Linear syzygies and hyperbolicity

Matteo Varbaro (University of Genoa, Italy)

Asymptotic Phenomena in Local Algebra and Singularity Theory

Oberwolfach, 16/12/2016

Motivations from commutative algebra

Let $S=K\left[x_{1}, \ldots, x_{n}\right]$ be a polynomial ring over a field K, and $I \subseteq S$ be a quadratic ideal (assume $I_{1}=(0)$).

The minimal graded free resolution of S / I has the form:

$$
0 \rightarrow \bigoplus_{j \in \mathbb{Z}} S(-j)^{\beta_{k, j}} \rightarrow \cdots \rightarrow \bigoplus_{j \in \mathbb{Z}} S(-j)^{\beta_{2, j}} \rightarrow \bigoplus_{j \in \mathbb{Z}} S(-j)^{\beta_{1, j}} \rightarrow S \rightarrow S / I
$$

where k is the projective dimension of $S / I, \beta_{1, j}=0$ if $j \neq 2$, and $\beta_{1,2}$ is the number of minimal generators of I. The CastelnuovoMumford regularity of S / I is

$$
\operatorname{reg} S / I=\max \left\{j-i: \beta_{i, j} \neq 0\right\}
$$

Mayr-Meyer, 1982

There exist quadratic ideals $I \subseteq S$ for which reg S / I is doubly exponential in n.

The ideals of Mayr-Meyer have the property that already the first syzygy module has minimal generators in a very high degree, indeed in their examples $\beta_{2, j} \neq 0$ for a certain $j>2^{2^{c n}}$ for some $c \in \mathbb{Q}>0$.

If the first syzygy module of I is linearly generated (i.e. $\beta_{2, j}=0$ whenever $j>3$), no example with reg S / I big compared to n seems to be known. For example, I do not know how to produce homogeneous ideals $I_{n} \subseteq K\left[x_{1}, \ldots, x_{n}\right]$ such that the first syzygy modules of I_{n} are linearly generated and

$$
\lim _{n \rightarrow \infty} \frac{\operatorname{reg} I_{n}}{n}>0
$$

Do you?

Definition

We say that S / I satisfies the property N_{p} if $\beta_{i, j}=0$ for all $i \leq p, j>i+1$. The Green-Lazarsfeld index of S / l is index $S / I=\sup \left\{p \in \mathbb{N}: S / I\right.$ satisfies the property $\left.N_{p}\right\}$

For example, S / I satisfies N_{1} just means that I is generated by quadrics, S / I satisfies N_{2} means that I is generated by quadrics and has first linear syzygies

Motivations from commutative algebra

For this talk we will focus in the case $I=I_{\Delta} \subseteq S=K\left[x_{1}, \ldots, x_{n}\right]$ is a square-free monomial ideal (where Δ is a simplicial complex on n vertices). In this case S / I_{Δ} is denoted by $K[\Delta]$ and called the Stanley-Reisner ring of Δ.

Dao, Huneke, Schweigh, 2013

If $K[\Delta]$ satisfies the property N_{p} for some $p \geq 2$, then

$$
\operatorname{reg} K[\Delta] \leq \log _{\frac{p+3}{2}}\left(\frac{n-1}{p}\right)+2
$$

Fixed $p \geq 2$, the following is thus a natural question:

Question A_{p}

Is there a global bound for reg $K[\Delta]$ if $K[\Delta]$ satisfies N_{p} ?

Metric group theory

Let Γ be a simple graph on a (possibly infinite) vertex set V. Given two vertices $v, w \in V$, a path e from v to w consists in a subset of vertices

$$
\left\{v=v_{0}, v_{1}, v_{2}, \ldots, v_{k}=w\right\}
$$

such that $\left\{v_{i}, v_{i+1}\right\}$ is an edge for all $i=0, \ldots, k-1$. The length of such a path is $\ell(e)=k$. The distance between v and w is

$$
d(v, w):=\inf \{\ell(e): e \text { is a path from } v \text { to } w\}
$$

A path e from v to w is called a geodesic path if $\ell(e)=d(v, w)$. A geodesic triangle of vertices v_{1}, v_{2} and v_{3} consists in three geodesic paths e_{i} from v_{i} to $v_{i+1}(\bmod 3)$ for $i=1,2,3$.

Metric group theory

For $\delta \geq 0$, a geodesic triangle e_{1}, e_{2}, e_{3} is δ-slim if $d\left(v, e_{i} \cup e_{j}\right) \leq \delta$ $\forall v \in e_{k},\{i, j, k\}=\{1,2,3\}$. The graph Γ is δ-hyperbolic if each geodesic triangle of Γ is δ-slim; it is hyperbolic if it is δ-hyperbolic for some δ.

