ARITHMETICAL RANK OF CERTAIN SEGRE PRODUCTS

Matteo Varbaro

Dipartimento di Matematica Universitá di Genova

Let *R* be a Noetherian commutative ring with 1, and $I \subseteq R$ an ideal.

Let *R* be a Noetherian commutative ring with 1, and $I \subseteq R$ an ideal.

The arirthmetical rank of I is

 $\operatorname{ara}(I) = \min\{r : \exists a_1, \ldots, a_r \in R \text{ for which } \sqrt{a_1, \ldots, a_r} = \sqrt{I}\}$

Let *R* be a Noetherian commutative ring with 1, and $I \subseteq R$ an ideal.

The arirthmetical rank of I is

 $\operatorname{ara}(I) = \min\{r : \exists a_1, \ldots, a_r \in R \text{ for which } \sqrt{a_1, \ldots, a_r} = \sqrt{I}\}$

If $R = K[x_1, ..., x_n]$ then $\operatorname{ara}(I)$ denotes the least number of hypersurfaces of \mathbb{A}^n which define set-theoretically $\mathcal{V}(I) \subseteq \mathbb{A}^n$.

Let R be a Noetherian commutative ring with 1, and $I \subseteq R$ an ideal.

The arirthmetical rank of I is

 $\operatorname{ara}(I) = \min\{r : \exists a_1, \ldots, a_r \in R \text{ for which } \sqrt{a_1, \ldots, a_r} = \sqrt{I}\}$

If $R = K[x_1, ..., x_n]$ then $\operatorname{ara}(I)$ denotes the least number of hypersurfaces of \mathbb{A}^n which define set-theoretically $\mathcal{V}(I) \subseteq \mathbb{A}^n$.

If R and I are graded the homogeneous arithmetical rank of I is

Let R be a Noetherian commutative ring with 1, and $I \subseteq R$ an ideal.

The arirthmetical rank of I is

 $\operatorname{ara}(I) = \min\{r : \exists a_1, \ldots, a_r \in R \text{ for which } \sqrt{a_1, \ldots, a_r} = \sqrt{I}\}$

If $R = K[x_1, ..., x_n]$ then $\operatorname{ara}(I)$ denotes the least number of hypersurfaces of \mathbb{A}^n which define set-theoretically $\mathcal{V}(I) \subseteq \mathbb{A}^n$.

If R and I are graded the homogeneous arithmetical rank of I is $\operatorname{ara}_h(I) = \min\{r : \exists a_1, \dots, a_r \in R \text{ homogeneous s.t. } \sqrt{a_1, \dots, a_r} = \sqrt{I}\}$

Let R be a Noetherian commutative ring with 1, and $I \subseteq R$ an ideal.

The arirthmetical rank of I is

 $\operatorname{ara}(I) = \min\{r : \exists a_1, \ldots, a_r \in R \text{ for which } \sqrt{a_1, \ldots, a_r} = \sqrt{I}\}$

If $R = K[x_1, ..., x_n]$ then $\operatorname{ara}(I)$ denotes the least number of hypersurfaces of \mathbb{A}^n which define set-theoretically $\mathcal{V}(I) \subseteq \mathbb{A}^n$.

If *R* and *I* are graded the *homogeneous arithmetical rank* of *I* is $\operatorname{ara}_h(I) = \min\{r : \exists a_1, \ldots, a_r \in R \text{ homogeneous s.t. } \sqrt{a_1, \ldots, a_r} = \sqrt{I}\}$ When $R = K[x_0, \ldots, x_N]$, then $\operatorname{ara}_h(I)$ is the least number of hypersurfaces of \mathbb{P}^N which define set-theoretically $\mathcal{V}_+(I) \subseteq \mathbb{P}^N$.

Let R be a Noetherian commutative ring with 1, and $I \subseteq R$ an ideal.

The arirthmetical rank of I is

 $\operatorname{ara}(I) = \min\{r : \exists a_1, \ldots, a_r \in R \text{ for which } \sqrt{a_1, \ldots, a_r} = \sqrt{I}\}$

If $R = K[x_1, ..., x_n]$ then $\operatorname{ara}(I)$ denotes the least number of hypersurfaces of \mathbb{A}^n which define set-theoretically $\mathcal{V}(I) \subseteq \mathbb{A}^n$.

If *R* and *I* are graded the *homogeneous arithmetical rank* of *I* is $\operatorname{ara}_h(I) = \min\{r : \exists a_1, \ldots, a_r \in R \text{ homogeneous s.t. } \sqrt{a_1, \ldots, a_r} = \sqrt{I}\}$ When $R = K[x_0, \ldots, x_N]$, then $\operatorname{ara}_h(I)$ is the least number of hypersurfaces of \mathbb{P}^N which define set-theoretically $\mathcal{V}_+(I) \subseteq \mathbb{P}^N$.

Clearly $\operatorname{ara}(I) \leq \operatorname{ara}_h(I)$.

 $I = (x_0x_2, x_0x_3, x_1x_2, x_1x_3) = (x_0, x_1) \cap (x_2, x_3) \subseteq K[x_0, x_1, x_2, x_3]$

 $I = (x_0x_2, x_0x_3, x_1x_2, x_1x_3) = (x_0, x_1) \cap (x_2, x_3) \subseteq K[x_0, x_1, x_2, x_3]$

 $\sqrt{I} = I = \sqrt{J}$ where $J = (x_0 x_2, x_1 x_3, x_0 x_3 + x_1 x_2)$,

 $I = (x_0x_2, x_0x_3, x_1x_2, x_1x_3) = (x_0, x_1) \cap (x_2, x_3) \subseteq K[x_0, x_1, x_2, x_3]$ $\sqrt{I} = I = \sqrt{J} \quad \text{where } J = (x_0x_2, x_1x_3, x_0x_3 + x_1x_2),$

in fact $(x_0x_3)^2 = x_0x_3 \cdot (x_0x_3 + x_1x_2) - x_0x_2 \cdot x_1x_3 \in J$

 $I = (x_0x_2, x_0x_3, x_1x_2, x_1x_3) = (x_0, x_1) \cap (x_2, x_3) \subseteq K[x_0, x_1, x_2, x_3]$

$$\sqrt{I} = I = \sqrt{J}$$
 where $J = (x_0 x_2, x_1 x_3, x_0 x_3 + x_1 x_2)$,

in fact $(x_0x_3)^2 = x_0x_3 \cdot (x_0x_3 + x_1x_2) - x_0x_2 \cdot x_1x_3 \in J$

Therefore $\operatorname{ara}(I) \leq \operatorname{ara}_h(I) \leq 3$.

 $I = (x_0x_2, x_0x_3, x_1x_2, x_1x_3) = (x_0, x_1) \cap (x_2, x_3) \subseteq K[x_0, x_1, x_2, x_3]$

$$\sqrt{I} = I = \sqrt{J}$$
 where $J = (x_0 x_2, x_1 x_3, x_0 x_3 + x_1 x_2)$

in fact $(x_0x_3)^2 = x_0x_3 \cdot (x_0x_3 + x_1x_2) - x_0x_2 \cdot x_1x_3 \in J$

Therefore $\operatorname{ara}(I) \leq \operatorname{ara}_h(I) \leq 3$. On the other side Krull's principal ideal theorem implies $\operatorname{ara}(I) \geq \operatorname{ht}(I) = 2$.

 $I = (x_0x_2, x_0x_3, x_1x_2, x_1x_3) = (x_0, x_1) \cap (x_2, x_3) \subseteq K[x_0, x_1, x_2, x_3]$

$$\sqrt{I} = I = \sqrt{J}$$
 where $J = (x_0 x_2, x_1 x_3, x_0 x_3 + x_1 x_2)$,

in fact $(x_0x_3)^2 = x_0x_3 \cdot (x_0x_3 + x_1x_2) - x_0x_2 \cdot x_1x_3 \in J$

Therefore $\operatorname{ara}(I) \leq \operatorname{ara}_h(I) \leq 3$. On the other side Krull's principal ideal theorem implies $\operatorname{ara}(I) \geq \operatorname{ht}(I) = 2$.

But $\mathcal{V}_+(I) \subseteq \mathbb{P}^3$ is a disconnected projective scheme of dimension 1.

 $I = (x_0x_2, x_0x_3, x_1x_2, x_1x_3) = (x_0, x_1) \cap (x_2, x_3) \subseteq K[x_0, x_1, x_2, x_3]$

$$\sqrt{I} = I = \sqrt{J}$$
 where $J = (x_0 x_2, x_1 x_3, x_0 x_3 + x_1 x_2)$

in fact $(x_0x_3)^2 = x_0x_3 \cdot (x_0x_3 + x_1x_2) - x_0x_2 \cdot x_1x_3 \in J$

Therefore $\operatorname{ara}(I) \leq \operatorname{ara}_{h}(I) \leq 3$. On the other side Krull's principal ideal theorem implies $\operatorname{ara}(I) \geq \operatorname{ht}(I) = 2$.

But $\mathcal{V}_+(I) \subseteq \mathbb{P}^3$ is a disconnected projective scheme of dimension 1. This implies, in various ways, that $\operatorname{ara}(I) > \operatorname{ht}(I)$.

 $I = (x_0x_2, x_0x_3, x_1x_2, x_1x_3) = (x_0, x_1) \cap (x_2, x_3) \subseteq K[x_0, x_1, x_2, x_3]$

$$\sqrt{I} = I = \sqrt{J}$$
 where $J = (x_0 x_2, x_1 x_3, x_0 x_3 + x_1 x_2)$

in fact $(x_0x_3)^2 = x_0x_3 \cdot (x_0x_3 + x_1x_2) - x_0x_2 \cdot x_1x_3 \in J$

Therefore $\operatorname{ara}(I) \leq \operatorname{ara}_{h}(I) \leq 3$. On the other side Krull's principal ideal theorem implies $\operatorname{ara}(I) \geq \operatorname{ht}(I) = 2$.

But $\mathcal{V}_+(I) \subseteq \mathbb{P}^3$ is a disconnected projective scheme of dimension 1. This implies, in various ways, that $\operatorname{ara}(I) > \operatorname{ht}(I)$. So

$$\operatorname{ara}(I) = \operatorname{ara}_h(I) = 3$$

- $S = K[x_0, \ldots, x_N]$, $I \subseteq S$ homogeneous ideal

- $S = K[x_0, \ldots, x_N]$, $I \subseteq S$ homogeneous ideal

 $\operatorname{ara}_h(I) \leq N + 1$ (Fairly easy to show)

- $S = K[x_0, \dots, x_N]$, $I \subseteq S$ homogeneous ideal

 $\operatorname{ara}_h(I) \leq N + 1$ (Fairly easy to show)

(Eisenbud-Evans) If $ht(I) \leq N$, then $ara_h(I) \leq N$

-
$$S = K[x_0, \dots, x_N]$$
, $I \subseteq S$ homogeneous ideal

 $\operatorname{ara}_h(I) \leq N + 1$ (Fairly easy to show)

(Eisenbud-Evans) If $ht(I) \leq N$, then $ara_h(I) \leq N$

Conjecture:

-
$$S = K[x_0, \ldots, x_N]$$
, $I \subseteq S$ homogeneous ideal

 $\operatorname{ara}_h(I) \leq N + 1$ (Fairly easy to show)

(Eisenbud-Evans) If $ht(I) \leq N$, then $ara_h(I) \leq N$

Conjecture: $V_+(I)$ connected of dimension at least 1.

