COHOMOLOGICAL DIMENSION, CONNECTEDNESS PROPERTIES AND INITIAL IDEALS

COHOMOLOGICAL DIMENSION, CONNECTEDNESS PROPERTIES AND INITIAL IDEALS

Matteo Varbaro

COHOMOLOGICAL DIMENSION, CONNECTEDNESS PROPERTIES AND INITIAL IDEALS

Matteo Varbaro

Dipartimento di Matematica
Universitá di Genova

We start with a simple question

We start with a simple question

Given $J=(u a, z a, y a, x a, u v, z v, y v, x v, x y u, x y z, x z u, y z u)$ in $P:=k[x, y, z, u, v, w, a]$ is it possible to find:

We start with a simple question

Given $J=(u a, z a, y a, x a, u v, z v, y v, x v, x y u, x y z, x z u, y z u)$ in $P:=k[x, y, z, u, v, w, a]$ is it possible to find:
(a) a term order \prec on P

We start with a simple question

Given $J=(u a, z a, y a, x a, u v, z v, y v, x v, x y u, x y z, x z u, y z u)$ in $P:=k[x, y, z, u, v, w, a]$ is it possible to find:

$$
\text { (a) a term order } \prec \text { on } P
$$

(b) $I \subseteq P$ homogeneus such that P / I is Cohen-Macaulay

We start with a simple question

Given $J=(u a, z a, y a, x a, u v, z v, y v, x v, x y u, x y z, x z u, y z u)$ in $P:=k[x, y, z, u, v, w, a]$ is it possible to find:

$$
\text { (a) a term order } \prec \text { on } P
$$

(b) $I \subseteq P$ homogeneus such that P / I is Cohen-Macaulay such that:

We start with a simple question

Given $J=(u a, z a, y a, x a, u v, z v, y v, x v, x y u, x y z, x z u, y z u)$ in $P:=k[x, y, z, u, v, w, a]$ is it possible to find:

$$
\text { (a) a term order } \prec \text { on } P
$$

(b) $I \subseteq P$ homogeneus such that P / I is Cohen-Macaulay
such that:

$$
\sqrt{L T_{\prec}(I)}=J ?
$$

The answer to the question is NO

The answer to the question is NO

We will see this fact as a consequence of the main result.

The answer to the question is NO

We will see this fact as a consequence of the main result.

However notice that:

The answer to the question is NO

We will see this fact as a consequence of the main result.

However notice that:
the Hilbert series of P / J doesn't obstruct the existence of I

The answer to the question is NO

We will see this fact as a consequence of the main result.

However notice that:
the Hilbert series of P / J doesn't obstruct the existence of I

In fact the h-vector of P / J is admissible, since

The answer to the question is NO

We will see this fact as a consequence of the main result.

However notice that:
the Hilbert series of P / J doesn't obstruct the existence of I

In fact the h-vector of P / J is admissible, since

$$
H S_{P / J}(z)=\frac{h(z)}{(1-z)^{2}}=\frac{1+4 z+2 z^{2}}{(1-z)^{2}}
$$

MAIN GOAL

MAIN GOAL

We will generalize a theorem due to Kalkbrener and Sturmfels:

MAIN GOAL

We will generalize a theorem due to Kalkbrener and Sturmfels:
[KaSt, 1995] $k=\bar{k}, I \subseteq P:=k\left[x_{1}, \ldots, x_{n}\right]$ and $\omega \in\left(\mathbb{Z}_{+}\right)^{n}$.
If I is a prime ideal, then $P / \operatorname{in}_{\omega}(I)$ is connected in codimension 1.

MAIN GOAL

We will generalize a theorem due to Kalkbrener and Sturmfels:
[KaSt, 1995] $k=\bar{k}, I \subseteq P:=k\left[x_{1}, \ldots, x_{n}\right]$ and $\omega \in\left(\mathbb{Z}_{+}\right)^{n}$.
If I is a prime ideal, then $P / \operatorname{in}_{\omega}(I)$ is connected in codimension 1.
So, in particular, they proved that for every term order \prec on P

MAIN GOAL

We will generalize a theorem due to Kalkbrener and Sturmfels:
[KaSt, 1995] $k=\bar{k}, I \subseteq P:=k\left[x_{1}, \ldots, x_{n}\right]$ and $\omega \in\left(\mathbb{Z}_{+}\right)^{n}$.
If I is a prime ideal, then $P / \operatorname{in}_{\omega}(I)$ is connected in codimension 1.
So, in particular, they proved that for every term order \prec on P

$$
\text { I prime } \Rightarrow P / L T_{\prec}(I) \text { connected in codimension } 1
$$

References

References

- [HuTa, 2004] C. Huneke, A. Taylor, Lectures on Local Cohomology, notes for students of the University of Chicago, 2004.

References

- [HuTa, 2004] C. Huneke, A. Taylor, Lectures on Local Cohomology, notes for students of the University of Chicago, 2004.
- [KaSt, 1995] M. Kalkbrener, B. Sturmfels, Initial Complexes of Prime Ideals, Advanced in Mathematics, V. 116, 1995.

References

- [HuTa, 2004] C. Huneke, A. Taylor, Lectures on Local Cohomology, notes for students of the University of Chicago, 2004.
- [KaSt, 1995] M. Kalkbrener, B. Sturmfels, Initial Complexes of Prime Ideals, Advanced in Mathematics, V. 116, 1995.
- [V, 2008] M. Varbaro, Cohomological dimension, connectedness properties and initial ideals, arXiv:0802.1800, 2008.

