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Notation

▸ K is an algebraically closed field.

▸ S = K [x0, . . . , xn] the polynomial ring.

▸ Given a homogeneous ideal I ⊆ S , its zero-locus is

Z(I ) = {P ∈ Pn ∶ f (P) = 0 ∀ f ∈ I} ⊆ Pn.

▸ Given a subset X ⊆ Pn, we denote by

I(X ) = {f ∈ S ∶ f (P) = 0 ∀ P ∈ X} ⊆ S

its corresponding homogeneous ideal.

▸ By the Nullstellensatz, we have I(Z(I )) =
√
I .
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Notation

A subset X ⊆ Pn is a (projective) algebraic variety if Z(I(X )) = X .
By the Nullstellensatz, there is a correspondence

{nonempty projective
algebraic varieties } ↔ {radical homogeneous ideals

not containing (x0,...,xn)
}

X ↦ I(X )
Z(I ) ↤ I

An algebraic variety X ⊆ Pn of codimension c is a complete
intersection (CI) if I(X ) is generated by c polynomials.

An algebraic variety X ⊆ Pn is called a subspace arrangement if it is
the union of linear subspaces of Pn.
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Line arrangements in P3

Let C be a line arrangement in P3, i.e.

C = C1 ∪ . . . ∪ Cs

where Ci is a line in P3. Let’s form the dual graph G(C) as follow:

▸ V (G(C)) = {1, . . . , s}.

▸ E(G(C)) = {{i , j} ∶ Ci ∩ Cj ≠ ∅}.

We are going to inquire on the connectedness properties of G(C)
given global properties of C .
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Line arrangements in P3

Suppose that C is a complete intersection, that is I(C) = (f ,g)
for two homogeneous polynomials f ,g ∈ S .

A classical result of Hartshorne implies that, in such a situation,
G(X ) is connected. In a recent work joint with Bruno Benedetti,
we quantified more precisely this connectedness...

A graph G is r -connected if it has at least r + 1 vertices and
removing < r vertices yields a connected graph. In particular:

▸ G is connected ⇔ G is 1-connected;

▸ G is (r + 1)-connected ⇒ G is r -connected.
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Examples of r -connectivity



Line arrangements in P3

As we said, if C ⊆ P3 is a complete intersection, that is
I(C) = (f ,g) for two homogeneous polynomials f ,g ∈ S , then
G(C) is connected by a result of Hartshorne.

THEOREM (Benedetti, -): In the above situation, if deg(f ) = d
and deg(g) = e, then G(C) is (d + e − 2)-connected.

For example, if the ideal of definition of C is defined by 2 cubics,
then G(C) will be 4-connected.
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CI line arrangements in P3

Given positive integers d , e, there always is a line arrangement
C ⊆ P3 such that I(C) = (f ,g) with deg(f ) = d ,deg(g) = e. To
construct it, one has to choose linear forms

`11, . . . , `1d , `21, . . . , `2e ∈ S = K [x0, . . . , x3]

such that:

▸ dimK ⟨`1i , `2j⟩ = 2 for all i = 1, . . . ,d and j = 1, . . . , e.

▸ ⟨`1i , `2j⟩ = ⟨`1h, `2k⟩ ⇔ i = h and j = k .

In this case f = `11⋯`1d and g = `21⋯`2e will do the job. If the
`ij ’s are general enough, precisely if each four of them are linearly
independent, then it turns out that the dual graph of C is not
(d + e − 1)-connected.
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CI line arrangements in P3

QUESTION: Are all the CI line arrangements C ⊆ P3 (under some
genericity condition) as above? That is, is I(C) generated by
products?

Michela Di Marca is working on this kind of questions. For the
moment, she could prove that this is true if deg(f ) = deg(g) = 2
and at least two of the lines of C are skew .....

