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What is the arithmetical rank?

Let R be a Noetherian commutative ring with 1, and I ⊆ R an ideal.

The arirthmetical rank of I is

ara(I ) = min{r : ∃ a1, . . . , ar ∈ R for which
√

a1, . . . , ar =
√

I}

If R = K [x1, . . . , xn] then ara(I ) denotes the least number of

hypersurfaces of An which define set-theoretically V(I ) ⊆ An.

If R and I are graded the homogeneous arithmetical rank of I is

arah(I ) = min{r : ∃ a1, . . . , ar ∈ R homogeneous s.t.
√

a1, . . . , ar =
√

I}

When R = K [x0, . . . , xN ], then arah(I ) is the least number

of hypersurfaces of PN which define set-theoretically V+(I ) ⊆ PN .

Clearly ara(I ) ≤ arah(I ).
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An example

I = (x0x2, x0x3, x1x2, x1x3) = (x0, x1) ∩ (x2, x3) ⊆ K [x0, x1, x2, x3]

√
I = I =

√
J where J = (x0x2, x1x3, x0x3 + x1x2),

in fact (x0x3)2 = x0x3 · (x0x3 + x1x2)− x0x2· x1x3 ∈ J

Therefore ara(I ) ≤ arah(I ) ≤ 3. On the other side

Krull’s principal ideal theorem implies ara(I ) ≥ ht(I ) = 2.

But V+(I ) ⊆ P3 is a disconnected projective scheme of dimension 1.

This implies, in various ways, that ara(I ) > ht(I ). So

ara(I ) = arah(I ) = 3
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Known and unknown things about the arithmetical rank

- S = K [x0, . . . , xN ], I ⊆ S homogeneous ideal

arah(I ) ≤ N + 1 (Fairly easy to show)

(Eisenbud-Evans) If ht(I ) ≤ N, then arah(I ) ≤ N

Conjecture: V+(I ) connected of dimension at least 1. Then

arah(I ) ≤ N − 1

This conjecture is completely open, also in the case in which I

is the ideal of K [x0, x1, x2, x3] given by the kernel of:

x0 7→ u4, x1 7→ u3t, x2 7→ ut3, x3 7→ t4
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Goal of the talk

- f ⊆ R = K [Pn] = K [x0, . . . , xn] graded polynomial of degree d

- X = V+(f ) ⊆ Pn (smooth) hypersurface

- Y = X × Pm ⊆ PN Segre embedding (so that N = nm + n + m)

- I ⊆ S = K [PN ] = K [zij :i = 0, . . . , n; j = 0, . . . , m] the ideal defining Y

WHAT CAN WE SAY ABOUT arah(I )?

The case X = Pn has been already settled by Bruns and Schwänzl.
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Motivations

In 2005, on Contemporary Mathematics, Singh and Walther

computed the arithmetical rank of certain Segre products. Precisely,

they settled the problem described above when

n = 2, d = 3, m = 1.

They showed that (in characteristic different from 3)

arah(I ) = 4

After them Song, student of Singh, proved the same statement

when f = xd
0 + xd

1 + xd
2 , n = 2, m = 1 ((char(K ), d) = 1).
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What we can prove

(1) arah(I ) ≥ N − 2 for any n, m, f (V+(f ) = X smooth)

(2) arah(I ) ≥ N − 1 if n = 2, d(= deg(f )) ≥ 3 (X smooth)

We define two sets of polynomials of R of degree d , Pn
d and Ln

d :

f ∈ Pn
d ⇔ f = xd

n + g with g ∈ (x0, . . . , xn−2) (up to change of coordinates)

f ∈ Ln
d ⇔ f = xd

n + g with g ∈ (x0, . . . , xn−3) (up to change of coordinates)

(3) arah(I ) ≤ N − 1 for any n, m = 1, f ∈ Pn
d

Pn
d contains the general polynomial f of degree d ≤ 2n − 1.

Pn
d contains any polynomial f = xd

0 + . . .+ xd
n

P2
d has codimension d − 3 in the Hilbert scheme of curves of degree d .

(4) arah(I ) ≤ N − 2 for any n, m = 1, f ∈ Ln
d

(5) arah(I ) = N − 2 for n = 2 and X smooth conic (any m, char(K ) 6= 2)
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Let us touch the problem

Let us look at I :

consider P = K [Pm] = K [y0, . . . , ym], and set

A = R/(f )#P =
⊕

i≥0[R/(f )]i ⊗K Pi ⊆ R/(f )⊗K P

We have that A ∼= S/I (so that, in particular, Proj(A) ∼= Y )

So I is the kernel of the onto π : S −→ A.

