Betti tables of ideals in a polynomial ring

Matteo Varbaro

Dipartimento di Matematica, Università di Genova

From a joint work Jürgen Herzog and Leila Sharifan

BETTI TABLES OF IDEALS IN A POLYNOMIAL RING

BETTI TABLES OF IDEALS IN A POLYNOMIAL RING

Let $S=K\left[x_{0}, \ldots, x_{n}\right]$ be a polynomial ring over a field K and $l \subset S$ a graded ideal.

BETTI TABLES OF IDEALS IN A POLYNOMIAL RING

Let $S=K\left[x_{0}, \ldots, x_{n}\right]$ be a polynomial ring over a field K

BETTI TABLES OF IDEALS IN A POLYNOMIAL RING

Let $S=K\left[x_{0}, \ldots, x_{n}\right]$ be a polynomial ring over a field K and
$I \subset S$ a graded ideal.

BETTI TABLES OF IDEALS IN A POLYNOMIAL RING

Let $S=K\left[x_{0}, \ldots, x_{n}\right]$ be a polynomial ring over a field K and
$I \subset S$ a graded ideal. The minimal graded free resolution of I is:

BETTI TABLES OF IDEALS IN A POLYNOMIAL RING

Let $S=K\left[x_{0}, \ldots, x_{n}\right]$ be a polynomial ring over a field K and
$I \subset S$ a graded ideal. The minimal graded free resolution of I is:

$$
0 \rightarrow \bigoplus_{j \in \mathbb{N}} S(-j)^{\beta_{n, j}} \rightarrow \cdots \rightarrow \bigoplus_{j \in \mathbb{N}} S(-j)^{\beta_{1, j}} \rightarrow \bigoplus_{j \in \mathbb{N}} S(-j)^{\beta_{0, j}} \rightarrow I \rightarrow 0 .
$$

The invariants $\beta_{i, j}(I)=\beta_{i, j}$ are the graded Betti numbers of I. If $X \subset \mathbb{P}^{n}$ is a projective scheme, we will refer to its free resolution (and related concepts) as the one of the saturated ideal defining it.

BETTI TABLES OF IDEALS IN A POLYNOMIAL RING

Let $S=K\left[x_{0}, \ldots, x_{n}\right]$ be a polynomial ring over a field K and
$I \subset S$ a graded ideal. The minimal graded free resolution of I is:

$$
0 \rightarrow \bigoplus_{j \in \mathbb{N}} S(-j)^{\beta_{n, j}} \rightarrow \cdots \rightarrow \bigoplus_{j \in \mathbb{N}} S(-j)^{\beta_{1, j}} \rightarrow \bigoplus_{j \in \mathbb{N}} S(-j)^{\beta_{0, j}} \rightarrow I \rightarrow 0
$$

The invariants $\beta_{i, j}(I)=\beta_{i, j}$ are the graded Betti numbers of I.
If $X \subset \mathbb{P}^{n}$ is a projective scheme, we will refer to its free resolution
(and related concepts) as the one of the saturated ideal defining it.

BETTI TABLES OF IDEALS IN A POLYNOMIAL RING

Let $S=K\left[x_{0}, \ldots, x_{n}\right]$ be a polynomial ring over a field K and
$I \subset S$ a graded ideal. The minimal graded free resolution of I is:

$$
0 \rightarrow \bigoplus_{j \in \mathbb{N}} S(-j)^{\beta_{n, j}} \rightarrow \ldots \rightarrow \bigoplus_{j \in \mathbb{N}} S(-j)^{\beta_{1, j}} \rightarrow \bigoplus_{j \in \mathbb{N}} S(-j)^{\beta_{0, j}} \rightarrow I \rightarrow 0
$$

The invariants $\beta_{i, j}(I)=\beta_{i, j}$ are the graded Betti numbers of I.
If $X \subset \mathbb{P}^{n}$ is a projective scheme, we will refer to its free resolution (and related concepts) as the one of the saturated ideal defining it.

BETTI TABLES OF IDEALS IN A POLYNOMIAL RING

Let $S=K\left[x_{0}, \ldots, x_{n}\right]$ be a polynomial ring over a field K and
$I \subset S$ a graded ideal. The minimal graded free resolution of I is:

$$
0 \rightarrow \bigoplus_{j \in \mathbb{N}} S(-j)^{\beta_{n, j}} \rightarrow \ldots \rightarrow \bigoplus_{j \in \mathbb{N}} S(-j)^{\beta_{1, j}} \rightarrow \bigoplus_{j \in \mathbb{N}} S(-j)^{\beta_{0, j}} \rightarrow I \rightarrow 0
$$

The invariants $\beta_{i, j}(I)=\beta_{i, j}$ are the graded Betti numbers of I.
If $X \subset \mathbb{P}^{n}$ is a projective scheme, we will refer to its free resolution (and related concepts) as the one of the saturated ideal defining it.

BETTI TABLES OF IDEALS IN A POLYNOMIAL RING

The Betti table of I is the matrix $\left(\beta_{i, i+d}(I)\right)_{i, d}$. It can be thought as a $(n+1) \times \operatorname{reg}(I)$ matrix:

BETTI TABLES OF IDEALS IN A POLYNOMIAL RING

 Beth thablesThe Betti table of I is the matrix $\left(\beta_{i, i+d}(I)\right)_{i, d}$. It can be thought as a $(n+1) \times \operatorname{reg}(I)$ matrix:

BETTI TABLES OF IDEALS IN A POLYNOMIAL RING

 Betti tablesThe Betti table of I is the matrix $\left(\beta_{i, i+d}(I)\right)_{i, d}$. It can be thought as a $(n+1) \times \operatorname{reg}(I)$ matrix:

BETTI TABLES OF IDEALS IN A POLYNOMIAL RING

The Betti table of I is the matrix $\left(\beta_{i, i+d}(I)\right)_{i, d}$. It can be thought as a $(n+1) \times \operatorname{reg}(I)$ matrix: For example, if

$$
I=\left(x_{0} x_{1}, x_{1} x_{2}, x_{2} x_{3}, x_{3}^{2}\right) \subset S=K\left[x_{0}, \ldots, x_{3}\right],
$$

the resolution of I is:

Therefore its Betti table is:

BETTI TABLES OF IDEALS IN A POLYNOMIAL RING

The Betti table of I is the matrix $\left(\beta_{i, i+d}(I)\right)_{i, d}$. It can be thought as a $(n+1) \times \operatorname{reg}(I)$ matrix: For example, if

$$
I=\left(x_{0} x_{1}, x_{1} x_{2}, x_{2} x_{3}, x_{3}^{2}\right) \subset S=K\left[x_{0}, \ldots, x_{3}\right],
$$

the resolution of I is:

$$
0 \rightarrow S(-4) \rightarrow S(-3)^{3} \oplus S(-4) \rightarrow S(-2)^{4} \rightarrow 1 \rightarrow 0
$$

Therefore its Betti table is:

BETTI TABLES OF IDEALS IN A POLYNOMIAL RING

The Betti table of I is the matrix $\left(\beta_{i, i+d}(I)\right)_{i, d}$. It can be thought as a $(n+1) \times \operatorname{reg}(I)$ matrix: For example, if

$$
I=\left(x_{0} x_{1}, x_{1} x_{2}, x_{2} x_{3}, x_{3}^{2}\right) \subset S=K\left[x_{0}, \ldots, x_{3}\right]
$$

the resolution of I is:

$$
0 \rightarrow S(-4) \rightarrow S(-3)^{3} \oplus S(-4) \rightarrow S(-2)^{4} \rightarrow 1 \rightarrow 0
$$

Therefore its Betti table is:

$$
\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
4 & 3 & 0 & 0 \\
0 & 1 & 1 & 0
\end{array}\right)
$$

BETTI TABLES OF IDEALS IN A POLYNOMIAL RING

 tdea|s with tinear resolutionThe ideal $/$ is said to have d-linear resolution if all its minimal generators are of degree d and reg $(I)-d$ Equivalently if the Betti tables of I has only one nonzero row, the d th.

BETTI TABLES OF IDEALS IN A POLYNOMIAL RING

The ideal I is said to have d-linear resolution if all its minimal generators are of degree d and $\operatorname{reg}(I)=d$. Equivalently, if the Betti tables of I has only one nonzero row, the d th. For example, the rational normal curve in \mathbb{P}^{4} has Betti table:

BETTI TABLES OF IDEALS IN A POLYNOMIAL RING

The ideal I is said to have d-linear resolution if all its minimal generators are of degree d and $\operatorname{reg}(I)=d$. Equivalently, if the Betti tables of I has only one nonzero row, the d th.

For example, the rational normal curve in \mathbb{P}^{4} has Betti table:

thus it has 2 -linear resolution.

BETTI TABLES OF IDEALS IN A POLYNOMIAL RING

The ideal I is said to have d-linear resolution if all its minimal generators are of degree d and $\operatorname{reg}(I)=d$. Equivalently, if the Betti tables of I has only one nonzero row, the d th.

