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Dual graphs of simplicial complexes

If ∆ is a simplicial complex on n vertices, its dual graph is the
simple graph G (∆) defined like follows:

the vertices of G (∆) correspond to the facets of ∆;

{σ, τ} is an edge if and only if dimσ ∩ τ = dim ∆− 1.

It is interesting to study the connectedness properties of G (∆): of
course G (∆) in general is not even connected, but the philosophy
is that G (∆) has good connectedness properties if ∆ is a nice
simplicial complex.
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Dual graphs of simplicial complexes

Two ways to measure the connectedness of a simple graph G on a
finite set of vertices V are provided by the following invariants:

the diameter of G :

diamG := max{d(u, v) : u, v are vertices of G}

the connectivity of G :

κG := min{|A| : A ⊂ V , GV\A is disconnected or a single point}

Matteo Varbaro (University of Genoa, Italy) Dual graphs and the Castelnuovo-Mumford regularity of subspace arrangements



Dual graphs of simplicial complexes

Two typical examples of this philosophy are:

Balinski’s theorem

If ∆ is the boundary of a simplicial d-polytope, then κG (∆) = d .

Hirsch’s conjecture

If ∆ is the boundary of a simplicial d-polytope on n vertices, then

diamG (∆) ≤ n − d .

The conjecture of Hirsch has been disproved in 2012 by Santos,
however in general n− d is a quite natural bound to expect for the
diameter ...
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Dual graphs of simplicial complexes

For example is easy to see that normal simplicial complexes in low
codimension have small diameter: ∆ is normal if G (lk∆ σ) is
connected for all σ ∈ ∆. Clearly a boundary of a polytope is
normal; more generally any triangulation of the sphere is normal,
and even a Cohen-Macaulay simplicial complex is normal.

Let us see how normality translates for the Stanley-Reisner ideal of ∆,

I∆ := (xi1 · · · xik : {i1, . . . , ik} /∈ ∆) ⊆ K [x1, . . . , xn].

We have that I∆ =
⋂

σ∈F(∆)(xi : i /∈ σ) and the following are equivalent:

∆ is normal.

for any two minimal primes p and p′ of I∆, there exist a sequence of
minimal primes of I∆, p = p0, p1, . . . , pr = p′ such that
height(pi + pi+1) = height(I∆) + 1 and pi ⊆ p + p′.
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Dual graphs

So to give a (d − 1)-dimensional normal simplicial complex ∆ on
[n] is like to give a collection A of subsets of [n] of cardinality
h := n − d for which ∀ A,A′ ∈ A ∃ A = A0,A1, . . . ,Ak = A′ s.t.:

(i) |Ai ∩ Ai−1| = h − 1 ∀ i = 1, . . . , k .

(ii) Ai ⊆ A ∪ A′ ∀ i = 0, . . . , k .

Let us call such a collection A locally connected and write G (A)
for G (〈A〉). If h = 2, obviously diamG (A) ≤ 2. If h = 3, it is
straightforward to check that diamG (A) ≤ 3. However for larger h
the analog statement is false, and it is not even known whether
there is a polynomial f (x) ∈ Z[x ] such that diamG (A) ≤ f (h).

This is the so-called polynomial Hirsch conjecture ...
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Dual graphs

Adiprasito-Benedetti (2014)

If A is a locally connected collection of h-subsets of [n] such that
any minimal vertex cover has cardinality ≤ 2, then diamG (A) ≤ h.

In 2012 Bruno spoke of the above result within a conference in
Genoa, and we began to wonder on what could be said on dual
graphs of projective varieties ...
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Dual graphs of projective varieties

Given a projective variety X ⊆ Pn, if X1, . . . ,Xs are its irreducible
components, we form the dual graph G (X ) as follows:

The vertex set of G (X ) is {1, . . . , s}.
Two vertices i 6= j are connected by an edge if and only if:

dim(Xi ∩ Xj) = dim(X )− 1.

NOTE: If X is a projective curve, then {i , j} is an edge if and only
if Xi ∩ Xj 6= ∅ (the empty set has dimension −1). If dim(X ) > 1,
by intersecting X ⊆ Pn with a generic hyperplane, we get a
projective variety in Pn−1 of dimension one less, and same dual
graph! Iterating this trick we can often reduce questions to curves.
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Dual graphs of projective varieties

If ∆ is a simplicial complex on {0, . . . , n}, it is straightforward to
check that G (∆) = G (X ), where X = V(I∆) ⊆ Pn.

Today I want to discuss dual graphs of subspace arrangements, a
particular case of projective varieties. A projective variety X ⊆ Pn

is a subspace arrangement if its irreducible components are linear
spaces. Notice that varieties of the type V(I∆) are particular
subspace arrangements. How particular are they?
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Dual graphs of subspace arrangements

The answer is: “very particular”. The example below should be
convincing: Let us take a codimension 2 simplicial complex ∆. By
taking dim ∆− 1 general hyperplane sections, we obtain a line
arrangement X∆ ⊆ P3 such that G (X∆) = G (∆).