- $S = K[x_0, \dots, x_N]$, $I \subseteq S$ homogeneous ideal

 $\operatorname{ara}_h(I) \leq N + 1$ (Fairly easy to show)

(Eisenbud-Evans) If $ht(I) \leq N$, then $ara_h(I) \leq N$

Conjecture: $\mathcal{V}_+(I)$ connected of dimension at least 1. Then $\operatorname{ara}_h(I) \leq N-1$

- $S = K[x_0, \dots, x_N]$, $I \subseteq S$ homogeneous ideal

 $\operatorname{ara}_h(I) \leq N + 1$ (Fairly easy to show)

(Eisenbud-Evans) If $ht(I) \leq N$, then $ara_h(I) \leq N$

Conjecture: $\mathcal{V}_+(I)$ connected of dimension at least 1. Then $\operatorname{ara}_h(I) \leq N-1$

This conjecture is completely open,

- $S = K[x_0, \dots, x_N]$, $I \subseteq S$ homogeneous ideal

 $\operatorname{ara}_h(I) \leq N + 1$ (Fairly easy to show)

(Eisenbud-Evans) If $ht(I) \leq N$, then $ara_h(I) \leq N$

Conjecture: $\mathcal{V}_+(I)$ connected of dimension at least 1. Then $\operatorname{ara}_h(I) \leq N-1$

This conjecture is completely open, also in the case in which *I* is the ideal of $K[x_0, x_1, x_2, x_3]$ given by the kernel of:

- $S = K[x_0, \dots, x_N]$, $I \subseteq S$ homogeneous ideal

 $\operatorname{ara}_h(I) \leq N + 1$ (Fairly easy to show)

(Eisenbud-Evans) If $ht(I) \leq N$, then $ara_h(I) \leq N$

Conjecture: $\mathcal{V}_+(I)$ connected of dimension at least 1. Then $\operatorname{ara}_h(I) \leq N-1$

This conjecture is completely open, also in the case in which I is the ideal of $K[x_0, x_1, x_2, x_3]$ given by the kernel of:

 $x_0 \mapsto u^4$, $x_1 \mapsto u^3 t$, $x_2 \mapsto ut^3$, $x_3 \mapsto t^4$

- $f \subseteq R = K[\mathbb{P}^n] = K[x_0, \dots, x_n]$ graded polynomial of degree d

- $f \subseteq R = K[\mathbb{P}^n] = K[x_0, \dots, x_n]$ graded polynomial of degree d
- $X = \mathcal{V}_+(f) \subseteq \mathbb{P}^n$ (smooth) hypersurface

- $f \subseteq R = K[\mathbb{P}^n] = K[x_0, \dots, x_n]$ graded polynomial of degree d
- $X = \mathcal{V}_+(f) \subseteq \mathbb{P}^n$ (smooth) hypersurface
- $Y = X \times \mathbb{P}^m \subseteq \mathbb{P}^N$ Segre embedding (so that N = nm + n + m)

- $f \subseteq R = K[\mathbb{P}^n] = K[x_0, \dots, x_n]$ graded polynomial of degree *d*
- $X = \mathcal{V}_+(f) \subseteq \mathbb{P}^n$ (smooth) hypersurface
- $Y = X \times \mathbb{P}^m \subseteq \mathbb{P}^N$ Segre embedding (so that N = nm + n + m)
- $I \subseteq S = K[\mathbb{P}^N] = K[z_{ij} : i = 0, \dots, n; j = 0, \dots, m]$ the ideal defining Y

- $f \subseteq R = K[\mathbb{P}^n] = K[x_0, \dots, x_n]$ graded polynomial of degree *d*
- $X = \mathcal{V}_+(f) \subseteq \mathbb{P}^n$ (smooth) hypersurface
- $Y = X \times \mathbb{P}^m \subseteq \mathbb{P}^N$ Segre embedding (so that N = nm + n + m)
- $I \subseteq S = K[\mathbb{P}^N] = K[z_{ij} : i = 0, \dots, n; j = 0, \dots, m]$ the ideal defining Y

WHAT CAN WE SAY ABOUT $ara_h(I)$?

- $f \subseteq R = K[\mathbb{P}^n] = K[x_0, \dots, x_n]$ graded polynomial of degree *d*
- $X = \mathcal{V}_+(f) \subseteq \mathbb{P}^n$ (smooth) hypersurface
- $Y = X \times \mathbb{P}^m \subseteq \mathbb{P}^N$ Segre embedding (so that N = nm + n + m)
- $I \subseteq S = K[\mathbb{P}^N] = K[z_{ij} : i = 0, \dots, n; j = 0, \dots, m]$ the ideal defining Y

WHAT CAN WE SAY ABOUT $ara_h(I)$?

The case $X = \mathbb{P}^n$ has been already settled by Bruns and Schwänzl.

Motivations
In 2005, on Contemporary Mathematics, Singh and Walther

In 2005, on *Contemporary Mathematics*, Singh and Walther computed the arithmetical rank of certain Segre products.

In 2005, on *Contemporary Mathematics*, Singh and Walther computed the arithmetical rank of certain Segre products. Precisely, they settled the problem described above when

In 2005, on *Contemporary Mathematics*, Singh and Walther computed the arithmetical rank of certain Segre products. Precisely, they settled the problem described above when

n = 2, d = 3, m = 1.

In 2005, on *Contemporary Mathematics*, Singh and Walther computed the arithmetical rank of certain Segre products. Precisely, they settled the problem described above when

n = 2, d = 3, m = 1.

They showed that (in characteristic different from 3)

In 2005, on *Contemporary Mathematics*, Singh and Walther computed the arithmetical rank of certain Segre products. Precisely, they settled the problem described above when

n = 2, d = 3, m = 1.

They showed that (in characteristic different from 3)

 $\operatorname{ara}_h(I) = 4$

In 2005, on *Contemporary Mathematics*, Singh and Walther computed the arithmetical rank of certain Segre products. Precisely, they settled the problem described above when

n = 2, d = 3, m = 1.

They showed that (in characteristic different from 3) $\operatorname{ara}_{h}(I) = 4$

After them Song, student of Singh, proved the same statement

In 2005, on *Contemporary Mathematics*, Singh and Walther computed the arithmetical rank of certain Segre products. Precisely, they settled the problem described above when

n = 2, d = 3, m = 1.

They showed that (in characteristic different from 3) $\operatorname{ara}_{h}(I) = 4$

After them Song, student of Singh, proved the same statement when $f = x_0^d + x_1^d + x_2^d$, n = 2, m = 1 ((char(K), d) = 1).

(1) $\operatorname{ara}_h(I) \ge N - 2$ for any n, m, f ($\mathcal{V}_+(f) = X$ smooth)

(1) $\operatorname{ara}_h(I) \ge N - 2$ for any n, m, f ($\mathcal{V}_+(f) = X$ smooth)

(2) $\operatorname{ara}_h(I) \ge N - 1$ if n = 2, $d(= \operatorname{deg}(f)) \ge 3$ (X smooth)

(1) $\operatorname{ara}_h(I) \ge N - 2$ for any n, m, f ($\mathcal{V}_+(f) = X$ smooth)

(2) $\operatorname{ara}_h(I) \ge N - 1$ if n = 2, $d(= \deg(f)) \ge 3$ (X smooth)

We define two sets of polynomials of R of degree d, \mathcal{P}_d^n and \mathcal{L}_d^n :

(1) $\operatorname{ara}_h(I) \ge N - 2$ for any n, m, f ($\mathcal{V}_+(f) = X$ smooth)

(2) $\operatorname{ara}_h(I) \ge N - 1$ if n = 2, $d(= \deg(f)) \ge 3$ (X smooth)

We define two sets of polynomials of R of degree d, \mathcal{P}_d^n and \mathcal{L}_d^n : $f \in \mathcal{P}_d^n \Leftrightarrow f = x_n^d + g$ with $g \in (x_0, \dots, x_{n-2})$ (up to change of coordinates)

(1) $\operatorname{ara}_h(I) \ge N - 2$ for any n, m, f ($\mathcal{V}_+(f) = X$ smooth)

(2) $\operatorname{ara}_h(I) \ge N - 1$ if n = 2, $d(= \operatorname{deg}(f)) \ge 3$ (X smooth)

We define two sets of polynomials of R of degree d, \mathcal{P}_d^n and \mathcal{L}_d^n : $f \in \mathcal{P}_d^n \Leftrightarrow f = x_n^d + g$ with $g \in (x_0, \dots, x_{n-2})$ (up to change of coordinates) $f \in \mathcal{L}_d^n \Leftrightarrow f = x_n^d + g$ with $g \in (x_0, \dots, x_{n-3})$ (up to change of coordinates)

(1) $\operatorname{ara}_h(I) \ge N - 2$ for any n, m, f ($\mathcal{V}_+(f) = X$ smooth)

(2) $\operatorname{ara}_h(I) \ge N - 1$ if n = 2, $d(= \deg(f)) \ge 3$ (X smooth)

We define two sets of polynomials of R of degree d, \mathcal{P}_d^n and \mathcal{L}_d^n : $f \in \mathcal{P}_d^n \Leftrightarrow f = x_n^d + g$ with $g \in (x_0, \dots, x_{n-2})$ (up to change of coordinates) $f \in \mathcal{L}_d^n \Leftrightarrow f = x_n^d + g$ with $g \in (x_0, \dots, x_{n-3})$ (up to change of coordinates) (3) $\operatorname{ara}_h(I) \leq N - 1$ for any $n, m = 1, f \in \mathcal{P}_d^n$

(1) $\operatorname{ara}_h(I) \ge N - 2$ for any n, m, f ($\mathcal{V}_+(f) = X$ smooth)

(2) $\operatorname{ara}_h(I) \ge N - 1$ if n = 2, $d(= \operatorname{deg}(f)) \ge 3$ (X smooth)

We define two sets of polynomials of R of degree d, \mathcal{P}_d^n and \mathcal{L}_d^n : $f \in \mathcal{P}_d^n \Leftrightarrow f = x_n^d + g$ with $g \in (x_0, \dots, x_{n-2})$ (up to change of coordinates) $f \in \mathcal{L}_d^n \Leftrightarrow f = x_n^d + g$ with $g \in (x_0, \dots, x_{n-3})$ (up to change of coordinates) (3) $\operatorname{ara}_h(I) \leq N - 1$ for any $n, m = 1, f \in \mathcal{P}_d^n$

 \mathcal{P}_d^n contains the general polynomial f of degree $d \leq 2n - 1$.