For example, the rational normal curve in \mathbb{P}^{4} has Betti table:

$$
\left(\begin{array}{lllll}
0 & 0 & 0 & 0 & 0 \\
6 & 8 & 3 & 0 & 0
\end{array}\right)
$$

thus it has 2-linear resolution. Indeed it is known that all varieties
of minimal degree have a 2-linear resolution

BETTI TABLES OF IDEALS IN A POLYNOMIAL RING

The ideal I is said to have d-linear resolution if all its minimal generators are of degree d and $\operatorname{reg}(I)=d$. Equivalently, if the Betti tables of I has only one nonzero row, the d th.

For example, the rational normal curve in \mathbb{P}^{4} has Betti table:

$$
\left(\begin{array}{lllll}
0 & 0 & 0 & 0 & 0 \\
6 & 8 & 3 & 0 & 0
\end{array}\right)
$$

thus it has 2-linear resolution. Indeed it is known that all varieties
of minimal degree have a 2-linear resolution. More generally: (Bruns, Conca, -). If I defines a variety of minimal degree,

BETTI TABLES OF IDEALS IN A POLYNOMIAL RING

The ideal I is said to have d-linear resolution if all its minimal generators are of degree d and $\operatorname{reg}(I)=d$. Equivalently, if the Betti tables of I has only one nonzero row, the d th.

For example, the rational normal curve in \mathbb{P}^{4} has Betti table:

$$
\left(\begin{array}{lllll}
0 & 0 & 0 & 0 & 0 \\
6 & 8 & 3 & 0 & 0
\end{array}\right)
$$

thus it has 2-linear resolution. Indeed it is known that all varieties of minimal degree have a 2 -linear resolution.

BETTI TABLES OF IDEALS IN A POLYNOMIAL RING

The ideal I is said to have d-linear resolution if all its minimal generators are of degree d and $\operatorname{reg}(I)=d$. Equivalently, if the Betti tables of I has only one nonzero row, the d th.

For example, the rational normal curve in \mathbb{P}^{4} has Betti table:

$$
\left(\begin{array}{lllll}
0 & 0 & 0 & 0 & 0 \\
6 & 8 & 3 & 0 & 0
\end{array}\right)
$$

thus it has 2-linear resolution. Indeed it is known that all varieties of minimal degree have a 2 -linear resolution. More generally:
(Bruns, Conca, -). If I defines a variety of minimal degree, then I^{k} has $2 k$-linear resolution for each k.

BETTI TABLES OF IDEALS IN A POLYNOMIAL RING

The ideal I is said to have d-linear resolution if all its minimal generators are of degree d and $\operatorname{reg}(I)=d$. Equivalently, if the Betti tables of I has only one nonzero row, the d th.

For example, the rational normal curve in \mathbb{P}^{4} has Betti table:

$$
\left(\begin{array}{lllll}
0 & 0 & 0 & 0 & 0 \\
6 & 8 & 3 & 0 & 0
\end{array}\right)
$$

thus it has 2-linear resolution. Indeed it is known that all varieties of minimal degree have a 2 -linear resolution. More generally:
(Bruns, Conca, -). If I defines a variety of minimal degree, then I^{k} has $2 k$-linear resolution for each k.

BETTI TABLES OF IDEALS IN A POLYNOMIAL RING

 Betrol Bethi humersA graded Betti number $\beta_{i, i+d}$ of I is said extremal if $\beta_{i, i+d}(I) \neq 0$

BETTI TABLES OF IDEALS IN A POLYNOMIAL RING

 Buttorna Buth numbersA graded Betti number $\beta_{i, i+d}$ of I is said extremal if

BETTI TABLES OF IDEALS IN A POLYNOMIAL RING

Butromar Betti -humbets
A graded Betti number $\beta_{i, i+d}$ of I is said extremal if $\beta_{i, i+d}(I) \neq 0$
and $\beta_{h, h+k}(I)=0$ for all $(h, k) \neq(i, d)$ with $h \geq i$ and $k \geq d$.

For example, let us look at the Betti table of

BETTI TABLES OF IDEALS IN A POLYNOMIAL RING

A graded Betti number $\beta_{i, i+d}$ of I is said extremal if $\beta_{i, i+d}(I) \neq 0$ and $\beta_{h, h+k}(I)=0$ for all $(h, k) \neq(i, d)$ with $h \geq i$ and $k \geq d$.

For example, let us look at the Betti table of

BETTI TABLES OF IDEALS IN A POLYNOMIAL RING

A graded Betti number $\beta_{i, i+d}$ of I is said extremal if $\beta_{i, i+d}(I) \neq 0$ and $\beta_{h, h+k}(I)=0$ for all $(h, k) \neq(i, d)$ with $h \geq i$ and $k \geq d$.

For example, let us look at the Betti table of

$$
I=\left(x_{0}^{4}, x_{0}^{3} x_{1}, x_{0}^{3} x_{2}, x_{0}^{3} x_{3}, x_{0}^{2} x_{1}^{3}, x_{0} x_{1}^{4}, x_{0}^{2} x_{1}^{2} x_{2}, x_{0} x_{1}^{3} x_{2}, x_{1}^{6}\right)
$$

The extremal Betti numbers of I are those marked in red.

BETTI TABLES OF IDEALS IN A POLYNOMIAL RING

A graded Betti number $\beta_{i, i+d}$ of I is said extremal if $\beta_{i, i+d}(I) \neq 0$ and $\beta_{h, h+k}(I)=0$ for all $(h, k) \neq(i, d)$ with $h \geq i$ and $k \geq d$.

For example, let us look at the Betti table of

$$
\begin{gathered}
I=\left(x_{0}^{4}, x_{0}^{3} x_{1}, x_{0}^{3} x_{2}, x_{0}^{3} x_{3}, x_{0}^{2} x_{1}^{3}, x_{0} x_{1}^{4}, x_{0}^{2} x_{1}^{2} x_{2}, x_{0} x_{1}^{3} x_{2}, x_{1}^{6}\right) \\
\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
4 & 6 & 4 & 1 \\
4 & 6 & 2 & 0 \\
1 & 1 & 0 & 0
\end{array}\right)
\end{gathered}
$$

The extremal Betti numbers of / are those marked in red.

BETTI TABLES OF IDEALS IN A POLYNOMIAL RING

A graded Betti number $\beta_{i, i+d}$ of I is said extremal if $\beta_{i, i+d}(I) \neq 0$ and $\beta_{h, h+k}(I)=0$ for all $(h, k) \neq(i, d)$ with $h \geq i$ and $k \geq d$.

For example, let us look at the Betti table of

$$
\begin{gathered}
I=\left(x_{0}^{4}, x_{0}^{3} x_{1}, x_{0}^{3} x_{2}, x_{0}^{3} x_{3}, x_{0}^{2} x_{1}^{3}, x_{0} x_{1}^{4}, x_{0}^{2} x_{1}^{2} x_{2}, x_{0} x_{1}^{3} x_{2}, x_{1}^{6}\right) \\
\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
4 & 6 & 4 & 1 \\
4 & 6 & 2 & 0 \\
1 & 1 & 0 & 0
\end{array}\right)
\end{gathered}
$$

The extremal Betti numbers of I are those marked in red.

BETTI TABLES OF IDEALS IN A POLYNOMIAL RING

Let $X \subset \mathbb{P}^{n}$ be a projective scheme and \mathcal{I}_{X} its ideal sheaf. Then
B. . . is an extremal Betti number of $\bigoplus \square \quad \Gamma\left(X \tau_{X}(m)\right) \subset S$ iff.

BETTI TABLES OF IDEALS IN A POLYNOMIAL RING

Let $X \subset \mathbb{P}^{n}$ be a projective scheme and \mathcal{I}_{X} its ideal sheaf.
$\beta_{i, i+d}$ is an extremal Betti number of $\bigoplus_{m \in \mathbb{Z}} \Gamma\left(X, I_{X}(m)\right) \subset S$ iff:

BETTI TABLES OF IDEALS IN A POLYNOMIAL RING

Let $X \subset \mathbb{P}^{n}$ be a projective scheme and \mathcal{I}_{X} its ideal sheaf. Then
$\beta_{i, i+d}$ is an extremal Betti number of $\bigoplus_{m \in \mathbb{Z}} \Gamma\left(X, \mathcal{I}_{X}(m)\right) \subset S$ iff:

BETTI TABLES OF IDEALS IN A POLYNOMIAL RING

Let $X \subset \mathbb{P}^{n}$ be a projective scheme and \mathcal{I}_{X} its ideal sheaf. Then
$\beta_{i, i+d}$ is an extremal Betti number of $\bigoplus_{m \in \mathbb{Z}} \Gamma\left(X, \mathcal{I}_{X}(m)\right) \subset S$ iff:
(i) $i<n$;
(ii) $\operatorname{dimu}(H E(X \cdot I \times(q-p)))=\beta_{i, i+d} \neq 0$ for $p=n-i$ and $q=d-1$

BETTI TABLES OF IDEALS IN A POLYNOMIAL RING

Let $X \subset \mathbb{P}^{n}$ be a projective scheme and \mathcal{I}_{X} its ideal sheaf. Then
$\beta_{i, i+d}$ is an extremal Betti number of $\bigoplus_{m \in \mathbb{Z}} \Gamma\left(X, \mathcal{I}_{X}(m)\right) \subset S$ iff:
(i) $i<n$;
(ii) $\operatorname{dim}_{K}\left(H^{p}\left(X, \mathcal{I}_{X}(q-p)\right)\right)=\beta_{i, i+d} \neq 0$ for $p=n-i$ and $q=d-1$

BETTI TABLES OF IDEALS IN A POLYNOMIAL RING

Let $X \subset \mathbb{P}^{n}$ be a projective scheme and \mathcal{I}_{X} its ideal sheaf. Then
$\beta_{i, i+d}$ is an extremal Betti number of $\bigoplus_{m \in \mathbb{Z}} \Gamma\left(X, \mathcal{I}_{X}(m)\right) \subset S$ iff:
(i) $i<n$;
(ii) $\operatorname{dim}_{K}\left(H^{p}\left(X, \mathcal{I}_{X}(q-p)\right)\right)=\beta_{i, i+d} \neq 0$ for $p=n-i$ and $q=d-1$;
(iii) $H^{r}\left(X, \mathcal{I}_{X}(s-r)\right)=0$ for all $(r, s) \neq(p, q), 1 \leq r \leq p$ and $s \geq q$.

