Dual graphs and the Castelnuovo-Mumford regularity of subspace arrangements

Matteo Varbaro (University of Genoa, Italy)

02/15/2016, Miami (USA)

If Δ is a simplicial complex on *n* vertices, its **dual graph** is the simple graph $G(\Delta)$ defined like follows:

- the vertices of $G(\Delta)$ correspond to the facets of Δ ;
- $\{\sigma, \tau\}$ is an edge if and only if dim $\sigma \cap \tau = \dim \Delta 1$.

It is interesting to study the connectedness properties of $G(\Delta)$: of course $G(\Delta)$ in general is not even connected, but *the philosophy is that* $G(\Delta)$ *has good connectedness properties if* Δ *is a nice simplicial complex.*

Two ways to measure the connectedness of a simple graph G on a finite set of vertices V are provided by the following invariants:

• the **diameter** of *G*:

diam $G := \max\{d(u, v) : u, v \text{ are vertices of } G\}$

• the **connectivity** of *G*:

 $\kappa G := \min\{|A| : A \subset V, \ G_{V \setminus A} \text{ is disconnected or a single point}\}$

Two typical examples of this philosophy are:

Balinski's theorem

If Δ is the boundary of a simplicial *d*-polytope, then $\kappa G(\Delta) = d$.

Hirsch's conjecture

If Δ is the boundary of a simplicial *d*-polytope on *n* vertices, then

diam
$$G(\Delta) \leq n - d$$
.

The conjecture of Hirsch has been disproved in 2012 by Santos, however in general n - d is a quite natural bound to expect for the diameter ...

Dual graphs of simplicial complexes

For example is easy to see that normal simplicial complexes in low codimension have small diameter: Δ is **normal** if $G(lk_{\Delta}\sigma)$ is connected for all $\sigma \in \Delta$. Clearly a boundary of a polytope is normal; more generally any triangulation of the sphere is normal, and even a Cohen-Macaulay simplicial complex is normal.

Let us see how normality translates for the **Stanley-Reisner ideal** of Δ ,

$$I_{\Delta} := (x_{i_1} \cdots x_{i_k} : \{i_1, \ldots, i_k\} \notin \Delta) \subseteq K[x_1, \ldots, x_n].$$

We have that $I_{\Delta} = \bigcap_{\sigma \in \mathcal{F}(\Delta)} (x_i : i \notin \sigma)$ and the following are equivalent:

- Δ is normal.
- for any two minimal primes p and p' of I_Δ, there exist a sequence of minimal primes of I_Δ, p = p₀, p₁,..., p_r = p' such that height(p_i + p_{i+1}) = height(I_Δ) + 1 and p_i ⊆ p + p'.

Dual graphs

So to give a (d-1)-dimensional *normal* simplicial complex Δ on [n] is like to give a collection \mathcal{A} of subsets of [n] of cardinality h := n - d for which $\forall A, A' \in \mathcal{A} \exists A = A_0, A_1, \dots, A_k = A'$ s.t.:

(i)
$$|A_i \cap A_{i-1}| = h - 1 \forall i = 1, \dots, k.$$

(ii) $A_i \subseteq A \cup A' \forall i = 0, \dots, k.$

Let us call such a collection \mathcal{A} locally connected and write $G(\mathcal{A})$ for $G(\langle \mathcal{A} \rangle)$. If h = 2, obviously diam $G(\mathcal{A}) \leq 2$. If h = 3, it is straightforward to check that diam $G(\mathcal{A}) \leq 3$. However for larger hthe analog statement is false, and it is not even known whether there is a polynomial $f(x) \in \mathbb{Z}[x]$ such that diam $G(\mathcal{A}) \leq f(h)$.

This is the so-called polynomial Hirsch conjecture ...

Adiprasito-Benedetti (2014)

If \mathcal{A} is a locally connected collection of *h*-subsets of [n] such that any minimal vertex cover has cardinality ≤ 2 , then diam $G(\mathcal{A}) \leq h$.

In 2012 Bruno spoke of the above result within a conference in Genoa, and we began to wonder on what could be said on dual graphs of projective varieties ...

Given a projective variety $X \subseteq \mathbb{P}^n$, if X_1, \ldots, X_s are its irreducible components, we form the **dual graph** G(X) as follows:

- The vertex set of G(X) is $\{1, \ldots, s\}$.
- Two vertices $i \neq j$ are connected by an edge if and only if:

$$\dim(X_i \cap X_j) = \dim(X) - 1.$$

NOTE: If X is a projective curve, then $\{i, j\}$ is an edge if and only if $X_i \cap X_j \neq \emptyset$ (the empty set has dimension -1). If dim(X) > 1, by intersecting $X \subseteq \mathbb{P}^n$ with a generic hyperplane, we get a projective variety in \mathbb{P}^{n-1} of dimension one less, and same dual graph! Iterating this trick we can often reduce questions to curves. If Δ is a simplicial complex on $\{0, \ldots, n\}$, it is straightforward to check that $G(\Delta) = G(X)$, where $X = \mathcal{V}(I_{\Delta}) \subseteq \mathbb{P}^{n}$.

Today I want to discuss dual graphs of subspace arrangements, a particular case of projective varieties. A projective variety $X \subseteq \mathbb{P}^n$ is a **subspace arrangement** if its irreducible components are linear spaces. Notice that varieties of the type $\mathcal{V}(I_{\Delta})$ are particular subspace arrangements. How particular are they?