(1) $\operatorname{ara}_h(I) \ge N - 2$ for any n, m, f ($\mathcal{V}_+(f) = X$ smooth)

(2) $\operatorname{ara}_h(I) \ge N - 1$ if n = 2, $d(= \operatorname{deg}(f)) \ge 3$ (X smooth)

We define two sets of polynomials of R of degree d, \mathcal{P}_d^n and \mathcal{L}_d^n : $f \in \mathcal{P}_d^n \Leftrightarrow f = x_n^d + g$ with $g \in (x_0, \dots, x_{n-2})$ (up to change of coordinates) $f \in \mathcal{L}_d^n \Leftrightarrow f = x_n^d + g$ with $g \in (x_0, \dots, x_{n-3})$ (up to change of coordinates) (3) $\operatorname{ara}_h(I) \leq N - 1$ for any $n, m = 1, f \in \mathcal{P}_d^n$ \mathcal{P}_d^n contains the general polynomial f of degree $d \leq 2n - 1$.

 \mathcal{P}^n_d contains any polynomial $f = x_0^d + \ldots + x_n^d$

(1) $\operatorname{ara}_h(I) \ge N - 2$ for any n, m, f ($\mathcal{V}_+(f) = X$ smooth)

(2) $\operatorname{ara}_h(I) \ge N - 1$ if n = 2, $d(= \deg(f)) \ge 3$ (X smooth)

We define two sets of polynomials of *R* of degree *d*, \mathcal{P}_d^n and \mathcal{L}_d^n :

 $f \in \mathcal{P}_d^n \Leftrightarrow f = x_n^d + g$ with $g \in (x_0, \dots, x_{n-2})$ (up to change of coordinates) $f \in \mathcal{L}_d^n \Leftrightarrow f = x_n^d + g$ with $g \in (x_0, \dots, x_{n-3})$ (up to change of coordinates) (3) $\operatorname{ara}_h(I) \leq N - 1$ for any $n, m = 1, f \in \mathcal{P}_d^n$

 \mathcal{P}_d^n contains the general polynomial f of degree $d \leq 2n - 1$.

 \mathcal{P}_d^n contains any polynomial $f = x_0^d + \ldots + x_n^d$

 \mathcal{P}_d^2 has codimension d-3 in the Hilbert scheme of curves of degree d.

(1) $\operatorname{ara}_h(I) \ge N - 2$ for any n, m, f ($\mathcal{V}_+(f) = X$ smooth)

(2) $\operatorname{ara}_h(I) \ge N - 1$ if n = 2, $d(= \operatorname{deg}(f)) \ge 3$ (X smooth)

We define two sets of polynomials of R of degree d, \mathcal{P}_d^n and \mathcal{L}_d^n : $f \in \mathcal{P}_d^n \Leftrightarrow f = x_n^d + g$ with $g \in (x_0, \dots, x_{n-2})$ (up to change of coordinates) $f \in \mathcal{L}_d^n \Leftrightarrow f = x_n^d + g$ with $g \in (x_0, \dots, x_{n-3})$ (up to change of coordinates) (3) $\operatorname{ara}_h(I) \leq N - 1$ for any $n, m = 1, f \in \mathcal{P}_d^n$

 \mathcal{P}_d^n contains the general polynomial f of degree $d \leq 2n - 1$.

 \mathcal{P}_d^n contains any polynomial $f = x_0^d + \ldots + x_n^d$

 \mathcal{P}_d^2 has codimension d-3 in the Hilbert scheme of curves of degree d.

(4) $\operatorname{ara}_h(I) \leq N-2$ for any $n, m = 1, f \in \mathcal{L}_d^n$

(1) $\operatorname{ara}_h(I) \ge N - 2$ for any n, m, f ($\mathcal{V}_+(f) = X$ smooth)

(2) $\operatorname{ara}_h(I) \ge N - 1$ if n = 2, $d(= \deg(f)) \ge 3$ (X smooth)

We define two sets of polynomials of R of degree d, \mathcal{P}_d^n and \mathcal{L}_d^n : $f \in \mathcal{P}_d^n \Leftrightarrow f = x_n^d + g$ with $g \in (x_0, \dots, x_{n-2})$ (up to change of coordinates) $f \in \mathcal{L}_d^n \Leftrightarrow f = x_n^d + g$ with $g \in (x_0, \dots, x_{n-3})$ (up to change of coordinates)

(3) $\operatorname{ara}_h(I) \leq N-1$ for any $n, m = 1, f \in \mathcal{P}_d^n$

 \mathcal{P}_d^n contains the general polynomial f of degree $d \leq 2n - 1$.

 \mathcal{P}_d^n contains any polynomial $f = x_0^d + \ldots + x_n^d$

 \mathcal{P}_d^2 has codimension d-3 in the Hilbert scheme of curves of degree d.

(4) $\operatorname{ara}_h(I) \leq N-2$ for any $n, m = 1, f \in \mathcal{L}_d^n$

(5) $\operatorname{ara}_h(I) = N - 2$ for n = 2 and X smooth conic (any m, char(K) $\neq 2$)

Let us look at *I*:

Let us look at *I*:

consider $P = K[\mathbb{P}^m] = K[y_0, \ldots, y_m]$,

Let us look at *I*:

consider $P = K[\mathbb{P}^m] = K[y_0, \dots, y_m]$, and set

 $A = R/(f) \# P = \bigoplus_{i \ge 0} [R/(f)]_i \otimes_K P_i \subseteq R/(f) \otimes_K P$

Let us look at *I*:

consider $P = K[\mathbb{P}^m] = K[y_0, \dots, y_m]$, and set $A = R/(f) \# P = \bigoplus_{i \ge 0} [R/(f)]_i \otimes_K P_i \subseteq R/(f) \otimes_K P$ We have that $A \cong S/I$ (so that, in particular, $\operatorname{Proj}(A) \cong Y$)

Let us look at *I*:

consider $P = K[\mathbb{P}^m] = K[y_0, \dots, y_m]$, and set $A = R/(f) \# P = \bigoplus_{i \ge 0} [R/(f)]_i \otimes_K P_i \subseteq R/(f) \otimes_K P$ We have that $A \cong S/I$ (so that, in particular, $\operatorname{Proj}(A) \cong Y$)

So *I* is the kernel of the onto $\pi : S \longrightarrow A$.

Let us look at *I*:

consider $P = K[\mathbb{P}^m] = K[y_0, \dots, y_m]$, and set $A = R/(f) \# P = \bigoplus_{i \ge 0} [R/(f)]_i \otimes_K P_i \subseteq R/(f) \otimes_K P$ We have that $A \cong S/I$ (so that, in particular, $\operatorname{Proj}(A) \cong Y$) So I is the kernel of the onto $\pi : S \longrightarrow A$.

It turns out that $A \cong K[x_i y_j : i = 0, ..., n; j = 0, ..., m] / \tilde{I}$,

Let us look at *I*:

consider $P = K[\mathbb{P}^m] = K[y_0, \dots, y_m]$, and set $A = R/(f) \# P = \bigoplus_{i \ge 0} [R/(f)]_i \otimes_K P_i \subseteq R/(f) \otimes_K P$ We have that $A \cong S/I$ (so that, in particular, $\operatorname{Proj}(A) \cong Y$)

So I is the kernel of the onto $\pi: S \longrightarrow A$.

It turns out that $A \cong K[x_i y_j : i = 0, ..., n; j = 0, ..., m] / \tilde{I}$,

where $\tilde{l} = (f \cdot m : m \in P \text{ is a monomial of degree } d)$.

 $\pi: S \to A$ is just $p \circ q$, where

 $\pi: S \to A$ is just $p \circ q$, where

$$p: K[x_i y_j] \to K[x_i y_j] / \tilde{I} \cong A$$

 $\pi: S \to A$ is just $p \circ q$, where

 $p: \mathcal{K}[x_i y_j] \to \mathcal{K}[x_i y_j] / \tilde{l} \cong A$ $q: S \to \mathcal{K}[x_i y_j], \quad z_{ij} \mapsto x_i y_j$

 $\pi: S \to A \text{ is just } p \circ q, \text{ where}$ $p: K[x_i y_j] \to K[x_i y_j] / \tilde{l} \cong A$ $q: S \to K[x_i y_j], \quad z_{ij} \mapsto x_i y_j$

So $I = \text{Ker}(\pi)$ is $I = I_2(Z) + I_f$, where

 $\pi: S \to A$ is just $p \circ q$, where $p: K[x_iy_j] \to K[x_iy_j]/\tilde{I} \cong A$ $q: S \to K[x_iy_j], \quad z_{ij} \mapsto x_iy_j$

So $I = \text{Ker}(\pi)$ is $I = I_2(Z) + I_f$, where

 $I_2(Z) = \text{Ker}(q)$ is generated by the 2-minors of the matrix $Z = (z_{ij})$

 $\pi: S \to A$ is just $p \circ q$, where $p: K[x_iy_i] \to K[x_iy_i]/\tilde{I} \cong A$ $q: S \rightarrow K[x_i y_i], \quad z_{ii} \mapsto x_i y_i$ So $I = \text{Ker}(\pi)$ is $I = I_2(Z) + I_f$, where $I_2(Z) = \text{Ker}(q)$ is generated by the 2-minors of the matrix $Z = (z_{ij})$ $I_f = (f_m : m \in P \text{ is a monomial of degree } d)$, where $f_m \in S$ is s.t. $q(f_m) = f \cdot m$

 $\pi: S \to A$ is just $p \circ q$, where $p: K[x_iy_i] \to K[x_iy_i]/\tilde{I} \cong A$ $q: S \rightarrow K[x_i y_i], \quad z_{ii} \mapsto x_i y_i$ So $I = \text{Ker}(\pi)$ is $I = I_2(Z) + I_f$, where $I_2(Z) = \text{Ker}(q)$ is generated by the 2-minors of the matrix $Z = (z_{ij})$ $I_f = (f_m : m \in P \text{ is a monomial of degree } d)$, where $f_m \in S$ is s.t. $q(f_m) = f \cdot m$

So the polynomials generating I are $\binom{n+1}{2} \cdot \binom{m+1}{2} + \binom{m+d}{d}$

UPPER BOUNDS
Look at the case when $Y = X \times \mathbb{P}^1 \subseteq \mathbb{P}^5$ where $X = \mathcal{V}_+(f)$ is a smooth conic of \mathbb{P}^2 (so f is a polynomial of degree 2 in $R = K[x_0, x_1, x_2]$)

Look at the case when $Y = X \times \mathbb{P}^1 \subseteq \mathbb{P}^5$ where $X = \mathcal{V}_+(f)$ is a smooth conic of \mathbb{P}^2 (so f is a polynomial of degree 2 in $R = K[x_0, x_1, x_2]$)

Let us assume that K is an algebraically closed field s.t. $char(K) \neq 2$.

Look at the case when $Y = X \times \mathbb{P}^1 \subseteq \mathbb{P}^5$ where $X = \mathcal{V}_+(f)$ is a smooth conic of \mathbb{P}^2 (so f is a polynomial of degree 2 in $R = K[x_0, x_1, x_2]$)

Let us assume that K is an algebraically closed field s.t. $char(K) \neq 2$.