Structure of the seminary

Structure of the seminary

Two principal chapters:

Structure of the seminary

Two principal chapters:

- Local cohomology and connectedness

Structure of the seminary

Two principal chapters:

- Local cohomology and connectedness

The main result joins: cohomological dimension of an ideal in a local complete ring with connectedness properties of the spectrum of the quotient ring.

Structure of the seminary

Two principal chapters:

- Local cohomology and connectedness

The main result joins: cohomological dimension of an ideal in a local complete ring with connectedness properties of the spectrum of the quotient ring.

Translate this result from complete to graded case.

Structure of the seminary

Two principal chapters:

- Local cohomology and connectedness

The main result joins: cohomological dimension of an ideal in a local complete ring with connectedness properties of the spectrum of the quotient ring.

Translate this result from complete to graded case.

- Applications to initial ideals

Structure of the seminary

Two principal chapters:

- Local cohomology and connectedness

The main result joins: cohomological dimension of an ideal in a local complete ring with connectedness properties of the spectrum of the quotient ring.

Translate this result from complete to graded case.

- Applications to initial ideals

We will use the first part to prove the main result.

PART 1
 LOCAL COHOMOLOGY AND CONNECTEDNESS

Notations, definitions and "basic" results

Notations, definitions and "basic" results

- R noetherian ring, commutative with $1, \mathfrak{a} \subseteq R$ ideal.

Notations, definitions and "basic" results

- R noetherian ring, commutative with $1, \mathfrak{a} \subseteq R$ ideal.
$-\operatorname{cd}(R ; \mathfrak{a})$ is the infimum $d \in \mathbb{N}$ s.t. $H_{\mathfrak{a}}^{i}(M)=0$ for every R-module M and $i \geq d$.

Notations, definitions and "basic" results

- R noetherian ring, commutative with $1, \mathfrak{a} \subseteq R$ ideal.
$-\operatorname{cd}(R ; \mathfrak{a})$ is the infimum $d \in \mathbb{N}$ s.t. $H_{\mathfrak{a}}^{i}(R)=0$ for every $i \geq d$.

Notations, definitions and "basic" results

- R noetherian ring, commutative with $1, \mathfrak{a} \subseteq R$ ideal.
$-\operatorname{cd}(R ; \mathfrak{a})$ is the infimum $d \in \mathbb{N}$ s.t. $H_{\mathfrak{a}}^{i}(R)=0$ for every $i \geq d$.
$-\operatorname{ara}_{R}(\mathfrak{a})$ is the infimum $r \in \mathbb{N}$ such that there exist $f_{1}, \ldots, f_{r} \in R$ such that $\sqrt{\mathfrak{a}}=\sqrt{\left(f_{1}, \ldots, f_{r}\right)}$.

Notations, definitions and "basic" results

- R noetherian ring, commutative with $1, \mathfrak{a} \subseteq R$ ideal.
$-\operatorname{cd}(R ; \mathfrak{a})$ is the infimum $d \in \mathbb{N}$ s.t. $H_{\mathfrak{a}}^{i}(R)=0$ for every $i \geq d$.
- $\operatorname{ara}(\mathfrak{a})$ is the infimum $r \in \mathbb{N}$ such that there exist $f_{1}, \ldots, f_{r} \in R$ such that $\sqrt{\mathfrak{a}}=\sqrt{\left(f_{1}, \ldots, f_{r}\right)}$.

Notations, definitions and "basic" results

- R noetherian ring, commutative with $1, \mathfrak{a} \subseteq R$ ideal.
$-\operatorname{cd}(R ; \mathfrak{a})$ is the infimum $d \in \mathbb{N}$ s.t. $H_{\mathfrak{a}}^{i}(R)=0$ for every $i \geq d$.
- $\operatorname{ara}(\mathfrak{a})$ is the infimum $r \in \mathbb{N}$ such that there exist $f_{1}, \ldots, f_{r} \in R$ such that $\sqrt{\mathfrak{a}}=\sqrt{\left(f_{1}, \ldots, f_{r}\right)}$.
$-\operatorname{ht}(\mathfrak{a}) \leq \operatorname{cd}(R ; \mathfrak{a}) \leq \operatorname{ara}(\mathfrak{a})$.

Notations, definitions and "basic" results

- R noetherian ring, commutative with $1, \mathfrak{a} \subseteq R$ ideal.
$-\operatorname{cd}(R ; \mathfrak{a})$ is the infimum $d \in \mathbb{N}$ s.t. $H_{\mathfrak{a}}^{i}(R)=0$ for every $i \geq d$.
- $\operatorname{ara}(\mathfrak{a})$ is the infimum $r \in \mathbb{N}$ such that there exist $f_{1}, \ldots, f_{r} \in R$ such that $\sqrt{\mathfrak{a}}=\sqrt{\left(f_{1}, \ldots, f_{r}\right)}$.
$-\operatorname{ht}(\mathfrak{a}) \leq \operatorname{cd}(R ; \mathfrak{a}) \leq \operatorname{ara}(\mathfrak{a})$.
$-\operatorname{ht}(\mathfrak{a}) \leq \operatorname{cd}(R ; \mathfrak{a}) \leq \operatorname{dim} R$.

