The nerve of a positively graded K-algebra

Matteo Varbaro (University of Genoa, Italy)

Osnabrück, 16/1/2018

Matteo Varbaro (University of Genoa, Italy) The nerve of a positively graded K-algebra

Notation

- K is a field;
- *R* is a Noetherian positively graded *K*-algebra, i. e.

$$R = \bigoplus_{i=0}^{+\infty} R_i$$
 with $R_0 = K$

• $\mathfrak{m} = \bigoplus_{i=1}^{+\infty} R_i$ is the maximal homogeneous ideal of R.

In the above setting, the minimal primes of R are homogeneous, and so contained in \mathfrak{m} .

Definition

If $Min(R) = \{\mathfrak{p}_1, \ldots, \mathfrak{p}_s\}$, the **nerve** $\mathcal{N}(R)$ of R (also known as **Lyubeznik complex** of R) is the following simplicial complex:

- The vertex set of $\mathcal{N}(R)$ is $\{1, \ldots, s\}$;
- $\{i_1, \ldots, i_r\}$ is a face of $\mathcal{N}(R) \iff \sqrt{\mathfrak{p}_{i_1} + \ldots + \mathfrak{p}_{i_r}} \subsetneq \mathfrak{m}$.

Example

Consider the simplicial complex on 5 vertices

$$\Delta = \langle \{1,2\}, \{1,3\}, \{1,4\}, \{2,5\} \rangle$$

and $R = K[\Delta]$. Then $R = \frac{K[X_1, X_2, X_3, X_4]}{(X_3, X_4, X_5) \cap (X_2, X_4, X_5) \cap (X_2, X_3, X_5) \cap (X_1, X_3, X_4)}$:

- $\mathfrak{p}_a = (x_3, x_4, x_5), \mathfrak{p}_b = (x_2, x_4, x_5), \mathfrak{p}_c = (x_2, x_3, x_5), \mathfrak{p}_d = (x_1, x_3, x_4),$ where $x_i = \overline{X_i}$, are the minimal primes of *R*.
- $\mathcal{N}(R)$ is the complex on $\{a, b, c, d\}$ with facets $\{a, b, c\}$ and $\{a, d\}$.

In general, given a simplicial complex Δ , the nerve of the ring $\mathcal{K}[\Delta]$ is the nerve of Δ with respect to the covering of Δ given by its facets, i.e. $\mathcal{N}(\mathcal{K}[\Delta])$ is the simplicial complex whose vertex set is $\mathcal{F}(\Delta)$, the set of facets of Δ , and such that

$$\mathcal{A} \subseteq \mathcal{F}(\Delta)$$
 is a face of $\mathcal{N}(\mathcal{K}[\Delta]) \iff \bigcap_{\sigma \in \mathcal{A}} \sigma \neq \emptyset.$

So, Borsuk's nerve lemma implies that

 Δ and $\mathcal{N}(\mathcal{K}[\Delta])$ are homotopically equivalent. In particular, $\widetilde{H^{i}}(\mathcal{N}(\mathcal{K}[\Delta]); \mathcal{K}) = \widetilde{H^{i}}(\Delta; \mathcal{K}) \quad \forall i \in \mathbb{N}.$ In general (for any Noetherian positively graded K-algebra R):

Proposition (Hartshorne, 1962)

Proj R is connected if and only if $\mathcal{N}(R)$ is connected.

Theorem (Hartshorne, 1962)

If depth $R \geq 2$, then $\mathcal{N}(R)$ is connected.

Theorem (Bertini, ${\sim}1920$; Grothendieck, 1968)

If R is a domain of dimension \geq 3, then $\mathcal{N}(R/xR)$ is connected whenever $x \in R_i$ with i > 0.

Since $\mathcal{N}(R)$ is connected if and only if $\widetilde{H^0}(\mathcal{N}(R); K) = 0$, the results above can be rephrased like follows:

Theorem (Hartshorne, 1962)

If depth
$$R \ge 2$$
, then $\widetilde{H^0}(\mathcal{N}(R); K) = 0$.

Theorem (Bertini, \sim 1920; Grothendieck, 1968)

If R is a domain of dimension ≥ 3 , then $\widetilde{H^0}(\mathcal{N}(R/xR); K) = 0$ whenever $x \in R_i$ with i > 0. Theorem (Katzman, Lyubeznik, Zhang, 2015)

If depth
$$R \geq 3$$
, then $\widetilde{H^0}(\mathcal{N}(R); K) = \widetilde{H^1}(\mathcal{N}(R); K) = 0$.

Question (Lyubeznik)

If R is a positively graded domain of dimension at least 4, is it true that $\widetilde{H^1}(\mathcal{N}(R/xR); K) = 0$ whenever $x \in R_i$ with i > 0?