It turns out that A ∼= K [xiyj : i = 0, . . . , n; j = 0, . . . , m]/Ĩ ,

where Ĩ = (f ·m : m ∈ P is a monomial of degree d).
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Let us touch the problem

π : S → A is just p ◦ q, where

p : K [xiyj ]→ K [xiyj ]/Ĩ ∼= A

q : S → K [xiyj ], zij 7→ xiyj

So I = Ker(π) is I = I2(Z ) + If , where

I2(Z ) = Ker(q) is generated by the 2-minors of the matrix Z = (zij)

If = (fm : m ∈ P is a monomial of degree d), where fm ∈ S is s.t. q(fm) = f ·m

So the polynomials generating I are
(n+1

2

)
·
(m+1

2

)
+
(m+d

d
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UPPER BOUNDS



An example to see the approach of Singh and Walther

Look at the case when Y = X × P1 ⊆ P5 where X = V+(f ) is a smooth

conic of P2 (so f is a polynomial of degree 2 in R = K [x0, x1, x2])

Let us assume that K is an algebraically closed field s.t. char(K ) 6= 2.

Consider the following 3 polynomials of S = K [z00, z10, z20, z01, z11, z21]:

F0 = f (z00, z10, z20)

F1 = f (z01, z11, z21)

F01 =
∑2

k=0

∂f

∂xk
(z00, z10, z20) · zk1

Set J = (F0,F1,F01)

We claim that
√

J =
√

I .
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If Y = X × Pm⊆ P3m+2 where X = V+(f ) is a smooth conic of P2,

arguments of this kind let us prove that arah(I ) = 3m (if char(K ) 6= 2).

Two more difficulties arise:

(1) If m ≥ 3, then the analogous equations “Fij” are too much;

(2) If m ≥ 2, then the codimension of Y in P3m+2(Y ) is

2m + 1 < 3m, so it does not give the right lower bound.

Issue (1) can be solved by a sort of stratification of the Fij ’s,

considering the polynomials Gk =
∑

1≤i<j≤m
i+j=k

Fij , k = 1, . . . , 2m − 1

To solve issue (2) are necessary cohomological arguments: local

cohomology in characteristic 0 and étale cohomology in positive



If Y = X × Pm⊆ P3m+2 where X = V+(f ) is a smooth conic of P2,

arguments of this kind let us prove that arah(I ) = 3m (if char(K ) 6= 2).

Two more difficulties arise:

(1) If m ≥ 3, then the analogous equations “Fij” are too much;

(2) If m ≥ 2, then the codimension of Y in P3m+2(Y ) is

2m + 1 < 3m, so it does not give the right lower bound.

Issue (1) can be solved by a sort of stratification of the Fij ’s,

considering the polynomials Gk =
∑

1≤i<j≤m
i+j=k

Fij , k = 1, . . . , 2m − 1

To solve issue (2) are necessary cohomological arguments: local

cohomology in characteristic 0 and étale cohomology in positive



If Y = X × Pm⊆ P3m+2 where X = V+(f ) is a smooth conic of P2,

arguments of this kind let us prove that arah(I ) = 3m (if char(K ) 6= 2).

Two more difficulties arise:

(1) If m ≥ 3, then the analogous equations “Fij” are too much;

(2) If m ≥ 2, then the codimension of Y in P3m+2(Y ) is

2m + 1 < 3m, so it does not give the right lower bound.

Issue (1) can be solved by a sort of stratification of the Fij ’s,

considering the polynomials Gk =
∑

1≤i<j≤m
i+j=k

Fij , k = 1, . . . , 2m − 1

To solve issue (2) are necessary cohomological arguments: local

cohomology in characteristic 0 and étale cohomology in positive



If Y = X × Pm⊆ P3m+2 where X = V+(f ) is a smooth conic of P2,

arguments of this kind let us prove that arah(I ) = 3m (if char(K ) 6= 2).

Two more difficulties arise:

(1) If m ≥ 3, then the analogous equations “Fij” are too much;

(2) If m ≥ 2, then the codimension of Y in P3m+2(Y ) is

2m + 1 < 3m, so it does not give the right lower bound.

Issue (1) can be solved by a sort of stratification of the Fij ’s,

considering the polynomials Gk =
∑

1≤i<j≤m
i+j=k

Fij , k = 1, . . . , 2m − 1

To solve issue (2) are necessary cohomological arguments: local

cohomology in characteristic 0 and étale cohomology in positive



If Y = X × Pm⊆ P3m+2 where X = V+(f ) is a smooth conic of P2,

arguments of this kind let us prove that arah(I ) = 3m (if char(K ) 6= 2).

