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BETTI TABLES OF IDEALS IN A POLYNOMIAL RING
F r e e r e s o l u t i o n s

Let S = K [x0, . . . , xn] be a polynomial ring over a field K and

I ⊂ S a graded ideal. The minimal graded free resolution of I is:

0→
⊕
j∈N

S(−j)βn,j → . . .→
⊕
j∈N

S(−j)β1,j →
⊕
j∈N

S(−j)β0,j → I → 0.

The invariants βi ,j (I ) = βi ,j are the graded Betti numbers of I .

If X ⊂ Pn is a projective scheme, we will refer to its free resolution

(and related concepts) as the one of the saturated ideal defining it.
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BETTI TABLES OF IDEALS IN A POLYNOMIAL RING
B e t t i t a b l e s

The Betti table of I is the matrix (βi ,i+d (I ))i ,d . It can be

thought as a (n + 1)× reg(I ) matrix: For example, if

I = (x0x1, x1x2, x2x3, x
2
3 ) ⊂ S = K [x0, . . . , x3],

the resolution of I is:

0→ S(−4)→ S(−3)3 ⊕ S(−4)→ S(−2)4 → I → 0

Therefore its Betti table is: 0 0 0 0
4 3 0 0
0 1 1 0


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BETTI TABLES OF IDEALS IN A POLYNOMIAL RING
I d e a l s w i t h l i n e a r r e s o l u t i o n

The ideal I is said to have d-linear resolution if all its minimal

generators are of degree d and reg(I ) = d . Equivalently, if the

Betti tables of I has only one nonzero row, the dth.

For example, the rational normal curve in P4 has Betti table:(
0 0 0 0 0
6 8 3 0 0

)
thus it has 2-linear resolution. Indeed it is known that all varieties

of minimal degree have a 2-linear resolution. More generally:

(Bruns, Conca, -). If I defines a variety of minimal degree,

then I k has 2k-linear resolution for each k.
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BETTI TABLES OF IDEALS IN A POLYNOMIAL RING
Ex t r e m a l B e t t i n u m b e r s

A graded Betti number βi ,i+d of I is said extremal if βi ,i+d (I ) 6= 0

and βh,h+k (I ) = 0 for all (h, k) 6= (i , d) with h ≥ i and k ≥ d .

For example, let us look at the Betti table of

I = (x4
0 , x

3
0x1, x

3
0x2, x

3
0x3, x

2
0x3

1 , x0x
4
1 , x

2
0x2

1x2, x0x
3
1x2, x

6
1 )



0 0 0 0
0 0 0 0
0 0 0 0
4 6 4 1
4 6 2 0
1 1 0 0


The extremal Betti numbers of I are those marked in red.
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BETTI TABLES OF IDEALS IN A POLYNOMIAL RING
C o h o m o l o g i c a l i n t e r p r e t a t i o n

Let X ⊂ Pn be a projective scheme and IX its ideal sheaf. Then

βi ,i+d is an extremal Betti number of
⊕

m∈Z Γ(X , IX (m)) ⊂ S iff:

(i) i < n;

(ii) dimK (Hp(X , IX (q − p))) = βi,i+d 6= 0 for p = n− i and q = d − 1;

(iii) H r (X , IX (s − r)) = 0 for all (r , s) 6= (p, q), 1 ≤ r ≤ p and s ≥ q.
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⊕

m∈Z Γ(X , IX (m)) ⊂ S iff:

(i) i < n;

(ii) dimK (Hp(X , IX (q − p))) = βi,i+d 6= 0 for p = n− i and q = d − 1;

(iii) H r (X , IX (s − r)) = 0 for all (r , s) 6= (p, q), 1 ≤ r ≤ p and s ≥ q.
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BETTI TABLES OF IDEALS IN A POLYNOMIAL RING
G o a l s o f t h e t a l k

We will explain how to give a numerical characterization of:

(i) The Betti tables of ideals I ⊂ S with d-linear resolution.

(ii) The extremal Betti numbers of any graded ideal I ⊂ S .