Answer

No.

In this talk I will explain how to construct an example giving a negative answer; before, however, I want to tell you something about the inverse problem to the theorems seen so far...

Question (Inverse problem)

Fixed $d \ge \delta$, is there a function attaching a *d*-dimensional positively graded *K*-algebra A_{Δ} to any $(\delta - 1)$ -dimensional simplicial complex Δ in such a way that properties (i), (ii), (iii), (iv) below are verified?

Theorem (Benedetti, Di Marca, _, 2017)

Yes. Moreover A_{Δ} can be taken as R/I where $\operatorname{Proj} R$ is a rational variety (in particular R is a domain) and I is a height 1 ideal of R.

Let d = 3, $\delta = 2$ and $\Delta = \langle \{1, 2\}, \{2, 3\}, \{1, 3\} \rangle$ (so that Δ has dimension $1 = \delta - 1$). To produce A_{Δ} , consider:

- (i) $\mathfrak{a} = (X_0, X_1, X_2) \subseteq S = K[X_0, X_1, X_2, X_3]$ (\mathfrak{a} is the defining ideal of the point $P = [0, 0, 0, 1] \in \mathbb{P}^3$);
- (ii) $R = K[\mathfrak{a}_3] = K[S_3 \setminus \{X_3^3\}] \subseteq S$ (Proj R = X is the blow up of \mathbb{P}^3 along the point P);
- (iii) $\mathfrak{b} = (X_0 X_1 X_3) \subseteq S$ (\mathfrak{b} is the defining ideal of the union of planes $H = \{X_0 = 0\} \cup \{X_1 = 0\} \cup \{X_2 = 0\} \subseteq \mathbb{P}^3\}$;
- (iv) $I = \mathfrak{b} \cap R = (X_0 X_1 X_2, X_0 X_1 X_2 X_3^3, X_0 X_1 X_2 X_3^6) \subseteq R$ (*I* is the defining ideal of the strict transform of *H* in *X*);

(v) $A_{\Delta} = R/I$ (Proj A_{Δ} is the strict transform of H in X).

So, A_{Δ} is a 3-dimensional positively graded *K*-algebra having 3 minimal primes $\mathfrak{p}_1, \mathfrak{p}_2, \mathfrak{p}_3$ such that:

(i) $\operatorname{height}(\mathfrak{p}_1 + \mathfrak{p}_2) = \operatorname{height}(\mathfrak{p}_2 + \mathfrak{p}_3) = \operatorname{height}(\mathfrak{p}_1 + \mathfrak{p}_3) = 1;$

(ii) $height(\mathfrak{p}_1 + \mathfrak{p}_2 + \mathfrak{p}_3) = 3.$

In particular $H^1(\mathcal{N}(A_{\Delta}); K) \neq 0$; so, since $A_{\Delta} = R/I$ where R is a 4-dimensional domain, if I was principal (even up to radical), this would provide a negative answer to the question of Lyubeznik. Unfortunately, this is not the case

Theorem

Let *R* be a domain of dimension at least 4 such that $X = \operatorname{Proj} R$ is a rational variety, and assume that *K* has characteristic 0. Then, whenever $x \in R_i$ with i > 0, $\widetilde{H^1}(\mathcal{N}(R/xR); K) = 0$.

Question (Lyubeznik)

If R is a domain of dimension at least 4, is it true that $\widetilde{H^1}(\mathcal{N}(R/xR); K) = 0$ whenever $x \in R_i$ with i > 0?

In view of the previous slide, in order to answer negatively the above question one has to seek for different examples. The following simple observation is crucial:

Lemma

If Lyubeznik's question had an affirmative answer, then the following would be true: If $\mathfrak{p} \subseteq S = K[X_1, \ldots, X_n]$ is prime, dim $S/\mathfrak{p} \ge 3$, and $\operatorname{in}(\mathfrak{p}) = I_{\Delta}$ is square-free for some monomial order on S, then $\widetilde{H^1}(\Delta; K) = 0$. In fact, just consider $w = (w_1, \ldots, w_n) \in \mathbb{N}^n$ s. t. $in(\mathfrak{p}) = in_w(\mathfrak{p})$. Then, if $\mathfrak{p}_{hom,w} \subseteq S[t]$ is the homogenization of \mathfrak{p} w.r.t. w,

 $R=S[t]/\mathfrak{p}_{\hom,w}$

is a domain of dimension \geq 4, and

 $R/xR \cong S/\operatorname{in}(\mathfrak{p}) = K[\Delta],$

where $x = \overline{t} \in R$. So Δ is homotopically equivalent to $\mathcal{N}(R/xR)$; in particular

$$\widetilde{H^1}(\Delta; K) \cong \widetilde{H^1}(\mathcal{N}(R/xR; K)).$$

The latter, if Lyubeznik's question was true, would vanish. \Box

The conclusion of the lemma is suspicious! Indeed it is not true, and I want to spend the last slides by constructing a counterexample. First let me quickly discuss a related question:

Question

If $\mathfrak{p} \subseteq S = \mathcal{K}[X_1, \dots, X_n]$ is prime and $\operatorname{in}(\mathfrak{p})$ is square-free, then $S/\operatorname{in}(\mathfrak{p})$ is Cohen-Macaulay (in particular S/\mathfrak{p} is Cohen-Macaulay)?

