{3}$ (under some genericity condition) as above? That is, is $\mathcal{I}(C)$ generated by products?

Michela Di Marca is working on this kind of questions.

Cl line arrangements in \mathbb{P}^{3}

QUESTION: Are all the CI line arrangements $C \subseteq \mathbb{P}^{3}$ (under some genericity condition) as above? That is, is $\mathcal{I}(C)$ generated by products?

Michela Di Marca is working on this kind of questions. For the moment, she could prove that this is true if $\operatorname{deg}(f)=\operatorname{deg}(g)=2$ and at least two of the lines of C are skew

Cl line arrangements in \mathbb{P}^{3}

QUESTION: Are all the CI line arrangements $C \subseteq \mathbb{P}^{3}$ (under some genericity condition) as above? That is, is $\mathcal{I}(C)$ generated by products?

Michela Di Marca is working on this kind of questions. For the moment, she could prove that this is true if $\operatorname{deg}(f)=\operatorname{deg}(g)=2$ and at least two of the lines of C are skew

If $C \subseteq \mathbb{P}^{3}$ is a complete intersection, then $C=H_{1} \cap H_{2}$ for some surfaces H_{1} and H_{2} of \mathbb{P}^{3}

Cl line arrangements in \mathbb{P}^{3}

QUESTION: Are all the Cl line arrangements $C \subseteq \mathbb{P}^{3}$ (under some genericity condition) as above? That is, is $\mathcal{I}(C)$ generated by products?

Michela Di Marca is working on this kind of questions. For the moment, she could prove that this is true if $\operatorname{deg}(f)=\operatorname{deg}(g)=2$ and at least two of the lines of C are skew

If $C \subseteq \mathbb{P}^{3}$ is a complete intersection, then $C=H_{1} \cap H_{2}$ for some surfaces H_{1} and H_{2} of \mathbb{P}^{3} (because, if $\mathcal{I}(C)=(f, g)$, then $C=\mathcal{Z}(f) \cap \mathcal{Z}(g))$.

Cl line arrangements in \mathbb{P}^{3}

QUESTION: Are all the CI line arrangements $C \subseteq \mathbb{P}^{3}$ (under some genericity condition) as above? That is, is $\mathcal{I}(C)$ generated by products?

Michela Di Marca is working on this kind of questions. For the moment, she could prove that this is true if $\operatorname{deg}(f)=\operatorname{deg}(g)=2$ and at least two of the lines of C are skew

If $C \subseteq \mathbb{P}^{3}$ is a complete intersection, then $C=H_{1} \cap H_{2}$ for some surfaces H_{1} and H_{2} of \mathbb{P}^{3} (because, if $\mathcal{I}(C)=(f, g)$, then $C=\mathcal{Z}(f) \cap \mathcal{Z}(g))$. The converse is false

Set-theoretic complete intersections

Set-theoretic complete intersections

Let $C \subseteq \mathbb{P}^{3}$ be an algebraic curve.

Set-theoretic complete intersections

Let $C \subseteq \mathbb{P}^{3}$ be an algebraic curve. Then

$$
C=\mathcal{Z}(f) \cap \mathcal{Z}(g) \Leftrightarrow \mathcal{I}(C)=\sqrt{(f, g)}
$$

Set-theoretic complete intersections

Let $C \subseteq \mathbb{P}^{3}$ be an algebraic curve. Then

$$
C=\mathcal{Z}(f) \cap \mathcal{Z}(g) \Leftrightarrow \mathcal{I}(C)=\sqrt{(f, g)}
$$

An algebraic curve $C \subseteq \mathbb{P}^{3}$ is a set-theoretic complete intersection (SCl) if C is the intersection of two algebraic surfaces in \mathbb{P}^{3}.

Set-theoretic complete intersections

Let $C \subseteq \mathbb{P}^{3}$ be an algebraic curve. Then

$$
C=\mathcal{Z}(f) \cap \mathcal{Z}(g) \Leftrightarrow \mathcal{I}(C)=\sqrt{(f, g)}
$$

An algebraic curve $C \subseteq \mathbb{P}^{3}$ is a set-theoretic complete intersection (SCl) if C is the intersection of two algebraic surfaces in \mathbb{P}^{3}.

EXAMPLE: If $C=\left\{\left[s^{3}, s^{2} t, s t^{2}, t^{3}\right]:[s, t] \in \mathbb{P}^{1}\right\} \subseteq \mathbb{P}^{3}$, then C is an algebraic curve and

$$
\mathcal{I}(C)=\left(x_{0} x_{2}-x_{1}^{2}, x_{1} x_{3}-x_{2}^{2}, x_{0} x_{3}-x_{1} x_{2}\right) \subseteq S=K\left[x_{0}, x_{1}, x_{2}, x_{3}\right] .
$$

Set-theoretic complete intersections

Let $C \subseteq \mathbb{P}^{3}$ be an algebraic curve. Then

$$
C=\mathcal{Z}(f) \cap \mathcal{Z}(g) \Leftrightarrow \mathcal{I}(C)=\sqrt{(f, g)}
$$

An algebraic curve $C \subseteq \mathbb{P}^{3}$ is a set-theoretic complete intersection (SCl) if C is the intersection of two algebraic surfaces in \mathbb{P}^{3}.

