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Abstract. We show that a Buchsbaum simplicial complex of small codimen-

sion must have large depth. More generally, we achieve a similar result for CMt

simplicial complexes, a notion generalizing Buchsbaum-ness, and we prove
more precise results in the codimension 2 case. Along the paper, we show that

the CMt property is a topological invariant of a simplicial complex.

1. Introduction

In [11], Hartshorne proposed his tantalizing conjecture concerning smooth vari-
eties of small codimension in some projective space. Precisely, if R = K[x1, . . . , xn]
is the polynomial ring in n variables over a field K, the conjecture declaims:

Conjecture 1.1. (Hartshorne) If I ⊆ R is a homogeneous ideal of height h less
than (n− 1)/3 such that ProjR/I is nonsingular, then I is a complete intersection.

If h = 2, then the condition h < (n − 1)/3 is equivalent to n > 7. In this case,
by a result of Evans and Griffith [6, Theorem 3.2], the conjecture is equivalent to:

Conjecture 1.2. If I ⊆ R is a homogeneous ideal of height 2 such that ProjR/I
is nonsingular, and n > 7, then R/I is Cohen-Macaulay.

The present article has no pretension to give new insights on the conjecture of
Hartshorne: the only result in this direction is Corollary 3.6, stating that R/I has
depth larger than n−2h if furthermore I admits a square-free initial ideal. Rather,
this paper brings the philosophy of the conjecture to the world of combinatorial
commutative algebra, as it had already been done, to some extent, in [3].

If ∆ is a simplicial complex in n variables, ProjK[∆] is almost never smooth, so
Hartshorne’s conjecture is not interesting when stated for ProjK[∆]. The notion
of Cohen-Macaulay-ness in codimension t was introduced, independently and with
the sole difference concerning a purity matter, in [16] and in [9]. In [16] this concept
was suggested as the right one to measure the singularities of a simplicial complex:
∆ is Cohen-Macaulay in codimension t (according to [9]) if and only if ∆ is pure
of singularity dimension less than t − 1 (according to [16]). In particular, if ∆
has negative singularity dimension, it is Buchsbaum. So, somehow Buchbaum-ness
plays the role of ’smooth-ness’ for simplicial complexes. This way of thinking is also
supported from the results in the recent paper [2], which imply that, if the ideal
defining a smooth projective variety has a square-free Gröbner degeneration, then
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the associated simplicial complex is Buchsbaum. With this definition in mind, the
same philosophy that led Hartshorne to make his conjecture brings one to expect
the following: If ∆ is a Buchbaum simplicial complex with small codimension, then
K[∆] should have large depth.

In this note, we show that if ∆ is a (d − 1)-dimensional Buchbaum simplicial
complex on d+ 2 vertices, then depthK[∆] ≥ d− 1. Moreover, in this case K[∆] is
not Cohen-Macaulay if and only if ∆ is the Alexander dual of (the clique complex
of) the (d+2)-cycle (Proposition 4.2). More generally, if ∆ is a (d−1)-dimensional
Buchsbaum simplicial complex on n vertices, then depthK[∆] ≥ 2d− n+ 1. Even
more generally, if ∆ is Cohen-Macaulay in codimension t, then K[∆] satisfies the
condition of Serre S2d−n−t+2 (Corollary 3.5). Along the way, we also prove that
being Cohen-Macaulay in codimension t is a topological invariant (Theorem 2.5).

The paper is structured as follows: a brief review of some preliminaries and con-
ventions is given in Section 2, where the topological invariance of Cohen-Macaulay-
ness in an arbitrary codimension is also proved. Section 3 is devoted to the con-
nection between Cohen-Macaulay-ness of a simplicial complex in some codimension
with linearity of the Stanley-Reisner ideal of the Alexander dual of the simplicial
complex up to a certain step. This leads to a connection between Cohen-Macaulay-
ness in a certain codimension with the Sr condition of Serre. Some corollaries and
relevant examples are also given. In Section 4, the case of codimension 2 simplicial
complexes is analyzed in more detail, and a combinatorial proof of the main result
of Section 3 in the codimension 2 case is provided.