The answer is no, but the question is not a complete nonsense:

Yes in the following cases:

- dim $(S/\mathfrak{p}) \leq 2$ (Kalkbrener-Sturmfels).
- p is a Cartwright-Sturmfels ideal (Brion).

Let
$$S = K[X_0, X_1, X_2]$$
, $T = K[Y_0, Y_1]$,
 $f = X_0 X_1 X_2 + X_1^3 + X_2^3 \in S$.

Then S/fS is the coordinate ring of a (singular) elliptic curve E in \mathbb{P}^2 , and $(S/fS) \sharp T$ is the coordinate ring of the Segre product

 $E \times \mathbb{P}^1 \subseteq \mathbb{P}^5.$

So, (S/fS) $\sharp T \cong P/\mathfrak{p}$ where $P = K[Z_{i,j} : i = 0, 1, j = 0, 1, 2]$ and $\mathfrak{p} = (f(Z_{i_0,0}, Z_{i_1,1}, Z_{i_2,2}), [12]_Z, [13]_Z, [23]_Z : 1 \ge i_0 \ge i_1 \ge i_2 \ge 0) \subseteq P.$ So \mathfrak{p} is a prime ideal and dim $P/\mathfrak{p} = 3$. Notice that, if we choose the lexicographic term order on S extending $X_0 > X_1 > X_2$, we have

$$\operatorname{in}(f) = X_0 X_1 X_2.$$

By choosing the lexicographic term order on P extending $Z_{0,0} > Z_{0,1} > Z_{0,2} > Z_{1,0} > Z_{1,1} > Z_{1,2}$, one can show that the initial ideal of \mathfrak{p} is the expected one:

 $\mathsf{in}(\mathfrak{p}) = (Z_{i_0,0}Z_{i_1,1}Z_{i_2,2}, Z_{0,0}Z_{1,1}, Z_{0,0}Z_{1,2}, Z_{0,1}Z_{1,2}: 1 \ge i_0 \ge i_1 \ge i_2 \ge 0).$

So $P/in(\mathfrak{p}) = K[\Delta]$ where

Counterexample

In particular, $H^1(\Delta; K) \neq 0$. So we get a counterexample to Lyubeznik's question, and also a nonCohen-Macaulay prime ideal with square-free initial ideal !

Degenerated Segre product

Let
$$S = K[X_1, \dots, X_n]$$
, $T = K[Y_1, \dots, Y_m]$, and
 $I = (u_1, \dots, u_s) \subseteq S$, $J = (v_1, \dots, v_t) \subseteq T$

be monomial ideals. Then, we define the monomial ideal $I * J \subseteq P = K[Z_{i,j} : i = 1, ..., m, j = 1, ..., n]$ generated by:

•
$$u_i(Z_{i_1,1},...,Z_{i_n,n})$$
 s. t. $i = 1,...,s$, $m \ge i_1 \ge \cdots \ge i_n \ge 1$.

•
$$v_j(Z_{1,j_1},...,Z_{m,j_m})$$
 s. t. $j = 1,...,t$, $n \ge j_1 \ge \cdots \ge j_m \ge 1$.

•
$$Z_{i_1,j_1}Z_{i_2,j_2}$$
 s. t. $1 \le i_1 < i_2 \le m$ and $1 \le j_1 < j_2 \le n$.

Notice that if I and J are square-free, then I * J is square-free as well; so the **degenerated Segre product** yields an operation on simplicial complexes.

It is not difficult to check that, if $I = in(\mathfrak{a})$ and $J = in(\mathfrak{b})$ for suitable term orders and ideals $\mathfrak{a} \subseteq S$ and $\mathfrak{b} \subseteq T$:

then $I * J = in(\mathfrak{c})$ where $(S/\mathfrak{a}) \sharp (T/\mathfrak{b}) = P/\mathfrak{c}$.

Therefore in this way one can produce a lot of ideals having a square-free initial ideal, so it might be worth to inquire on the homological properties of the degenerated Segre product and compare them with the ones of the ordinary Segre product.

THANK YOU !

Matteo Varbaro (University of Genoa, Italy) The nerve of a positively graded K-algebra