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Notation

K is a field;

R is a Noetherian positively graded K -algebra, i. e.
R =

⊕+∞
i=0 Ri with R0 = K ;

m =
⊕+∞

i=1 Ri is the maximal homogeneous ideal of R.

In the above setting, the minimal primes of R are homogeneous,
and so contained in m.

Definition

If Min(R) = {p1, . . . , ps}, the nerve N (R) of R (also known as
Lyubeznik complex of R) is the following simplicial complex:

The vertex set of N (R) is {1, . . . , s};
{i1, . . . , ir} is a face of N (R) ⇐⇒ √

pi1 + . . .+ pir ( m.
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The Stanley-Reisner case

Example

Consider the simplicial complex on 5 vertices

∆ = 〈{1, 2}, {1, 3}, {1, 4}, {2, 5}〉

and R = K [∆]. Then R = K [X1,X2,X3,X4]
(X3,X4,X5)∩(X2,X4,X5)∩(X2,X3,X5)∩(X1,X3,X4) :

pa = (x3, x4, x5), pb = (x2, x4, x5), pc = (x2, x3, x5), pd = (x1, x3, x4),
where xi = Xi , are the minimal primes of R.

N (R) is the complex on {a, b, c , d} with facets {a, b, c} and {a, d}.
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The Stanley-Reisner case

In general, given a simplicial complex ∆, the nerve of the ring
K [∆] is the nerve of ∆ with respect to the covering of ∆ given by
its facets, i.e. N (K [∆]) is the simplicial complex whose vertex set
is F(∆), the set of facets of ∆, and such that

A ⊆ F(∆) is a face of N (K [∆]) ⇐⇒
⋂
σ∈A

σ 6= ∅.

So, Borsuk’s nerve lemma implies that

∆ and N (K [∆]) are homotopically equivalent.

In particular, H̃ i (N (K [∆]);K ) = H̃ i (∆;K ) ∀ i ∈ N.
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Classical results

In general (for any Noetherian positively graded K -algebra R):

Proposition (Hartshorne, 1962)

ProjR is connected if and only if N (R) is connected.

Theorem (Hartshorne, 1962)

If depthR ≥ 2, then N (R) is connected.

Theorem (Bertini, ∼1920; Grothendieck, 1968)

If R is a domain of dimension ≥ 3, then N (R/xR) is connected
whenever x ∈ Ri with i > 0.
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Classical results

Since N (R) is connected if and only if H̃0(N (R);K ) = 0, the
results above can be rephrased like follows:

Theorem (Hartshorne, 1962)

If depthR ≥ 2, then H̃0(N (R);K ) = 0.

Theorem (Bertini, ∼1920; Grothendieck, 1968)

If R is a domain of dimension ≥ 3, then H̃0(N (R/xR);K ) = 0
whenever x ∈ Ri with i > 0.
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More recent developements

Theorem (Katzman, Lyubeznik, Zhang, 2015)

If depthR ≥ 3, then H̃0(N (R);K ) = H̃1(N (R);K ) = 0.

Question (Lyubeznik)

If R is a positively graded domain of dimension at least 4, is it true

that H̃1(N (R/xR);K ) = 0 whenever x ∈ Ri with i > 0?

Answer

No.

In this talk I will explain how to construct an example giving a
negative answer; before, however, I want to tell you something
about the inverse problem to the theorems seen so far...
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Inverse problem

Question (Inverse problem)

Fixed d ≥ δ, is there a function attaching a d-dimensional positively

graded K -algebra A∆ to any (δ − 1)-dimensional simplicial complex ∆ in

such a way that properties (i), (ii), (iii), (iv) below are verified?

(i) N (A∆) = ∆;

(ii) if Min(A∆) = {p1, . . . , pn},
∑

i∈σ pi has height dimσ for all
σ ∈ ∆;

(iii) H̃0(∆;K ) = 0 =⇒ depthA∆ ≥ 2;

(iv) H̃0(∆;K ) = H̃1(∆;K ) = 0 =⇒ depthA∆ ≥ 3.

Theorem (Benedetti, Di Marca, , 2017)

Yes. Moreover A∆ can be taken as R/I where ProjR is a rational
variety (in particular R is a domain) and I is a height 1 ideal of R.
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An example

Let d = 3, δ = 2 and ∆ = 〈{1, 2}, {2, 3}, {1, 3}〉 (so that ∆ has
dimension 1 = δ − 1). To produce A∆, consider:

(i) a = (X0,X1,X2) ⊆ S = K [X0,X1,X2,X3] (a is the defining
ideal of the point P = [0, 0, 0, 1] ∈ P3);

(ii) R = K [a3] = K [S3 \ {X 3
3 }] ⊆ S (ProjR = X is the blow up of

P3 along the point P);

(iii) b = (X0X1X3) ⊆ S (b is the defining ideal of the union of
planes H = {X0 = 0} ∪ {X1 = 0} ∪ {X2 = 0} ⊆ P3};

(iv) I = b ∩ R = (X0X1X2, X0X1X2X
3
3 , X0X1X2X

6
3 ) ⊆ R (I is the

defining ideal of the strict transform of H in X );

(v) A∆ = R/I (ProjA∆ is the strict transform of H in X ).
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An example, continuation

So, A∆ is a 3-dimensional positively graded K -algebra having 3
minimal primes p1, p2, p3 such that:

(i) height(p1 + p2) = height(p2 + p3) = height(p1 + p3) = 1;

(ii) height(p1 + p2 + p3) = 3.