EXAMPLE: If $C=\left\{\left[s^{3}, s^{2} t, s t^{2}, t^{3}\right]:[s, t] \in \mathbb{P}^{1}\right\} \subseteq \mathbb{P}^{3}$, then C is an algebraic curve and

$$
\mathcal{I}(C)=\left(x_{0} x_{2}-x_{1}^{2}, x_{1} x_{3}-x_{2}^{2}, x_{0} x_{3}-x_{1} x_{2}\right) \subseteq S=K\left[x_{0}, x_{1}, x_{2}, x_{3}\right]
$$

In particular, since $\mathcal{I}(C)$ needs 3 generators, C is not a Cl .

Set-theoretic complete intersections

Let $C \subseteq \mathbb{P}^{3}$ be an algebraic curve. Then

$$
C=\mathcal{Z}(f) \cap \mathcal{Z}(g) \Leftrightarrow \mathcal{I}(C)=\sqrt{(f, g)}
$$

An algebraic curve $C \subseteq \mathbb{P}^{3}$ is a set-theoretic complete intersection (SCl) if C is the intersection of two algebraic surfaces in \mathbb{P}^{3}.

EXAMPLE: If $C=\left\{\left[s^{3}, s^{2} t, s t^{2}, t^{3}\right]:[s, t] \in \mathbb{P}^{1}\right\} \subseteq \mathbb{P}^{3}$, then C is an algebraic curve and

$$
\mathcal{I}(C)=\left(x_{0} x_{2}-x_{1}^{2}, x_{1} x_{3}-x_{2}^{2}, x_{0} x_{3}-x_{1} x_{2}\right) \subseteq S=K\left[x_{0}, x_{1}, x_{2}, x_{3}\right] .
$$

In particular, since $\mathcal{I}(C)$ needs 3 generators, C is not a Cl . We will see soon that, however, C is a $\mathrm{SCl} \ldots$.

Set-theoretic complete intersections

Set-theoretic complete intersections

We claim that $C=\mathcal{Z}(f) \cap \mathcal{Z}(g)$ where

$$
f=x_{0} x_{2}-x_{1}^{2} \text { and } g=x_{0} x_{3}^{2}-2 x_{1} x_{2} x_{3}+x_{2}^{3} .
$$

Set-theoretic complete intersections

We claim that $C=\mathcal{Z}(f) \cap \mathcal{Z}(g)$ where

$$
f=x_{0} x_{2}-x_{1}^{2} \text { and } g=x_{0} x_{3}^{2}-2 x_{1} x_{2} x_{3}+x_{2}^{3} .
$$

We must prove that $\mathcal{Z}((f, g)) \subseteq \mathcal{Z}((f, a, b))$ where $a=x_{1} x_{3}-x_{2}^{2}$ and $b=x_{0} x_{3}-x_{1} x_{2}$.

Set-theoretic complete intersections

We claim that $C=\mathcal{Z}(f) \cap \mathcal{Z}(g)$ where

$$
f=x_{0} x_{2}-x_{1}^{2} \text { and } g=x_{0} x_{3}^{2}-2 x_{1} x_{2} x_{3}+x_{2}^{3} .
$$

We must prove that $\mathcal{Z}((f, g)) \subseteq \mathcal{Z}((f, a, b))$ where $a=x_{1} x_{3}-x_{2}^{2}$ and $b=x_{0} x_{3}-x_{1} x_{2}$. Let $P=\left[P_{0}, P_{1}, P_{2}, P_{3}\right] \in \mathcal{Z}((f, g))$.

Set-theoretic complete intersections

We claim that $C=\mathcal{Z}(f) \cap \mathcal{Z}(g)$ where

$$
f=x_{0} x_{2}-x_{1}^{2} \text { and } g=x_{0} x_{3}^{2}-2 x_{1} x_{2} x_{3}+x_{2}^{3} .
$$

We must prove that $\mathcal{Z}((f, g)) \subseteq \mathcal{Z}((f, a, b))$ where $a=x_{1} x_{3}-x_{2}^{2}$ and $b=x_{0} x_{3}-x_{1} x_{2}$. Let $P=\left[P_{0}, P_{1}, P_{2}, P_{3}\right] \in \mathcal{Z}((f, g))$.

- If $P_{2}=0$, then $g(P)=0 \Rightarrow P_{0} P_{3}^{2}=0$.

Set-theoretic complete intersections

We claim that $C=\mathcal{Z}(f) \cap \mathcal{Z}(g)$ where

$$
f=x_{0} x_{2}-x_{1}^{2} \text { and } g=x_{0} x_{3}^{2}-2 x_{1} x_{2} x_{3}+x_{2}^{3} .
$$

We must prove that $\mathcal{Z}((f, g)) \subseteq \mathcal{Z}((f, a, b))$ where $a=x_{1} x_{3}-x_{2}^{2}$ and $b=x_{0} x_{3}-x_{1} x_{2}$. Let $P=\left[P_{0}, P_{1}, P_{2}, P_{3}\right] \in \mathcal{Z}((f, g))$.

- If $P_{2}=0$, then $g(P)=0 \Rightarrow P_{0} P_{3}^{2}=0$. If $P_{3}=0$, then $a(P)=0$.