2. Preliminaries and conventions

Let R = K[x1, . . . , xn] be the ring of polynomials over a field K, equipped with
the standard grading. For integers p ≥ 1 and d ≥ 2, we say that a simplicial complex
∆ on n vertices satisfies the Green-Lazarsfeld property Nd,p if I∆ is generated in
degree d and the first p steps of the minimal graded free resolution

· · · −→ Fp
ϕp−−→ Fp−1

ϕp−1−−−→ . . .
ϕ1−→ F0 −→ I∆ −→ 0

of I∆ are linear, in the sense that ϕ1, . . . , ϕp−1 are represented by matrices of linear
forms.

A simplicial complex ∆ is said to satisfy the Serre’s condition Sr if H̃i(link∆F ;K)

vanishes for all F ∈ ∆ and for all i < min{r − 1,dim(link∆F )}, where H̃i(∆;K)
is the ith reduced homology group of ∆ over the field K. This is equivalent to the
usual definition of the condition Sr on K[∆].

By a CMt simplicial complex, we mean a pure simplicial complex ∆ which is
Cohen-Macaulay in codimension t, namely a simplicial complex such that link∆F
is Cohen-Macaulay for all F ∈ ∆ with |F | ≥ t.

Remark 2.1. Let ∆ be a pure simplicial complex of dimension d− 1. It follows by
the definition that ∆ satisfies the Sr condition =⇒ ∆ is CMd−r. The vice versa
is false, just think to a disconnected Buchsbaum simplicial complex ∆ (such a ∆ is
CM1 but does not even satisfy S2). On the other hand, we will show in Corollary
3.5 that ∆ is CMt on n vertices =⇒ ∆ satisfies the S2d−n−t+2 condition.

Remark 2.2. The notion of singularity dimension has been considered in [16] as
follows: a simplicial complex ∆ has singularity dimension less than m if link∆F is
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Cohen-Macaulay for all F ∈ ∆ with dimF ≥ m (by convention, dim ∅ = −1). So a
simplicial complex ∆ is CMt if and only if it is pure and has singularity dimension
less than t− 1.

Remark 2.3. The phrase “Cohen-Macaulay in codimension t” in the present pa-
per has a different meaning from the phrase “Cohen-Macaulay in codimension c”
considered in [16]. In fact, according to [16, Definition 3.6], even if ∆ is a pure sim-
plicial complex of dimension d−1, then in [16] “∆ Cohen-Macaulay in codimension
c” means that link∆F is Cohen-Macaulay for all F ∈ ∆ with |F | = d− 1− c.

For an R-module M we write dimM for the Krull dimension of M ; when M = 0
we write by convention dimM = −∞.

Remark 2.4. Notice that ∆ is a pure (d − 1)-dimensional simplicial complex if
and only if

dim Extn−iR (K[∆], R) < i ∀ i < d.

On the other hand, it has been proved in [16, Corollary 7.4] that ∆ has singularity
dimension < m if and only if

dim Extn−iR (K[∆], R) ≤ m ∀ i < d.

So, if ∆ has singularity dimension < m and depthK[∆] > m, then ∆ is pure. In
particular, since depthK[∆] > 0 for any simplicial complex ∆, the following are
equivalent:

(1) ∆ is Buchsbaum.
(2) ∆ has singularity dimension < 0.
(3) ∆ is CM1.

A property of a simplicial complex ∆ is a topological invariant of ∆ if it holds
for any simplicial complex whose geometric realization is homeomorphic to the one
of ∆. Next we prove that the properties of satisfying Sr, being CMt, and having
singularity dimension < m are topological invariants. This fact has essentially been
proved by Yanagawa in [22]. We report his result in our context for the convenience
of the reader. We keep the same notations used in [22].

