Dual graphs and the Castelnuovo-Mumford regularity of subspace arrangements

Matteo Varbaro (University of Genoa, Italy)

02/15/2016, Miami (USA)

Dual graphs of simplicial complexes

If Δ is a simplicial complex on n vertices, its dual graph is the simple graph $G(\Delta)$ defined like follows:

- the vertices of $G(\Delta)$ correspond to the facets of Δ;
- $\{\sigma, \tau\}$ is an edge if and only if $\operatorname{dim} \sigma \cap \tau=\operatorname{dim} \Delta-1$.

It is interesting to study the connectedness properties of $G(\Delta)$: of course $G(\Delta)$ in general is not even connected, but the philosophy is that $G(\Delta)$ has good connectedness properties if Δ is a nice simplicial complex.

Dual graphs of simplicial complexes

Two ways to measure the connectedness of a simple graph G on a finite set of vertices V are provided by the following invariants:

- the diameter of G :

$$
\operatorname{diam} G:=\max \{d(u, v): u, v \text { are vertices of } G\}
$$

- the connectivity of G :

$$
\kappa G:=\min \left\{|A|: A \subset V, G_{V \backslash A} \text { is disconnected or a single point }\right\}
$$

Dual graphs of simplicial complexes

Two typical examples of this philosophy are:

Balinski's theorem

If Δ is the boundary of a simplicial d-polytope, then $\kappa G(\Delta)=d$.

Hirsch's conjecture

If Δ is the boundary of a simplicial d-polytope on n vertices, then

$$
\operatorname{diam} G(\Delta) \leq n-d
$$

The conjecture of Hirsch has been disproved in 2012 by Santos, however in general $n-d$ is a quite natural bound to expect for the diameter ...

Dual graphs of simplicial complexes

For example is easy to see that normal simplicial complexes in low codimension have small diameter: Δ is normal if $G\left(\mathrm{lk}_{\Delta} \sigma\right)$ is connected for all $\sigma \in \Delta$. Clearly a boundary of a polytope is normal; more generally any triangulation of the sphere is normal, and even a Cohen-Macaulay simplicial complex is normal.

Let us see how normality translates for the Stanley-Reisner ideal of Δ,

$$
I_{\Delta}:=\left(x_{i_{1}} \cdots x_{i_{k}}:\left\{i_{1}, \ldots, i_{k}\right\} \notin \Delta\right) \subseteq K\left[x_{1}, \ldots, x_{n}\right] .
$$

We have that $I_{\Delta}=\bigcap_{\sigma \in \mathcal{F}(\Delta)}\left(x_{i}: i \notin \sigma\right)$ and the following are equivalent:

- Δ is normal.
- for any two minimal primes \mathfrak{p} and \mathfrak{p}^{\prime} of I_{Δ}, there exist a sequence of minimal primes of $I_{\Delta}, \mathfrak{p}=\mathfrak{p}_{0}, \mathfrak{p}_{1}, \ldots, \mathfrak{p}_{r}=\mathfrak{p}^{\prime}$ such that $\operatorname{height}\left(\mathfrak{p}_{i}+\mathfrak{p}_{i+1}\right)=\operatorname{height}\left(I_{\Delta}\right)+1$ and $\mathfrak{p}_{i} \subseteq \mathfrak{p}+\mathfrak{p}^{\prime}$.

Dual graphs

So to give a $(d-1)$-dimensional normal simplicial complex Δ on [n] is like to give a collection \mathcal{A} of subsets of [n] of cardinality $h:=n-d$ for which $\forall A, A^{\prime} \in \mathcal{A} \exists A=A_{0}, A_{1}, \ldots, A_{k}=A^{\prime}$ s.t.:
(i) $\left|A_{i} \cap A_{i-1}\right|=h-1 \forall i=1, \ldots, k$.
(ii) $A_{i} \subseteq A \cup A^{\prime} \forall i=0, \ldots, k$.

Let us call such a collection \mathcal{A} locally connected and write $G(\mathcal{A})$ for $G(\langle\mathcal{A}\rangle)$. If $h=2$, obviously diam $G(\mathcal{A}) \leq 2$. If $h=3$, it is straightforward to check that $\operatorname{diam} G(\mathcal{A}) \leq 3$. However for larger h the analog statement is false, and it is not even known whether there is a polynomial $f(x) \in \mathbb{Z}[x]$ such that $\operatorname{diam} G(\mathcal{A}) \leq f(h)$.