Consider the following 3 polynomials of $S = K[z_{00}, z_{10}, z_{20}, z_{01}, z_{11}, z_{21}]$:

Look at the case when $Y = X \times \mathbb{P}^1 \subseteq \mathbb{P}^5$ where $X = \mathcal{V}_+(f)$ is a smooth conic of \mathbb{P}^2 (so f is a polynomial of degree 2 in $R = K[x_0, x_1, x_2]$)

Let us assume that K is an algebraically closed field s.t. $char(K) \neq 2$.

Consider the following 3 polynomials of $S = K[z_{00}, z_{10}, z_{20}, z_{01}, z_{11}, z_{21}]$:

 $F_0 = f(z_{00}, z_{10}, z_{20})$

Look at the case when $Y = X \times \mathbb{P}^1 \subseteq \mathbb{P}^5$ where $X = \mathcal{V}_+(f)$ is a smooth conic of \mathbb{P}^2 (so f is a polynomial of degree 2 in $R = K[x_0, x_1, x_2]$)

Let us assume that K is an algebraically closed field s.t. $char(K) \neq 2$.

Consider the following 3 polynomials of $S = K[z_{00}, z_{10}, z_{20}, z_{01}, z_{11}, z_{21}]$:

 $F_0 = f(z_{00}, z_{10}, z_{20})$ $F_1 = f(z_{01}, z_{11}, z_{21})$

Look at the case when $Y = X \times \mathbb{P}^1 \subseteq \mathbb{P}^5$ where $X = \mathcal{V}_+(f)$ is a smooth conic of \mathbb{P}^2 (so f is a polynomial of degree 2 in $R = K[x_0, x_1, x_2]$)

Let us assume that K is an algebraically closed field s.t. $char(K) \neq 2$.

Consider the following 3 polynomials of $S = K[z_{00}, z_{10}, z_{20}, z_{01}, z_{11}, z_{21}]$:

 $F_0 = f(z_{00}, z_{10}, z_{20})$ $F_1 = f(z_{01}, z_{11}, z_{21})$ $F_{01} = \sum_{k=0}^{2} \frac{\partial f}{\partial x_k} (z_{00}, z_{10}, z_{20}) \cdot z_{k1}$

Look at the case when $Y = X \times \mathbb{P}^1 \subseteq \mathbb{P}^5$ where $X = \mathcal{V}_+(f)$ is a smooth conic of \mathbb{P}^2 (so f is a polynomial of degree 2 in $R = K[x_0, x_1, x_2]$)

Let us assume that K is an algebraically closed field s.t. $char(K) \neq 2$.

Consider the following 3 polynomials of $S = K[z_{00}, z_{10}, z_{20}, z_{01}, z_{11}, z_{21}]$:

 $F_0 = f(z_{00}, z_{10}, z_{20})$ $F_1 = f(z_{01}, z_{11}, z_{21})$ $F_{01} = \sum_{k=0}^{2} \frac{\partial f}{\partial x_k} (z_{00}, z_{10}, z_{20}) \cdot z_{k1}$

Set $J = (F_0, F_1, F_{01})$

Look at the case when $Y = X \times \mathbb{P}^1 \subseteq \mathbb{P}^5$ where $X = \mathcal{V}_+(f)$ is a smooth conic of \mathbb{P}^2 (so f is a polynomial of degree 2 in $R = K[x_0, x_1, x_2]$)

Let us assume that K is an algebraically closed field s.t. $char(K) \neq 2$.

Consider the following 3 polynomials of $S = K[z_{00}, z_{10}, z_{20}, z_{01}, z_{11}, z_{21}]$:

 $F_0 = f(z_{00}, z_{10}, z_{20})$ $F_1 = f(z_{01}, z_{11}, z_{21})$ $F_{01} = \sum_{k=0}^2 \frac{\partial f}{\partial x_k} (z_{00}, z_{10}, z_{20}) \cdot z_{k1}$

Set $J = (F_0, F_1, F_{01})$

We claim that $\sqrt{J} = \sqrt{I}$.

- Clearly F_0 and F_1 are in $I_f \subseteq I$.

- Clearly F_0 and F_1 are in $I_f \subseteq I$.

(For example $F_0(x_0y_0, x_1y_0, x_2y_0) = f \cdot y_0^2$)

- Clearly F_0 and F_1 are in $I_f \subseteq I$.
- Also F_{01} is in I_f , being char(K) \neq 2, by Euler's formula.

- Clearly F_0 and F_1 are in $I_f \subseteq I$.

- Also F_{01} is in I_f , being char(K) \neq 2, by Euler's formula.

Therefore $\sqrt{J} \subseteq \sqrt{I}$

- Clearly
$$F_0$$
 and F_1 are in $I_f \subseteq I$.

- Also F_{01} is in I_f , being char(K) \neq 2, by Euler's formula.

Therefore $\sqrt{J} \subseteq \sqrt{I}$

Actually we proved that $J = I_f$,

- Clearly
$$F_0$$
 and F_1 are in $I_f \subseteq I$.

- Also F_{01} is in I_f , being char(K) \neq 2, by Euler's formula.

Therefore $\sqrt{J} \subseteq \sqrt{I}$

Actually we proved that $J=I_{\rm f},\,$ so we have just to show that $\sqrt{I_2(Z)}\subseteq \sqrt{J}$

- Clearly
$$F_0$$
 and F_1 are in $I_f \subseteq I$.

- Also F_{01} is in I_f , being char(K) \neq 2, by Euler's formula.

Therefore $\sqrt{J} \subseteq \sqrt{I}$

Actually we proved that $J = I_f$, so we have just to show that $\sqrt{I_2(Z)} \subseteq \sqrt{J} \iff \mathcal{Z}(J) \subseteq \mathcal{Z}(I_2(Z))$ by Nullstellensatz)

- Clearly
$$F_0$$
 and F_1 are in $I_f \subseteq I$.

- Also F_{01} is in I_f , being char(K) \neq 2, by Euler's formula.

Therefore $\sqrt{J} \subseteq \sqrt{I}$

Actually we proved that $J = I_f$, so we have just to show that $\sqrt{I_2(Z)} \subseteq \sqrt{J} \iff \mathcal{Z}(J) \subseteq \mathcal{Z}(I_2(Z))$ by Nullstellensatz)

- Clearly
$$F_0$$
 and F_1 are in $I_f \subseteq I$.

- Also F_{01} is in I_f , being char(K) \neq 2, by Euler's formula.

Therefore $\sqrt{J} \subseteq \sqrt{I}$

Actually we proved that $J = I_f$, so we have just to show that $\sqrt{I_2(Z)} \subseteq \sqrt{J} \iff \mathcal{Z}(J) \subseteq \mathcal{Z}(I_2(Z))$ by Nullstellensatz)

To this aim pick a point $P = [P_0, P_1]$ in $\mathcal{Z}(J)$ $(P_j = [P_{0j}, P_{1j}, P_{2j}])$:

- Clearly if P_0 or P_1 are 0 it follows that $P \in \mathcal{Z}(I_2(Z))$.

- Clearly
$$F_0$$
 and F_1 are in $I_f \subseteq I$.

- Also F_{01} is in I_f , being char(K) \neq 2, by Euler's formula.

Therefore $\sqrt{J} \subseteq \sqrt{I}$

Actually we proved that $J = I_f$, so we have just to show that $\sqrt{I_2(Z)} \subseteq \sqrt{J} \iff \mathcal{Z}(J) \subseteq \mathcal{Z}(I_2(Z))$ by Nullstellensatz)

- Clearly if P_0 or P_1 are 0 it follows that $P \in \mathcal{Z}(I_2(Z))$.
- So suppose that both P_0 and P_1 are non-zero (so they are points of \mathbb{P}^2):

- Clearly
$$F_0$$
 and F_1 are in $I_f \subseteq I$.

- Also F_{01} is in I_f , being char(K) \neq 2, by Euler's formula.

Therefore $\sqrt{J} \subseteq \sqrt{I}$

Actually we proved that $J = I_f$, so we have just to show that $\sqrt{I_2(Z)} \subseteq \sqrt{J} \iff \mathcal{Z}(J) \subseteq \mathcal{Z}(I_2(Z))$ by Nullstellensatz)

- Clearly if P_0 or P_1 are 0 it follows that $P \in \mathcal{Z}(I_2(Z))$.
- So suppose that both P_0 and P_1 are non-zero (so they are points of \mathbb{P}^2): then $F_0(P) = F_1(P) = 0$ mean that P_0 and P_1 belong to $\mathcal{Z}(f)$,

- Clearly
$$F_0$$
 and F_1 are in $I_f \subseteq I$.

- Also F_{01} is in I_f , being char(K) \neq 2, by Euler's formula.

Therefore $\sqrt{J} \subseteq \sqrt{I}$

Actually we proved that $J = I_f$, so we have just to show that $\sqrt{I_2(Z)} \subseteq \sqrt{J} \iff \mathcal{Z}(J) \subseteq \mathcal{Z}(I_2(Z))$ by Nullstellensatz)

- Clearly if P_0 or P_1 are 0 it follows that $P \in \mathcal{Z}(I_2(Z))$.
- So suppose that both P_0 and P_1 are non-zero (so they are points of \mathbb{P}^2): then $F_0(P) = F_1(P) = 0$ mean that P_0 and P_1 belong to $\mathcal{Z}(f)$, and $F_{01}(P) = 0$ means that P_1 belongs to the tangent line of $\mathcal{Z}(f)$ in P_0 .

- Clearly
$$F_0$$
 and F_1 are in $I_f \subseteq I_s$

- Also F_{01} is in I_f , being char(K) \neq 2, by Euler's formula.

Therefore $\sqrt{J} \subseteq \sqrt{I}$

Actually we proved that $J = I_f$, so we have just to show that $\sqrt{I_2(Z)} \subseteq \sqrt{J} \iff \mathcal{Z}(J) \subseteq \mathcal{Z}(I_2(Z))$ by Nullstellensatz)

- Clearly if P_0 or P_1 are 0 it follows that $P \in \mathcal{Z}(I_2(Z))$.
- So suppose that both P_0 and P_1 are non-zero (so they are points of \mathbb{P}^2): then $F_0(P) = F_1(P) = 0$ mean that P_0 and P_1 belong to $\mathcal{Z}(f)$, and $F_{01}(P) = 0$ means that P_1 belongs to the tangent line of $\mathcal{Z}(f)$ in P_0 . Being $\mathcal{Z}(f)$ a conic, this is possible only if $P_0 = P_1$:

- Clearly
$$F_0$$
 and F_1 are in $I_f \subseteq I$.

- Also F_{01} is in I_f , being char(K) \neq 2, by Euler's formula.

Therefore $\sqrt{J} \subseteq \sqrt{I}$

Actually we proved that $J = I_f$, so we have just to show that $\sqrt{I_2(Z)} \subseteq \sqrt{J} \iff \mathcal{Z}(J) \subseteq \mathcal{Z}(I_2(Z))$ by Nullstellensatz)

- Clearly if P_0 or P_1 are 0 it follows that $P \in \mathcal{Z}(I_2(Z))$.
- So suppose that both P_0 and P_1 are non-zero (so they are points of \mathbb{P}^2): then $F_0(P) = F_1(P) = 0$ mean that P_0 and P_1 belong to $\mathcal{Z}(f)$, and $F_{01}(P) = 0$ means that P_1 belongs to the tangent line of $\mathcal{Z}(f)$ in P_0 . Being $\mathcal{Z}(f)$ a conic, this is possible only if $P_0 = P_1$: so $P \in \mathcal{Z}(l_2(Z))$.