Theorem 2.5. Let ∆ be a (d − 1)-dimensional simplicial complex on n vertices.
Then, for all i ∈ N,

dim Extn−iR (K[∆], R)

is a topological invariant of ∆. In particular, satisfying Sr, being CMt, and having
singularity dimension < m are topological invariants.

Proof. Let X be a topological realization of ∆. If dim Extn−iR (K[∆], R) ≤ 0,

then dim Extn−iR (K[∆], R) = 0 if and only if Extn−iR (K[∆], R) 6= 0 if and only

if H̃i−1(X;K) 6= 0, so we can assume that dim Extn−iR (K[∆], R) > 0.

Notice that Extn−iR (K[∆], R) = 0 for i > d or i ≤ 0, and that Extn−dR (K[∆], R)
is always d-dimensional. Therefore we will assume that 0 < i < d. In this situation,
[22, Theorem 4.1] yields that dim Extn−iR (K[∆], R) − 1 is equal to the dimension
of the support of the sheaf H−i+1(D•X) on X, where D•X is the Verdier dualizing

complex of X with coefficients in K. So we have that dim Extn−iR (K[∆], R) is a
topological invariant of ∆.

For the last part, notice that being pure is obviously a topological invariant and:

(1) ∆ satisfies Sr (for r ≥ 2) ⇐⇒ dim Extn−iR (K[∆], R) ≤ i− r ∀ i < d.
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(2) ∆ has singularity dimension < m ⇐⇒ dim Extn−iR (K[∆], R) ≤ m ∀ i < d.

(3) ∆ is CMt ⇐⇒ ∆ is pure and dim Extn−iR (K[∆], R) < t ∀ i < d.

�

For further concepts and notations on simplicial complexes and combinatorial
commutative algebra we refer to the standard books [19], [12] and [17].

3. The CMt property of simplicial complexes versus the Serre
condition Sr

In this section, for a simplicial complex ∆ of dimension d − 1 on n vertices,
applying a subadditivity result of Herzog and Srinivasan to the Betti diagram of
the Stanley-Reisner ideal of ∆, it is shown that if ∆ satisfies CMt for some t ≥ 0,
then ∆∨ satisfies the Nn−d,2d−n−t+2 condition. In other words, the minimal graded
free resolution of I∆∨ is linear on the first 2d − n − t + 2 steps. This leads to the
implication that if ∆ is CMt for some t ≥ 0, then the Stanley-Reisner ring of ∆
satisfies the S2d−n−t+2 condition of Serre.

First we recall a generalization of the Eagon-Reiner’s theorem given in [8].

Theorem 3.1. [8, Theorem 3.1]. Let ∆ be a simplicial complex on on n vertices,
∆∨ its Alexander dual and I∆ ⊂ R the Stanley-Reisner ideal of ∆. Then the
following are equivalent:

(i) ∆∨ is a CMt simplicial complex of dimension d− 1.
(ii) β0,j(I∆) = 0 ∀ j > n−d and βi,i+j(I∆) = 0 ∀ j > n−d and i+ j ≤ n− t.

I.e., the Betti diagram βi,i+j(I∆) looks like in Figure 1.

i
j

0 1 . . . i . . . d− t− 1 d− t . . . projdim

n− d ∗ ∗ . . . l. s. . . . ∗ ∗ . . . ∗∗

n− d+ 1 0 0 . . . 0 . . . 0 ∗
...

...
...

j 0 0 βi,i+j

...
...

...

n− t− 1 0 0 ∗
n− t 0 ∗ ∗

...
...

...

regularity 0 ∗

Figure 1. The shape of the Betti diagram of I∆ when ∆∨ is CMt

On the other hand, Herzog and Srinivasan [13] proved the following “subaddi-
tivity” result on the Betti numbers of monomial ideals.
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Theorem 3.2. [13, Corollary 4]. Let I = (u1, . . . , um) be a monomial ideal of R,
and let e = max`{deg(u`)}. Then for all j0 ∈ Z:

(3.1) βi,j(I) = 0 ∀ j > j0 =⇒ βi+1,j(I) = 0 ∀ j > j0 + e.