This is the so-called polynomial Hirsch conjecture ...

Dual graphs

Adiprasito-Benedetti (2014)

If \mathcal{A} is a locally connected collection of h-subsets of [n] such that any minimal vertex cover has cardinality ≤ 2, then $\operatorname{diam} G(\mathcal{A}) \leq h$.

In 2012 Bruno spoke of the above result within a conference in Genoa, and we began to wonder on what could be said on dual graphs of projective varieties ...

Given a projective variety $X \subseteq \mathbb{P}^{n}$, if X_{1}, \ldots, X_{s} are its irreducible components, we form the dual graph $G(X)$ as follows:

- The vertex set of $G(X)$ is $\{1, \ldots, s\}$.
- Two vertices $i \neq j$ are connected by an edge if and only if:

$$
\operatorname{dim}\left(X_{i} \cap X_{j}\right)=\operatorname{dim}(X)-1
$$

NOTE: If X is a projective curve, then $\{i, j\}$ is an edge if and only if $X_{i} \cap X_{j} \neq \emptyset$ (the empty set has dimension -1). If $\operatorname{dim}(X)>1$, by intersecting $X \subseteq \mathbb{P}^{n}$ with a generic hyperplane, we get a projective variety in \mathbb{P}^{n-1} of dimension one less, and same dual graph! Iterating this trick we can often reduce questions to curves.

If Δ is a simplicial complex on $\{0, \ldots, n\}$, it is straightforward to check that $G(\Delta)=G(X)$, where $X=\mathcal{V}\left(I_{\Delta}\right) \subseteq \mathbb{P}^{n}$.

Today I want to discuss dual graphs of subspace arrangements, a particular case of projective varieties. A projective variety $X \subseteq \mathbb{P}^{n}$ is a subspace arrangement if its irreducible components are linear spaces. Notice that varieties of the type $\mathcal{V}\left(I_{\Delta}\right)$ are particular subspace arrangements. How particular are they?

Dual graphs of subspace arrangements

The answer is: "very particular". The example below should be convincing: Let us take a codimension 2 simplicial complex Δ. By taking $\operatorname{dim} \Delta-1$ general hyperplane sections, we obtain a line arrangement $X_{\Delta} \subseteq \mathbb{P}^{3}$ such that $G\left(X_{\Delta}\right)=G(\Delta)$.
(i) The normality of Δ corresponds to the fact that X is locally connected, which in this case is equivalent to say that X is connected. Of course there are connected line arrangements such that the dual graph has diameter as large as we want, while diam $G\left(X_{\Delta}\right) \leq 2$ in this case.
(ii) More interestingly, Δ being the boundary of a polytope corresponds to X being a complete intersection (i.e. \mathcal{I}_{X} is generated by 2 polynomials). It is possible to produce a line arrangement $X \subseteq \mathbb{P}^{3}$ which is a complete intersection but $\operatorname{diam} G(X)=3 \ldots$

Let G be the bipartite graph on $\left\{a_{1}, \ldots, a_{6}\right\} \cup\left\{b_{1}, \ldots, b_{6}\right\}$ such that $\left\{a_{i}, b_{j}\right\}$ is an edge if and only if $i \neq j$. Then $\operatorname{diam} G=3$.

The so-called Schläfli's double-six is a line arrangement $X \subseteq \mathbb{P}^{3}$ such that $G(X)=G$. It consists in 12 of the famous 27 lines on a smooth cubic $Y \subseteq \mathbb{P}^{3}$. Notice that the intersection points of X are 30 , and the vector space of quartics of \mathbb{P}^{3} has dimension 35 . Therefore there is a quartic $Z \subseteq \mathbb{P}^{3}$ passing through these 30 points. Furthermore, by picking other 4 points outside of Y and not co-planar, one can also choose Z not containing Y. So $Y \cap Z$ is a complete intersection containing X, and since $3 \cdot 4=12$ we have $X=Y \cap Z$.