Set-theoretic complete intersections

We claim that $C=\mathcal{Z}(f) \cap \mathcal{Z}(g)$ where

$$
f=x_{0} x_{2}-x_{1}^{2} \text { and } g=x_{0} x_{3}^{2}-2 x_{1} x_{2} x_{3}+x_{2}^{3} .
$$

We must prove that $\mathcal{Z}((f, g)) \subseteq \mathcal{Z}((f, a, b))$ where $a=x_{1} x_{3}-x_{2}^{2}$ and $b=x_{0} x_{3}-x_{1} x_{2}$. Let $P=\left[P_{0}, P_{1}, P_{2}, P_{3}\right] \in \mathcal{Z}((f, g))$.

- If $P_{2}=0$, then $g(P)=0 \Rightarrow P_{0} P_{3}^{2}=0$. If $P_{3}=0$, then $a(P)=0$. If $P_{0}=0$, then $f(P)=0 \Rightarrow P_{1}^{2}=0$.

Set-theoretic complete intersections

We claim that $C=\mathcal{Z}(f) \cap \mathcal{Z}(g)$ where

$$
f=x_{0} x_{2}-x_{1}^{2} \text { and } g=x_{0} x_{3}^{2}-2 x_{1} x_{2} x_{3}+x_{2}^{3} .
$$

We must prove that $\mathcal{Z}((f, g)) \subseteq \mathcal{Z}((f, a, b))$ where $a=x_{1} x_{3}-x_{2}^{2}$ and $b=x_{0} x_{3}-x_{1} x_{2}$. Let $P=\left[P_{0}, P_{1}, P_{2}, P_{3}\right] \in \mathcal{Z}((f, g))$.

- If $P_{2}=0$, then $g(P)=0 \Rightarrow P_{0} P_{3}^{2}=0$. If $P_{3}=0$, then $a(P)=0$. If $P_{0}=0$, then $f(P)=0 \Rightarrow P_{1}^{2}=0$. Then $a(P)=0$.

Set-theoretic complete intersections

We claim that $C=\mathcal{Z}(f) \cap \mathcal{Z}(g)$ where

$$
f=x_{0} x_{2}-x_{1}^{2} \text { and } g=x_{0} x_{3}^{2}-2 x_{1} x_{2} x_{3}+x_{2}^{3} .
$$

We must prove that $\mathcal{Z}((f, g)) \subseteq \mathcal{Z}((f, a, b))$ where $a=x_{1} x_{3}-x_{2}^{2}$ and $b=x_{0} x_{3}-x_{1} x_{2}$. Let $P=\left[P_{0}, P_{1}, P_{2}, P_{3}\right] \in \mathcal{Z}((f, g))$.

- If $P_{2}=0$, then $g(P)=0 \Rightarrow P_{0} P_{3}^{2}=0$. If $P_{3}=0$, then $a(P)=0$. If $P_{0}=0$, then $f(P)=0 \Rightarrow P_{1}^{2}=0$. Then $a(P)=0$.
- If $P_{2} \neq 0$, we can assume that $P_{2}=1$.

Set-theoretic complete intersections

We claim that $C=\mathcal{Z}(f) \cap \mathcal{Z}(g)$ where

$$
f=x_{0} x_{2}-x_{1}^{2} \text { and } g=x_{0} x_{3}^{2}-2 x_{1} x_{2} x_{3}+x_{2}^{3} .
$$

We must prove that $\mathcal{Z}((f, g)) \subseteq \mathcal{Z}((f, a, b))$ where $a=x_{1} x_{3}-x_{2}^{2}$ and $b=x_{0} x_{3}-x_{1} x_{2}$. Let $P=\left[P_{0}, P_{1}, P_{2}, P_{3}\right] \in \mathcal{Z}((f, g))$.

- If $P_{2}=0$, then $g(P)=0 \Rightarrow P_{0} P_{3}^{2}=0$. If $P_{3}=0$, then $a(P)=0$. If $P_{0}=0$, then $f(P)=0 \Rightarrow P_{1}^{2}=0$. Then $a(P)=0$.
- If $P_{2} \neq 0$, we can assume that $P_{2}=1$. $f(P)=0 \Rightarrow P_{0}=P_{1}^{2}$,

Set-theoretic complete intersections

We claim that $C=\mathcal{Z}(f) \cap \mathcal{Z}(g)$ where

$$
f=x_{0} x_{2}-x_{1}^{2} \text { and } g=x_{0} x_{3}^{2}-2 x_{1} x_{2} x_{3}+x_{2}^{3} .
$$

We must prove that $\mathcal{Z}((f, g)) \subseteq \mathcal{Z}((f, a, b))$ where $a=x_{1} x_{3}-x_{2}^{2}$ and $b=x_{0} x_{3}-x_{1} x_{2}$. Let $P=\left[P_{0}, P_{1}, P_{2}, P_{3}\right] \in \mathcal{Z}((f, g))$.