BETTI TABLES OF IDEALS IN A POLYNOMIAL RING

Let $X \subset \mathbb{P}^{n}$ be a projective scheme and \mathcal{I}_{X} its ideal sheaf. Then
$\beta_{i, i+d}$ is an extremal Betti number of $\bigoplus_{m \in \mathbb{Z}} \Gamma\left(X, \mathcal{I}_{X}(m)\right) \subset S$ iff:
(i) $i<n$;
(ii) $\operatorname{dim}_{K}\left(H^{p}\left(X, I_{X}(q-p)\right)\right)=\beta_{i, i+d} \neq 0$ for $p=n-i$ and $q=d-1$;
(iii) $H^{r}\left(X, \mathcal{I}_{X}(s-r)\right)=0$ for all $(r, s) \neq(p, q), 1 \leq r \leq p$ and $s \geq q$.

BETTI TABLES OF IDEALS IN A POLYNOMIAL RING

 Goals of the talkWe will explain how to give a numerical characterization of:

(i) The Betti tables of ideals $I \subset S$ with d-linear resolution.

BETTI TABLES OF IDEALS IN A POLYNOMIAL RING

 goats of the thathWe will explain how to give a numerical characterization of:

(i) The Betti tables of ideals $I \subset S$ with d-linear resolution.

(ii) The extremal Betti numbers of anv graded ideal $I \subset S$.

BETTI TABLES OF IDEALS IN A POLYNOMIAL RING

We will explain how to give a numerical characterization of:
(i) The Betti tables of ideals $I \subset S$ with d-linear resolution.
(ii) The extremal Betti numbers of any graded ideal $I \subset S$.

For simplicity, we will assume that the characteristic of K is 0 .

BETTI TABLES OF IDEALS IN A POLYNOMIAL RING

We will explain how to give a numerical characterization of:
(i) The Betti tables of ideals $I \subset S$ with d-linear resolution.
(ii) The extremal Betti numbers of any graded ideal $I \subset S$.

For simplicity, we will assume that the characteristic of K is 0 .

BETTI TABLES OF IDEALS IN A POLYNOMIAL RING

We will explain how to give a numerical characterization of:
(i) The Betti tables of ideals $I \subset S$ with d-linear resolution.
(ii) The extremal Betti numbers of any graded ideal $I \subset S$.

For simplicity, we will assume that the characteristic of K is 0 .

BETTI TABLES OF IDEALS IN A POLYNOMIAL RING

 Reduction to Borel-fixed idealsIf I has d-linear resolution, then it has the same Betti table of its generic initial ideal Gin(I) (Aramova. Herzog. Hibi).

BETTI TABLES OF IDEALS IN A POLYNOMIAL RING

If I has d-linear resolution, then it has the same Betti table of its generic initial ideal Gin(I) (Aramova, Herzog, Hibi).
$\operatorname{Gin}(I)$ is strongly stable $\left(\operatorname{Gin}(I): x_{i} \subset \operatorname{Gin}(I): x_{j} \forall j<i\right)$. Vicevarsa any strongly stable ideal generated in degree d has d-linear resolution (Elihaou, Kervaire)

BETTI TABLES OF IDEALS IN A POLYNOMIAL RING

If I has d-linear resolution, then it has the same Betti table of its generic initial ideal Gin(I) (Aramova, Herzog, Hibi).
$\operatorname{Gin}(I)$ is strongly stable $\left(\operatorname{Gin}(I): x_{i} \subset \operatorname{Gin}(I): x_{j} \forall j<i\right)$.
Viceversa, any strongly stable ideal generated in degree d has d-linear resolution (Elihaou, Kervaire).

So we are allowed to focus on the Betti tables of strongly stable monomials ideals $J \subset S$ generated in degree d.

BETTI TABLES OF IDEALS IN A POLYNOMIAL RING

If I has d-linear resolution, then it has the same Betti table of its generic initial ideal Gin(I) (Aramova, Herzog, Hibi).
$\operatorname{Gin}(I)$ is strongly stable $\left(\operatorname{Gin}(I): x_{i} \subset \operatorname{Gin}(I): x_{j} \forall j<i\right)$.
Viceversa, any strongly stable ideal generated in degree d has d-linear resolution (Elihaou, Kervaire).

So we are allowed to focus on the Betti tables of strongly stable
monomials ideals $J \subset S$ generated in degree d.

BETTI TABLES OF IDEALS IN A POLYNOMIAL RING

If I has d-linear resolution, then it has the same Betti table of its generic initial ideal Gin(I) (Aramova, Herzog, Hibi).
$\operatorname{Gin}(I)$ is strongly stable $\left(\operatorname{Gin}(I): x_{i} \subset \operatorname{Gin}(I): x_{j} \forall j<i\right)$.
Viceversa, any strongly stable ideal generated in degree d has d-linear resolution (Elihaou, Kervaire).

So we are allowed to focus on the Betti tables of strongly stable monomials ideals $J \subset S$ generated in degree d.

BETTI TABLES OF IDEALS IN A POLYNOMIAL RING

 The Elihaou-Kervaire formulaGiven an ideal $I \subset S=K\left[x_{0}, \ldots, x_{n}\right]$, we define:

BETTI TABLES OF IDEALS IN A POLYNOMIAL RING

Given an ideal $I \subset S=K\left[x_{0}, \ldots, x_{n}\right]$, we define:

BETTI TABLES OF IDEALS IN A POLYNOMIAL RING

Given an ideal $I \subset S=K\left[x_{0}, \ldots, x_{n}\right]$, we define:

$$
\sum_{k=0}^{n} m_{k}(I) t^{k}=\sum_{i=0}^{n} \beta_{i}(I)(t-1)^{i}
$$

Obviously to characterize the possible Betti tables of ideals
with linear resolution we can characterize the possible sequences
$\left(m_{n}(l) . m_{1}(l) \ldots m_{n}(l)\right)$.

BETTI TABLES OF IDEALS IN A POLYNOMIAL RING

Given an ideal $I \subset S=K\left[x_{0}, \ldots, x_{n}\right]$, we define:

$$
\sum_{k=0}^{n} m_{k}(I) t^{k}=\sum_{i=0}^{n} \beta_{i}(I)(t-1)^{i}
$$

Obviously to characterize the possible Betti tables of ideals with linear resolution we can characterize the possible sequences ($\left.m_{0}(I), m_{1}(I), \ldots, m_{n}(I)\right)$.

For a monomial $u \in S$, let us set $m(u)=\max \left\{i: x_{i} \mid u\right\}$. Elihaou

BETTI TABLES OF IDEALS IN A POLYNOMIAL RING

Given an ideal $I \subset S=K\left[x_{0}, \ldots, x_{n}\right]$, we define:

$$
\sum_{k=0}^{n} m_{k}(I) t^{k}=\sum_{i=0}^{n} \beta_{i}(I)(t-1)^{i}
$$

Obviously to characterize the possible Betti tables of ideals with linear resolution we can characterize the possible sequences $\left(m_{0}(I), m_{1}(I), \ldots, m_{n}(I)\right)$.

For a monomial $u \in S$, let us set $m(u)=\max \left\{i: x_{i} \mid u\right\}$. Elihaou and Kervaire showed that, if $J \subset S$ is strongly stable

BETTI TABLES OF IDEALS IN A POLYNOMIAL RING

Given an ideal $I \subset S=K\left[x_{0}, \ldots, x_{n}\right]$, we define:

$$
\sum_{k=0}^{n} m_{k}(I) t^{k}=\sum_{i=0}^{n} \beta_{i}(I)(t-1)^{i} .
$$

Obviously to characterize the possible Betti tables of ideals with linear resolution we can characterize the possible sequences $\left(m_{0}(I), m_{1}(I), \ldots, m_{n}(I)\right)$.