Notations, definitions and "basic" results

- R noetherian ring, commutative with $1, \mathfrak{a} \subseteq R$ ideal.
$-\operatorname{cd}(R ; \mathfrak{a})$ is the infimum $d \in \mathbb{N}$ s.t. $H_{\mathfrak{a}}^{i}(R)=0$ for every $i \geq d$.
- $\operatorname{ara}(\mathfrak{a})$ is the infimum $r \in \mathbb{N}$ such that there exist $f_{1}, \ldots, f_{r} \in R$ such that $\sqrt{\mathfrak{a}}=\sqrt{\left(f_{1}, \ldots, f_{r}\right)}$.
$-\operatorname{ht}(\mathfrak{a}) \leq \operatorname{cd}(R ; \mathfrak{a}) \leq \operatorname{ara}(\mathfrak{a})$.
$-\operatorname{ht}(\mathfrak{a}) \leq \operatorname{cd}(R ; \mathfrak{a}) \leq \operatorname{dim} R$.
$-\operatorname{ht}(\mathfrak{a}) \leq \operatorname{ara}(\mathfrak{a}) \leq \operatorname{dim} R+1$.

Notations, definitions and "basic" results

- R noetherian ring, commutative with $1, \mathfrak{a} \subseteq R$ ideal.
$-\operatorname{cd}(R ; \mathfrak{a})$ is the infimum $d \in \mathbb{N}$ s.t. $H_{\mathfrak{a}}^{i}(R)=0$ for every $i \geq d$.
- $\operatorname{ara}(\mathfrak{a})$ is the infimum $r \in \mathbb{N}$ such that there exist $f_{1}, \ldots, f_{r} \in R$ such that $\sqrt{\mathfrak{a}}=\sqrt{\left(f_{1}, \ldots, f_{r}\right)}$.
- If R is local or a polinomial ring, then

$$
\operatorname{ht}(\mathfrak{a}) \leq \operatorname{cd}(R ; \mathfrak{a}) \leq \operatorname{ara}(\mathfrak{a}) \leq \operatorname{dim} R .
$$

Connectivity dimension

Connectivity dimension

Let T be a noetherian topological space.

Connectivity dimension

Let T be a noetherian topological space.
$c(T)$ is the infimum of $\operatorname{dim} Z$ such that $Z \subseteq T$ is closed and
$T \backslash Z$ is disconnected, with \emptyset disconnected of dimension -1 .

Connectivity dimension

Let T be a noetherian topological space.
$c(T)$ is the infimum of $\operatorname{dim} Z$ such that $Z \subseteq T$ is closed and
$T \backslash Z$ is disconnected, with \emptyset disconnected of dimension -1 .

EXAMPLES

Connectivity dimension

Let T be a noetherian topological space.
$c(T)$ is the infimum of $\operatorname{dim} Z$ such that $Z \subseteq T$ is closed and
$T \backslash Z$ is disconnected, with \emptyset disconnected of dimension -1 .

EXAMPLES
T is connected if and only if $\mathrm{c}(T) \geq 0$.

Connectivity dimension

Let T be a noetherian topological space.
$c(T)$ is the infimum of $\operatorname{dim} Z$ such that $Z \subseteq T$ is closed and
$T \backslash Z$ is disconnected, with \emptyset disconnected of dimension -1 .

EXAMPLES
If T is irreducible, then $\mathrm{c}(T)=\operatorname{dim} T$.

Connectivity dimension

Let T be a noetherian topological space.
$c(T)$ is the infimum of $\operatorname{dim} Z$ such that $Z \subseteq T$ is closed and
$T \backslash Z$ is disconnected, with \emptyset disconnected of dimension -1 .

EXAMPLES

$$
\begin{gathered}
\mathfrak{a}=(x z, x w, y z, y w) \subseteq \mathbb{C}[x, y, z, w], T=\mathcal{Z}(\mathfrak{a}) \subseteq \mathbb{A}^{4} \\
T=\mathcal{Z}(x, y) \cup \mathcal{Z}(z, w), \text { and } \mathcal{Z}(x, y) \cap \mathcal{Z}(z, w)=\{(0,0,0,0)\} \\
\text { so } \operatorname{dim} T=2 \text { and } c(T)=0
\end{gathered}
$$

Connectivity dimension

Let T be a noetherian topological space.
$c(T)$ is the infimum of $\operatorname{dim} Z$ such that $Z \subseteq T$ is closed and
$T \backslash Z$ is disconnected, with \emptyset disconnected of dimension -1 .

If $T=\operatorname{Spec} R$, then $\mathrm{c}(R):=\mathrm{c}(T)$ is the infimum of $\operatorname{dim} R / \mathfrak{a}$ with \mathfrak{a} ideal such that $\operatorname{Spec} R \backslash \mathcal{V}(\mathfrak{a})$ is disconnected.

A characterization of connectivity dimension

A characterization of connectivity dimension
T.F.A.E.:

A characterization of connectivity dimension
T.F.A.E.:
(1) $\mathrm{c}(R) \geq d$;

A characterization of connectivity dimension

T.F.A.E.:
(1) $\mathrm{c}(R) \geq d$;
(2) $\forall \wp^{\prime}, \wp^{\prime \prime} \in \operatorname{Min} R$, are d-connected, i.e $\exists \wp^{\prime}=\wp_{0}, \wp_{1}$,
$\ldots, \wp_{r}=\wp^{\prime \prime}, \wp_{i} \in \operatorname{Min} R$ and $\operatorname{dim} R /\left(\wp_{j}+\wp_{j-1}\right) \geq d$.