- If $P_{2}=0$, then $g(P)=0 \Rightarrow P_{0} P_{3}^{2}=0$. If $P_{3}=0$, then $a(P)=0$. If $P_{0}=0$, then $f(P)=0 \Rightarrow P_{1}^{2}=0$. Then $a(P)=0$.
- If $P_{2} \neq 0$, we can assume that $P_{2}=1 . f(P)=0 \Rightarrow P_{0}=P_{1}^{2}$, and $g(P)=0 \Rightarrow\left(P_{1} P_{3}\right)^{2}-2 P_{1} P_{3}+1=\left(P_{1} P_{3}-1\right)^{2}=0$,

Set-theoretic complete intersections

We claim that $C=\mathcal{Z}(f) \cap \mathcal{Z}(g)$ where

$$
f=x_{0} x_{2}-x_{1}^{2} \text { and } g=x_{0} x_{3}^{2}-2 x_{1} x_{2} x_{3}+x_{2}^{3} .
$$

We must prove that $\mathcal{Z}((f, g)) \subseteq \mathcal{Z}((f, a, b))$ where $a=x_{1} x_{3}-x_{2}^{2}$ and $b=x_{0} x_{3}-x_{1} x_{2}$. Let $P=\left[P_{0}, P_{1}, P_{2}, P_{3}\right] \in \mathcal{Z}((f, g))$.

- If $P_{2}=0$, then $g(P)=0 \Rightarrow P_{0} P_{3}^{2}=0$. If $P_{3}=0$, then $a(P)=0$. If $P_{0}=0$, then $f(P)=0 \Rightarrow P_{1}^{2}=0$. Then $a(P)=0$.
- If $P_{2} \neq 0$, we can assume that $P_{2}=1$. $f(P)=0 \Rightarrow P_{0}=P_{1}^{2}$, and $g(P)=0 \Rightarrow\left(P_{1} P_{3}\right)^{2}-2 P_{1} P_{3}+1=\left(P_{1} P_{3}-1\right)^{2}=0$, so that $P_{1} P_{3}=1$ and $a(P)=0$.

Set-theoretic complete intersections

We claim that $C=\mathcal{Z}(f) \cap \mathcal{Z}(g)$ where

$$
f=x_{0} x_{2}-x_{1}^{2} \text { and } g=x_{0} x_{3}^{2}-2 x_{1} x_{2} x_{3}+x_{2}^{3} .
$$

We must prove that $\mathcal{Z}((f, g)) \subseteq \mathcal{Z}((f, a, b))$ where $a=x_{1} x_{3}-x_{2}^{2}$ and $b=x_{0} x_{3}-x_{1} x_{2}$. Let $P=\left[P_{0}, P_{1}, P_{2}, P_{3}\right] \in \mathcal{Z}((f, g))$.

- If $P_{2}=0$, then $g(P)=0 \Rightarrow P_{0} P_{3}^{2}=0$. If $P_{3}=0$, then $a(P)=0$. If $P_{0}=0$, then $f(P)=0 \Rightarrow P_{1}^{2}=0$. Then $a(P)=0$.
- If $P_{2} \neq 0$, we can assume that $P_{2}=1 . f(P)=0 \Rightarrow P_{0}=P_{1}^{2}$, and $g(P)=0 \Rightarrow\left(P_{1} P_{3}\right)^{2}-2 P_{1} P_{3}+1=\left(P_{1} P_{3}-1\right)^{2}=0$, so that $P_{1} P_{3}=1$ and $a(P)=0$.

This shows that $a(P)=0$.

Set-theoretic complete intersections

Set-theoretic complete intersections

It remains to show that $b(P)=0$,

Set-theoretic complete intersections

It remains to show that $b(P)=0$, where $b=x_{0} x_{3}-x_{1} x_{2}$.

Set-theoretic complete intersections

It remains to show that $b(P)=0$, where $b=x_{0} x_{3}-x_{1} x_{2}$.
Let's also remind that:

$$
f=x_{0} x_{2}-x_{1}^{2}, g=x_{0} x_{3}^{2}-2 x_{1} x_{2} x_{3}+x_{2}^{3}, a=x_{1} x_{3}-x_{2}^{2}
$$

Set-theoretic complete intersections

It remains to show that $b(P)=0$, where $b=x_{0} x_{3}-x_{1} x_{2}$.
Let's also remind that:

$$
f=x_{0} x_{2}-x_{1}^{2}, g=x_{0} x_{3}^{2}-2 x_{1} x_{2} x_{3}+x_{2}^{3}, a=x_{1} x_{3}-x_{2}^{2}
$$

- If $P_{2}=0$, then $g(P)=0 \Rightarrow P_{0} P_{3}^{2}=0$.

Set-theoretic complete intersections

It remains to show that $b(P)=0$, where $b=x_{0} x_{3}-x_{1} x_{2}$.
Let's also remind that:

$$
f=x_{0} x_{2}-x_{1}^{2}, g=x_{0} x_{3}^{2}-2 x_{1} x_{2} x_{3}+x_{2}^{3}, a=x_{1} x_{3}-x_{2}^{2}
$$

- If $P_{2}=0$, then $g(P)=0 \Rightarrow P_{0} P_{3}^{2}=0$. So $b(P)=0$.

Set-theoretic complete intersections

It remains to show that $b(P)=0$, where $b=x_{0} x_{3}-x_{1} x_{2}$.
Let's also remind that:

$$
f=x_{0} x_{2}-x_{1}^{2}, g=x_{0} x_{3}^{2}-2 x_{1} x_{2} x_{3}+x_{2}^{3}, a=x_{1} x_{3}-x_{2}^{2}
$$

- If $P_{2}=0$, then $g(P)=0 \Rightarrow P_{0} P_{3}^{2}=0$. So $b(P)=0$.
- If $P_{2} \neq 0$, we can assume that $P_{2}=1$.