For a monomial $u \in S$, let us set $m(u)=\max \left\{i: x_{i} \mid u\right\}$. Elihaou and Kervaire showed that, if $J \subset S$ is strongly stable, then: $m_{k}(J)=|\{u \in \mathrm{G}(\mathrm{l}): m(u)=k\}|$

BETTI TABLES OF IDEALS IN A POLYNOMIAL RING

Given an ideal $I \subset S=K\left[x_{0}, \ldots, x_{n}\right]$, we define:

$$
\sum_{k=0}^{n} m_{k}(I) t^{k}=\sum_{i=0}^{n} \beta_{i}(I)(t-1)^{i} .
$$

Obviously to characterize the possible Betti tables of ideals with linear resolution we can characterize the possible sequences $\left(m_{0}(I), m_{1}(I), \ldots, m_{n}(I)\right)$.

For a monomial $u \in S$, let us set $m(u)=\max \left\{i: x_{i} \mid u\right\}$. Elihaou and Kervaire showed that, if $J \subset S$ is strongly stable

BETTI TABLES OF IDEALS IN A POLYNOMIAL RING

Given an ideal $I \subset S=K\left[x_{0}, \ldots, x_{n}\right]$, we define:

$$
\sum_{k=0}^{n} m_{k}(I) t^{k}=\sum_{i=0}^{n} \beta_{i}(I)(t-1)^{i}
$$

Obviously to characterize the possible Betti tables of ideals with linear resolution we can characterize the possible sequences $\left(m_{0}(I), m_{1}(I), \ldots, m_{n}(I)\right)$.

For a monomial $u \in S$, let us set $m(u)=\max \left\{i: x_{i} \mid u\right\}$. Elihaou and Kervaire showed that, if $J \subset S$ is strongly stable, then:

$$
m_{k}(J)=|\{u \in \mathrm{G}(I): m(u)=k\}|
$$

BETTI TABLES OF IDEALS IN A POLYNOMIAL RING

Given an ideal $I \subset S=K\left[x_{0}, \ldots, x_{n}\right]$, we define:

$$
\sum_{k=0}^{n} m_{k}(I) t^{k}=\sum_{i=0}^{n} \beta_{i}(I)(t-1)^{i}
$$

Obviously to characterize the possible Betti tables of ideals with linear resolution we can characterize the possible sequences $\left(m_{0}(I), m_{1}(I), \ldots, m_{n}(I)\right)$.

For a monomial $u \in S$, let us set $m(u)=\max \left\{i: x_{i} \mid u\right\}$. Elihaou and Kervaire showed that, if $J \subset S$ is strongly stable, then:

$$
m_{k}(J)=|\{u \in \mathrm{G}(I): m(u)=k\}|
$$

BETTI TABLES OF IDEALS IN A POLYNOMIAL RING

Given two monomials $u, v \subset S_{d}$, write them as $u=x_{i_{1}} \cdots x_{i_{d}}$ and

BETTI TABLES OF IDEALS IN A POLYNOMIAL RING

Given two monomials $u, v \subset S_{d}$, write them as $u=x_{i_{1}} \cdots x_{i_{d}}$ and $x_{j_{1}} \ldots x_{j_{d}}$ with $i_{1}<\ldots<i_{d}$ and $j_{1} \leqslant \ldots \leq j_{d}$, and define:

BETTI TABLES OF IDEALS IN A POLYNOMIAL RING

Given two monomials $u, v \subset S_{d}$, write them as $u=x_{i_{1}} \cdots x_{i_{d}}$ and $x_{j_{1}} \cdots x_{j_{d}}$ with $i_{1} \leq \ldots \leq i_{d}$ and $j_{1} \leq \ldots \leq j_{d}$, and define:

BETTI TABLES OF IDEALS IN A POLYNOMIAL RING

Given two monomials $u, v \subset S_{d}$, write them as $u=x_{i_{1}} \cdots x_{i_{d}}$ and $x_{j_{1}} \cdots x_{j_{d}}$ with $i_{1} \leq \ldots \leq i_{d}$ and $j_{1} \leq \ldots \leq j_{d}$, and define:

$$
u * v= \begin{cases}x_{i_{1}+j_{1}} x_{i_{2}+j_{2}} \cdots x_{i_{d}+j_{d}} & \text { if } i_{d}+j_{d} \leq n \\ 0 & \text { otherwise }\end{cases}
$$

We extend the operation to the whole S_{d} by K-linearity, and

 denote by S_{d} the gotten K-algebra.
BETTI TABLES OF IDEALS IN A POLYNOMIAL RING

Given two monomials $u, v \subset S_{d}$, write them as $u=x_{i_{1}} \cdots x_{i_{d}}$ and $x_{j_{1}} \cdots x_{j_{d}}$ with $i_{1} \leq \ldots \leq i_{d}$ and $j_{1} \leq \ldots \leq j_{d}$, and define:

$$
u * v= \begin{cases}x_{i_{1}+j_{1}} x_{i_{2}+j_{2}} \cdots x_{i_{d}+j_{d}} & \text { if } i_{d}+j_{d} \leq n \\ 0 & \text { otherwise }\end{cases}
$$

We extend the operation to the whole S_{d} by K-linearity, denote by \mathcal{S}_{d} the gotten K-algebra.

BETTI TABLES OF IDEALS IN A POLYNOMIAL RING

Given two monomials $u, v \subset S_{d}$, write them as $u=x_{i_{1}} \cdots x_{i_{d}}$ and $x_{j_{1}} \cdots x_{j_{d}}$ with $i_{1} \leq \ldots \leq i_{d}$ and $j_{1} \leq \ldots \leq j_{d}$, and define:

$$
u * v= \begin{cases}x_{i_{1}+j_{1}} x_{i_{2}+j_{2}} \cdots x_{i_{d}+j_{d}} & \text { if } i_{d}+j_{d} \leq n \\ 0 & \text { otherwise }\end{cases}
$$

We extend the operation to the whole S_{d} by K-linearity, and denote by S_{d} the gotten K-algebra. For example, if $d=4, n \geq 6$,
$u=x_{0} x_{1}^{2} x_{3}$ and $v=x_{2}^{2} x_{3}^{2}$, then:

BETTI TABLES OF IDEALS IN A POLYNOMIAL RING

Given two monomials $u, v \subset S_{d}$, write them as $u=x_{i_{1}} \cdots x_{i_{d}}$ and $x_{j_{1}} \cdots x_{j_{d}}$ with $i_{1} \leq \ldots \leq i_{d}$ and $j_{1} \leq \ldots \leq j_{d}$, and define:

$$
u * v= \begin{cases}x_{i_{1}}+j_{1} x_{i_{2}+j_{2}} \cdots x_{i_{d}+j_{d}} & \text { if } i_{d}+j_{d} \leq n, \\ 0 & \text { otherwise }\end{cases}
$$

We extend the operation to the whole S_{d} by K-linearity, and denote by \mathcal{S}_{d} the gotten K-algebra. For example, if $d=4, n \geq 6$, $u=x_{0} x_{1}^{2} x_{3}$ and $v=x_{2}^{2} x_{3}^{2}$,

BETTI TABLES OF IDEALS IN A POLYNOMIAL RING

Given two monomials $u, v \subset S_{d}$, write them as $u=x_{i_{1}} \cdots x_{i_{d}}$ and $x_{j_{1}} \cdots x_{j_{d}}$ with $i_{1} \leq \ldots \leq i_{d}$ and $j_{1} \leq \ldots \leq j_{d}$, and define:

$$
u * v= \begin{cases}x_{i_{1}}+j_{1} x_{i_{2}+j_{2}} \cdots x_{i_{d}+j_{d}} & \text { if } i_{d}+j_{d} \leq n, \\ 0 & \text { otherwise }\end{cases}
$$

We extend the operation to the whole S_{d} by K-linearity, and denote by \mathcal{S}_{d} the gotten K-algebra. For example, if $d=4, n \geq 6$, $u=x_{0} x_{1}^{2} x_{3}$ and $v=x_{2}^{2} x_{3}^{2}$, then:

$$
u * v=x_{0} x_{1} x_{1} x_{3} * x_{2} x_{2} x_{3} x_{3}=x_{2} x_{3} x_{4} x_{6}
$$

BETTI TABLES OF IDEALS IN A POLYNOMIAL RING

Given two monomials $u, v \subset S_{d}$, write them as $u=x_{i_{1}} \cdots x_{i_{d}}$ and $x_{j_{1}} \cdots x_{j_{d}}$ with $i_{1} \leq \ldots \leq i_{d}$ and $j_{1} \leq \ldots \leq j_{d}$, and define:

$$
u * v= \begin{cases}x_{i_{1}}+j_{1} x_{i_{2}+j_{2}} \cdots x_{i_{d}+j_{d}} & \text { if } i_{d}+j_{d} \leq n, \\ 0 & \text { otherwise }\end{cases}
$$

We extend the operation to the whole S_{d} by K-linearity, and denote by \mathcal{S}_{d} the gotten K-algebra. For example, if $d=4, n \geq 6$, $u=x_{0} x_{1}^{2} x_{3}$ and $v=x_{2}^{2} x_{3}^{2}$, then:

$$
u * v=x_{0} x_{1} x_{1} x_{3} * x_{2} x_{2} x_{3} x_{3}=x_{2} x_{3} x_{4} x_{6}
$$