- Clearly
$$F_0$$
 and F_1 are in $I_f \subseteq I$.

- Also F_{01} is in I_f , being char(K) \neq 2, by Euler's formula.

Therefore $\sqrt{J} \subseteq \sqrt{I}$

Actually we proved that $J = I_f$, so we have just to show that $\sqrt{I_2(Z)} \subseteq \sqrt{J} \iff \mathcal{Z}(J) \subseteq \mathcal{Z}(I_2(Z))$ by Nullstellensatz)

To this aim pick a point $P = [P_0, P_1]$ in $\mathcal{Z}(J)$ $(P_j = [P_{0j}, P_{1j}, P_{2j}])$:

- Clearly if P_0 or P_1 are 0 it follows that $P \in \mathcal{Z}(I_2(Z))$.
- So suppose that both P_0 and P_1 are non-zero (so they are points of \mathbb{P}^2): then $F_0(P) = F_1(P) = 0$ mean that P_0 and P_1 belong to $\mathcal{Z}(f)$, and $F_{01}(P) = 0$ means that P_1 belongs to the tangent line of $\mathcal{Z}(f)$ in P_0 . Being $\mathcal{Z}(f)$ a conic, this is possible only if $P_0 = P_1$: so $P \in \mathcal{Z}(I_2(Z))$.

So $\operatorname{ara}_h(I) = 3$, and Y is a set-theoretic complete intersection of \mathbb{P}^5 .

arguments of this kind let us prove that $\operatorname{ara}_h(I) = 3m$ (if $\operatorname{char}(K) \neq 2$).

arguments of this kind let us prove that $\operatorname{ara}_h(I) = 3m$ (if $\operatorname{char}(K) \neq 2$).

Two more difficulties arise:

arguments of this kind let us prove that $\operatorname{ara}_h(I) = 3m$ (if $\operatorname{char}(K) \neq 2$).

Two more difficulties arise:

(1) If $m \ge 3$, then the analogous equations " F_{ij} " are too much;

arguments of this kind let us prove that $\operatorname{ara}_h(I) = 3m$ (if $\operatorname{char}(K) \neq 2$).

Two more difficulties arise:

(1) If m ≥ 3, then the analogous equations "F_{ij}" are too much;
(2) If m ≥ 2, then the codimension of Y in P^{3m+2}(Y) is 2m + 1 < 3m,

arguments of this kind let us prove that $\operatorname{ara}_h(I) = 3m$ (if $\operatorname{char}(K) \neq 2$).

Two more difficulties arise:

(1) If m ≥ 3, then the analogous equations "F_{ij}" are too much;
 (2) If m ≥ 2, then the codimension of Y in P^{3m+2}(Y) is 2m+1 < 3m, so it does not give the right lower bound.

arguments of this kind let us prove that $\operatorname{ara}_h(I) = 3m$ (if $\operatorname{char}(K) \neq 2$).

Two more difficulties arise:

(1) If m ≥ 3, then the analogous equations "F_{ij}" are too much;
(2) If m ≥ 2, then the codimension of Y in P^{3m+2}(Y) is 2m+1 < 3m, so it does not give the right lower bound.

Issue (1) can be solved by a sort of stratification of the F_{ij} 's,

arguments of this kind let us prove that $\operatorname{ara}_h(I) = 3m$ (if $\operatorname{char}(K) \neq 2$).

Two more difficulties arise:

(1) If m ≥ 3, then the analogous equations "F_{ij}" are too much;
(2) If m ≥ 2, then the codimension of Y in P^{3m+2}(Y) is 2m+1 < 3m, so it does not give the right lower bound.

Issue (1) can be solved by a sort of stratification of the F_{ij} 's, considering the polynomials $G_k = \sum_{\substack{1 \le i < j \le m \\ i+j=k}} F_{ij}, \ k = 1, \dots, 2m-1$

arguments of this kind let us prove that $\operatorname{ara}_h(I) = 3m$ (if $\operatorname{char}(K) \neq 2$).

Two more difficulties arise:

(1) If m ≥ 3, then the analogous equations "F_{ij}" are too much;
(2) If m ≥ 2, then the codimension of Y in P^{3m+2}(Y) is 2m + 1 < 3m, so it does not give the right lower bound.

Issue (1) can be solved by a sort of stratification of the F_{ij} 's, considering the polynomials $G_k = \sum_{\substack{1 \le i < j \le m \\ i+j=k}} F_{ij}, \ k = 1, \dots, 2m-1$

To solve issue (2) are necessary cohomological arguments:

arguments of this kind let us prove that $\operatorname{ara}_h(I) = 3m$ (if $\operatorname{char}(K) \neq 2$).

Two more difficulties arise:

(1) If m ≥ 3, then the analogous equations "F_{ij}" are too much;
 (2) If m ≥ 2, then the codimension of Y in P^{3m+2}(Y) is 2m+1 < 3m, so it does not give the right lower bound.

Issue (1) can be solved by a sort of stratification of the F_{ij} 's, considering the polynomials $G_k = \sum_{\substack{1 \le i < j \le m \\ i+j=k}} F_{ij}, \ k = 1, \dots, 2m-1$

To solve issue (2) are necessary cohomological arguments: local cohomology in characteristic 0 and étale cohomology in positive

Another approach

Another approach

In higher degree the above techniques don't work, so we need to try another way:
In higher degree the above techniques don't work, so we need to try another way:

Let
$$Y = X \times \mathbb{P}^1 \subseteq \mathbb{P}^{2n+1}$$
 $(X = \mathcal{V}_+(f) \subseteq \mathbb{P}^n)$

In higher degree the above techniques don't work, so we need to try another way:

Let
$$Y = X \times \mathbb{P}^1 \subseteq \mathbb{P}^{2n+1}$$
 $(X = \mathcal{V}_+(f) \subseteq \mathbb{P}^n)$

By Eisenbud-Evans we have $\operatorname{ara}_h(I) \leq 2n + 1$.

In higher degree the above techniques don't work, so we need to try another way:

Let
$$Y = X \times \mathbb{P}^1 \subseteq \mathbb{P}^{2n+1}$$
 $(X = \mathcal{V}_+(f) \subseteq \mathbb{P}^n)$

By Eisenbud-Evans we have $\operatorname{ara}_h(I) \leq 2n + 1$.

In higher degree the above techniques don't work, so we need to try another way:

Let
$$Y = X \times \mathbb{P}^1 \subseteq \mathbb{P}^{2n+1}$$
 $(X = \mathcal{V}_+(f) \subseteq \mathbb{P}^n)$

By Eisenbud-Evans we have $\operatorname{ara}_h(I) \leq 2n + 1$.

set
$$F_0 = f(z_{00}, \dots, z_{n0})$$
 and $F_1 = f(z_{01}, \dots, z_{n1})$ in $K[z_{ij}]$.

In higher degree the above techniques don't work, so we need to try another way:

Let
$$Y = X \times \mathbb{P}^1 \subseteq \mathbb{P}^{2n+1}$$
 $(X = \mathcal{V}_+(f) \subseteq \mathbb{P}^n)$

By Eisenbud-Evans we have $\operatorname{ara}_h(I) \leq 2n + 1$.

set
$$F_0 = f(z_{00}, \dots, z_{n0})$$
 and $F_1 = f(z_{01}, \dots, z_{n1})$ in $K[z_{ij}]$.
If $P = [P_0, P_1] \in \mathcal{Z}(I_2(Z) + (F_0, F_1))$, then

In higher degree the above techniques don't work, so we need to try another way:

Let
$$Y = X \times \mathbb{P}^1 \subseteq \mathbb{P}^{2n+1}$$
 $(X = \mathcal{V}_+(f) \subseteq \mathbb{P}^n)$

By Eisenbud-Evans we have $\operatorname{ara}_h(I) \leq 2n + 1$.

set
$$F_0 = f(z_{00}, \dots, z_{n0})$$
 and $F_1 = f(z_{01}, \dots, z_{n1})$ in $K[z_{ij}]$.
If $P = [P_0, P_1] \in \mathcal{Z}(I_2(Z) + (F_0, F_1))$, then
 $P_0 = P_1 \in \mathcal{Z}(f)$ (if they are non-zero),

In higher degree the above techniques don't work, so we need to try another way:

Let
$$Y = X \times \mathbb{P}^1 \subseteq \mathbb{P}^{2n+1}$$
 $(X = \mathcal{V}_+(f) \subseteq \mathbb{P}^n)$

By Eisenbud-Evans we have $\operatorname{ara}_h(I) \leq 2n + 1$.

set
$$F_0 = f(z_{00}, ..., z_{n0})$$
 and $F_1 = f(z_{01}, ..., z_{n1})$ in $K[z_{ij}]$.
If $P = [P_0, P_1] \in \mathcal{Z}(I_2(Z) + (F_0, F_1))$, then
 $P_0 = P_1 \in \mathcal{Z}(f)$ (if they are non-zero), so that $P \in \mathcal{Z}(I)$.

In higher degree the above techniques don't work, so we need to try another way:

Let
$$Y = X \times \mathbb{P}^1 \subseteq \mathbb{P}^{2n+1}$$
 $(X = \mathcal{V}_+(f) \subseteq \mathbb{P}^n)$

By Eisenbud-Evans we have $\operatorname{ara}_h(I) \leq 2n + 1$.

set
$$F_0 = f(z_{00}, \dots, z_{n0})$$
 and $F_1 = f(z_{01}, \dots, z_{n1})$ in $K[z_{ij}]$.
If $P = [P_0, P_1] \in \mathcal{Z}(I_2(Z) + (F_0, F_1))$, then
 $P_0 = P_1 \in \mathcal{Z}(f)$ (if they are non-zero), so that $P \in \mathcal{Z}(I)$.
We can assume $K = \bar{K}$, so Nullstellensatz yields $\sqrt{I} = \sqrt{I_2(Z) + (F_0, F_1)}$

In higher degree the above techniques don't work, so we need to try another way:

Let
$$Y = X \times \mathbb{P}^1 \subseteq \mathbb{P}^{2n+1}$$
 $(X = \mathcal{V}_+(f) \subseteq \mathbb{P}^n)$

By Eisenbud-Evans we have $\operatorname{ara}_h(I) \leq 2n + 1$.

set
$$F_0 = f(z_{00}, \ldots, z_{n0})$$
 and $F_1 = f(z_{01}, \ldots, z_{n1})$ in $K[z_{ij}]$.
If $P = [P_0, P_1] \in \mathcal{Z}(I_2(Z) + (F_0, F_1))$, then
 $P_0 = P_1 \in \mathcal{Z}(f)$ (if they are non-zero), so that $P \in \mathcal{Z}(I)$.
We can assume $K = \bar{K}$, so Nullstellensatz yields $\sqrt{I} = \sqrt{I_2(Z) + (F_0, F_1)}$.
Hence we get $\operatorname{ara}_h(I) \leq 2 + \operatorname{ara}_h(I_2(Z))$.