If C ⊆ P3 is a complete intersection, then C = H1 ∩H2 for some
surfaces H1 and H2 of P3 (because, if I(C) = (f ,g), then
C = Z(f ) ∩Z(g)). The converse is false .....
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Set-theoretic complete intersections

Let C ⊆ P3 be an algebraic curve. Then

C = Z(f ) ∩Z(g)⇔ I(C) =
√

(f ,g)

An algebraic curve C ⊆ P3 is a set-theoretic complete intersection
(SCI) if C is the intersection of two algebraic surfaces in P3.

EXAMPLE: If C = {[s3, s2t, st2, t3] ∶ [s, t] ∈ P1} ⊆ P3, then C is an
algebraic curve and

I(C) = (x0x2 − x21 , x1x3 − x22 , x0x3 − x1x2) ⊆ S = K [x0, x1, x2, x3].

In particular, since I(C) needs 3 generators, C is not a CI. We will
see soon that, however, C is a SCI .....
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Set-theoretic complete intersections - digression

A theorem of Hartshorne, states that if an algebraic curve C ⊆ P3

is a set-theoretic complete intersection, then C must be connected.
It is one of the most tantalizing questions in algebraic geometry
whether the converse is true. Probably not, but there is lack of
methods to prove it.

A candidate for a counterexample is the algebraic curve (K = C):

{[s4, s3t, st3, t4] ∶ [s, t] ∈ P1} ⊆ P3.

In over 40 years nobody could find 2 algebraic equations defining
C , but how to show that they do not exist???
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SCI line arrangements in P3

For line arrangements in P3 the situation is clear by an unpublished
result by Mohan Kumar:

THEOREM: If C ⊆ P3 is a line arrangement, then C is a
set-theoretic complete intersection if and only if C is connected.

Notice that C is connected if and only if the dual graph G(C) is
connected. Therefore the above result implies that is plenty of line
arrangements which are SCI without being a CI .....
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(S)CI line arrangements in P3

Choose `1, . . . , `N+1 ∈ S = K [x0, . . . , x3] general linear forms
(precisely, such that any 4 of them are linearly independent).

For any i = 1, . . . ,N, set Ci = Z(`i , `i+1) ⊆ P3. Furthermore, put

C =
N

⋃
i=1

Ci ⊆ P3.

By construction, the dual graph G(C) is connected, so C is a
set-theoretic complete intersection. However, it is not a complete
intersection whenever N ≥ 3, because G(C) is not 2-connected ...



(S)CI line arrangements in P3

Choose `1, . . . , `N+1 ∈ S = K [x0, . . . , x3] general linear forms
(precisely, such that any 4 of them are linearly independent).

For any i = 1, . . . ,N, set Ci = Z(`i , `i+1) ⊆ P3. Furthermore, put

C =
N

⋃
i=1

Ci ⊆ P3.

By construction, the dual graph G(C) is connected, so C is a
set-theoretic complete intersection. However, it is not a complete
intersection whenever N ≥ 3, because G(C) is not 2-connected ...



(S)CI line arrangements in P3

Choose `1, . . . , `N+1 ∈ S = K [x0, . . . , x3] general linear forms
(precisely, such that any 4 of them are linearly independent).

For any i = 1, . . . ,N, set Ci = Z(`i , `i+1) ⊆ P3.

Furthermore, put

C =
N

⋃
i=1

Ci ⊆ P3.

By construction, the dual graph G(C) is connected, so C is a
set-theoretic complete intersection. However, it is not a complete
intersection whenever N ≥ 3, because G(C) is not 2-connected ...



(S)CI line arrangements in P3

Choose `1, . . . , `N+1 ∈ S = K [x0, . . . , x3] general linear forms
(precisely, such that any 4 of them are linearly independent).

For any i = 1, . . . ,N, set Ci = Z(`i , `i+1) ⊆ P3. Furthermore, put

C =
N

⋃
i=1

Ci ⊆ P3.

By construction, the dual graph G(C) is connected, so C is a
set-theoretic complete intersection. However, it is not a complete
intersection whenever N ≥ 3, because G(C) is not 2-connected ...