(i) The normality of ∆ corresponds to the fact that X is locally
connected, which in this case is equivalent to say that X is
connected. Of course there are connected line arrangements
such that the dual graph has diameter as large as we want,
while diamG (X∆) ≤ 2 in this case.

(ii) More interestingly, ∆ being the boundary of a polytope
corresponds to X being a complete intersection (i.e. IX is
generated by 2 polynomials). It is possible to produce a line
arrangement X ⊆ P3 which is a complete intersection but
diamG (X ) = 3 ...
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The Schläfli’s double-six

Let G be the bipartite graph on {a1, . . . , a6} ∪ {b1, . . . , b6} such
that {ai , bj} is an edge if and only if i 6= j . Then diamG = 3.

The so-called Schläfli’s double-six is a line arrangement X ⊆ P3

such that G (X ) = G . It consists in 12 of the famous 27 lines on a
smooth cubic Y ⊆ P3. Notice that the intersection points of X are
30, and the vector space of quartics of P3 has dimension 35.
Therefore there is a quartic Z ⊆ P3 passing through these 30
points. Furthermore, by picking other 4 points outside of Y and
not co-planar, one can also choose Z not containing Y . So Y ∩ Z
is a complete intersection containing X , and since 3 · 4 = 12 we
have X = Y ∩ Z .
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The Schläfli’s double-six

In conclusion, the Schläfli’s double-six is a line arrangement
X ⊆ P3 that is a complete intersection of a cubic and a quartic but
diamG (X ) = 3. It would be interesting to find examples of
(d , e)-complete intersection line arrangements X ⊆ P3 whose dual
graph has diameter arbitrarily large.

One complication is that the general surface of degree k in P3

contains no lines for k ≥ 4, and min{d , e} ≥ diamG (X ) by the
following result ...
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The connectivity number

Benedetti-V. (2015)

If X ⊆ P3 is a (d , e)-complete intersection line arrangement, then

κG (X ) ≥ d + e − 2.

With Bruno we proved a more general statement, involving the
Castelnuovo-Mumford regularity of X . I will describe it in the next
slides, along with a new more precise result.

For the moment notice that, if X ⊆ P3 is a (d , e)-complete
intersection line arrangement, then G (X ) has d · e vertices, so the
result above and a classical theorem of Menger says that

diamG (X ) ≤ min{d , e}.
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The Castelnuovo-Mumford regularity

Let S = K [x0, . . . , xn], I ⊆ S a homogeneous ideal, and R = S/I .
The Hilbert function HFR : Z→ Z, which maps d to dimK Rd , is
eventually a polynomial HPR , called the Hilbert polynomial.

If R is Cohen-Macaulay, its Castelnuovo-Mumford regularity is:

regR := max{d ∈ Z : HFR(d) 6= HPR(d)}+ dimR.

Reisner’s criterion

For a simplicial complex ∆, the following are equivalent:

K [∆] is Cohen-Macaulay.

H̃i (lk∆ σ;K ) = 0 for all σ ∈ ∆ and i < dim lk∆ σ.
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Gorenstein rings

Before stating the main result it’s good to have an intuition of what a
Gorenstein ring R is: it is a ring which is Cohen-Macaulay and has an
extra feature, namely it satisfies the Poincaré duality once gone modulo a
system of parameters.

A criterion for Gorenstein SR rings (Stanley)

For a simplicial complex ∆, the following are equivalent:

K [∆] is Gorenstein.

∆ is the join of a homology sphere with a simplex.

Another class of Gorenstein rings is formed by complete intersections,
namely rings of the form R = S/I where I is generated by homogeneous
polynomials f1, . . . , fc , where c is the codimension of V(I ) ⊆ Pn. In this
case regR =

∑c
i=1 deg(fi )− c , while in the case of SR Gorenstein rings

regK [∆]− 1 is the dimension of the homology sphere above. In general
may be difficult to compute the regularity of a Gorenstein ring ...
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Connectivity number VS Castelnuovo-Mumford regularity

Benedetti-V. (2015)

If X ⊆ Pn is a subspace arrangement and R = S/IX is Gorenstein, then
κG (X ) ≥ regR.

As a very special case, this recovers Balinski’s theorem. In general,
however, κG (X ) may be much bigger than regR ...

Benedetti-Di Marca-V. (2016)

If X =
⋃s

i=1 Vi ⊆ Pn is a subspace arrangement and R = S/IX is
Gorenstein, and V1 ∩ Vi ∩ Vj has codimension at least 2 in X for all
i < j , then

κG (X ) = regR.

If moreover Vi ∩ Vj ∩ Vk has codimension at least 2 in X for all
i < j < k , then G (X ) is a regR-regular graph.
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