In higher degree the above techniques don't work, so we need to try another way:

Let
$$Y = X \times \mathbb{P}^1 \subseteq \mathbb{P}^{2n+1}$$
 $(X = \mathcal{V}_+(f) \subseteq \mathbb{P}^n)$

By Eisenbud-Evans we have $\operatorname{ara}_h(I) \leq 2n + 1$.

But there is another way to prove this:

set $F_0 = f(z_{00}, \ldots, z_{n0})$ and $F_1 = f(z_{01}, \ldots, z_{n1})$ in $K[z_{ij}]$. If $P = [P_0, P_1] \in \mathcal{Z}(I_2(Z) + (F_0, F_1))$, then $P_0 = P_1 \in \mathcal{Z}(f)$ (if they are non-zero), so that $P \in \mathcal{Z}(I)$. We can assume $K = \bar{K}$, so Nullstellensatz yields $\sqrt{I} = \sqrt{I_2(Z) + (F_0, F_1)}$. Hence we get $\operatorname{ara}_h(I) \leq 2 + \operatorname{ara}_h(I_2(Z))$.

But Bruns and Schwänzl showed that $\operatorname{ara}_h(I_2(Z)) = 2n - 1$,

In higher degree the above techniques don't work, so we need to try another way:

Let
$$Y = X \times \mathbb{P}^1 \subseteq \mathbb{P}^{2n+1}$$
 $(X = \mathcal{V}_+(f) \subseteq \mathbb{P}^n)$

By Eisenbud-Evans we have $\operatorname{ara}_h(I) \leq 2n + 1$.

But there is another way to prove this:

set $F_0 = f(z_{00}, \ldots, z_{n0})$ and $F_1 = f(z_{01}, \ldots, z_{n1})$ in $K[z_{ij}]$. If $P = [P_0, P_1] \in \mathcal{Z}(I_2(Z) + (F_0, F_1))$, then $P_0 = P_1 \in \mathcal{Z}(f)$ (if they are non-zero), so that $P \in \mathcal{Z}(I)$. We can assume $K = \bar{K}$, so Nullstellensatz yields $\sqrt{I} = \sqrt{I_2(Z) + (F_0, F_1)}$. Hence we get $\operatorname{ara}_h(I) \leq 2 + \operatorname{ara}_h(I_2(Z))$. But Bruns and Schwänzl showed that $\operatorname{ara}_h(I_2(Z)) = 2n - 1$, so we got once again the Eisenbud-Evans inequality.

Up to now there is nothing new:

Up to now there is nothing new:

but try to consider the case in which f is as in the title.

Up to now there is nothing new:

but try to consider the case in which f is as in the title.

For $0 \le i < j \le n$ denote by [i, j] the 2-minor $z_{0i}z_{1j} - z_{0j}z_{1i}$,

Up to now there is nothing new:

but try to consider the case in which f is as in the title.

For $0 \le i < j \le n$ denote by [i, j] the 2-minor $z_{0i}z_{1j} - z_{0j}z_{1i}$, and set $\Omega = \{2\text{-minors}\} \setminus \{[n-2, n], [n-1, n]\}.$

Up to now there is nothing new:

but try to consider the case in which f is as in the title.

For $0 \le i < j \le n$ denote by [i, j] the 2-minor $z_{0i}z_{1j} - z_{0j}z_{1i}$, and set $\Omega = \{2\text{-minors}\} \setminus \{[n-2, n], [n-1, n]\}.$

With the notation of above, using the form of f one can show that

Up to now there is nothing new:

but try to consider the case in which f is as in the title.

For $0 \le i < j \le n$ denote by [i, j] the 2-minor $z_{0i}z_{1j} - z_{0j}z_{1i}$, and set $\Omega = \{2\text{-minors}\} \setminus \{[n-2, n], [n-1, n]\}.$

With the notation of above, using the form of f one can show that $\mathcal{Z}(I) = \mathcal{Z}((\Omega) + (F_0, F_1))$

Up to now there is nothing new:

but try to consider the case in which f is as in the title.

For $0 \le i < j \le n$ denote by [i, j] the 2-minor $z_{0i}z_{1j} - z_{0j}z_{1i}$, and set $\Omega = \{2\text{-minors}\} \setminus \{[n-2, n], [n-1, n]\}.$

With the notation of above, using the form of f one can show that $\mathcal{Z}(I) = \mathcal{Z}((\Omega) + (F_0, F_1))$

So we have that $\sqrt{I} = \sqrt{(\Omega) + (F_1, F_2)}$,

Up to now there is nothing new:

but try to consider the case in which f is as in the title.

For $0 \le i < j \le n$ denote by [i, j] the 2-minor $z_{0i}z_{1j} - z_{0j}z_{1i}$, and set $\Omega = \{2\text{-minors}\} \setminus \{[n-2, n], [n-1, n]\}.$

With the notation of above, using the form of f one can show that $\mathcal{Z}(I) = \mathcal{Z}((\Omega) + (F_0, F_1))$

So we have that $\sqrt{I} = \sqrt{(\Omega) + (F_1, F_2)}$, and then

 $\operatorname{ara}_h(I) \leq \operatorname{ara}_h((\Omega)) + 2$

Up to now there is nothing new:

but try to consider the case in which f is as in the title.

For $0 \le i < j \le n$ denote by [i, j] the 2-minor $z_{0i}z_{1j} - z_{0j}z_{1i}$, and set $\Omega = \{2\text{-minors}\} \setminus \{[n-2, n], [n-1, n]\}.$

With the notation of above, using the form of f one can show that $\mathcal{Z}(I) = \mathcal{Z}((\Omega) + (F_0, F_1))$

So we have that $\sqrt{I} = \sqrt{(\Omega) + (F_1, F_2)}$, and then $\operatorname{ara}_h(I) \leq \operatorname{ara}_h((\Omega)) + 2$

ASL theory helps us to compute $\operatorname{ara}_h((\Omega))$

 Ω is an ideal of the poset of 2-minors!

By a general fact coming from ASL theory,

By a general fact coming from ASL theory, we have that

 $\sqrt{(H_1,\ldots,H_{2n-3})}=\sqrt{(\Omega)}$

By a general fact coming from ASL theory, we have that

 $\sqrt{(H_1,\ldots,H_{2n-3})}=\sqrt{(\Omega)}$

Hence $\sqrt{(H_1, ..., H_{2n-3}, F_0, F_1)} = \sqrt{I}$,

By a general fact coming from ASL theory, we have that

$$\sqrt{(H_1,\ldots,H_{2n-3})}=\sqrt{(\Omega)}$$

Hence $\sqrt{(H_1, \ldots, H_{2n-3}, F_0, F_1)} = \sqrt{I}$, which implies

(recall that $f = x_n^d + g$ where $g \in (x_0, \dots, x_{n-3})$), that $\operatorname{ara}_h(I) \leq 2n - 1$

By a general fact coming from ASL theory, we have that

$$\sqrt{(H_1,\ldots,H_{2n-3})}=\sqrt{(\Omega)}$$

Hence $\sqrt{(H_1, \ldots, H_{2n-3}, F_0, F_1)} = \sqrt{I}$, which implies

(recall that $f = x_n^d + g$ where $g \in (x_0, \dots, x_{n-3})$), that $\operatorname{ara}_h(I) \leq 2n-1$

As we will see, cohomological techniques let us conclude that

By a general fact coming from ASL theory, we have that

$$\sqrt{(H_1,\ldots,H_{2n-3})}=\sqrt{(\Omega)}$$

Hence $\sqrt{(H_1, \ldots, H_{2n-3}, F_0, F_1)} = \sqrt{I}$, which implies

(recall that
$$f = x_n^d + g$$
 where $g \in (x_0, \dots, x_{n-3})$), that $\operatorname{ara}_h(I) \leq 2n-1$

As we will see, cohomological techniques let us conclude that if X is smooth, then $ara_h(I) = 2n - 1$ in this case.

By a general fact coming from $\ensuremath{\mathsf{ASL}}$ theory, we have that

 $\sqrt{(H_1,\ldots,H_{2n-3})}=\sqrt{(\Omega)}$

Hence $\sqrt{(H_1, \ldots, H_{2n-3}, F_0, F_1)} = \sqrt{I}$, which implies

(recall that $f = x_n^d + g$ where $g \in (x_0, \dots, x_{n-3})$), that $\operatorname{ara}_h(I) \leq 2n - 1$

As we will see, cohomological techniques let us conclude that if X is smooth, then $ara_h(I) = 2n - 1$ in this case.

It turns out that, if $n \ge 4$, the general X defined by a such f is smooth!

Similar arguments as above let us conclude that in this case

Similar arguments as above let us conclude that in this case $ara_h(I) \le 2n \quad (\mathcal{V}_+(I) = Y \subseteq \mathbb{P}^{2n+1})$
The case in which $f = x_n^d + g$ where $g \in (x_0, \ldots, x_{n-2})$

Similar arguments as above let us conclude that in this case $ara_h(I) \le 2n \quad (\mathcal{V}_+(I) = Y \subseteq \mathbb{P}^{2n+1})$

Moreover, cohomological techniques let us conclude that

The case in which $f = x_n^d + g$ where $g \in (x_0, \ldots, x_{n-2})$

Similar arguments as above let us conclude that in this case $ara_h(I) \le 2n \quad (\mathcal{V}_+(I) = Y \subseteq \mathbb{P}^{2n+1})$

Moreover, cohomological techniques let us conclude that

 $\operatorname{ara}_h(I) = 4$ if n = 2 and $\mathcal{V}_+(f) = X$ is smooth

The case in which $f = x_n^d + g$ where $g \in (x_0, \ldots, x_{n-2})$

Similar arguments as above let us conclude that in this case $ara_h(I) \le 2n \quad (\mathcal{V}_+(I) = Y \subseteq \mathbb{P}^{2n+1})$

Moreover, cohomological techniques let us conclude that

 $\operatorname{ara}_h(I) = 4$ if n = 2 and $\mathcal{V}_+(f) = X$ is smooth

OK. But when is *f* of that form (up to change of coordinates?)

 $\operatorname{ara}_h(I) \leq 2n \quad (\mathcal{V}_+(I) = Y \subseteq \mathbb{P}^{2n+1})$

Moreover, cohomological techniques let us conclude that

 $\operatorname{ara}_h(I) = 4$ if n = 2 and $\mathcal{V}_+(f) = X$ is smooth

OK. But when is f of that form (up to change of coordinates?) Notice that this is the case \Leftrightarrow there is a line meeting $\mathcal{Z}(f)$ at only one point.

 $\operatorname{ara}_h(I) \leq 2n \quad (\mathcal{V}_+(I) = Y \subseteq \mathbb{P}^{2n+1})$

Moreover, cohomological techniques let us conclude that

 $\operatorname{ara}_h(I) = 4$ if n = 2 and $\mathcal{V}_+(f) = X$ is smooth

OK. But when is f of that form (up to change of coordinates?) Notice that this is the case \Leftrightarrow there is a line meeting $\mathcal{Z}(f)$ at only one point.