A characterization of connectivity dimension

T.F.A.E.:
(1) $\mathrm{c}(R) \geq d$;
(2) $\forall \wp^{\prime}, \wp^{\prime \prime} \in \operatorname{Min} R$, are d-connected, i.e $\exists \wp^{\prime}=\wp_{0}, \wp_{1}$,
$\ldots, \wp_{r}=\wp^{\prime \prime}, \wp_{i} \in \operatorname{Min} R$ and $\operatorname{dim} R /\left(\wp_{j}+\wp_{j-1}\right) \geq d$.
We will say that R is connected in codimension $\operatorname{dim} R-d$.

A characterization of connectivity dimension

T.F.A.E.:
(1) $\mathrm{c}(R) \geq d$;
(2) $\forall \wp^{\prime}, \wp^{\prime \prime} \in \operatorname{Min} R$, are d-connected, i.e $\exists \wp^{\prime}=\wp_{0}, \wp_{1}$,
$\ldots, \wp_{r}=\wp^{\prime \prime}, \wp_{i} \in \operatorname{Min} R$ and $\operatorname{dim} R /\left(\wp_{j}+\wp_{j-1}\right) \geq d$.
We will say that R is connected in codimension $\operatorname{dim} R-d$.

EXAMPLES

A characterization of connectivity dimension

T.F.A.E.:
(1) $\mathrm{c}(R) \geq d$;
(2) $\forall \wp^{\prime}, \wp^{\prime \prime} \in \operatorname{Min} R$, are d-connected, i.e $\exists \wp^{\prime}=\wp_{0}, \wp_{1}$,

$$
\ldots, \wp_{r}=\wp^{\prime \prime}, \wp_{i} \in \operatorname{Min} R \text { and } \operatorname{dim} R /\left(\wp_{j}+\wp_{j-1}\right) \geq d
$$

We will say that R is connected in codimension $\operatorname{dim} R-d$.

EXAMPLES
$S=k[x, y, z, v, w], \mathfrak{a}=(x y, x v, x w, y v, y z, v z, w z), R=S / \mathfrak{a}$.
R is connected in codimension 2, but not in codimension 1

A characterization of connectivity dimension

T.F.A.E.:
(1) $\mathrm{c}(R) \geq d$;
(2) $\forall \wp^{\prime}, \wp^{\prime \prime} \in \operatorname{Min} R$, are d-connected, i.e $\exists \wp^{\prime}=\wp_{0}, \wp_{1}$,

$$
\ldots, \wp_{r}=\wp^{\prime \prime}, \wp_{i} \in \operatorname{Min} R \text { and } \operatorname{dim} R /\left(\wp_{j}+\wp_{j-1}\right) \geq d
$$

We will say that R is connected in codimension $\operatorname{dim} R-d$.

EXAMPLES
$S=k[x, y, z, v, w], \mathfrak{a}=(x y, x v, x w, y v, y z, v z, w z), R=S / \mathfrak{a}$.
R is connected in codimension 2, but not in codimension 1 , since

$$
\mathfrak{a}=(x, y, z) \cap(x, z, v) \cap(y, v, w)=\wp_{1} \cap \wp_{2} \cap \wp_{3}
$$

A characterization of connectivity dimension

T.F.A.E.:
(1) $\mathrm{c}(R) \geq d$;
(2) $\forall \wp^{\prime}, \wp^{\prime \prime} \in \operatorname{Min} R$, are d-connected, i.e $\exists \wp^{\prime}=\wp_{0}, \wp_{1}$,

$$
\ldots, \wp_{r}=\wp^{\prime \prime}, \wp_{i} \in \operatorname{Min} R \text { and } \operatorname{dim} R /\left(\wp_{j}+\wp_{j-1}\right) \geq d
$$

We will say that R is connected in codimension $\operatorname{dim} R-d$.

EXAMPLES
$S=k[x, y, z, v, w], \mathfrak{a}=(x y, x v, x w, y v, y z, v z, w z), R=S / \mathfrak{a}$.
R is connected in codimension 2, but not in codimension 1 , since

$$
\begin{gathered}
\mathfrak{a}=(x, y, z) \cap(x, z, v) \cap(y, v, w)=\wp_{1} \cap \wp_{2} \cap \wp_{3} \\
\operatorname{dim} R=2, \quad \operatorname{dim} S /\left(\wp_{1}+\wp_{2}\right)=1, \\
\operatorname{dim} S /\left(\wp_{1}+\wp_{3}\right)=0, \quad \operatorname{dim} S /\left(\wp_{2}+\wp_{3}\right)=0 .
\end{gathered}
$$

A characterization of connectivity dimension

T.F.A.E.:
(1) $\mathrm{c}(R) \geq d$;
(2) $\forall \wp^{\prime}, \wp^{\prime \prime} \in \operatorname{Min} R$, are d-connected, i.e $\exists \wp^{\prime}=\wp_{0}, \wp_{1}$,
$\ldots, \wp_{r}=\wp^{\prime \prime}, \wp_{i} \in \operatorname{Min} R$ and $\operatorname{dim} R /\left(\wp_{j}+\wp_{j-1}\right) \geq d$.
We will say that R is connected in codimension $\operatorname{dim} R-d$.