In conclusion, the Schläfli's double-six is a line arrangement $X \subseteq \mathbb{P}^{3}$ that is a complete intersection of a cubic and a quartic but $\operatorname{diam} G(X)=3$. It would be interesting to find examples of (d, e)-complete intersection line arrangements $X \subseteq \mathbb{P}^{3}$ whose dual graph has diameter arbitrarily large.

One complication is that the general surface of degree k in \mathbb{P}^{3} contains no lines for $k \geq 4$, and $\min \{d, e\} \geq \operatorname{diam} G(X)$ by the following result ...

Benedetti-V. (2015)

If $X \subseteq \mathbb{P}^{3}$ is a (d, e)-complete intersection line arrangement, then

$$
\kappa G(X) \geq d+e-2
$$

With Bruno we proved a more general statement, involving the Castelnuovo-Mumford regularity of X. I will describe it in the next slides, along with a new more precise result.

For the moment notice that, if $X \subseteq \mathbb{P}^{3}$ is a (d, e)-complete intersection line arrangement, then $G(X)$ has $d \cdot e$ vertices, so the result above and a classical theorem of Menger says that

$$
\operatorname{diam} G(X) \leq \min \{d, e\}
$$

The Castelnuovo-Mumford regularity

Let $S=K\left[x_{0}, \ldots, x_{n}\right], I \subseteq S$ a homogeneous ideal, and $R=S / I$. The Hilbert function $\mathrm{HF}_{R}: \mathbb{Z} \rightarrow \mathbb{Z}$, which maps d to $\operatorname{dim}_{K} R_{d}$, is eventually a polynomial HP_{R}, called the Hilbert polynomial.

If R is Cohen-Macaulay, its Castelnuovo-Mumford regularity is:

$$
\operatorname{reg} R:=\max \left\{d \in \mathbb{Z}: \operatorname{HF}_{R}(d) \neq \mathrm{HP}_{R}(d)\right\}+\operatorname{dim} R
$$

Reisner's criterion

For a simplicial complex Δ, the following are equivalent:

- $K[\Delta]$ is Cohen-Macaulay.
- $\widetilde{H}_{i}\left(\mathrm{Ik}_{\Delta} \sigma ; K\right)=0$ for all $\sigma \in \Delta$ and $i<\operatorname{dim} \mathrm{Ik}_{\Delta} \sigma$.

Gorenstein rings

Before stating the main result it's good to have an intuition of what a Gorenstein ring R is: it is a ring which is Cohen-Macaulay and has an extra feature, namely it satisfies the Poincaré duality once gone modulo a system of parameters.

A criterion for Gorenstein SR rings (Stanley)

For a simplicial complex Δ, the following are equivalent:

- $K[\Delta]$ is Gorenstein.
- Δ is the join of a homology sphere with a simplex.

Another class of Gorenstein rings is formed by complete intersections, namely rings of the form $R=S / I$ where I is generated by homogeneous polynomials f_{1}, \ldots, f_{c}, where c is the codimension of $\mathcal{V}(I) \subseteq \mathbb{P}^{n}$. In this case reg $R=\sum_{i=1}^{c} \operatorname{deg}\left(f_{i}\right)-c$, while in the case of SR Gorenstein rings reg $K[\Delta]-1$ is the dimension of the homology sphere above. In general may be difficult to compute the regularity of a Gorenstein ring ...

Connectivity number VS Castelnuovo-Mumford regularity

Benedetti-V. (2015)

If $X \subseteq \mathbb{P}^{n}$ is a subspace arrangement and $R=S / \mathcal{I}_{X}$ is Gorenstein, then $\kappa G(X) \geq \operatorname{reg} R$.

As a very special case, this recovers Balinski's theorem. In general, however, $\kappa G(X)$ may be much bigger than reg $R \ldots$

Benedetti-Di Marca-V. (2016)

If $X=\bigcup_{i=1}^{s} V_{i} \subseteq \mathbb{P}^{n}$ is a subspace arrangement and $R=S / \mathcal{I}_{X}$ is Gorenstein, and $V_{1} \cap V_{i} \cap V_{j}$ has codimension at least 2 in X for all $i<j$, then

$$
\kappa G(X)=\operatorname{reg} R
$$

If moreover $V_{i} \cap V_{j} \cap V_{k}$ has codimension at least 2 in X for all $i<j<k$, then $G(X)$ is a reg R-regular graph.