So every elliptic curve is of this kind

 $\operatorname{ara}_h(I) \leq 2n \quad (\mathcal{V}_+(I) = Y \subseteq \mathbb{P}^{2n+1})$

Moreover, cohomological techniques let us conclude that

 $\operatorname{ara}_h(I) = 4$ if n = 2 and $\mathcal{V}_+(f) = X$ is smooth

OK. But when is f of that form (up to change of coordinates?) Notice that this is the case \Leftrightarrow there is a line meeting $\mathcal{Z}(f)$ at only one point.

So every elliptic curve is of this kind (and we recover Singh-Walther's result)

 $\operatorname{ara}_h(I) \leq 2n \quad (\mathcal{V}_+(I) = Y \subseteq \mathbb{P}^{2n+1})$

Moreover, cohomological techniques let us conclude that

 $\operatorname{ara}_h(I) = 4$ if n = 2 and $\mathcal{V}_+(f) = X$ is smooth

OK. But when is f of that form (up to change of coordinates?) Notice that this is the case \Leftrightarrow there is a line meeting $\mathcal{Z}(f)$ at only one point.

So every elliptic curve is of this kind (and we recover Singh-Walther's result)

A result of Casnti-Del Centina implies that

 $\operatorname{ara}_h(I) \leq 2n \quad (\mathcal{V}_+(I) = Y \subseteq \mathbb{P}^{2n+1})$

Moreover, cohomological techniques let us conclude that

 $\operatorname{ara}_h(I) = 4$ if n = 2 and $\mathcal{V}_+(f) = X$ is smooth

OK. But when is f of that form (up to change of coordinates?) Notice that this is the case \Leftrightarrow there is a line meeting $\mathcal{Z}(f)$ at only one point.

So every elliptic curve is of this kind (and we recover Singh-Walther's result)

A result of Casnti-Del Centina implies that the codimension of these curves in the Hilbert scheme of plane curves of fixed degree $d \ge 3$ is d - 3.

 $\operatorname{ara}_h(I) \leq 2n \quad (\mathcal{V}_+(I) = Y \subseteq \mathbb{P}^{2n+1})$

Moreover, cohomological techniques let us conclude that

 $\operatorname{ara}_h(I) = 4$ if n = 2 and $\mathcal{V}_+(f) = X$ is smooth

OK. But when is f of that form (up to change of coordinates?) Notice that this is the case \Leftrightarrow there is a line meeting $\mathcal{Z}(f)$ at only one point.

So every elliptic curve is of this kind (and we recover Singh-Walther's result)

A result of Casnti-Del Centina implies that the codimension of these curves in the Hilbert scheme of plane curves of fixed degree $d \ge 3$ is d - 3.

If $n \ge 2$ is arbitrary, using very classical arguments of algebraic geometry one can show:

 $\operatorname{ara}_h(I) \leq 2n \quad (\mathcal{V}_+(I) = Y \subseteq \mathbb{P}^{2n+1})$

Moreover, cohomological techniques let us conclude that

 $\operatorname{ara}_h(I) = 4$ if n = 2 and $\mathcal{V}_+(f) = X$ is smooth

OK. But when is f of that form (up to change of coordinates?) Notice that this is the case \Leftrightarrow there is a line meeting $\mathcal{Z}(f)$ at only one point.

So every elliptic curve is of this kind (and we recover Singh-Walther's result)

A result of Casnti-Del Centina implies that the codimension of these curves in the Hilbert scheme of plane curves of fixed degree $d \ge 3$ is d - 3.

If $n \ge 2$ is arbitrary, using very classical arguments of algebraic geometry one can show: if $d \le 2n - 3$ then every smooth hypersurface of degree d is of that kind.

 $\operatorname{ara}_h(I) \leq 2n \quad (\mathcal{V}_+(I) = Y \subseteq \mathbb{P}^{2n+1})$

Moreover, cohomological techniques let us conclude that

 $\operatorname{ara}_h(I) = 4$ if n = 2 and $\mathcal{V}_+(f) = X$ is smooth

OK. But when is f of that form (up to change of coordinates?) Notice that this is the case \Leftrightarrow there is a line meeting $\mathcal{Z}(f)$ at only one point.

So every elliptic curve is of this kind (and we recover Singh-Walther's result)

A result of Casnti-Del Centina implies that the codimension of these curves in the Hilbert scheme of plane curves of fixed degree $d \ge 3$ is d - 3.

If $n \ge 2$ is arbitrary, using very classical arguments of algebraic geometry one can show: if $d \le 2n - 3$ then every smooth hypersurface of degree d is of that kind. If $d \le 2n - 1$ then every general smooth hypersurface of degree d is so.

LOWER BOUNDS

By Krull's principal ideal theorem it follows that

 $\operatorname{ara}_h(I) \ge \operatorname{ara}(I) \ge \operatorname{ht}(I),$

By Krull's principal ideal theorem it follows that

 $\operatorname{ara}_h(I) \ge \operatorname{ara}(I) \ge \operatorname{ht}(I),$

but may be equality does not hold,

By Krull's principal ideal theorem it follows that

 $\operatorname{ara}_h(I) \ge \operatorname{ara}(I) \ge \operatorname{ht}(I),$

but may be equality does not hold,

and we have to use cohomology to provide a better lower bound.

By Krull's principal ideal theorem it follows that

 $\operatorname{ara}_h(I) \ge \operatorname{ara}(I) \ge \operatorname{ht}(I),$

but may be equality does not hold,

and we have to use cohomology to provide a better lower bound.

In this talk we will use local cohomology.

The cohomological dimension cd(R, I) of an ideal $I \subseteq R$

The cohomological dimension cd(R, I) of an ideal $I \subseteq R$ is the smallest $d \in \mathbb{N}$ s.t. $H_I^i(M) = 0$ for every *R*-module *M* and i > d.

The cohomological dimension cd(R, I) of an ideal $I \subseteq R$ is the smallest $d \in \mathbb{N}$ s.t. $H_I^i(M) = 0$ for every *R*-module *M* and i > d.

We have $ht(I) \leq cd(R, I) \leq ara(I)$

The cohomological dimension cd(R, I) of an ideal $I \subseteq R$ is the smallest $d \in \mathbb{N}$ s.t. $H_I^i(M) = 0$ for every *R*-module *M* and i > d.

We have $ht(I) \leq cd(R, I) \leq ara(I)$ and $cd(R, I) \leq dim R$.

The cohomological dimension cd(R, I) of an ideal $I \subseteq R$ is the smallest $d \in \mathbb{N}$ s.t. $H_I^i(M) = 0$ for every *R*-module *M* and i > d.

We have $ht(I) \leq cd(R, I) \leq ara(I)$ and $cd(R, I) \leq dim R$.

If X is a Noetherian scheme we can define as well its cohomological dimension cd(X)

The cohomological dimension cd(R, I) of an ideal $I \subseteq R$ is the smallest $d \in \mathbb{N}$ s.t. $H_I^i(M) = 0$ for every *R*-module *M* and i > d.

We have $ht(I) \leq cd(R, I) \leq ara(I)$ and $cd(R, I) \leq dim R$.

If X is a Noetherian scheme we can define as well its cohomological dimension cd(X) as the smallest $d \in \mathbb{N}$ s.t. $H^i(X, \mathcal{F}) = 0$ for any quasi-coherent sheaf \mathcal{F} and i > d.

The cohomological dimension cd(R, I) of an ideal $I \subseteq R$ is the smallest $d \in \mathbb{N}$ s.t. $H_I^i(M) = 0$ for every *R*-module *M* and i > d.

We have $ht(I) \leq cd(R, I) \leq ara(I)$ and $cd(R, I) \leq dim R$.

If X is a Noetherian scheme we can define as well its cohomological dimension cd(X) as the smallest $d \in \mathbb{N}$ s.t. $H^i(X, \mathcal{F}) = 0$ for any quasi-coherent sheaf \mathcal{F} and i > d.

If I is a non-nilpotent homogeneous ideal of a \mathbb{Z} -graded ring R, then

The cohomological dimension cd(R, I) of an ideal $I \subseteq R$ is the smallest $d \in \mathbb{N}$ s.t. $H_I^i(M) = 0$ for every *R*-module *M* and i > d.

We have $ht(I) \leq cd(R, I) \leq ara(I)$ and $cd(R, I) \leq dim R$.

If X is a Noetherian scheme we can define as well its cohomological dimension cd(X) as the smallest $d \in \mathbb{N}$ s.t. $H^i(X, \mathcal{F}) = 0$ for any quasi-coherent sheaf \mathcal{F} and i > d.

If *I* is a non-nilpotent homogeneous ideal of a \mathbb{Z} -graded ring *R*, then $\operatorname{cd}(R, I) = \operatorname{cd}(\operatorname{Spec}(R) \setminus \mathcal{V}(I)) + 1 = \operatorname{cd}(\operatorname{Proj}(R) \setminus \mathcal{V}_{+}(I)) + 1$

The cohomological dimension cd(R, I) of an ideal $I \subseteq R$ is the smallest $d \in \mathbb{N}$ s.t. $H_I^i(M) = 0$ for every *R*-module *M* and i > d.

We have $ht(I) \leq cd(R, I) \leq ara(I)$ and $cd(R, I) \leq dim R$.

If X is a Noetherian scheme we can define as well its cohomological dimension cd(X) as the smallest $d \in \mathbb{N}$ s.t. $H^i(X, \mathcal{F}) = 0$ for any quasi-coherent sheaf \mathcal{F} and i > d.

If *I* is a non-nilpotent homogeneous ideal of a \mathbb{Z} -graded ring *R*, then $\operatorname{cd}(R, I) = \operatorname{cd}(\operatorname{Spec}(R) \setminus \mathcal{V}(I)) + 1 = \operatorname{cd}(\operatorname{Proj}(R) \setminus \mathcal{V}_+(I)) + 1$

We are interested in the case in which R is a polynomial ring.

A work of Ogus + a comparison theorem of Grothendieck + Hodge theory

A work of Ogus + a comparison theorem of Grothendieck + Hodge theory imply the following, that we will call the cohomological criterion (CDC)

A work of Ogus + a comparison theorem of Grothendieck + Hodge theory imply the following, that we will call the cohomological criterion (CDC)

K field of characteristic 0,

A work of Ogus + a comparison theorem of Grothendieck + Hodge theory imply the following, that we will call the cohomological criterion (CDC)

K field of characteristic 0, $S = K[x_1, ..., x_n]$ a polynomial ring,

A work of Ogus + a comparison theorem of Grothendieck + Hodge theory imply the following, that we will call the cohomological criterion (CDC)

K field of characteristic 0, $S = K[x_1, ..., x_n]$ a polynomial ring, $I \subseteq S$ graded prime ideal s.t. $\mathcal{V}_+(I)$ is smooth.

A work of Ogus + a comparison theorem of Grothendieck + Hodge theory imply the following, that we will call the cohomological criterion (CDC)

K field of characteristic 0, $S = K[x_1, ..., x_n]$ a polynomial ring, $I \subseteq S$ graded prime ideal s.t. $\mathcal{V}_+(I)$ is smooth. T. F. A. E.