Dual graphs of subspace arrangements

The answer is: "very particular". The example below should be convincing: Let us take a codimension 2 simplicial complex Δ . By taking dim $\Delta - 1$ general hyperplane sections, we obtain a line arrangement $X_{\Delta} \subseteq \mathbb{P}^3$ such that $G(X_{\Delta}) = G(\Delta)$.

- (i) The normality of ∆ corresponds to the fact that X is locally connected, which in this case is equivalent to say that X is connected. Of course there are connected line arrangements such that the dual graph has diameter as large as we want, while diam G(X_Δ) ≤ 2 in this case.
- (ii) More interestingly, △ being the boundary of a polytope corresponds to X being a complete intersection (i.e. I_X is generated by 2 polynomials). It is possible to produce a line arrangement X ⊆ P³ which is a complete intersection but diam G(X) = 3 ...

Let G be the bipartite graph on $\{a_1, \ldots, a_6\} \cup \{b_1, \ldots, b_6\}$ such that $\{a_i, b_j\}$ is an edge if and only if $i \neq j$. Then diam G = 3.

The so-called *Schläfli's double-six* is a line arrangement $X \subseteq \mathbb{P}^3$ such that G(X) = G. It consists in 12 of the famous 27 lines on a smooth cubic $Y \subseteq \mathbb{P}^3$. Notice that the intersection points of X are 30, and the vector space of quartics of \mathbb{P}^3 has dimension 35. Therefore there is a quartic $Z \subseteq \mathbb{P}^3$ passing through these 30 points. Furthermore, by picking other 4 points outside of Y and not co-planar, one can also choose Z not containing Y. So $Y \cap Z$ is a complete intersection containing X, and since $3 \cdot 4 = 12$ we have $X = Y \cap Z$. In conclusion, the Schläfli's double-six is a line arrangement $X \subseteq \mathbb{P}^3$ that is a complete intersection of a cubic and a quartic but diam G(X) = 3. It would be interesting to find examples of (d, e)-complete intersection line arrangements $X \subseteq \mathbb{P}^3$ whose dual graph has diameter arbitrarily large.

One complication is that the general surface of degree k in \mathbb{P}^3 contains no lines for $k \ge 4$, and $\min\{d, e\} \ge \operatorname{diam} G(X)$ by the following result ...

Benedetti-V. (2015)

If $X \subseteq \mathbb{P}^3$ is a (d, e)-complete intersection line arrangement, then

 $\kappa G(X) \geq d + e - 2.$

With Bruno we proved a more general statement, involving the Castelnuovo-Mumford regularity of X. I will describe it in the next slides, along with a *new* more precise result.

For the moment notice that, if $X \subseteq \mathbb{P}^3$ is a (d, e)-complete intersection line arrangement, then G(X) has $d \cdot e$ vertices, so the result above and a classical theorem of Menger says that

diam $G(X) \leq \min\{d, e\}$.

The Castelnuovo-Mumford regularity

Let $S = K[x_0, ..., x_n]$, $I \subseteq S$ a homogeneous ideal, and R = S/I. The **Hilbert function** $HF_R : \mathbb{Z} \to \mathbb{Z}$, which maps d to $\dim_K R_d$, is eventually a polynomial HP_R , called the **Hilbert polynomial**.

If R is Cohen-Macaulay, its Castelnuovo-Mumford regularity is:

 $\operatorname{\mathsf{reg}} R := \max\{d \in \mathbb{Z} : \operatorname{HF}_R(d) \neq \operatorname{HP}_R(d)\} + \dim R.$

Reisner's criterion

For a simplicial complex Δ , the following are equivalent:

- $K[\Delta]$ is Cohen-Macaulay.
- $H_i(lk_{\Delta}\sigma; K) = 0$ for all $\sigma \in \Delta$ and $i < \dim lk_{\Delta}\sigma$.

Before stating the main result it's good to have an intuition of what a **Gorenstein ring** R is: it is a ring which is Cohen-Macaulay and has an extra feature, namely it satisfies the Poincaré duality once gone modulo a system of parameters.

A criterion for Gorenstein SR rings (Stanley)

For a simplicial complex Δ , the following are equivalent:

- $K[\Delta]$ is Gorenstein.
- Δ is the join of a homology sphere with a simplex.

Another class of Gorenstein rings is formed by complete intersections, namely rings of the form R = S/I where I is generated by homogeneous polynomials f_1, \ldots, f_c , where c is the codimension of $\mathcal{V}(I) \subseteq \mathbb{P}^n$. In this case reg $R = \sum_{i=1}^{c} \deg(f_i) - c$, while in the case of SR Gorenstein rings reg $K[\Delta] - 1$ is the dimension of the homology sphere above. In general may be difficult to compute the regularity of a Gorenstein ring ...

Benedetti-V. (2015)

If $X \subseteq \mathbb{P}^n$ is a subspace arrangement and $R = S/\mathcal{I}_X$ is Gorenstein, then $\kappa G(X) \ge \operatorname{reg} R$.

As a very special case, this recovers Balinski's theorem. In general, however, $\kappa G(X)$ may be much bigger than reg R ...

Benedetti-Di Marca-V. (2016)

If $X = \bigcup_{i=1}^{s} V_i \subseteq \mathbb{P}^n$ is a subspace arrangement and $R = S/\mathcal{I}_X$ is Gorenstein, and $V_1 \cap V_i \cap V_j$ has codimension at least 2 in X for all i < j, then

 $\kappa G(X) = \operatorname{reg} R.$

If moreover $V_i \cap V_j \cap V_k$ has codimension at least 2 in X for all i < j < k, then G(X) is a reg *R*-regular graph.