Set-theoretic complete intersections

It remains to show that $b(P)=0$, where $b=x_{0} x_{3}-x_{1} x_{2}$.
Let's also remind that:

$$
f=x_{0} x_{2}-x_{1}^{2}, g=x_{0} x_{3}^{2}-2 x_{1} x_{2} x_{3}+x_{2}^{3}, a=x_{1} x_{3}-x_{2}^{2}
$$

- If $P_{2}=0$, then $g(P)=0 \Rightarrow P_{0} P_{3}^{2}=0$. So $b(P)=0$.
- If $P_{2} \neq 0$, we can assume that $P_{2}=1$. $f(P)=0 \Rightarrow P_{0}=P_{1}^{2}$,

Set-theoretic complete intersections

It remains to show that $b(P)=0$, where $b=x_{0} x_{3}-x_{1} x_{2}$.
Let's also remind that:

$$
f=x_{0} x_{2}-x_{1}^{2}, g=x_{0} x_{3}^{2}-2 x_{1} x_{2} x_{3}+x_{2}^{3}, a=x_{1} x_{3}-x_{2}^{2}
$$

- If $P_{2}=0$, then $g(P)=0 \Rightarrow P_{0} P_{3}^{2}=0$. So $b(P)=0$.
- If $P_{2} \neq 0$, we can assume that $P_{2}=1$. $f(P)=0 \Rightarrow P_{0}=P_{1}^{2}$, and $a(P)=0 \Rightarrow P_{1} P_{3}=1$.

Set-theoretic complete intersections

It remains to show that $b(P)=0$, where $b=x_{0} x_{3}-x_{1} x_{2}$.
Let's also remind that:

$$
f=x_{0} x_{2}-x_{1}^{2}, g=x_{0} x_{3}^{2}-2 x_{1} x_{2} x_{3}+x_{2}^{3}, a=x_{1} x_{3}-x_{2}^{2}
$$

- If $P_{2}=0$, then $g(P)=0 \Rightarrow P_{0} P_{3}^{2}=0$. So $b(P)=0$.
- If $P_{2} \neq 0$, we can assume that $P_{2}=1 . f(P)=0 \Rightarrow P_{0}=P_{1}^{2}$, and $a(P)=0 \Rightarrow P_{1} P_{3}=1$. Thus $P_{1}=P_{1}^{2} P_{3}=P_{0} P_{3}$, and $b(P)=0$.

Set-theoretic complete intersections

It remains to show that $b(P)=0$, where $b=x_{0} x_{3}-x_{1} x_{2}$.
Let's also remind that:

$$
f=x_{0} x_{2}-x_{1}^{2}, g=x_{0} x_{3}^{2}-2 x_{1} x_{2} x_{3}+x_{2}^{3}, a=x_{1} x_{3}-x_{2}^{2}
$$

- If $P_{2}=0$, then $g(P)=0 \Rightarrow P_{0} P_{3}^{2}=0$. So $b(P)=0$.
- If $P_{2} \neq 0$, we can assume that $P_{2}=1 . f(P)=0 \Rightarrow P_{0}=P_{1}^{2}$, and $a(P)=0 \Rightarrow P_{1} P_{3}=1$. Thus $P_{1}=P_{1}^{2} P_{3}=P_{0} P_{3}$, and $b(P)=0$.

This shows that $b(P)=0$, and so that

$$
C=\mathcal{Z}(f, a, b)=\mathcal{Z}(f, g)=\mathcal{Z}(f) \cap \mathcal{Z}(g)
$$

Set-theoretic complete intersections - digression

Set-theoretic complete intersections - digression

A theorem of Hartshorne, states that if an algebraic curve $C \subseteq \mathbb{P}^{3}$ is a set-theoretic complete intersection, then C must be connected.

Set-theoretic complete intersections - digression

A theorem of Hartshorne, states that if an algebraic curve $C \subseteq \mathbb{P}^{3}$ is a set-theoretic complete intersection, then C must be connected. It is one of the most tantalizing questions in algebraic geometry whether the converse is true.

Set-theoretic complete intersections - digression

A theorem of Hartshorne, states that if an algebraic curve $C \subseteq \mathbb{P}^{3}$ is a set-theoretic complete intersection, then C must be connected.
It is one of the most tantalizing questions in algebraic geometry whether the converse is true. Probably not, but there is lack of methods to prove it.

Set-theoretic complete intersections - digression

A theorem of Hartshorne, states that if an algebraic curve $C \subseteq \mathbb{P}^{3}$ is a set-theoretic complete intersection, then C must be connected.
It is one of the most tantalizing questions in algebraic geometry whether the converse is true. Probably not, but there is lack of methods to prove it.

A candidate for a counterexample is the algebraic curve $(K=\mathbb{C})$:

Set-theoretic complete intersections - digression

A theorem of Hartshorne, states that if an algebraic curve $C \subseteq \mathbb{P}^{3}$ is a set-theoretic complete intersection, then C must be connected.
It is one of the most tantalizing questions in algebraic geometry whether the converse is true. Probably not, but there is lack of methods to prove it.