Let G be a group and \mathcal{S} a set of (distinct) generators of G (not containing the identity). The Cayley graph $\operatorname{Cay}(G, \mathcal{S})$ is the simple graph with:

- G as vertex set;
- as edges, the sets $\{g, g s\}$ where $g \in G$ and $s \in \mathcal{S}$.

Gromov (1987)

Given two finite sets of generators \mathcal{S} and \mathcal{S}^{\prime} of $\operatorname{Gay}(G, \mathcal{S})$ is hyperbolic if and only if $\operatorname{Cay}\left(G, \mathcal{S}^{\prime}\right)$ is.

Metric group theory

Definition

A group G is hyperbolic if it has a finite set of generators \mathcal{S} such that $\operatorname{Cay}(G, \mathcal{S})$ is hyperbolic.

Examples

(i) \mathbb{Z} is hyperbolic: choosing $\mathcal{S}=\{1\}, \operatorname{Cay}(\mathbb{Z}, \mathcal{S})$ is an infinite path, that is 0-hyperbolic.
(ii) \mathbb{Z}^{2} is not hyperbolic: choosing $\mathcal{S}=\{(1,0),(0,1)\}$,

- $e_{1}=\{(0,0),(0,1),(0,2), \ldots,(0, n)\}$;
- $e_{2}=\{(0,0),(1,0),(2,0), \ldots,(n, 0)\}$;
- $e_{3}=\{(0, n),(1, n), \ldots,(n, n),(n, n-1),(n, n-2), \ldots,(n, 0)\}$.

The paths e_{1}, e_{2}, e_{3} form a geodesic triangle with vertices $(0,0),(0, n),(n, 0)$ in $\operatorname{Cay}\left(\mathbb{Z}^{2}, \mathcal{S}\right)$, but $d\left((n, n), e_{1} \cup e_{2}\right)=n$. By Gromov's result, therefore, \mathbb{Z}^{2} is not hyperbolic.

Virtual cohomological dimension

The cohomological dimension of a group G is defined as:

$$
\operatorname{cd} G=\sup \left\{n \in \mathbb{N}: H^{n}(G ; M) \neq 0 \text { for some } G \text {-module } M\right\} .
$$

If G has nontrivial torsion, then it is well known that $\mathrm{cd} G=\infty$.
A group G is virtually torsion-free if it has a finite index subgroup which is torsion-free. By a result of Serre, if Γ and Γ^{\prime} are two finite index torsion-free subgroups of G, then

$$
\operatorname{cd} \Gamma=\operatorname{cd} \Gamma^{\prime} .
$$

So it is well-defined the virtual cohomological dimension of a virtually torsion-free group G :
$\operatorname{vcd} G=\operatorname{cd} \Gamma \quad$ where Γ is a finite index torsion-free subgroup of G.

Coxeter groups

A Coxeter group is a pair (G, \mathcal{S}) where G is a group with a presentation of the type $\langle\mathcal{S} \mid \mathcal{R}\rangle$ such that:

- $\mathcal{S}=\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$ is a system of generators of G;
- the relations \mathcal{R} are of the form $\left(s_{i} s_{j}\right)^{m_{i j}}=e$ where $m_{i i}=1$ for all $i=1, \ldots, n$ and $m_{i j} \in\{2,3, \ldots\} \cup\{\infty\}$ otherwise.

A Coxeter group is right-angled if and only if $m_{i j} \in\{1,2, \infty\}$.

Remark

For $i \neq j$, notice that $m_{i j}=2$ if and only if $s_{i} s_{j}=s_{j} s_{i}$.

Coxeter groups

A Coxeter group (G, \mathcal{S}) can be embedded in $\mathrm{GL}_{n}(\mathbb{C})$ (where $n=|\mathcal{S}|$). So, by Selberg's lemma, a Coxeter group is virtually torsion-free; in particular the virtual cohomological dimension of a Coxeter group is well-defined

Question B (Gromov)

Is there a global bound for the virtual cohomological dimension of a right-angled hyperbolic Coxeter group?

Constantinescu, Kahle, _ ,2016
Questions A_{2} and B are equivalent.
In particular, since Gromov's question has been negatively answered by Januszkiewicz and Šwiạtkowski, we get:

Corollary

For any $r \in \mathbb{N}$, there exists a simplicial complex Δ such that $K[\Delta]$ satisfies N_{2} and $\operatorname{reg} K[\Delta] \geq r$.