- A work of Ogus + a comparison theorem of Grothendieck + Hodge theory imply the following, that we will call the cohomological criterion (CDC)
- K field of characteristic 0, $S = K[x_1, ..., x_n]$ a polynomial ring, $I \subseteq S$ graded prime ideal s.t. $\mathcal{V}_+(I)$ is smooth. T. F. A. E. (1) $\operatorname{cd}(S, I) < r$

A work of Ogus + a comparison theorem of Grothendieck + Hodge theory imply the following, that we will call the cohomological criterion (CDC)

K field of characteristic 0, $S = K[x_1, ..., x_n]$ a polynomial ring, $I \subseteq S$ graded prime ideal s.t. $\mathcal{V}_+(I)$ is smooth. T. F. A. E. (1) $\operatorname{cd}(S, I) < r$

(2) $\dim_{\mathcal{K}} [H_{\mathfrak{m}}^{i+1}(\bigwedge^{j} \Omega)]_{0} = \begin{cases} 0 & \text{if } 0 \leq j < i, \quad i+j < n-r \\ 1 & \text{if } 1 \leq i=j, \quad i+j < n-r \end{cases}$ where $\Omega = \Omega_{(S/I)/\mathcal{K}}$ is the module of Kähler differentials

A work of Ogus + a comparison theorem of Grothendieck + Hodge theory imply the following, that we will call the cohomological criterion (CDC)

K field of characteristic 0, $S = K[x_1, ..., x_n]$ a polynomial ring, $I \subseteq S$ graded prime ideal s.t. $\mathcal{V}_+(I)$ is smooth. T. F. A. E. (1) cd(S, I) < r

(2) $\dim_{\mathcal{K}} [H_{\mathfrak{m}}^{j+1}(\bigwedge^{j} \Omega)]_{0} = \begin{cases} 0 & \text{if } 0 \leq j < i, \quad i+j < n-r \\ 1 & \text{if } 1 \leq i=j, \quad i+j < n-r \end{cases}$ where $\Omega = \Omega_{(S/I)/K}$ is the module of Kähler differentials

(3) $\dim_{\mathcal{K}} H^{i}(\bigwedge^{j} \tilde{\Omega}) = \begin{cases} 0 & \text{if } 0 \leq i+j < n-r \\ 1 & \text{if } i+j < n-r \end{cases}$
A criterion for the cohomological dimension

A work of Ogus + a comparison theorem of Grothendieck + Hodge theory imply the following, that we will call the cohomological criterion (CDC)

- K field of characteristic 0, $S = K[x_1, ..., x_n]$ a polynomial ring, $I \subseteq S$ graded prime ideal s.t. $\mathcal{V}_+(I)$ is smooth. T. F. A. E. (1) cd(S, I) < r
- (2) $\dim_{\mathcal{K}} [H_{\mathfrak{m}}^{i+1}(\bigwedge^{j} \Omega)]_{0} = \begin{cases} 0 & \text{if } 0 \leq j < i, \quad i+j < n-r \\ 1 & \text{if } 1 \leq i = j, \quad i+j < n-r \end{cases}$ where $\Omega = \Omega_{(S/I)/K}$ is the module of Kähler differentials

(3) $\dim_{\mathcal{K}} H^{i}(\bigwedge^{j} \tilde{\Omega}) = \begin{cases} 0 & \text{if } 0 \leq i+j < n-r \\ 1 & \text{if } i+j < n-r \end{cases}$

(4) If $K = \mathbb{C}$, $\beta_k(\mathcal{V}_+(I)_{an}) = \begin{cases} 0 & \text{if } k < n-r \\ 1 & \text{if } k < n-r \end{cases}$

We recall that in characteristic p a result of Peskine and Szpiro implies that $\operatorname{depth}(S/I) \ge d \Rightarrow \operatorname{cd}(S, I) \le n - d$.

We recall that in characteristic p a result of Peskine and Szpiro implies that $\operatorname{depth}(S/I) \ge d \Rightarrow \operatorname{cd}(S, I) \le n - d$.

This result is far to be true in characteristic 0.

We recall that in characteristic p a result of Peskine and Szpiro implies that $\operatorname{depth}(S/I) \ge d \Rightarrow \operatorname{cd}(S, I) \le n - d$.

This result is far to be true in characteristic 0.

However a result of Hartshorne and Speiser implies that, also in characteristic 0, $\operatorname{depth}(S/I) \ge 2 \Rightarrow \operatorname{cd}(S, I) \le n - 2$.

We recall that in characteristic p a result of Peskine and Szpiro implies that $\operatorname{depth}(S/I) \ge d \Rightarrow \operatorname{cd}(S, I) \le n - d$.

This result is far to be true in characteristic 0.

However a result of Hartshorne and Speiser implies that, also in characteristic 0, $\operatorname{depth}(S/I) \ge 2 \Rightarrow \operatorname{cd}(S, I) \le n - 2$.

The CDC implies the following:

We recall that in characteristic p a result of Peskine and Szpiro implies that $\operatorname{depth}(S/I) \ge d \Rightarrow \operatorname{cd}(S, I) \le n - d$.

This result is far to be true in characteristic 0.

However a result of Hartshorne and Speiser implies that, also in characteristic 0, $\operatorname{depth}(S/I) \ge 2 \Rightarrow \operatorname{cd}(S, I) \le n - 2$.

The CDC implies the following:

K field (of characteristic 0),

We recall that in characteristic p a result of Peskine and Szpiro implies that $\operatorname{depth}(S/I) \ge d \Rightarrow \operatorname{cd}(S, I) \le n - d$.

This result is far to be true in characteristic 0.

However a result of Hartshorne and Speiser implies that, also in characteristic 0, $\operatorname{depth}(S/I) \ge 2 \Rightarrow \operatorname{cd}(S, I) \le n - 2$.

The CDC implies the following:

K field (of characteristic 0), $S = K[x_1, ..., x_n]$ a polynomial ring,

We recall that in characteristic p a result of Peskine and Szpiro implies that $\operatorname{depth}(S/I) \ge d \Rightarrow \operatorname{cd}(S, I) \le n - d$.

This result is far to be true in characteristic 0.

However a result of Hartshorne and Speiser implies that, also in characteristic 0, $\operatorname{depth}(S/I) \ge 2 \Rightarrow \operatorname{cd}(S, I) \le n - 2$.

The CDC implies the following:

K field (of characteristic 0), $S = K[x_1, ..., x_n]$ a polynomial ring, $I \subseteq S$ graded prime ideal s.t. $\mathcal{V}_+(I)$ is smooth.

We recall that in characteristic p a result of Peskine and Szpiro implies that $\operatorname{depth}(S/I) \ge d \Rightarrow \operatorname{cd}(S, I) \le n - d$.

This result is far to be true in characteristic 0.

However a result of Hartshorne and Speiser implies that, also in characteristic 0, $\operatorname{depth}(S/I) \ge 2 \Rightarrow \operatorname{cd}(S, I) \le n - 2$.

The CDC implies the following:

K field (of characteristic 0), $S = K[x_1, ..., x_n]$ a polynomial ring, $I \subseteq S$ graded prime ideal s.t. $\mathcal{V}_+(I)$ is smooth. Then $\operatorname{depth}(S/I) \ge 3 \Rightarrow \operatorname{cd}(S, I) \le n - 3$

We recall that in characteristic p a result of Peskine and Szpiro implies that $\operatorname{depth}(S/I) \ge d \Rightarrow \operatorname{cd}(S, I) \le n - d$.

This result is far to be true in characteristic 0.

However a result of Hartshorne and Speiser implies that, also in characteristic 0, $\operatorname{depth}(S/I) \ge 2 \Rightarrow \operatorname{cd}(S, I) \le n - 2$.

The CDC implies the following:

K field (of characteristic 0), $S = K[x_1, ..., x_n]$ a polynomial ring, $I \subseteq S$ graded prime ideal s.t. $\mathcal{V}_+(I)$ is smooth. Then $\operatorname{depth}(S/I) \ge 3 \Rightarrow \operatorname{cd}(S, I) \le n - 3$

Question:

We recall that in characteristic p a result of Peskine and Szpiro implies that $\operatorname{depth}(S/I) \ge d \Rightarrow \operatorname{cd}(S, I) \le n - d$.

This result is far to be true in characteristic 0.

However a result of Hartshorne and Speiser implies that, also in characteristic 0, $\operatorname{depth}(S/I) \ge 2 \Rightarrow \operatorname{cd}(S, I) \le n - 2$.

The CDC implies the following:

K field (of characteristic 0), $S = K[x_1, ..., x_n]$ a polynomial ring, $I \subseteq S$ graded prime ideal s.t. $\mathcal{V}_+(I)$ is smooth. Then $\operatorname{depth}(S/I) \ge 3 \Rightarrow \operatorname{cd}(S, I) \le n - 3$

Question: (R, \mathfrak{m}) regular local ring, $I \subseteq R$.

We recall that in characteristic p a result of Peskine and Szpiro implies that $\operatorname{depth}(S/I) \ge d \Rightarrow \operatorname{cd}(S, I) \le n - d$.

This result is far to be true in characteristic 0.

However a result of Hartshorne and Speiser implies that, also in characteristic 0, $\operatorname{depth}(S/I) \ge 2 \Rightarrow \operatorname{cd}(S, I) \le n - 2$.

The CDC implies the following:

K field (of characteristic 0), $S = K[x_1, ..., x_n]$ a polynomial ring, $I \subseteq S$ graded prime ideal s.t. $\mathcal{V}_+(I)$ is smooth. Then $\operatorname{depth}(S/I) \ge 3 \Rightarrow \operatorname{cd}(S, I) \le n - 3$

Question: (R, \mathfrak{m}) regular local ring, $I \subseteq R$. Is it true that $\operatorname{depth}(R/I) \ge 3 \Rightarrow \operatorname{cd}(R, I) \le \dim(R) - 3$?????

Recall that I is the ideal defining $Y = X \times \mathbb{P}^m \subseteq \mathbb{P}^N$ (N = nm + n + m)

Recall that *I* is the ideal defining $Y = X \times \mathbb{P}^m \subseteq \mathbb{P}^N$ (N = nm + n + m) where $X \subseteq \mathbb{P}^n$ a smooth hypersurface of degree *d*.

Recall that *I* is the ideal defining $Y = X \times \mathbb{P}^m \subseteq \mathbb{P}^N$ (N = nm + n + m) where $X \subseteq \mathbb{P}^n$ a smooth hypersurface of degree *d*. Then

$$cd(S, I) = \begin{cases} N-1 & \text{if } n=2 \text{ and } d \ge 3\\ N-2 & \text{otherwise} \end{cases}$$

Recall that *I* is the ideal defining $Y = X \times \mathbb{P}^m \subseteq \mathbb{P}^N$ (N = nm + n + m)where $X \subseteq \mathbb{P}^n$ a smooth hypersurface of degree *d*. Then

$$cd(S, I) = \begin{cases} N-1 & \text{if } n=2 \text{ and } d \ge 3\\ N-2 & \text{otherwise} \end{cases}$$

Q: Does the arithmetical rank depend only on n, m, d as well?