EXAMPLES
$S=k[x, y, z, v, w], \mathfrak{a}=(z v, y v, x v, y w, y z, x z), R=S / \mathfrak{a}$.
R is connected in codimension 1

A characterization of connectivity dimension

T.F.A.E.:
(1) $\mathrm{c}(R) \geq d$;
(2) $\forall \wp^{\prime}, \wp^{\prime \prime} \in \operatorname{Min} R$, are d-connected, i.e $\exists \wp^{\prime}=\wp_{0}, \wp_{1}$,

$$
\ldots, \wp_{r}=\wp^{\prime \prime}, \wp_{i} \in \operatorname{Min} R \text { and } \operatorname{dim} R /\left(\wp_{j}+\wp_{j-1}\right) \geq d
$$

We will say that R is connected in codimension $\operatorname{dim} R-d$.

EXAMPLES
$S=k[x, y, z, v, w], \mathfrak{a}=(z v, y v, x v, y w, y z, x z), R=S / \mathfrak{a}$.
R is connected in codimension 1 , since

$$
\mathfrak{a}=(x, y, z) \cap(y, z, v) \cap(z, v, w) \cap(x, y, v)=\wp_{1} \cap \wp_{2} \cap \wp_{3} \cap \wp_{4}
$$

A characterization of connectivity dimension

T.F.A.E.:
(1) $c(R) \geq d$;
(2) $\forall \wp^{\prime}, \wp^{\prime \prime} \in \operatorname{Min} R$, are d-connected, i.e $\exists \wp^{\prime}=\wp_{0}, \wp_{1}$,

$$
\ldots, \wp_{r}=\wp^{\prime \prime}, \wp_{i} \in \operatorname{Min} R \text { and } \operatorname{dim} R /\left(\wp_{j}+\wp_{j-1}\right) \geq d
$$

We will say that R is connected in codimension $\operatorname{dim} R-d$.

EXAMPLES
$S=k[x, y, z, v, w], \mathfrak{a}=(z v, y v, x v, y w, y z, x z), R=S / \mathfrak{a}$.
R is connected in codimension 1 , since

$$
\begin{gathered}
\mathfrak{a}=(x, y, z) \cap(y, z, v) \cap(z, v, w) \cap(x, y, v)=\wp_{1} \cap \wp_{2} \cap \wp_{3} \cap \wp_{4} \\
\operatorname{dim} R=2, \quad \operatorname{dim} S /\left(\wp_{1}+\wp_{2}\right)=1, \\
\operatorname{dim} S /\left(\wp_{2}+\wp_{3}\right)=1, \quad \operatorname{dim} S /\left(\wp_{3}+\wp_{4}\right)=1 .
\end{gathered}
$$

The main result of the first part

The main result of the first part

Let (R, \mathfrak{m}) be local and complete.

The main result of the first part

Let (R, \mathfrak{m}) be local and complete. Then

$$
\mathrm{c}(R / \mathfrak{a}) \geq \min \{\mathrm{c}(R), \operatorname{dim} R-1\}-\operatorname{cd}(R, \mathfrak{a})
$$

The main result of the first part

Let (R, \mathfrak{m}) be local and complete. Then

$$
\mathrm{c}(R / \mathfrak{a}) \geq \min \{\mathrm{c}(R), \operatorname{dim} R-1\}-\operatorname{cd}(R, \mathfrak{a})
$$

Corollary

The main result of the first part

Let (R, \mathfrak{m}) be local and complete. Then

$$
\mathrm{c}(R / \mathfrak{a}) \geq \min \{\mathrm{c}(R), \operatorname{dim} R-1\}-\mathrm{cd}(R, \mathfrak{a})
$$

Corollary (Grothendieck)
(R, \mathfrak{m}) complete and local. Then

$$
\mathrm{c}(R / \mathfrak{a}) \geq \min \{\mathrm{c}(R), \operatorname{dim} R-1\}-\operatorname{ara}(\mathfrak{a}) .
$$

The main result of the first part

Let (R, \mathfrak{m}) be local and complete. Then

$$
\mathrm{c}(R / \mathfrak{a}) \geq \min \{\mathrm{c}(R), \operatorname{dim} R-1\}-\operatorname{cd}(R, \mathfrak{a})
$$

Corollary (Grothendieck)
(R, \mathfrak{m}) complete and local. Then

$$
\mathrm{c}(R / \mathfrak{a}) \geq \min \{\mathrm{c}(R), \operatorname{dim} R-1\}-\operatorname{ara}(\mathfrak{a}) .
$$

Proof of Corollary

The main result of the first part

Let (R, \mathfrak{m}) be local and complete. Then

$$
\mathrm{c}(R / \mathfrak{a}) \geq \min \{\mathrm{c}(R), \operatorname{dim} R-1\}-\operatorname{cd}(R, \mathfrak{a})
$$

Corollary (Grothendieck)
(R, \mathfrak{m}) complete and local. Then

$$
\mathrm{c}(R / \mathfrak{a}) \geq \min \{\mathrm{c}(R), \operatorname{dim} R-1\}-\operatorname{ara}(\mathfrak{a}) .
$$

Proof of Corollary

$$
\operatorname{ara}(\mathfrak{a}) \geq \operatorname{cd}(R, \mathfrak{a})
$$

The main result of the first part

Let (R, \mathfrak{m}) be local and complete. Then

$$
\mathrm{c}(R / \mathfrak{a}) \geq \min \{\mathrm{c}(R), \operatorname{dim} R-1\}-\mathrm{cd}(R, \mathfrak{a})
$$

Corollary (Hochster and Huneke)
(R, \mathfrak{m}) complete, loc., equidimensional, $H_{\mathfrak{m}}^{\operatorname{dim} R}(R)$ indecomposable. If $\operatorname{cd}(R, \mathfrak{a}) \leq \operatorname{dim} R-2$ then $\operatorname{Spec} R / \mathfrak{a} \backslash\{\mathfrak{m}\}$ is connected.