BETTI TABLES OF IDEALS IN A POLYNOMIAL RING

Notice that \mathcal{S}_{d} has a natural \mathbb{N}-grading, namely $\mathcal{S}_{d}=\bigoplus_{k=0}^{n}\left(\mathcal{S}_{d}\right)_{k}$,

BETTI TABLES OF IDEALS IN A POLYNOMIAL RING

Notice that \mathcal{S}_{d} has a natural \mathbb{N}-grading, namely $\mathcal{S}_{d}=\bigoplus_{k=0}^{n}\left(\mathcal{S}_{d}\right)_{k}$,

$$
\left(\mathcal{S}_{d}\right)_{k}=\left\langle u \in S_{d}: m(u)=k\right\rangle .
$$

BETTI TABLES OF IDEALS IN A POLYNOMIAL RING

Notice that \mathcal{S}_{d} has a natural \mathbb{N}-grading, namely $\mathcal{S}_{d}=\bigoplus_{k=0}^{n}\left(\mathcal{S}_{d}\right)_{k}$,

$$
\left(\mathcal{S}_{d}\right)_{k}=\left\langle u \in S_{d}: m(u)=k\right\rangle
$$

One can show that there is a graded isomorphism of K-algebras:

BETTI TABLES OF IDEALS IN A POLYNOMIAL RING

Notice that \mathcal{S}_{d} has a natural \mathbb{N}-grading, namely $\mathcal{S}_{d}=\bigoplus_{k=0}^{n}\left(\mathcal{S}_{d}\right)_{k}$,

$$
\left(\mathcal{S}_{d}\right)_{k}=\left\langle u \in S_{d}: m(u)=k\right\rangle .
$$

One can show that there is a graded isomorphism of K-algebras:

BETTI TABLES OF IDEALS IN A POLYNOMIAL RING

Notice that \mathcal{S}_{d} has a natural \mathbb{N}-grading, namely $\mathcal{S}_{d}=\bigoplus_{k=0}^{n}\left(\mathcal{S}_{d}\right)_{k}$,

$$
\left(\mathcal{S}_{d}\right)_{k}=\left\langle u \in S_{d}: m(u)=k\right\rangle .
$$

One can show that there is a graded isomorphism of K-algebras:

$$
\mathcal{S}_{d} \cong \frac{K\left[y_{1}, \ldots, y_{d}\right]}{\left(y_{1}, \ldots, y_{d}\right)^{n+1}} .
$$

We showed that, if $J \subset S$ is a strongly stable monomial ideal, then
$G(J)=(G(J), *)$ is a quotient of S_{d}.

BETTI TABLES OF IDEALS IN A POLYNOMIAL RING

Notice that \mathcal{S}_{d} has a natural \mathbb{N}-grading, namely $\mathcal{S}_{d}=\bigoplus_{k=0}^{n}\left(\mathcal{S}_{d}\right)_{k}$,

$$
\left(\mathcal{S}_{d}\right)_{k}=\left\langle u \in S_{d}: m(u)=k\right\rangle .
$$

One can show that there is a graded isomorphism of K-algebras:

$$
\mathcal{S}_{d} \cong \frac{K\left[y_{1}, \ldots, y_{d}\right]}{\left(y_{1}, \ldots, y_{d}\right)^{n+1}}
$$

We showed that, if $J \subset S$ is a strongly stable monomial ideal, $G(J)=(G(J), *)$ is a quotient of S_{d}.

BETTI TABLES OF IDEALS IN A POLYNOMIAL RING

Notice that \mathcal{S}_{d} has a natural \mathbb{N}-grading, namely $\mathcal{S}_{d}=\bigoplus_{k=0}^{n}\left(\mathcal{S}_{d}\right)_{k}$,

$$
\left(\mathcal{S}_{d}\right)_{k}=\left\langle u \in S_{d}: m(u)=k\right\rangle .
$$

One can show that there is a graded isomorphism of K-algebras:

$$
\mathcal{S}_{d} \cong \frac{K\left[y_{1}, \ldots, y_{d}\right]}{\left(y_{1}, \ldots, y_{d}\right)^{n+1}}
$$

We showed that, if $J \subset S$ is a strongly stable monomial ideal, then $\mathcal{G}(J)=(\mathrm{G}(J), *)$ is a quotient of \mathcal{S}_{d}. The Hilbert function of $\mathcal{G}(J)$ is:
so $\left(m_{0}(J), m_{1}(J), \ldots, m_{n}(J)\right)$ satisfies Macaulay's conditions.

BETTI TABLES OF IDEALS IN A POLYNOMIAL RING

Notice that \mathcal{S}_{d} has a natural \mathbb{N}-grading, namely $\mathcal{S}_{d}=\bigoplus_{k=0}^{n}\left(\mathcal{S}_{d}\right)_{k}$,

$$
\left(\mathcal{S}_{d}\right)_{k}=\left\langle u \in S_{d}: m(u)=k\right\rangle
$$

One can show that there is a graded isomorphism of K-algebras:

$$
\mathcal{S}_{d} \cong \frac{K\left[y_{1}, \ldots, y_{d}\right]}{\left(y_{1}, \ldots, y_{d}\right)^{n+1}}
$$

We showed that, if $J \subset S$ is a strongly stable monomial ideal, then $\mathcal{G}(J)=(\mathrm{G}(J), *)$ is a quotient of \mathcal{S}_{d}. The Hilbert function of $\mathcal{G}(J)$ is:

$$
\operatorname{dim}_{k}\left(\mathcal{G}(J)_{k}\right)=m_{k}(J)
$$

so $\left(m_{0}(J), m_{I}(J)\right.$,
$\left.n_{n}(J)\right)$ satisfies Macaulay's conditions.

BETTI TABLES OF IDEALS IN A POLYNOMIAL RING

Notice that \mathcal{S}_{d} has a natural \mathbb{N}-grading, namely $\mathcal{S}_{d}=\bigoplus_{k=0}^{n}\left(\mathcal{S}_{d}\right)_{k}$,

$$
\left(\mathcal{S}_{d}\right)_{k}=\left\langle u \in S_{d}: m(u)=k\right\rangle
$$

One can show that there is a graded isomorphism of K-algebras:

$$
\mathcal{S}_{d} \cong \frac{K\left[y_{1}, \ldots, y_{d}\right]}{\left(y_{1}, \ldots, y_{d}\right)^{n+1}}
$$

We showed that, if $J \subset S$ is a strongly stable monomial ideal, then $\mathcal{G}(J)=(\mathrm{G}(J), *)$ is a quotient of \mathcal{S}_{d}. The Hilbert function of $\mathcal{G}(J)$ is:

$$
\operatorname{dim}_{K}\left(\mathcal{G}(J)_{k}\right)=m_{k}(J)
$$

so ($\left.m_{0}(J), m_{1}(J), \ldots, m_{n}(J)\right)$ satisfies Macaulay's conditions.

BETTI TABLES OF IDEALS IN A POLYNOMIAL RING

Notice that \mathcal{S}_{d} has a natural \mathbb{N}-grading, namely $\mathcal{S}_{d}=\bigoplus_{k=0}^{n}\left(\mathcal{S}_{d}\right)_{k}$,

$$
\left(\mathcal{S}_{d}\right)_{k}=\left\langle u \in S_{d}: m(u)=k\right\rangle .
$$

One can show that there is a graded isomorphism of K-algebras:

$$
\mathcal{S}_{d} \cong \frac{K\left[y_{1}, \ldots, y_{d}\right]}{\left(y_{1}, \ldots, y_{d}\right)^{n+1}}
$$

We showed that, if $J \subset S$ is a strongly stable monomial ideal, then $\mathcal{G}(J)=(\mathrm{G}(J), *)$ is a quotient of \mathcal{S}_{d}. The Hilbert function of $\mathcal{G}(J)$ is:

$$
\operatorname{dim}_{K}\left(\mathcal{G}(J)_{k}\right)=m_{k}(J)
$$

so $\left(m_{0}(J), m_{1}(J), \ldots, m_{n}(J)\right)$ satisfies Macaulay's conditions.

BETTI TABLES OF IDEALS IN A POLYNOMIAL RING

 Betti numbers of ideals with tinear resolution Indeed we can show that, for a sequence $\left(m_{0}, \ldots, m_{n}\right)$, TFAE:(9) There exists an ideal $1-5$ with d linear resolution such that $m_{k}(I)=m_{k}$ for all $k=0, \ldots, n$.

BETTI TABLES OF IDEALS IN A POLYNOMIAL RING

 Betti antmbers of ideals with limear mescolutionIndeed we can show that, for a sequence $\left(m_{0}, \ldots, m_{n}\right)$, TFAE:
(1) There exists an ideal $\mid \subset \mathcal{S}$ with d-linear resolution such that
$m_{k}(I)=m_{k}$ for all $k=0, \ldots, n$.