A candidate for a counterexample is the algebraic curve $(K=\mathbb{C})$:

$$
\left\{\left[s^{4}, s^{3} t, s t^{3}, t^{4}\right]:[s, t] \in \mathbb{P}^{1}\right\} \subseteq \mathbb{P}^{3}
$$

Set-theoretic complete intersections - digression

A theorem of Hartshorne, states that if an algebraic curve $C \subseteq \mathbb{P}^{3}$ is a set-theoretic complete intersection, then C must be connected.
It is one of the most tantalizing questions in algebraic geometry whether the converse is true. Probably not, but there is lack of methods to prove it.

A candidate for a counterexample is the algebraic curve $(K=\mathbb{C})$:

$$
\left\{\left[s^{4}, s^{3} t, s t^{3}, t^{4}\right]:[s, t] \in \mathbb{P}^{1}\right\} \subseteq \mathbb{P}^{3}
$$

In over 40 years nobody could find 2 algebraic equations defining
C, but how to show that they do not exist???

SCI line arrangements in \mathbb{P}^{3}

SCI line arrangements in \mathbb{P}^{3}

For line arrangements in \mathbb{P}^{3} the situation is clear by an unpublished result by Mohan Kumar:

SCI line arrangements in \mathbb{P}^{3}

For line arrangements in \mathbb{P}^{3} the situation is clear by an unpublished result by Mohan Kumar:

THEOREM: If $C \subseteq \mathbb{P}^{3}$ is a line arrangement, then C is a set-theoretic complete intersection if and only if C is connected.

SCI line arrangements in \mathbb{P}^{3}

For line arrangements in \mathbb{P}^{3} the situation is clear by an unpublished result by Mohan Kumar:

THEOREM: If $C \subseteq \mathbb{P}^{3}$ is a line arrangement, then C is a set-theoretic complete intersection if and only if C is connected.

Notice that C is connected if and only if the dual graph $G(C)$ is connected.

SCI line arrangements in \mathbb{P}^{3}

For line arrangements in \mathbb{P}^{3} the situation is clear by an unpublished result by Mohan Kumar:

THEOREM: If $C \subseteq \mathbb{P}^{3}$ is a line arrangement, then C is a set-theoretic complete intersection if and only if C is connected.

Notice that C is connected if and only if the dual graph $G(C)$ is connected. Therefore the above result implies that is plenty of line arrangements which are SCl without being a $\mathrm{Cl} . . .$.
$(\mathrm{S}) \mathrm{Cl}$ line arrangements in \mathbb{P}^{3}

$(\mathrm{S}) \mathrm{Cl}$ line arrangements in \mathbb{P}^{3}

Choose $\ell_{1}, \ldots, \ell_{N+1} \in S=K\left[x_{0}, \ldots, x_{3}\right]$ general linear forms (precisely, such that any 4 of them are linearly independent).

$(\mathrm{S}) \mathrm{Cl}$ line arrangements in \mathbb{P}^{3}

Choose $\ell_{1}, \ldots, \ell_{N+1} \in S=K\left[x_{0}, \ldots, x_{3}\right]$ general linear forms (precisely, such that any 4 of them are linearly independent).

For any $i=1, \ldots, N$, set $C_{i}=\mathcal{Z}\left(\ell_{i}, \ell_{i+1}\right) \subseteq \mathbb{P}^{3}$.

$(\mathrm{S}) \mathrm{Cl}$ line arrangements in \mathbb{P}^{3}

Choose $\ell_{1}, \ldots, \ell_{N+1} \in S=K\left[x_{0}, \ldots, x_{3}\right]$ general linear forms (precisely, such that any 4 of them are linearly independent).

For any $i=1, \ldots, N$, set $C_{i}=\mathcal{Z}\left(\ell_{i}, \ell_{i+1}\right) \subseteq \mathbb{P}^{3}$. Furthermore, put

$$
C=\bigcup_{i=1}^{N} C_{i} \subseteq \mathbb{P}^{3} .
$$

$(\mathrm{S}) \mathrm{Cl}$ line arrangements in \mathbb{P}^{3}

Choose $\ell_{1}, \ldots, \ell_{N+1} \in S=K\left[x_{0}, \ldots, x_{3}\right]$ general linear forms (precisely, such that any 4 of them are linearly independent).

For any $i=1, \ldots, N$, set $C_{i}=\mathcal{Z}\left(\ell_{i}, \ell_{i+1}\right) \subseteq \mathbb{P}^{3}$. Furthermore, put

$$
C=\bigcup_{i=1}^{N} C_{i} \subseteq \mathbb{P}^{3} .
$$

By construction, the dual graph $G(C)$ is connected, so C is a set-theoretic complete intersection.

$(\mathrm{S}) \mathrm{Cl}$ line arrangements in \mathbb{P}^{3}

Choose $\ell_{1}, \ldots, \ell_{N+1} \in S=K\left[x_{0}, \ldots, x_{3}\right]$ general linear forms (precisely, such that any 4 of them are linearly independent).

For any $i=1, \ldots, N$, set $C_{i}=\mathcal{Z}\left(\ell_{i}, \ell_{i+1}\right) \subseteq \mathbb{P}^{3}$. Furthermore, put

$$
C=\bigcup_{i=1}^{N} C_{i} \subseteq \mathbb{P}^{3} .
$$

By construction, the dual graph $G(C)$ is connected, so C is a set-theoretic complete intersection. However, it is not a complete intersection whenever $N \geq 3$, because $G(C)$ is not 2-connected ...