The main result of the first part

Let (R, \mathfrak{m}) be local and complete. Then

$$
\mathrm{c}(R / \mathfrak{a}) \geq \min \{\mathrm{c}(R), \operatorname{dim} R-1\}-\operatorname{cd}(R, \mathfrak{a})
$$

Corollary (Hochster and Huneke)
(R, \mathfrak{m}) complete, loc., equidimensional, $H_{\mathfrak{m}}^{\operatorname{dim} R}(R)$ indecomposable.
If $\operatorname{cd}(R, \mathfrak{a}) \leq \operatorname{dim} R-2$ then $\operatorname{Spec} R / \mathfrak{a} \backslash\{\mathfrak{m}\}$ is connected.
Proof of Corollary

The main result of the first part

Let (R, \mathfrak{m}) be local and complete. Then

$$
\mathrm{c}(R / \mathfrak{a}) \geq \min \{\mathrm{c}(R), \operatorname{dim} R-1\}-\operatorname{cd}(R, \mathfrak{a})
$$

Corollary (Hochster and Huneke)
(R, \mathfrak{m}) complete, loc., equidimensional, $H_{\mathfrak{m}}^{\operatorname{dim} R}(R)$ indecomposable.
If $\operatorname{cd}(R, \mathfrak{a}) \leq \operatorname{dim} R-2$ then $\operatorname{Spec} R / \mathfrak{a} \backslash\{\mathfrak{m}\}$ is connected.
Proof of Corollary
$H_{\mathfrak{m}}^{\operatorname{dim} R}(R)$ indecomposable iff R connected in codimension 1.

The main result of the first part

Let (R, \mathfrak{m}) be local and complete. Then

$$
\mathrm{c}(R / \mathfrak{a}) \geq \min \{\mathrm{c}(R), \operatorname{dim} R-1\}-\operatorname{cd}(R, \mathfrak{a})
$$

Corollary (Hochster and Huneke)
(R, \mathfrak{m}) complete, loc., equidimensional, $H_{\mathfrak{m}}^{\operatorname{dim} R}(R)$ indecomposable.
If $\operatorname{cd}(R, \mathfrak{a}) \leq \operatorname{dim} R-2$ then $\operatorname{Spec} R / \mathfrak{a} \backslash\{\mathfrak{m}\}$ is connected.
Proof of Corollary
$H_{\mathfrak{m}}^{\operatorname{dim} R}(R)$ indecomposable iff R connected in codimension 1.

$$
\mathrm{c}(\operatorname{Spec} R / \mathfrak{a} \backslash \mathfrak{m})=\mathrm{c}(R / \mathfrak{a})-1
$$

Sketch of the proof

Sketch of the proof

Proof Grothendieck's theor. in the book of Brodmann and Sharp.

Sketch of the proof

Proof Grothendieck's theor. in the book of Brodmann and Sharp.
There are some easy changes...

Sketch of the proof

Proof Grothendieck's theor. in the book of Brodmann and Sharp.
There are some easy changes...
$-\operatorname{ara}(\mathfrak{a}) \geq \operatorname{ht}(\mathfrak{a})$

Sketch of the proof

Proof Grothendieck's theor. in the book of Brodmann and Sharp.
There are some easy changes...
$-\operatorname{cd}(R ; \mathfrak{a}) \geq$ ht \mathfrak{a}

Sketch of the proof

Proof Grothendieck's theor. in the book of Brodmann and Sharp.
There are some easy changes...
$-\operatorname{cd}(R ; \mathfrak{a}) \geq$ ht \mathfrak{a}

- If $R \longrightarrow S$, then $\operatorname{ara}_{R}(\mathfrak{a}) \geq \operatorname{aras}_{S}(\mathfrak{a} S)$

Sketch of the proof

Proof Grothendieck's theor. in the book of Brodmann and Sharp.
There are some easy changes...
$-\operatorname{cd}(R ; \mathfrak{a}) \geq$ ht \mathfrak{a}

- If $R \longrightarrow S$, then $\operatorname{cd}(R, \mathfrak{a}) \geq \operatorname{cd}(S, \mathfrak{a} S)$

Sketch of the proof

Proof Grothendieck's theor. in the book of Brodmann and Sharp.
There are some easy changes...
$-\operatorname{cd}(R ; \mathfrak{a}) \geq$ ht \mathfrak{a}

- If $R \longrightarrow S$, then $\operatorname{cd}(R, \mathfrak{a}) \geq \operatorname{cd}(S, \mathfrak{a} S)$

And one change more difficult:

Sketch of the proof

Proof Grothendieck's theor. in the book of Brodmann and Sharp.
There are some easy changes...
$-\operatorname{cd}(R ; \mathfrak{a}) \geq$ ht \mathfrak{a}

- If $R \longrightarrow S$, then $\operatorname{cd}(R, \mathfrak{a}) \geq \operatorname{cd}(S, \mathfrak{a} S)$

And one change more difficult:
$-x \in R$, then $\operatorname{ara}(\mathfrak{a}+(x)) \leq \operatorname{ara}(\mathfrak{a})+1$

Sketch of the proof

Proof Grothendieck's theor. in the book of Brodmann and Sharp.
There are some easy changes...
$-\operatorname{cd}(R ; \mathfrak{a}) \geq$ ht \mathfrak{a}

- If $R \longrightarrow S$, then $\operatorname{cd}(R, \mathfrak{a}) \geq \operatorname{cd}(S, \mathfrak{a} S)$

And one change more difficult:
$-x \in R$, then $\operatorname{cd}(R, \mathfrak{a}+(x)) \leq \operatorname{cd}(R, \mathfrak{a})+1$?