For simplicity, we will assume that the characteristic of K is 0.
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BETTI TABLES OF IDEALS IN A POLYNOMIAL RING
R e d u c t i o n t o B o r e l - f i x e d i d e a l s

If I has d-linear resolution, then it has the same Betti table

of its generic initial ideal Gin(I ) (Aramova, Herzog, Hibi).

Gin(I ) is strongly stable ( Gin(I ) : xi ⊂ Gin(I ) : xj ∀ j < i).

Viceversa, any strongly stable ideal generated in degree d

has d-linear resolution (Elihaou, Kervaire).

So we are allowed to focus on the Betti tables of strongly stable

monomials ideals J ⊂ S generated in degree d .
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BETTI TABLES OF IDEALS IN A POLYNOMIAL RING
T h e E l i h a o u - K e r v a i r e f o r m u l a

Given an ideal I ⊂ S = K [x0, . . . , xn], we define:

n∑
k=0

mk (I )tk =
n∑

i=0

βi (I )(t − 1)i .

Obviously to characterize the possible Betti tables of ideals

with linear resolution we can characterize the possible sequences

(m0(I ),m1(I ), . . . ,mn(I )).

For a monomial u ∈ S , let us set m(u) = max{i : xi |u}. Elihaou

and Kervaire showed that, if J ⊂ S is strongly stable, then:

mk (J) = |{u ∈ G(I ) : m(u) = k}|
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BETTI TABLES OF IDEALS IN A POLYNOMIAL RING
A m u l t i p l i c a t i v e s t r u c t u r e o n Sd

Given two monomials u, v ⊂ Sd , write them as u = xi1 · · · xid and

xj1 · · · xjd with i1 ≤ . . . ≤ id and j1 ≤ . . . ≤ jd , and define:

u ∗ v =

{
xi1+j1xi2+j2 · · · xid+jd if id + jd ≤ n,

0 otherwise

We extend the operation to the whole Sd by K -linearity, and

denote by Sd the gotten K -algebra. For example, if d = 4, n ≥ 6,

u = x0x
2
1x3 and v = x2

2x2
3 , then:

u ∗ v = x0x1x1x3 ∗ x2x2x3x3 = x2x3x4x6.
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BETTI TABLES OF IDEALS IN A POLYNOMIAL RING
T h e r i n g Sd

Notice that Sd has a natural N-grading, namely Sd =
⊕n

k=0(Sd )k ,

(Sd )k = 〈u ∈ Sd : m(u) = k〉.

One can show that there is a graded isomorphism of K -algebras:

Sd
∼=

K [y1, . . . , yd ]

(y1, . . . , yd )n+1
.

We showed that, if J ⊂ S is a strongly stable monomial ideal, then

G(J) = (G(J), ∗) is a quotient of Sd . The Hilbert function of G(J) is:

dimK (G(J)k ) = mk (J),

so (m0(J),m1(J), . . . ,mn(J)) satisfies Macaulay’s conditions.
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(i) There exists an ideal I ⊂ S with d-linear resolution such that

mk (I ) = mk for all k = 0, . . . , n.

(ii) There exists a strongly stable monomial ideal J ⊂ S generated

in degree d such that mk (J) = mk for all k = 0, . . . , n.

(iii) There exists a standard graded K -algebra A with

dimK A1 ≤ d and dimK Ak = mk for all k = 0, . . . , n.

(iv) m0 = 1, m1 ≤ d , mi+1 ≤ m
〈i〉
i for all i = 1, . . . , n − 1.

The same result has been shown, with a different proof, by Murai.
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BETTI TABLES OF IDEALS IN A POLYNOMIAL RING
E x a m p l e

We will never find an ideal I ⊂ S with the below minimal free resolution:

0→ S(−6)6 → S(−5)22 → S(−4)29 → S(−3)14 → I → 0.

Indeed we would have m0(I ) = 1, m1(I ) = 3, m2(I ) = 4 and m3(I ) = 6,

but m2(I )〈2〉 = 4〈2〉 = 5 < 6 = m3(I ).
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BETTI TABLES OF IDEALS IN A POLYNOMIAL RING
C o m p o n e n t w i s e l i n e a r i d e a l s

Our initial dream was to characterize the possible Betti tables of

componentwise linear ideals I ⊂ S , that is such that I〈m〉 has

m-linear resolution for all m, where I〈m〉 = (f ∈ I : deg(f ) = m).