Now we prove the main result of the paper.

Theorem 3.3. Let ∆ be a (d− 1)-dimensional CMt simplicial complex on n ver-
tices. Then ∆∨ satisfies the Nn−d,2d−n−t+2 condition.

Proof. Notice that I∆∨ is generated in degree n−d. Hence the assertion is trivially
valid for 2d− n− t+ 2 ≤ 1. Therefore, we may assume that 2d− n− t ≥ 0. Then,
(3.1) gives us

βi,j(I∆∨) = 0 ∀ j > j0 =⇒ βi+1,j(I∆∨) = 0 ∀ j > j0 + n− d.

By Theorem 3.1, we know that, for all i ∈ N,

(3.2) βi,j(I∆∨) = 0 ∀ i+ n− d < j ≤ n− t,

and

(3.3) β0,j(I∆∨) = 0 ∀ j > n− d.

Now, suppose that 1 ≤ i ≤ 2d−n− t+ 1, and assume we have already proved that

(3.4) βi−1,j(I∆∨) = 0 ∀ j > i− 1 + n− d.

By (3.4) together with (3.1) we have βi,j(I∆∨) = 0 for all j > i − 1 + 2n − 2d. In
particular, we have βi,j(I∆∨) = 0 for i = 2d− n− t+ 1, j > (2d− n− t+ 1)− 1 +
2n − 2d = n − t. On the other hand (3.2) guarantees us that βi,j(I∆∨) = 0 for all
i+ n− d < j ≤ n− t. Putting all together we get

βi,j(I∆∨) = 0 ∀ j > i+ n− d.
�

In [20] and, independently, in [23], the following refinement of the result of Herzog
and Srinivasan is proved:

Theorem 3.4. [20, Theorem 6.2, the Z-graded part]. With the notation of Theo-
rem 3.2, one has:

βi,k(I) = 0,∀k = j0, . . . , j0 + e− 1 =⇒ βi+1,j0+e(I) = 0.

This result can be applied to study the Betti numbers of ∆∨ (inferring analog
results to Theorem 3.3) when ∆ has singularity dimension less than m.

For r ≥ 2, by a result of Yanagawa [21, Corollary 3.7], for a simplicial complex ∆
of codimension c, K[∆] satisfies the Sr condition of Serre if and only if I∆∨ satisfies
the Nc,r condition. Therefore, an interesting consequence of Theorem 3.3 is the
following:

Corollary 3.5. Let ∆ be a simplicial complex of dimension d − 1 on n vertices.
Assume that ∆ is CMt for some t ≥ 0. Then ∆ satisfies the S2d−n−t+2 condition.
In particular, if ∆ is Buchsbaum, then depthK[∆] ≥ 2d− n+ 1.
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The following corollary is in the spirit of Hartshorne’s conjecture and goes in the
direction of a question raised in [2, Question 4.2].

Corollary 3.6. Let I ⊆ R be a homogeneous ideal of height h such that ProjR/I
is nonsingular. If I has a square-free initial ideal with respect to some term order,
then depthR/I > n− 2h.

Proof. Let J be a square-free initial ideal of I. Since R/I is generalized Cohen-
Macaulay, R/J is Buchsbaum by [2, Corollary 2.11]. By Corollary 3.5, then,
depthR/J ≥ n − 2h + 1. We conclude since the depth cannot go up by taking
the initial ideal. �

Another consequence, interestingly related to the result of Brehm and Kühnel
[1, Theorem B], is the following:

Corollary 3.7. Let ∆ be a (d− 1)-dimensional Buchsbaum simplicial complex on

n vertices such that H̃i(∆;K) 6= 0 for some i ≥ 1. Then n ≥ 2d− i.

Remark 3.8. Being the combinatorial manifolds a very special case of Buchsbaum
simplicial complexes, even if the conclusion of Corollary 3.7 is slightly weaker than
the one in [1, Theorem B], it applies to a much larger class of simplicial complexes.