Sketch of the proof

Proof Grothendieck's theor. in the book of Brodmann and Sharp.
There are some easy changes...
$-\operatorname{cd}(R ; \mathfrak{a}) \geq$ ht \mathfrak{a}

- If $R \longrightarrow S$, then $\operatorname{cd}(R, \mathfrak{a}) \geq \operatorname{cd}(S, \mathfrak{a} S)$

And one change more difficult:
$-x \in R$, then $\operatorname{cd}(R, \mathfrak{a}+(x)) \leq \operatorname{cd}(R, \mathfrak{a})+1$? Yes!

Sketch of the proof

Proof Grothendieck's theor. in the book of Brodmann and Sharp.
There are some easy changes...
$-\operatorname{cd}(R ; \mathfrak{a}) \geq$ ht \mathfrak{a}

- If $R \longrightarrow S$, then $\operatorname{cd}(R, \mathfrak{a}) \geq \operatorname{cd}(S, \mathfrak{a} S)$

And one change more difficult:
$-x \in R$, then $\operatorname{cd}(R, \mathfrak{a}+(x)) \leq \operatorname{cd}(R, \mathfrak{a})+1$? Yes!
More generally, one can prove that, given another ideal \mathfrak{b}, there is a spectral sequence:

Sketch of the proof

Proof Grothendieck's theor. in the book of Brodmann and Sharp.
There are some easy changes...
$-\operatorname{cd}(R ; \mathfrak{a}) \geq$ ht \mathfrak{a}

- If $R \longrightarrow S$, then $\operatorname{cd}(R, \mathfrak{a}) \geq \operatorname{cd}(S, \mathfrak{a} S)$

And one change more difficult:
$-x \in R$, then $\operatorname{cd}(R, \mathfrak{a}+(x)) \leq \operatorname{cd}(R, \mathfrak{a})+1$? Yes!
More generally, one can prove that, given another ideal \mathfrak{b}, there is a spectral sequence:

$$
H_{\mathfrak{a}}^{p}\left(H_{\mathfrak{b}}^{q}(R)\right) \Rightarrow H_{\mathfrak{a}+\mathfrak{b}}^{p+q}(R)
$$

Sketch of the proof

Proof Grothendieck's theor. in the book of Brodmann and Sharp.
There are some easy changes...
$-\operatorname{cd}(R ; \mathfrak{a}) \geq$ ht \mathfrak{a}

- If $R \longrightarrow S$, then $\operatorname{cd}(R, \mathfrak{a}) \geq \operatorname{cd}(S, \mathfrak{a} S)$

And one change more difficult:
$-x \in R$, then $\operatorname{cd}(R, \mathfrak{a}+(x)) \leq \operatorname{cd}(R, \mathfrak{a})+1$? Yes!
More generally, one can prove that, given another ideal \mathfrak{b}, there is a spectral sequence:

$$
H_{\mathfrak{a}}^{p}\left(H_{\mathfrak{b}}^{q}(R)\right) \Rightarrow H_{\mathfrak{a}+\mathfrak{b}}^{p+q}(R)
$$

from which $\operatorname{cd}(R, \mathfrak{a}+\mathfrak{b}) \leq \operatorname{cd}(R, \mathfrak{a})+\operatorname{cd}(R, \mathfrak{b})$!

The graded case

The graded case

R k-algebra finitely generated positively graded, \mathfrak{a} homogeneus.

The graded case

R k-algebra finitely generated positively graded, \mathfrak{a} homogeneus.
Then $\mathrm{c}(R / \mathfrak{a}) \geq \min \{\mathrm{c}(R), \operatorname{dim} R-1\}-\mathrm{cd}(R, \mathfrak{a})$.

The graded case

$R \quad k$-algebra finitely generated positively graded, \mathfrak{a} homogeneus.
Then $\mathrm{c}(R / \mathfrak{a}) \geq \min \{\mathrm{c}(R), \operatorname{dim} R-1\}-\mathrm{cd}(R, \mathfrak{a})$.
Idea of the proof

The graded case

R k-algebra finitely generated positively graded, \mathfrak{a} homogeneus.
Then $\mathrm{c}(R / \mathfrak{a}) \geq \min \{\mathrm{c}(R), \operatorname{dim} R-1\}-\mathrm{cd}(R, \mathfrak{a})$.
Idea of the proof
Let be $\mathfrak{m}=\oplus_{n>0} R_{n}$.