BETTI TABLES OF IDEALS IN A POLYNOMIAL RING

Indeed we can show that, for a sequence $\left(m_{0}, \ldots, m_{n}\right)$, TFAE:
(i) There exists an ideal $I \subset S$ with d-linear resolution such that $m_{k}(I)=m_{k}$ for all $k=0, \ldots, n$.
(ii) There exists a strongly stable monomial ideal $J \subset S$ generated
in degree d such that $m_{k}(J)=m_{k}$ for all $k=0, \ldots, n$.
There exists a standard graded K-algebra A with

BETTI TABLES OF IDEALS IN A POLYNOMIAL RING

Indeed we can show that, for a sequence $\left(m_{0}, \ldots, m_{n}\right)$, TFAE:
(i) There exists an ideal $I \subset S$ with d-linear resolution such that $m_{k}(I)=m_{k}$ for all $k=0, \ldots, n$.
(ii) There exists a strongly stable monomial ideal $J \subset S$ generated in degree d such that $m_{k}(J)=m_{k}$ for all $k=0, \ldots, n$.
(ii) There exists a standard graded K-algebra A with $\operatorname{dim}_{K} A_{1} \leq d$ and $\operatorname{dim}_{K} A_{k}=m_{k}$ for all $k=0, \ldots, n$.

BETTI TABLES OF IDEALS IN A POLYNOMIAL RING

Indeed we can show that, for a sequence $\left(m_{0}, \ldots, m_{n}\right)$, TFAE:
(i) There exists an ideal $I \subset S$ with d-linear resolution such that $m_{k}(I)=m_{k}$ for all $k=0, \ldots, n$.
(ii) There exists a strongly stable monomial ideal $J \subset S$ generated in degree d such that $m_{k}(J)=m_{k}$ for all $k=0, \ldots, n$.
(iii) There exists a standard graded K-algebra A with $\operatorname{dim}_{K} A_{1} \leq d$ and $\operatorname{dim}_{k} A_{k}=m_{k}$ for all $k=0, \ldots, n$.
(iv) $m_{0}=1, m_{1} \leq d, m_{i+1} \leq m_{i}^{(i)}$ for all $i=1, \ldots, n-1$.

The same result has been shown, with a different proof, by Murai.

BETTI TABLES OF IDEALS IN A POLYNOMIAL RING

Indeed we can show that, for a sequence $\left(m_{0}, \ldots, m_{n}\right)$, TFAE:
(i) There exists an ideal $I \subset S$ with d-linear resolution such that $m_{k}(I)=m_{k}$ for all $k=0, \ldots, n$.
(ii) There exists a strongly stable monomial ideal $J \subset S$ generated in degree d such that $m_{k}(J)=m_{k}$ for all $k=0, \ldots, n$.
(iii) There exists a standard graded K-algebra A with $\operatorname{dim}_{K} A_{1} \leq d$ and $\operatorname{dim}_{K} A_{k}=m_{k}$ for all $k=0, \ldots, n$.
(iv) $m_{0}=1, m_{1} \leq d, m_{i+1} \leq m_{i}^{\langle i\rangle}$ for all $i=1, \ldots, n-1$.

The same result has been shown, with a different proof, by Murai.

BETTI TABLES OF IDEALS IN A POLYNOMIAL RING

Indeed we can show that, for a sequence $\left(m_{0}, \ldots, m_{n}\right)$, TFAE:
(i) There exists an ideal $I \subset S$ with d-linear resolution such that $m_{k}(I)=m_{k}$ for all $k=0, \ldots, n$.
(ii) There exists a strongly stable monomial ideal $J \subset S$ generated in degree d such that $m_{k}(J)=m_{k}$ for all $k=0, \ldots, n$.
(iii) There exists a standard graded K-algebra A with $\operatorname{dim}_{K} A_{1} \leq d$ and $\operatorname{dim}_{K} A_{k}=m_{k}$ for all $k=0, \ldots, n$.
(iv) $m_{0}=1, m_{1} \leq d, m_{i+1} \leq m_{i}^{\langle i\rangle}$ for all $i=1, \ldots, n-1$.

The same result has been shown, with a different proof, by Murai.

BETTI TABLES OF IDEALS IN A POLYNOMIAL RING

 ExampleWe will never find an ideal $I \subset S$ with the below minimal free resolution:

BETTI TABLES OF IDEALS IN A POLYNOMIAL RING

We will never find an ideal $I \subset S$ with the below minimal free resolution:

BETTI TABLES OF IDEALS IN A POLYNOMIAL RING

We will never find an ideal $I \subset S$ with the below minimal free resolution:

$$
0 \rightarrow S(-6)^{6} \rightarrow S(-5)^{22} \rightarrow S(-4)^{29} \rightarrow S(-3)^{14} \rightarrow I \rightarrow 0
$$

Indeed we would have $m_{0}(I)=1, m_{1}(I)=3, m_{2}(I)=4$ and $m_{3}(I)=6$,

BETTI TABLES OF IDEALS IN A POLYNOMIAL RING

We will never find an ideal $I \subset S$ with the below minimal free resolution:

$$
0 \rightarrow S(-6)^{6} \rightarrow S(-5)^{22} \rightarrow S(-4)^{29} \rightarrow S(-3)^{14} \rightarrow 1 \rightarrow 0
$$

Indeed we would have $m_{0}(I)=1, m_{1}(I)=3, m_{2}(I)=4$ and $m_{3}(I)=6$,

BETTI TABLES OF IDEALS IN A POLYNOMIAL RING

We will never find an ideal $I \subset S$ with the below minimal free resolution:

$$
0 \rightarrow S(-6)^{6} \rightarrow S(-5)^{22} \rightarrow S(-4)^{29} \rightarrow S(-3)^{14} \rightarrow I \rightarrow 0
$$

Indeed we would have $m_{0}(I)=1, m_{1}(I)=3, m_{2}(I)=4$ and $m_{3}(I)=6$,

$$
\text { but } m_{2}(1)^{\langle 2\rangle}=4^{\langle 2\rangle}=5<6=m_{3}(1) \text {. }
$$

BETTI TABLES OF IDEALS IN A POLYNOMIAL RING

 Componentwise linear idealsOur initial dream was to characterize the possible Betti tables of componentwise linear ideals $I \subset S$, that is such that $/ / \mathrm{m})$ has m-linear resolution for all m

BETTI TABLES OF IDEALS IN A POLYNOMIAL RING

Our initial dream was to characterize the possible Betti tables of componentwise linear ideals $I \subset S$
has

BETTI TABLES OF IDEALS IN A POLYNOMIAL RING

Our initial dream was to characterize the possible Betti tables of componentwise linear ideals $I \subset S$, that is such that $\left.\right|_{\langle m\rangle}$ has m-linear resolution for all m

The interest in this comes from the fact that the generic initial ideal of every homogencous ideal is componentwvise lincar.

BETTI TABLES OF IDEALS IN A POLYNOMIAL RING

Our initial dream was to characterize the possible Betti tables of componentwise linear ideals $I \subset S$, that is such that $I_{\langle m\rangle}$ has m-linear resolution for all m, where $\Lambda_{\langle m\rangle}=(f \in I: \operatorname{deg}(f)=m)$.

The interest in this comes from the fact that the generic initial ideal of every homogeneous ideal is componentwise linear. Our characterization of the Betti tables of ideals with linear resolution gives some necessary conditions that a Betti table of a componentwise linear ideal must satisfy.

BETTI TABLES OF IDEALS IN A POLYNOMIAL RING

Our initial dream was to characterize the possible Betti tables of componentwise linear ideals $I \subset S$, that is such that $\rangle_{\langle m\rangle}$ has m-linear resolution for all m, where $I_{\langle m\rangle}=(f \in I: \operatorname{deg}(f)=m)$.
The interest in this comes from the fact that the generic initial ideal of every homogeneous ideal is componentwise linear.

Our characterization of the Betti tables of ideals with linear
resolution gives some necessary conditions that a Betti table of a componentwise linear ideal must satisfy. We show that these conditions are also sufficient up to three variables.

BETTI TABLES OF IDEALS IN A POLYNOMIAL RING

Our initial dream was to characterize the possible Betti tables of componentwise linear ideals $I \subset S$, that is such that $\left.\right|_{\langle m\rangle}$ has m-linear resolution for all m, where $I_{\langle m\rangle}=(f \in I: \operatorname{deg}(f)=m)$.
The interest in this comes from the fact that the generic initial ideal of every homogeneous ideal is componentwise linear.

Our characterization of the Betti tables of ideals with linear resolution gives some necessary conditions that a Betti table of a componentwise linear ideal must satisfy. \qquad
conditions are also sufficient up to three variables.
\qquad

BETTI TABLES OF IDEALS IN A POLYNOMIAL RING

Our initial dream was to characterize the possible Betti tables of componentwise linear ideals $I \subset S$, that is such that $\left.\right|_{\langle m\rangle}$ has m-linear resolution for all m, where $I_{\langle m\rangle}=(f \in I: \operatorname{deg}(f)=m)$.
The interest in this comes from the fact that the generic initial ideal of every homogeneous ideal is componentwise linear.

Our characterization of the Betti tables of ideals with linear resolution gives some necessary conditions that a Betti table of a componentwise linear ideal must satisfy. We show that these conditions are also sufficient up to three variables.
this is no longer true when the number of variables is bigger.