Two more difficulties arise:

(1) If m ≥ 3, then the analogous equations “Fij” are too much;

(2) If m ≥ 2, then the codimension of Y in P3m+2(Y ) is

2m + 1 < 3m,

so it does not give the right lower bound.

Issue (1) can be solved by a sort of stratification of the Fij ’s,

considering the polynomials Gk =
∑

1≤i<j≤m
i+j=k

Fij , k = 1, . . . , 2m − 1

To solve issue (2) are necessary cohomological arguments: local

cohomology in characteristic 0 and étale cohomology in positive



If Y = X × Pm⊆ P3m+2 where X = V+(f ) is a smooth conic of P2,

arguments of this kind let us prove that arah(I ) = 3m (if char(K ) 6= 2).

Two more difficulties arise:

(1) If m ≥ 3, then the analogous equations “Fij” are too much;

(2) If m ≥ 2, then the codimension of Y in P3m+2(Y ) is

2m + 1 < 3m, so it does not give the right lower bound.

Issue (1) can be solved by a sort of stratification of the Fij ’s,

considering the polynomials Gk =
∑

1≤i<j≤m
i+j=k

Fij , k = 1, . . . , 2m − 1

To solve issue (2) are necessary cohomological arguments: local

cohomology in characteristic 0 and étale cohomology in positive



If Y = X × Pm⊆ P3m+2 where X = V+(f ) is a smooth conic of P2,

arguments of this kind let us prove that arah(I ) = 3m (if char(K ) 6= 2).

Two more difficulties arise:

(1) If m ≥ 3, then the analogous equations “Fij” are too much;

(2) If m ≥ 2, then the codimension of Y in P3m+2(Y ) is

2m + 1 < 3m, so it does not give the right lower bound.

Issue (1) can be solved by a sort of stratification of the Fij ’s,

considering the polynomials Gk =
∑

1≤i<j≤m
i+j=k

Fij , k = 1, . . . , 2m − 1

To solve issue (2) are necessary cohomological arguments: local

cohomology in characteristic 0 and étale cohomology in positive



If Y = X × Pm⊆ P3m+2 where X = V+(f ) is a smooth conic of P2,

arguments of this kind let us prove that arah(I ) = 3m (if char(K ) 6= 2).

Two more difficulties arise:

(1) If m ≥ 3, then the analogous equations “Fij” are too much;

(2) If m ≥ 2, then the codimension of Y in P3m+2(Y ) is

2m + 1 < 3m, so it does not give the right lower bound.

Issue (1) can be solved by a sort of stratification of the Fij ’s,

considering the polynomials Gk =
∑

1≤i<j≤m
i+j=k

Fij , k = 1, . . . , 2m − 1

To solve issue (2) are necessary cohomological arguments: local

cohomology in characteristic 0 and étale cohomology in positive



If Y = X × Pm⊆ P3m+2 where X = V+(f ) is a smooth conic of P2,

arguments of this kind let us prove that arah(I ) = 3m (if char(K ) 6= 2).

Two more difficulties arise:

(1) If m ≥ 3, then the analogous equations “Fij” are too much;

(2) If m ≥ 2, then the codimension of Y in P3m+2(Y ) is

2m + 1 < 3m, so it does not give the right lower bound.

Issue (1) can be solved by a sort of stratification of the Fij ’s,

considering the polynomials Gk =
∑

1≤i<j≤m
i+j=k

Fij , k = 1, . . . , 2m − 1

To solve issue (2) are necessary cohomological arguments:

local

cohomology in characteristic 0 and étale cohomology in positive



If Y = X × Pm⊆ P3m+2 where X = V+(f ) is a smooth conic of P2,

arguments of this kind let us prove that arah(I ) = 3m (if char(K ) 6= 2).

Two more difficulties arise:

(1) If m ≥ 3, then the analogous equations “Fij” are too much;

(2) If m ≥ 2, then the codimension of Y in P3m+2(Y ) is

2m + 1 < 3m, so it does not give the right lower bound.

Issue (1) can be solved by a sort of stratification of the Fij ’s,

considering the polynomials Gk =
∑

1≤i<j≤m
i+j=k

Fij , k = 1, . . . , 2m − 1

To solve issue (2) are necessary cohomological arguments: local

cohomology in characteristic 0 and étale cohomology in positive



Another approach

In higher degree the above techniques don’t work, so we need to try another way:

Let Y = X × P1 ⊆ P2n+1 (X = V+(f ) ⊆ Pn)

By Eisenbud-Evans we have arah(I ) ≤ 2n + 1.

But there is another way to prove this:

set F0 = f (z00, . . . , zn0) and F1 = f (z01, . . . , zn1) in K [zij ].