The interest in this comes from the fact that the generic initial

ideal of every homogeneous ideal is componentwise linear.

Our characterization of the Betti tables of ideals with linear

resolution gives some necessary conditions that a Betti table of a

componentwise linear ideal must satisfy. We show that these

conditions are also sufficient up to three variables. Unfortunately,

this is no longer true when the number of variables is bigger.
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B e t t i t a b l e s d o n o t d e t e c t c o m p o n e n t w i s e l i n e a r i t y

Let us consider the following two ideals in K [x0, x1, x2]:

I = (x4
0 , x

3
0x1, x

2
0x2

1 , x0x
3
1 , x

4
1 , x

3
0x2, x

2
0x1x

2
2 , x

2
0x3

2 , x0x
2
1x2

2 ),

J = (x4
0 , x

3
0x1, x

2
0x2

1 , x
3
0x2, x0x

2
1x2, x0x1x

2
2 , x0x

4
1 , x

2
0x3

2 , x
4
1x2).

One can check that I is componentwise linear, whereas J is not.

However their Betti tables are the same, namely:
0 0 0
0 0 0
0 0 0
6 6 1
3 6 3


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However their Betti tables are the same, namely:
0 0 0
0 0 0
0 0 0
6 6 1
3 6 3





BETTI TABLES OF IDEALS IN A POLYNOMIAL RING
B e t t i t a b l e s d o n o t d e t e c t c o m p o n e n t w i s e l i n e a r i t y

Let us consider the following two ideals in K [x0, x1, x2]:

I = (x4
0 , x

3
0x1, x

2
0x2

1 , x0x
3
1 , x

4
1 , x

3
0x2, x

2
0x1x

2
2 , x

2
0x3

2 , x0x
2
1x2

2 ),

J = (x4
0 , x

3
0x1, x

2
0x2

1 , x
3
0x2, x0x

2
1x2, x0x1x

2
2 , x0x

4
1 , x

2
0x3

2 , x
4
1x2).

One can check that I is componentwise linear, whereas J is not.

However their Betti tables are the same, namely:
0 0 0
0 0 0
0 0 0
6 6 1
3 6 3





BETTI TABLES OF IDEALS IN A POLYNOMIAL RING
C h a r a c t e r i z a t i o n o f e x t r e m a l B e t t i n u m b e r s

If we restrict our attention to the extremal Betti numbers of

a componentwise linear ideal, we are able to show that

“the necessary conditions discussed above become sufficient”!

Exploiting a result of Bayer, Charalambous and Popescu, this leads

to a numerical characterization of the positive integers:

(i) 0 < i1 < i2 < . . . < ik ≤ n

(ii) d1 > d2 > . . . > dk > 0

(iii) b1, b2, . . . , bk

such that exists a graded ideal I ⊂ S with extremal Betti numbers:

βip ,ip+dp (I ) = bp ∀ p = 1, . . . , k
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P i c t u r e


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0 0 0 . . . 0 0 . . . 0 0 . . .
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BETTI TABLES OF IDEALS IN A POLYNOMIAL RING
S k e t c h o f t h e p r o o f

The above numerical characterization requires some technical
definitions, so I prefer to quickly explain how we could get it: In
the proof of our result on the Betti numbers of ideals with linear
resolution, we actually construct a special strongly stable ideal
generated in degree d , termed piecewise lexsegment, with
prescribed Betti numbers. One of the obstructions to characterize
the Betti tables of componentwise linear ideals, is that a piecewise
lexsegment ideal does not keep its special feature when multiplied
with the maximal ideal. Many piecewise lexsegment ideals have the
same extremal Betti number (in this case there is only the one
given by the projective dimension): Roughly speaking, we are able
to choose a special one among them, which keeps enough of its
properties when multiplied with the maximal ideal.
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