BETTI TABLES OF IDEALS IN A POLYNOMIAL RING

Our initial dream was to characterize the possible Betti tables of componentwise linear ideals $I \subset S$, that is such that ${ }_{\langle m\rangle}$ has m-linear resolution for all m, where $I_{\langle m\rangle}=(f \in I: \operatorname{deg}(f)=m)$.
The interest in this comes from the fact that the generic initial ideal of every homogeneous ideal is componentwise linear.

Our characterization of the Betti tables of ideals with linear resolution gives some necessary conditions that a Betti table of a componentwise linear ideal must satisfy. We show that these conditions are also sufficient up to three variables. Unfortunately, this is no longer true when the number of variables is bigger.

BETTI TABLES OF IDEALS IN A POLYNOMIAL RING

Our initial dream was to characterize the possible Betti tables of componentwise linear ideals $I \subset S$, that is such that ${ }_{\langle m\rangle}$ has m-linear resolution for all m, where $I_{\langle m\rangle}=(f \in I: \operatorname{deg}(f)=m)$.
The interest in this comes from the fact that the generic initial ideal of every homogeneous ideal is componentwise linear.

Our characterization of the Betti tables of ideals with linear resolution gives some necessary conditions that a Betti table of a componentwise linear ideal must satisfy. We show that these conditions are also sufficient up to three variables. Unfortunately, this is no longer true when the number of variables is bigger.

BETTI TABLES OF IDEALS IN A POLYNOMIAL RING

 Betti tables do not detect componentwise timearityLet us consider the following two ideals in $K\left[x_{0}, x_{1}, x_{2}\right]$:

BETTI TABLES OF IDEALS IN A POLYNOMIAL RING

Let us consider the following two ideals in $K\left[x_{0}, x_{1}, x_{2}\right]$:

BETTI TABLES OF IDEALS IN A POLYNOMIAL RING

Let us consider the following two ideals in $K\left[x_{0}, x_{1}, x_{2}\right]$:

$$
I=\left(x_{0}^{4}, x_{0}^{3} x_{1}, x_{0}^{2} x_{1}^{2}, x_{0} x_{1}^{3}, x_{1}^{4}, x_{0}^{3} x_{2}, x_{0}^{2} x_{1} x_{2}^{2}, x_{0}^{2} x_{2}^{3}, x_{0} x_{1}^{2} x_{2}^{2}\right)
$$

One can check that I is componentwise linear

BETTI TABLES OF IDEALS IN A POLYNOMIAL RING

Let us consider the following two ideals in $K\left[x_{0}, x_{1}, x_{2}\right]$:

$$
\begin{array}{r}
I=\left(x_{0}^{4}, x_{0}^{3} x_{1}, x_{0}^{2} x_{1}^{2}, x_{0} x_{1}^{3}, x_{1}^{4}, x_{0}^{3} x_{2}, x_{0}^{2} x_{1} x_{2}^{2}, x_{0}^{2} x_{2}^{3}, x_{0} x_{1}^{2} x_{2}^{2}\right), \\
J=\left(x_{0}^{4}, x_{0}^{3} x_{1}, x_{0}^{2} x_{1}^{2}, x_{0}^{3} x_{2}, x_{0} x_{1}^{2} x_{2}, x_{0} x_{1} x_{2}^{2}, x_{0} x_{1}^{4}, x_{0}^{2} x_{2}^{3}, x_{1}^{4} x_{2}\right) .
\end{array}
$$

One can check that I is componentwise linear, whereas J is not.

BETTI TABLES OF IDEALS IN A POLYNOMIAL RING

Let us consider the following two ideals in $K\left[x_{0}, x_{1}, x_{2}\right]$:

$$
\begin{array}{r}
I=\left(x_{0}^{4}, x_{0}^{3} x_{1}, x_{0}^{2} x_{1}^{2}, x_{0} x_{1}^{3}, x_{1}^{4}, x_{0}^{3} x_{2}, x_{0}^{2} x_{1} x_{2}^{2}, x_{0}^{2} x_{2}^{3}, x_{0} x_{1}^{2} x_{2}^{2}\right), \\
J=\left(x_{0}^{4}, x_{0}^{3} x_{1}, x_{0}^{2} x_{1}^{2}, x_{0}^{3} x_{2}, x_{0} x_{1}^{2} x_{2}, x_{0} x_{1} x_{2}^{2}, x_{0} x_{1}^{4}, x_{0}^{2} x_{2}^{3}, x_{1}^{4} x_{2}\right) .
\end{array}
$$

One can check that / is componentwise linear,

BETTI TABLES OF IDEALS IN A POLYNOMIAL RING

Let us consider the following two ideals in $K\left[x_{0}, x_{1}, x_{2}\right]$:

$$
\begin{array}{r}
I=\left(x_{0}^{4}, x_{0}^{3} x_{1}, x_{0}^{2} x_{1}^{2}, x_{0} x_{1}^{3}, x_{1}^{4}, x_{0}^{3} x_{2}, x_{0}^{2} x_{1} x_{2}^{2}, x_{0}^{2} x_{2}^{3}, x_{0} x_{1}^{2} x_{2}^{2}\right), \\
J=\left(x_{0}^{4}, x_{0}^{3} x_{1}, x_{0}^{2} x_{1}^{2}, x_{0}^{3} x_{2}, x_{0} x_{1}^{2} x_{2}, x_{0} x_{1} x_{2}^{2}, x_{0} x_{1}^{4}, x_{0}^{2} x_{2}^{3}, x_{1}^{4} x_{2}\right) .
\end{array}
$$

One can check that I is componentwise linear, whereas J is not. However their Betti tables are the same, namely:

BETTI TABLES OF IDEALS IN A POLYNOMIAL RING

Let us consider the following two ideals in $K\left[x_{0}, x_{1}, x_{2}\right]$:

$$
\begin{array}{r}
I=\left(x_{0}^{4}, x_{0}^{3} x_{1}, x_{0}^{2} x_{1}^{2}, x_{0} x_{1}^{3}, x_{1}^{4}, x_{0}^{3} x_{2}, x_{0}^{2} x_{1} x_{2}^{2}, x_{0}^{2} x_{2}^{3}, x_{0} x_{1}^{2} x_{2}^{2}\right), \\
J=\left(x_{0}^{4}, x_{0}^{3} x_{1}, x_{0}^{2} x_{1}^{2}, x_{0}^{3} x_{2}, x_{0} x_{1}^{2} x_{2}, x_{0} x_{1} x_{2}^{2}, x_{0} x_{1}^{4}, x_{0}^{2} x_{2}^{3}, x_{1}^{4} x_{2}\right) .
\end{array}
$$

One can check that $/$ is componentwise linear, whereas J is not. However their Betti tables are the same, namely:

BETTI TABLES OF IDEALS IN A POLYNOMIAL RING

Let us consider the following two ideals in $K\left[x_{0}, x_{1}, x_{2}\right]$:

$$
\begin{array}{r}
I=\left(x_{0}^{4}, x_{0}^{3} x_{1}, x_{0}^{2} x_{1}^{2}, x_{0} x_{1}^{3}, x_{1}^{4}, x_{0}^{3} x_{2}, x_{0}^{2} x_{1} x_{2}^{2}, x_{0}^{2} x_{2}^{3}, x_{0} x_{1}^{2} x_{2}^{2}\right), \\
J=\left(x_{0}^{4}, x_{0}^{3} x_{1}, x_{0}^{2} x_{1}^{2}, x_{0}^{3} x_{2}, x_{0} x_{1}^{2} x_{2}, x_{0} x_{1} x_{2}^{2}, x_{0} x_{1}^{4}, x_{0}^{2} x_{2}^{3}, x_{1}^{4} x_{2}\right) .
\end{array}
$$

One can check that $/$ is componentwise linear, whereas J is not. However their Betti tables are the same, namely:

$$
\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
6 & 6 & 1 \\
3 & 6 & 3
\end{array}\right)
$$

BETTI TABLES OF IDEALS IN A POLYNOMIAL RING

Let us consider the following two ideals in $K\left[x_{0}, x_{1}, x_{2}\right]$:

$$
\begin{array}{r}
I=\left(x_{0}^{4}, x_{0}^{3} x_{1}, x_{0}^{2} x_{1}^{2}, x_{0} x_{1}^{3}, x_{1}^{4}, x_{0}^{3} x_{2}, x_{0}^{2} x_{1} x_{2}^{2}, x_{0}^{2} x_{2}^{3}, x_{0} x_{1}^{2} x_{2}^{2}\right), \\
J=\left(x_{0}^{4}, x_{0}^{3} x_{1}, x_{0}^{2} x_{1}^{2}, x_{0}^{3} x_{2}, x_{0} x_{1}^{2} x_{2}, x_{0} x_{1} x_{2}^{2}, x_{0} x_{1}^{4}, x_{0}^{2} x_{2}^{3}, x_{1}^{4} x_{2}\right) .
\end{array}
$$

One can check that $/$ is componentwise linear, whereas J is not. However their Betti tables are the same, namely:

$$
\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
6 & 6 & 1 \\
3 & 6 & 3
\end{array}\right)
$$

BETTI TABLES OF IDEALS IN A POLYNOMIAL RING

 characterization of extremat Betti numbersIf we restrict our attention to the extremal Betti numbers of a componentwise linear ideal, we are able to show that

BETTI TABLES OF IDEALS IN A POLYNOMIAL RING

If we restrict our attention to the extremal Betti numbers of a componentwise linear ideal, we are able to show that

BETTI TABLES OF IDEALS IN A POLYNOMIAL RING

If we restrict our attention to the extremal Betti numbers of a componentwise linear ideal, we are able to show that "the necessary conditions discussed above become sufficient"!