(S)CI line arrangements in P3

Choose `1, . . . , `N+1 ∈ S = K [x0, . . . , x3] general linear forms
(precisely, such that any 4 of them are linearly independent).

For any i = 1, . . . ,N, set Ci = Z(`i , `i+1) ⊆ P3. Furthermore, put

C =
N

⋃
i=1

Ci ⊆ P3.

By construction, the dual graph G(C) is connected, so C is a
set-theoretic complete intersection.

However, it is not a complete
intersection whenever N ≥ 3, because G(C) is not 2-connected ...



(S)CI line arrangements in P3

Choose `1, . . . , `N+1 ∈ S = K [x0, . . . , x3] general linear forms
(precisely, such that any 4 of them are linearly independent).

For any i = 1, . . . ,N, set Ci = Z(`i , `i+1) ⊆ P3. Furthermore, put

C =
N

⋃
i=1

Ci ⊆ P3.

By construction, the dual graph G(C) is connected, so C is a
set-theoretic complete intersection. However, it is not a complete
intersection whenever N ≥ 3, because G(C) is not 2-connected ...



CI line arrangements in P3

PROPOSITION: If an arrangement C ⊆ P3 of N lines is a complete
intersection, then G(C) is ⌈2

√
N − 2⌉-connected.

Proof: If I(C) = (f ,g), for reasons of multiplicity de = N, where d
is the degree of f and e is the degree of g . So d + e ≥ 2

√
N, hence

we conclude because G(C) must be (d + e − 2)-connected. ◻
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The dual graph of an algebraic variety X ⊆ Pn

Until now we saw particular consequences of our results, I’d like to
spend the last slides describing the general setting.

Let X ⊆ Pn be an algebraic variety. Let us write X as the union of
its irreducible components:

X = X1 ∪X2 ∪ . . . ∪Xs .

The dual graph of X , denoted by G(X ), is defined as follows:

▸ V (G(X )) = {1, . . . , s}
▸ E(G(X )) = {{i , j} ∶ dim(Xi ∩Xj) = dim(X ) − 1}
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The dual graph of an algebraic variety X ⊆ Pn

THEOREM (Benedetti, - ): Let X ⊆ Pn be an arithmetically
Gorenstein (i.e. S/I(X ) is Gorenstein) subspace arrangement.
Then G(X ) is r -connected, where r is the Castelnuovo-Mumford
regularity of S/I(X ).

If X is a complete intersection, then it is arithmetically Gorenstein.
Furthermore, the Castelnuovo-Mumford regularity of S/I(X ) is

c

∑
i=1

deg(fi) − c

where I(X ) = (f1, . . . , fc) and c = codimPn X .
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The dual graph of an algebraic variety X ⊆ Pn

In an ongoing work with Bruno Benedetti and Barbara Bolognese,
we are trying to leave the world of subspace arrangements. Let me
remind the following notion:

The degree of an algebraic variety X ⊆ Pn of codimension c is
defined as:

♯(X ∩ L)

where L ⊆ Pn is a general linear space of dimension c .

For example, if X is a linear space then its degree is 1.
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The dual graph of an algebraic variety X ⊆ Pn

THEOREM (Benedetti, Bolognese, - ): Let X ⊆ Pn be an
arithmetically Gorenstein algebraic variety. If each irreducible
component of X has degree ≤ d , then G(X ) is ⌊r/d⌋-connected,
where r is the Castelnuovo-Mumford regularity of S/I(X ).

This recovers the result for subspace arrangements, since each
irreducible component, being a linear space, has degree 1.
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THANK YOU !!



Bibliography

▸ B. Benedetti, M. Varbaro, On the dual graph of
Cohen-Macaulay algebras, to appear in Int. Math. Res. Not..

▸ R. Hartshorne, Complete intersection and connectedness,
Amer. J. Math. 84, pp. 497-508, 1962.

▸ G. Lyubeznik, A survey on problems and results on the
number of defining equations, Commutative algebra, Berkley,
pp. 375-390, 1989.