Example 3.9. Since Theorem 3.3 and Corollary 3.5 are trivial for t ≥ 2d−n+ 1,
it is natural to ask for examples of CMt simplicial complexes that are not CMt−1

for 1 ≤ t ≤ 2d − n. Murai and Terai [18, Example 3.5] considered the following
simplicial complex:

∆ = 〈{1, 2, 3, 5}, {1, 2, 4, 5}, {1, 2, 4, 6}, {1, 3, 4, 5}, {1, 3, 4, 6}, {1, 3, 5, 6},
{2, 3, 4, 6}, {2, 3, 5, 6}, {2, 4, 5, 6}〉,

where ∆ satisfies S3 but is not Cohen-Macaulay. Thus ∆ is Buchsbaum and the
condition 1 ≤ t ≤ 2d − n is satisfied. Now if v is a new vertex, by [10, Theorem
3.1 (ii)], the cone on ∆ with vertex v is CM2 but not Buchsbaum, and again we
have 1 ≤ t ≤ 2d − n. Taking further cones, one gets a family of CMt simplicial
complexes which are not CMt−1 and we have 1 ≤ t ≤ 2d− n.

Remark 3.10. Often, the minimal number of vertices necessary for triangulating
a given (d − 1)-dimensional combinatorial manifolds is more than 2d. An excep-
tion is an 8 dimensional combinatorial manifold, the so called “Brehm and Kühnel
manifold”, which has 6 combinatorially different triangulations on 15 vertices (see
[1], [15, Proposition 48] and [14]).

4. The CMt property and minimal chord-less cycles of graphs

In this section, we focus on pure (d−1)-dimensional simplicial complexes on d+2
vertices, i.e. pure codimension two simplicial complexes. If ∆ is such a simplicial
complex, then its Alexander dual is flag, i.e., ∆∨ is the clique complex of a graph
G. In general, the clique complex and the independence complex of a graph H
will be denoted by ∆(H) and ∆H , respectively. Also, by H we will denote the
complementary graph of H.

Theorem 4.1. Let ∆ be a pure (d − 1)-dimensional codimension two simplicial
complex. Then the following are equivalent:

(i) ∆ is CMt,
(ii) ∆∨ satisfies the N2,d−t condition,
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(iii) ∆ satisfies the Sd−t condition,
(iv) Every cycle of the 1-skeleton G of ∆∨ of length at most d − t + 2 has a

chord.

Proof. The equivalence of (i), (ii) and (iii) is simply an application of Theorem 3.3,
Corollary 3.5 in the case n = d + 2, and Remark 2.1. The equivalence of (ii) and
(iv) follows by [5, Theorem 2.1]. �

Proposition 4.2. If ∆ is a codimension two Buchsbaum simplicial complex, then
depthK[∆] ≥ dim∆. Furthermore, K[∆] is Cohen-Macaulay if and only if the
1-skeleton G of ∆∨ is not the (d+ 2)-cycle.

Proof. Notice that ∆ being Buchsbaum is equivalent to ∆ being CM1. So the first
part of the statement follows by Theorem 4.1. If K[∆] is not CM0, again Theorem
4.1 implies that G has an induced chord-less (d + 2)-cycle (in those notations, so
d = dim∆ + 1). Since the number of vertices is d + 2, G is actually the (d + 2)-
cycle. �

Remark 4.3. In particular, if ∆ is a codimension two Buchsbaum simplicial com-
plex which is not Cohen-Macaulay, then projdimK[∆] = 3. One might expect that,
in general, if ∆ is a codimension 2 simplicial complex which is CMt but not CMt−1,
then projdimK[∆] = t + 2. This is false: a simple example is the Alexander dual
of ∆ = 〈{1, 2}, {2, 3}, {3, 4}, {4, 5}, {1, 5}, {5, 6}〉 which has dimension d− 1 where
d = 4 = 6− 2 = n− 2. Then ∆ is CM2 but not CM1. Nevertheless, the projective
dimension of the Stanley-Reisner ring of ∆ is 3.