Cl line arrangements in \mathbb{P}^{3}

Cl line arrangements in \mathbb{P}^{3}

PROPOSITION: If an arrangement $C \subseteq \mathbb{P}^{3}$ of N lines is a complete intersection, then $G(C)$ is $\lceil 2 \sqrt{N}-2\rceil$-connected.

Cl line arrangements in \mathbb{P}^{3}

PROPOSITION: If an arrangement $C \subseteq \mathbb{P}^{3}$ of N lines is a complete intersection, then $G(C)$ is $\lceil 2 \sqrt{N}-2\rceil$-connected.

Proof: If $\mathcal{I}(C)=(f, g)$, for reasons of multiplicity $d e=N$, where d is the degree of f and e is the degree of g.

Cl line arrangements in \mathbb{P}^{3}

PROPOSITION: If an arrangement $C \subseteq \mathbb{P}^{3}$ of N lines is a complete intersection, then $G(C)$ is $\lceil 2 \sqrt{N}-2\rceil$-connected.

Proof: If $\mathcal{I}(C)=(f, g)$, for reasons of multiplicity $d e=N$, where d is the degree of f and e is the degree of g. So $d+e \geq 2 \sqrt{N}$, hence we conclude because $G(C)$ must be $(d+e-2)$-connected.

Cl line arrangements in \mathbb{P}^{3}

PROPOSITION: If an arrangement $C \subseteq \mathbb{P}^{3}$ of N lines is a complete intersection, then $G(C)$ is $\lceil 2 \sqrt{N}-2\rceil$-connected.

Proof: If $\mathcal{I}(C)=(f, g)$, for reasons of multiplicity $d e=N$, where d is the degree of f and e is the degree of g. So $d+e \geq 2 \sqrt{N}$, hence we conclude because $G(C)$ must be $(d+e-2)$-connected. \square

The dual graph of an algebraic variety $X \subseteq \mathbb{P}^{n}$

The dual graph of an algebraic variety $X \subseteq \mathbb{P}^{n}$

Until now we saw particular consequences of our results,

The dual graph of an algebraic variety $X \subseteq \mathbb{P}^{n}$

Until now we saw particular consequences of our results, l'd like to spend the last slides describing the general setting.

The dual graph of an algebraic variety $X \subseteq \mathbb{P}^{n}$

Until now we saw particular consequences of our results, I'd like to spend the last slides describing the general setting.

Let $X \subseteq \mathbb{P}^{n}$ be an algebraic variety.

The dual graph of an algebraic variety $X \subseteq \mathbb{P}^{n}$

Until now we saw particular consequences of our results, l'd like to spend the last slides describing the general setting.

Let $X \subseteq \mathbb{P}^{n}$ be an algebraic variety. Let us write X as the union of its irreducible components:

$$
X=X_{1} \cup X_{2} \cup \ldots \cup X_{s} .
$$

The dual graph of an algebraic variety $X \subseteq \mathbb{P}^{n}$

Until now we saw particular consequences of our results, l'd like to spend the last slides describing the general setting.

Let $X \subseteq \mathbb{P}^{n}$ be an algebraic variety. Let us write X as the union of its irreducible components:

$$
X=X_{1} \cup X_{2} \cup \ldots \cup X_{s} .
$$

The dual graph of X, denoted by $G(X)$, is defined as follows:

The dual graph of an algebraic variety $X \subseteq \mathbb{P}^{n}$

Until now we saw particular consequences of our results, l'd like to spend the last slides describing the general setting.

Let $X \subseteq \mathbb{P}^{n}$ be an algebraic variety. Let us write X as the union of its irreducible components:

$$
X=X_{1} \cup X_{2} \cup \ldots \cup X_{s} .
$$

The dual graph of X, denoted by $G(X)$, is defined as follows:

- $V(G(X))=\{1, \ldots, s\}$

The dual graph of an algebraic variety $X \subseteq \mathbb{P}^{n}$

Until now we saw particular consequences of our results, l'd like to spend the last slides describing the general setting.

Let $X \subseteq \mathbb{P}^{n}$ be an algebraic variety. Let us write X as the union of its irreducible components:

$$
X=X_{1} \cup X_{2} \cup \ldots \cup X_{s} .
$$

The dual graph of X, denoted by $G(X)$, is defined as follows:

- $V(G(X))=\{1, \ldots, s\}$
- $E(G(X))=\left\{\{i, j\}: \operatorname{dim}\left(X_{i} \cap X_{j}\right)=\operatorname{dim}(X)-1\right\}$

The dual graph of an algebraic variety $X \subseteq \mathbb{P}^{n}$

The dual graph of an algebraic variety $X \subseteq \mathbb{P}^{n}$

THEOREM (Benedetti, -): Let $X \subseteq \mathbb{P}^{n}$ be an arithmetically Gorenstein (i.e. $S / \mathcal{I}(X)$ is Gorenstein) subspace arrangement.