Let (G, \mathcal{S}) be a Coxeter group. A subset of \mathcal{S} is called spherical if the subgroup of G it generates is finite. The nerve $\mathcal{N}(G)$ of (G, \mathcal{S}) is the (finite) simplicial complex with vertex set \mathcal{S} and the spherical sets as faces. We proved:

Constantinescu, Kahle, - ,2016

$$
\operatorname{vcd} G=\max \{\operatorname{reg} K[\mathcal{N}(G)]: K \text { is a field }\} .
$$

Notice also that, if (G, \mathcal{S}) is right-angled, then $\mathcal{N}(G)$ is flag. It remains thus to translate the hyperbolicity of G into some combinatorial property of $\mathcal{N}(G) \ldots$.
..... We already saw that the group \mathbb{Z}^{2} is not hyperbolic. Therefore any group containing \mathbb{Z}^{2} as a subgroup cannot be hyperbolic. For Coxeter groups the condition of not containing \mathbb{Z}^{2} is also sufficient for being hyperbolic!

Moussong (1988)

Let (G, \mathcal{S}) be a Coxeter group. TFAE:

- G is hyperbolic;
- $\mathbb{Z}^{2} \nsubseteq G$.

If G is furthermore right-angled, then the above conditions are equivalent to:

- $\mathcal{N}(G)$ has no induced 4-cycles.

The connection

So we get as a consequence the following:

Corollary

If (G, \mathcal{S}) is a right-angled Coxeter group, TFAE:

- G is hyperbolic;
- $K[\mathcal{N}(G)]$ satisfies N_{2}.

Following a construction by Osajda, we are able to negatively answer question A_{p} in general:

Constantinescu, Kahle, _ ,2016

For any $p \geq 2$ and any $r \in \mathbb{N}$, there exists a simplicial complex Δ such that $K[\Delta]$ satisfies N_{p} and reg $K[\Delta]=r$.

Strategy for the proof

First of all, notice that, if Δ is the $(p+3)$-cycle, then

$$
\text { index } K[\Delta]=p \quad \text { and } \quad \operatorname{reg} K[\Delta]=2
$$

The strategy is to induct upon the regularity and use the following:

Constantinescu, Kahle, _ ,2016

If Δ is a simplicial complex such that reg $K[\Delta]=r>1$ (for any field K) and index $K[\Delta]=p$, then there exists a simplicial complex Γ such that:
(1) $\operatorname{reg} K[\Gamma]=r+1$;
(2) index $K[\Gamma]=p$;
(3) $\mathrm{I}_{\Gamma} v$ is the face complex of Δ for any vertex Γ of v.

Given a simplicial complex Δ, its face complex $(\cdot)(\Delta)$ is the simplicial complex whose vertices are the faces of Δ, and such that

$$
\left\{\sigma_{1}, \ldots, \sigma_{k}\right\} \in \Theta(\Delta) \Longleftrightarrow \bigcup_{i=1}^{k} \sigma_{i} \in \Delta
$$

It's not difficult to see that $\Theta(\Delta)$ is homotopically equivalent to
Δ. With more efforts, one can also show that

$$
\operatorname{reg} K[\odot(\Delta)]=\operatorname{reg} K[\Delta] .
$$

It would be nice to replace condition (3) in the previous result with (3') $\mathrm{I}_{\Gamma} \mathrm{V}=\Delta$ for any vertex Γ of v.
However for the moment we have no idea how to do

In the previous result, starting from a simplicial complex Δ on n vertices we construct another simplicial complex Γ on $n(p, r)$ vertices. In our construction, $n(p, r)$ is a huge number:

$$
n(p, r) \sim 3^{p(2 \uparrow \uparrow r) n^{2}}
$$

The result of Dao, Huneke and Schweigh mentioned at the beginning implies that the number $n(p, r)$ cannot be too small, however their bound is much smaller compared to our example. So there is room to improve our construction, or to sharpen their result, or both

An open problem

For any $r \in \mathbb{N}$, our method gives a simplicial complex Δ such that $K[\Delta]$ satisfies N_{2} and reg $K[\Delta]=r$. However, $K[\Delta]$ is far from being Cohen-Macaulay. On the other hand we have the following:

Constantinescu, Kahle, - ,2014

If Δ is a simplicial complex such that $K[\Delta]$ satisfies N_{2} and is Gorenstein, then

$$
\operatorname{reg} K[\Delta] \leq 4
$$

So the following arises naturally:

Question

Is there a global bound for reg $K[\Delta]$ if $K[\Delta]$ satisfies N_{2} and is Cohen-Macaulay?

Escher: Limit circle I

(It looks like the Davis complex of a hyperbolic Coxeter group)