For the sake of documenting a different method, we give an alternative proof,
more combinatorial, for the equivalence of (i) and (iv) in Theorem 4.1.

Theorem 4.4. Let G be a simple graph on [n] = {1, . . . , n} with no isolated vertices.
Let ∆ = ∆(G) be the clique complex of G . Let r ≥ 3 be an integer. Then ∆∨ is
CMn−r if an only if every cycle of G of length at most r has a chord.

Proof. The “if” direction follows by [5, Theorem 2.1], [21, Corollary 3.7] and Re-
mark 2.1, so we focus on the “only if” part.

Assume that ∆∨ is CMn−r. We prove by induction on r that every cycle of
G of length at most r has a chord. The first case r = 3 is trivial. Assume
that r ≥ 4. Since ∆∨ is CMn−r+1, every cycle of G of length at most r − 1
has a chord. So it is enough to show that G has no chord-less r-cycles. Assume
that, on the contrary, G has a chord-less r-cycle C. Let V (C) = {v1, . . . , vr} and
E(C) = {{v1, v2}, . . . , {vr−1, vr}, {vr, v1}} be the vertex set and the edge set of C,
respectively. Then the induced subgraph of G on V (C) is the graph Kr \ E(C),
where Kr is the complete graph on V (C). Clearly, Kr\E(C) has

(
r
2

)
−r = r(r−3)/2

edges. Let F be the simplex on V (G) \ V (C). Then, |F | = n− r and F is a face of
∆∨ because V (C) /∈ ∆. Thus Γ = link∆∨F should be Cohen-Macaulay. We prove
that this is not the case. Observe that the only facets of ∆∨ which contain F are
F ∪ (V (C) \ {vi, vj}) for some {vi, vj} ∈ C. Therefore,

Γ = link∆∨F = 〈V (C) \ {vi, vj} : {vi, vj} ∈ C〉.
In particular, dimΓ = r − 3. We determine hr−2 by computing the f -vector of Γ:
to this purpose, notice that every subset of the vertex set of Γ of cardinality ≤ r−3
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is also a face of Γ. To see this, let E = V (C) \ {vi, vj , vk} be a subset of the vertex
set of Γ of cardinality r− 3. Choose 1 ≤ l ≤ r such that l /∈ {i, j, k}. Then at least
one of the pairs (i, l), (j, l) and (k, l) will be a non-consecutive pair modulo r. Let
(i, l) be such a pair. Then, {i, l} ∈ G, and hence, E ⊂ V (C) \ {vi, vj}, i.e., E is a
face of Γ. Therefore we got:

f−1 = 1, fi =
(

r
i+1

)
, i = 0, . . . , r − 4 and fr−3 = r(r − 3)/2.

Consequently,

hr−2 =

r−2∑
i=0

(−1)r−2−ifi−1 = (

r−3∑
i=0

(−1)r−i
(
r

i

)
) + r(r − 3)/2 =

(1− 1)r +

(
r

r − 1

)
−
(

r

r − 2

)
− 1 + r(r − 3)/2 = −1.

Hence Γ is not Cohen-Macaulay. This completes the proof. �

Corollary 4.5. With the assumptions of Theorem 4.4, assume that G is r-chordal,
i.e., it has no chord-less cycles of length greater than r. Then ∆∨ is CMn−r if and
only if I∆ = I(G) has a linear resolution.

Proof. The assertion follows by Theorems 4.1 and 4.4 and Fröberg’s result that
I∆ = I(G) has a linear resolution if and only if G is chordal [7]. �

Remark 4.6. It is easy to see that if G is a bipartite graph or a chordal graph,
then G can only have chord-less four cycles (e.g., see [8, Lemma 4.2 and Lemma
4.6 ]). Assume that G is a graph on n vertices which is either bipartite or chordal.
If the Alexander dual of ∆(G) = ∆G is CMn−4, then by Corollary 4.5, I(G) has a
linear resolution.
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