In particular H̃1(N (A∆);K ) 6= 0; so, since A∆ = R/I where R is a
4-dimensional domain, if I was principal (even up to radical), this
would provide a negative answer to the question of Lyubeznik.
Unfortunately, this is not the case .....

Theorem

Let R be a domain of dimension at least 4 such that X = ProjR is
a rational variety, and assume that K has characteristic 0. Then,

whenever x ∈ Ri with i > 0, H̃1(N (R/xR);K ) = 0.
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The question of Lyubeznik

Question (Lyubeznik)

If R is a domain of dimension at least 4, is it true that
H̃1(N (R/xR);K ) = 0 whenever x ∈ Ri with i > 0?

In view of the previous slide, in order to answer negatively the
above question one has to seek for different examples. The
following simple observation is crucial:

Lemma

If Lyubeznik’s question had an affirmative answer, then the
following would be true:
If p ⊆ S = K [X1, . . . ,Xn] is prime, dimS/p ≥ 3, and in(p) = I∆ is

square-free for some monomial order on S, then H̃1(∆;K ) = 0.
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Proof of the lemma

In fact, just consider w = (w1, . . . ,wn) ∈ Nn s. t. in(p) = inw (p).
Then, if phom,w ⊆ S [t] is the homogenization of p w.r.t. w ,

R = S [t]/phom,w

is a domain of dimension ≥ 4, and

R/xR ∼= S/ in(p) = K [∆],

where x = t ∈ R. So ∆ is homotopically equivalent to N (R/xR);
in particular

H̃1(∆;K ) ∼= H̃1(N (R/xR;K )).

The latter, if Lyubeznik’s question was true, would vanish. �
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A related question

The conclusion of the lemma is suspicious! Indeed it is not true,
and I want to spend the last slides by constructing a
counterexample. First let me quickly discuss a related question:

Question

If p ⊆ S = K [X1, . . . ,Xn] is prime and in(p) is square-free, then
S/ in(p) is Cohen-Macaulay (in particular S/p is Cohen-Macaulay)?

The answer is no, but the question is not a complete nonsense:

Yes in the following cases:

dim(S/p) ≤ 2 (Kalkbrener-Sturmfels).

p is a Cartwright-Sturmfels ideal (Brion).
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Counterexample

Let S = K [X0,X1,X2], T = K [Y0,Y1],

f = X0X1X2 + X 3
1 + X 3

2 ∈ S .

Then S/fS is the coordinate ring of a (singular) elliptic curve E in
P2, and (S/fS)]T is the coordinate ring of the Segre product

E × P1 ⊆ P5.

So, (S/fS)]T ∼= P/p where P = K [Zi ,j : i = 0, 1, j = 0, 1, 2] and

p = (f (Zi0,0,Zi1,1,Zi2,2), [12]Z , [13]Z , [23]Z : 1 ≥ i0 ≥ i1 ≥ i2 ≥ 0) ⊆ P.

So p is a prime ideal and dimP/p = 3.
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Counterexample

Notice that, if we choose the lexicographic term order on S
extending X0 > X1 > X2, we have

in(f ) = X0X1X2.

By choosing the lexicographic term order on P extending
Z0,0 > Z0,1 > Z0,2 > Z1,0 > Z1,1 > Z1,2, one can show that the
initial ideal of p is the expected one:

in(p) = (Zi0,0Zi1,1Zi2,2, Z0,0Z1,1, Z0,0Z1,2, Z0,1Z1,2 : 1 ≥ i0 ≥ i1 ≥ i2 ≥ 0).

So P/ in(p) = K [∆] where .....

Matteo Varbaro (University of Genoa, Italy) The nerve of a positively graded K -algebra



Counterexample

In particular, H̃1(∆;K ) 6= 0. So we get a counterexample to
Lyubeznik’s question, and also a nonCohen-Macaulay prime ideal
with square-free initial ideal !

Matteo Varbaro (University of Genoa, Italy) The nerve of a positively graded K -algebra



Degenerated Segre product

Let S = K [X1, . . . ,Xn], T = K [Y1, . . . ,Ym], and

I = (u1, . . . , us) ⊆ S , J = (v1, . . . , vt) ⊆ T

be monomial ideals. Then, we define the monomial ideal
I ∗ J ⊆ P = K [Zi ,j : i = 1, . . . ,m, j = 1, . . . , n] generated by:

ui (Zi1,1, . . . ,Zin,n) s. t. i = 1, . . . , s, m ≥ i1 ≥ · · · ≥ in ≥ 1.

vj(Z1,j1 , . . . ,Zm,jm) s. t. j = 1, . . . , t, n ≥ j1 ≥ · · · ≥ jm ≥ 1.

Zi1,j1Zi2,j2 s. t. 1 ≤ i1 < i2 ≤ m and 1 ≤ j1 < j2 ≤ n.

Notice that if I and J are square-free, then I ∗ J is square-free as
well; so the degenerated Segre product yields an operation on
simplicial complexes.
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Degenerated Segre product

It is not difficult to check that, if I = in(a) and J = in(b) for
suitable term orders and ideals a ⊆ S and b ⊆ T :

then I ∗ J = in(c) where (S/a)](T/b) = P/c.

Therefore in this way one can produce a lot of ideals having a
square-free initial ideal, so it might be worth to inquire on the
homological properties of the degenerated Segre product and
compare them with the ones of the ordinary Segre product.
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THANK YOU !
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