The dual graph of an algebraic variety $X \subseteq \mathbb{P}^{n}$

THEOREM (Benedetti, -): Let $X \subseteq \mathbb{P}^{n}$ be an arithmetically Gorenstein (i.e. $S / \mathcal{I}(X)$ is Gorenstein) subspace arrangement. Then $G(X)$ is r-connected, where r is the Castelnuovo-Mumford regularity of $S / \mathcal{I}(X)$.

The dual graph of an algebraic variety $X \subseteq \mathbb{P}^{n}$

THEOREM (Benedetti, -): Let $X \subseteq \mathbb{P}^{n}$ be an arithmetically Gorenstein (i.e. $S / \mathcal{I}(X)$ is Gorenstein) subspace arrangement. Then $G(X)$ is r-connected, where r is the Castelnuovo-Mumford regularity of $S / \mathcal{I}(X)$.

If X is a complete intersection, then it is arithmetically Gorenstein.

The dual graph of an algebraic variety $X \subseteq \mathbb{P}^{n}$

THEOREM (Benedetti, -): Let $X \subseteq \mathbb{P}^{n}$ be an arithmetically Gorenstein (i.e. $S / \mathcal{I}(X)$ is Gorenstein) subspace arrangement. Then $G(X)$ is r-connected, where r is the Castelnuovo-Mumford regularity of $S / \mathcal{I}(X)$.

If X is a complete intersection, then it is arithmetically Gorenstein. Furthermore, the Castelnuovo-Mumford regularity of $S / \mathcal{I}(X)$ is

$$
\sum_{i=1}^{c} \operatorname{deg}\left(f_{i}\right)-c
$$

where $\mathcal{I}(X)=\left(f_{1}, \ldots, f_{c}\right)$ and $c=\operatorname{codim}_{\mathbb{P}^{n}} X$.

The dual graph of an algebraic variety $X \subseteq \mathbb{P}^{n}$

The dual graph of an algebraic variety $X \subseteq \mathbb{P}^{n}$

In an ongoing work with Bruno Benedetti and Barbara Bolognese, we are trying to leave the world of subspace arrangements.

The dual graph of an algebraic variety $X \subseteq \mathbb{P}^{n}$

In an ongoing work with Bruno Benedetti and Barbara Bolognese, we are trying to leave the world of subspace arrangements. Let me remind the following notion:

The dual graph of an algebraic variety $X \subseteq \mathbb{P}^{n}$

In an ongoing work with Bruno Benedetti and Barbara Bolognese, we are trying to leave the world of subspace arrangements. Let me remind the following notion:

The degree of an algebraic variety $X \subseteq \mathbb{P}^{n}$ of codimension c is defined as:

The dual graph of an algebraic variety $X \subseteq \mathbb{P}^{n}$

In an ongoing work with Bruno Benedetti and Barbara Bolognese, we are trying to leave the world of subspace arrangements. Let me remind the following notion:

The degree of an algebraic variety $X \subseteq \mathbb{P}^{n}$ of codimension c is defined as:

$$
\sharp(X \cap L)
$$

where $L \subseteq \mathbb{P}^{n}$ is a general linear space of dimension c.

The dual graph of an algebraic variety $X \subseteq \mathbb{P}^{n}$

In an ongoing work with Bruno Benedetti and Barbara Bolognese, we are trying to leave the world of subspace arrangements. Let me remind the following notion:

The degree of an algebraic variety $X \subseteq \mathbb{P}^{n}$ of codimension c is defined as:

$$
\sharp(X \cap L)
$$

where $L \subseteq \mathbb{P}^{n}$ is a general linear space of dimension c.
For example, if X is a linear space then its degree is 1 .

The dual graph of an algebraic variety $X \subseteq \mathbb{P}^{n}$

The dual graph of an algebraic variety $X \subseteq \mathbb{P}^{n}$

THEOREM (Benedetti, Bolognese, -): Let $X \subseteq \mathbb{P}^{n}$ be an arithmetically Gorenstein algebraic variety.

The dual graph of an algebraic variety $X \subseteq \mathbb{P}^{n}$

THEOREM (Benedetti, Bolognese, -): Let $X \subseteq \mathbb{P}^{n}$ be an arithmetically Gorenstein algebraic variety. If each irreducible component of X has degree $\leq d$, then $G(X)$ is $\lfloor r / d\rfloor$-connected, where r is the Castelnuovo-Mumford regularity of $S / \mathcal{I}(X)$.

The dual graph of an algebraic variety $X \subseteq \mathbb{P}^{n}$

THEOREM (Benedetti, Bolognese, -): Let $X \subseteq \mathbb{P}^{n}$ be an arithmetically Gorenstein algebraic variety. If each irreducible component of X has degree $\leq d$, then $G(X)$ is $\lfloor r / d\rfloor$-connected, where r is the Castelnuovo-Mumford regularity of $S / \mathcal{I}(X)$.

This recovers the result for subspace arrangements, since each irreducible component, being a linear space, has degree 1.

THANK YOU !!

Bibliography

- B. Benedetti, M. Varbaro, On the dual graph of Cohen-Macaulay algebras, to appear in Int. Math. Res. Not..
- R. Hartshorne, Complete intersection and connectedness, Amer. J. Math. 84, pp. 497-508, 1962.
- G. Lyubeznik, A survey on problems and results on the number of defining equations, Commutative algebra, Berkley, pp. 375-390, 1989.