Exploiting a result of Bayer, Charalambous and Popescu, this leads
to a numerical characterization of the positive integers:

BETTI TABLES OF IDEALS IN A POLYNOMIAL RING

If we restrict our attention to the extremal Betti numbers of a componentwise linear ideal, we are able to show that "the necessary conditions discussed above become sufficient"!

Exploiting a result of Bayer, Charalambous and Popescu, this leads to a numerical characterization of the positive integers:

BETTI TABLES OF IDEALS IN A POLYNOMIAL RING

If we restrict our attention to the extremal Betti numbers of a componentwise linear ideal, we are able to show that "the necessary conditions discussed above become sufficient"!

Exploiting a result of Bayer, Charalambous and Popescu, this leads to a numerical characterization of the positive integers:
(i) $0<i_{1}<i_{2}<\ldots<i_{k} \leq n$
$d_{1}>d_{2}>\ldots>d_{k}>0$

BETTI TABLES OF IDEALS IN A POLYNOMIAL RING

If we restrict our attention to the extremal Betti numbers of a componentwise linear ideal, we are able to show that "the necessary conditions discussed above become sufficient"!

Exploiting a result of Bayer, Charalambous and Popescu, this leads to a numerical characterization of the positive integers:
(i) $0<i_{1}<i_{2}<\ldots<i_{k} \leq n$
(ii) $d_{1}>d_{2}>\ldots>d_{k}>0$
$b_{1}, b_{2}, \ldots, b_{k}$
such that exists a graded ideal $I \subset S$ with extremal Betti numbers:

BETTI TABLES OF IDEALS IN A POLYNOMIAL RING

If we restrict our attention to the extremal Betti numbers of a componentwise linear ideal, we are able to show that "the necessary conditions discussed above become sufficient"!

Exploiting a result of Bayer, Charalambous and Popescu, this leads to a numerical characterization of the positive integers:
(i) $0<i_{1}<i_{2}<\ldots<i_{k} \leq n$
(ii) $d_{1}>d_{2}>\ldots>d_{k}>0$
(iii) $b_{1}, b_{2}, \ldots, b_{k}$
such that exists a graded ideal $I \subset S$ with extremal Betti numbers:

BETTI TABLES OF IDEALS IN A POLYNOMIAL RING

If we restrict our attention to the extremal Betti numbers of a componentwise linear ideal, we are able to show that "the necessary conditions discussed above become sufficient"!

Exploiting a result of Bayer, Charalambous and Popescu, this leads to a numerical characterization of the positive integers:
(i) $0<i_{1}<i_{2}<\ldots<i_{k} \leq n$
(ii) $d_{1}>d_{2}>\ldots>d_{k}>0$
(iii) $b_{1}, b_{2}, \ldots, b_{k}$
such that exists a graded ideal $I \subset S$ with extremal Betti numbers:

BETTI TABLES OF IDEALS IN A POLYNOMIAL RING

If we restrict our attention to the extremal Betti numbers of a componentwise linear ideal, we are able to show that "the necessary conditions discussed above become sufficient"!

Exploiting a result of Bayer, Charalambous and Popescu, this leads to a numerical characterization of the positive integers:
(i) $0<i_{1}<i_{2}<\ldots<i_{k} \leq n$
(ii) $d_{1}>d_{2}>\ldots>d_{k}>0$
(iii) $b_{1}, b_{2}, \ldots, b_{k}$
such that exists a graded ideal $I \subset S$ with extremal Betti numbers:

$$
\beta_{i_{p}, i_{p}+d_{p}}(I)=b_{p} \quad \forall p=1, \ldots, k
$$

BETTI TABLES OF IDEALS IN A POLYNOMIAL RING

If we restrict our attention to the extremal Betti numbers of a componentwise linear ideal, we are able to show that "the necessary conditions discussed above become sufficient"!

Exploiting a result of Bayer, Charalambous and Popescu, this leads to a numerical characterization of the positive integers:
(i) $0<i_{1}<i_{2}<\ldots<i_{k} \leq n$
(ii) $d_{1}>d_{2}>\ldots>d_{k}>0$
(iii) $b_{1}, b_{2}, \ldots, b_{k}$
such that exists a graded ideal $I \subset S$ with extremal Betti numbers:

$$
\beta_{i_{p}, i_{p}+d_{p}}(I)=b_{p} \quad \forall p=1, \ldots, k
$$

BETTI TABLES OF IDEALS IN A POLYNOMIAL RING

BETTI TABLES OF IDEALS IN A POLYNOMIAL RING

BETTI TABLES OF IDEALS IN A POLYNOMIAL RING

 Sketch of the proofThe above numerical characterization requires some technical definitions, so I prefer to quickly explain how we could get it:

BETTI TABLES OF IDEALS IN A POLYNOMIAL RING

 Sheter of the proorThe above numerical characterization requires some technical definitions, prefer to quickly explain how we could get it: In

BETTI TABLES OF IDEALS IN A POLYNOMIAL RING

 shetritor the proorThe above numerical characterization requires some technical definitions, so I prefer to quickly explain how we could get it:

BETTI TABLES OF IDEALS IN A POLYNOMIAL RING

The above numerical characterization requires some technical definitions, so I prefer to quickly explain how we could get it: In the proof of our result on the Betti numbers of ideals with linear resolution, we actually construct a special strongly stable ideal generated in degree d, termed piecewise lexsegment, with prescribed Betti numbers. One of the obstructions to characterize the Betti tables of componentwise linear ideals, is that a piecewise lexsegment ideal does not keep its special feature when multiplied with the maximal ideal

BETTI TABLES OF IDEALS IN A POLYNOMIAL RING

The above numerical characterization requires some technical definitions, so I prefer to quickly explain how we could get it: In the proof of our result on the Betti numbers of ideals with linear resolution, we actually construct a special strongly stable ideal generated in degree d, termed piecewise lexsegment, with prescribed Betti numbers.

BETTI TABLES OF IDEALS IN A POLYNOMIAL RING

The above numerical characterization requires some technical definitions, so I prefer to quickly explain how we could get it: In the proof of our result on the Betti numbers of ideals with linear resolution, we actually construct a special strongly stable ideal generated in degree d, termed piecewise lexsegment, with prescribed Betti numbers. One of the obstructions to characterize the Betti tables of componentwise linear ideals, is that a piecewise lexsegment ideal does not keep its special feature when multiplied with the maximal ideal.
same extremal Betti number (in this case there is only the one
given by the projective dimension)

BETTI TABLES OF IDEALS IN A POLYNOMIAL RING

The above numerical characterization requires some technical definitions, so I prefer to quickly explain how we could get it: In the proof of our result on the Betti numbers of ideals with linear resolution, we actually construct a special strongly stable ideal generated in degree d, termed piecewise lexsegment, with prescribed Betti numbers. One of the obstructions to characterize the Betti tables of componentwise linear ideals, is that a piecewise lexsegment ideal does not keep its special feature when multiplied with the maximal ideal. Many piecewise lexsegment ideals have the same extremal Betti number (in this case there is only the one given by the projective dimension):

BETTI TABLES OF IDEALS IN A POLYNOMIAL RING

The above numerical characterization requires some technical definitions, so I prefer to quickly explain how we could get it: In the proof of our result on the Betti numbers of ideals with linear resolution, we actually construct a special strongly stable ideal generated in degree d, termed piecewise lexsegment, with prescribed Betti numbers. One of the obstructions to characterize the Betti tables of componentwise linear ideals, is that a piecewise lexsegment ideal does not keep its special feature when multiplied with the maximal ideal. Many piecewise lexsegment ideals have the same extremal Betti number (in this case there is only the one given by the projective dimension): Roughly speaking, we are able to choose a special one among them, which keeps enough of its properties when multiplied with the maximal ideal.

BETTI TABLES OF IDEALS IN A POLYNOMIAL RING

The above numerical characterization requires some technical definitions, so I prefer to quickly explain how we could get it: In the proof of our result on the Betti numbers of ideals with linear resolution, we actually construct a special strongly stable ideal generated in degree d, termed piecewise lexsegment, with prescribed Betti numbers. One of the obstructions to characterize the Betti tables of componentwise linear ideals, is that a piecewise lexsegment ideal does not keep its special feature when multiplied with the maximal ideal. Many piecewise lexsegment ideals have the same extremal Betti number (in this case there is only the one given by the projective dimension): Roughly speaking, we are able to choose a special one among them, which keeps enough of its properties when multiplied with the maximal ideal.