If P = [P0,P1] ∈ Z(I2(Z ) + (F0,F1)), then

P0 = P1 ∈ Z(f ) (if they are non-zero), so that P ∈ Z(I ).

We can assume K = K̄ , so Nullstellensatz yields
√

I =
√

I2(Z ) + (F0,F1).

Hence we get arah(I ) ≤ 2 + arah(I2(Z )).

But Bruns and Schwänzl showed that arah(I2(Z )) = 2n − 1,

so we got once again the Eisenbud-Evans inequality.
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The case in which f = xd
n + g where g ∈ (x0, . . . , xn−3)

Up to now there is nothing new:

but try to consider the case in which f is as in the title.

For 0 ≤ i < j ≤ n denote by [i , j ] the 2-minor z0iz1j − z0jz1i ,

and set Ω = {2-minors} \ {[n − 2, n], [n − 1, n]}.

With the notation of above, using the form of f one can show that

Z(I ) = Z((Ω) + (F0,F1))

So we have that
√

I =
√

(Ω) + (F1,F2), and then

arah(I ) ≤ arah((Ω)) + 2

ASL theory helps us to compute arah((Ω))
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As we will see, cohomological techniques let us conclude that

if X is smooth, then arah(I ) = 2n − 1 in this case.

It turns out that, if n ≥ 4, the general X defined by a such f is smooth!



The case in which f = xd
n + g where g ∈ (x0, . . . , xn−2)

Similar arguments as above let us conclude that in this case

arah(I ) ≤ 2n (V+(I ) = Y ⊆ P2n+1)

Moreover, cohomological techniques let us conclude that

arah(I ) = 4 if n = 2 and V+(f ) = X is smooth

OK. But when is f of that form (up to change of coordinates?)

Notice that this is the case ⇔ there is a line meeting Z(f ) at only one

point.

So every elliptic curve is of this kind (and we recover Singh-Walther’s result)

A result of Casnti-Del Centina implies that the codimension of these curves in

the Hilbert scheme of plane curves of fixed degree d ≥ 3 is d − 3.

If n ≥ 2 is arbitrary, using very classical arguments of algebraic geometry one can show:

if d ≤ 2n− 3 then every smooth hypersurface of degree d is of that kind.

If d ≤ 2n − 1 then every general smooth hypersurface of degree d is so.
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By Krull’s principal ideal theorem it follows that

arah(I ) ≥ ara(I ) ≥ ht(I ),

but may be equality does not hold,

and we have to use cohomology to provide a better lower bound.

In this talk we will use local cohomology.
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Cohomological dimension

The cohomological dimension cd(R, I ) of an ideal I ⊆ R

is the smallest d ∈ N s.t. H i
I (M) = 0 for every R-module M and i > d .

We have ht(I ) ≤ cd(R, I ) ≤ ara(I ) and cd(R, I ) ≤ dim R.

If X is a Noetherian scheme we can define as well

its cohomological dimension cd(X ) as the smallest d ∈ N s.t.

H i (X ,F) = 0 for any quasi-coherent sheaf F and i > d .

If I is a non-nilpotent homogeneous ideal of a Z-graded ring R, then

cd(R, I ) = cd(Spec(R) \ V(I )) + 1 = cd(Proj(R) \ V+(I )) + 1

We are interested in the case in which R is a polynomial ring.
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imply the following, that we will call the cohomological criterion (CDC)

K field of characteristic 0, S = K [x1, . . . , xn] a polynomial ring,

I ⊆ S graded prime ideal s.t. V+(I ) is smooth. T. F. A. E.

(1) cd(S , I ) < r

(2) dimK [H i+1
m (

∧j Ω)]0 =

{
0 if 0 ≤ j < i , i + j < n − r
1 if 1 ≤ i = j , i + j < n − r

where Ω = Ω(S/I )/K is the module of Kähler differentials
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An immediate application of the CDC

We recall that in characteristic p a result of Peskine and Szpiro
implies that depth(S/I ) ≥ d ⇒ cd(S , I ) ≤ n − d .

This result is far to be true in characteristic 0.

However a result of Hartshorne and Speiser implies that, also in
characteristic 0, depth(S/I ) ≥ 2⇒ cd(S , I ) ≤ n − 2.

The CDC implies the following:

K field (of characteristic 0), S = K [x1, . . . , xn] a polynomial ring,

I ⊆ S graded prime ideal s.t. V+(I ) is smooth. Then

depth(S/I ) ≥ 3⇒ cd(S , I ) ≤ n − 3

Question: (R,m) regular local ring, I ⊆ R. Is it true that

depth(R/I ) ≥ 3⇒ cd(R, I ) ≤ dim(R)− 3 ?????
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