The graded case

$R \quad k$-algebra finitely generated positively graded, \mathfrak{a} homogeneus.
Then $\mathrm{c}(R / \mathfrak{a}) \geq \min \{\mathrm{c}(R), \operatorname{dim} R-1\}-\operatorname{cd}(R, \mathfrak{a})$.
Idea of the proof
Let be $\mathfrak{m}=\oplus_{n>0} R_{n}$.
$-R \longrightarrow \widehat{R_{\mathfrak{m}}}$ faithfully flat \Rightarrow

The graded case

$R \quad k$-algebra finitely generated positively graded, \mathfrak{a} homogeneus.
Then $\mathrm{c}(R / \mathfrak{a}) \geq \min \{\mathrm{c}(R), \operatorname{dim} R-1\}-\operatorname{cd}(R, \mathfrak{a})$.
Idea of the proof
Let be $\mathfrak{m}=\oplus_{n>0} R_{n}$.
$-R \longrightarrow \widehat{R_{\mathfrak{m}}}$ faithfully flat \Rightarrow
local cohomology in R m local cohomology in $\widehat{R_{\mathfrak{m}}}$

The graded case

$R \quad k$-algebra finitely generated positively graded, \mathfrak{a} homogeneus.
Then $\mathrm{c}(R / \mathfrak{a}) \geq \min \{\mathrm{c}(R), \operatorname{dim} R-1\}-\operatorname{cd}(R, \mathfrak{a})$.
Idea of the proof
Let be $\mathfrak{m}=\oplus_{n>0} R_{n}$.
$-R \longrightarrow \widehat{R_{\mathfrak{m}}}$ faithfully flat \Rightarrow
local cohomology in R \& local cohomology in $\widehat{R_{\mathfrak{m}}}$

- R positively graded \Rightarrow

The graded case

$R \quad k$-algebra finitely generated positively graded, \mathfrak{a} homogeneus.
Then $\mathrm{c}(R / \mathfrak{a}) \geq \min \{\mathrm{c}(R), \operatorname{dim} R-1\}-\operatorname{cd}(R, \mathfrak{a})$.
Idea of the proof
Let be $\mathfrak{m}=\oplus_{n>0} R_{n}$.
$-R \longrightarrow \widehat{R_{\mathfrak{m}}}$ faithfully flat \Rightarrow
local cohomology in R \& local cohomology in $\widehat{R_{\mathfrak{m}}}$

- R positively graded \Rightarrow
"connectedness in $R^{\prime \prime}$ 似 "connectedness in $\widehat{R_{\mathrm{m}}} "$

An example of application

An example of application

$X=\operatorname{Proj} R$ projective scheme over k connected in codimension 1 , $C=\mathcal{V}_{+}(\mathfrak{a}) \subseteq X$ curve of X.

An example of application

$X=\operatorname{Proj} R$ projective scheme over k connected in codimension 1 , $C=\mathcal{V}_{+}(\mathfrak{a}) \subseteq X$ curve of X.

If C set-theoretic complete intersection in X
$\left(\operatorname{ara}_{R}(\mathfrak{a})=\operatorname{ht}(\mathfrak{a})=\operatorname{codim}_{X} C\right)$,

An example of application

$X=\operatorname{Proj} R$ projective scheme over k connected in codimension 1 , $C=\mathcal{V}_{+}(\mathfrak{a}) \subseteq X$ curve of X.

If C set-theoretic complete intersection in X
$\left(\operatorname{ara}_{R}(\mathfrak{a})=\operatorname{ht}(\mathfrak{a})=\operatorname{codim}_{X} C\right)$, then C connected.

An example of application

$X=\operatorname{Proj} R$ projective scheme over k connected in codimension 1 , $C=\mathcal{V}_{+}(\mathfrak{a}) \subseteq X$ curve of X.

If C set-theoretic complete intersection in X $\left(\operatorname{ara}_{R}(\mathfrak{a})=\operatorname{ht}(\mathfrak{a})=\operatorname{codim}_{X} C\right)$, then C connected.

In fact, $\quad(1) \mathrm{c}(C)=\mathrm{c}(R / \mathfrak{a})-1, \quad \mathrm{c}(X)=\mathrm{c}(R)-1$

An example of application

$X=\operatorname{Proj} R$ projective scheme over k connected in codimension 1 , $C=\mathcal{V}_{+}(\mathfrak{a}) \subseteq X$ curve of X.

If C set-theoretic complete intersection in X $\left(\operatorname{ara}_{R}(\mathfrak{a})=\operatorname{ht}(\mathfrak{a})=\operatorname{codim}_{X} C\right)$, then C connected.

In fact, (1) $\mathrm{c}(C)=\mathrm{c}(R / \mathfrak{a})-1, \quad \mathrm{c}(X)=\mathrm{c}(R)-1$ and
(2) $\min \{c(R), \operatorname{dim} R-1\}=\operatorname{dim} X$

An example of application

$X=\operatorname{Proj} R$ projective scheme over k connected in codimension 1 , $C=\mathcal{V}_{+}(\mathfrak{a}) \subseteq X$ curve of X.

If C set-theoretic complete intersection in X
$\left(\operatorname{ara}_{R}(\mathfrak{a})=\operatorname{ht}(\mathfrak{a})=\operatorname{codim}_{X} C\right)$, then C connected.
In fact, (1) $\mathrm{c}(C)=\mathrm{c}(R / \mathfrak{a})-1, \quad \mathrm{c}(X)=\mathrm{c}(R)-1$ and
(2) $\min \{\mathrm{c}(R), \operatorname{dim} R-1\}=\operatorname{dim} X$, so

$$
c(C)=c(R / \mathfrak{a})-1
$$

An example of application

$X=\operatorname{Proj} R$ projective scheme over k connected in codimension 1 , $C=\mathcal{V}_{+}(\mathfrak{a}) \subseteq X$ curve of X.

If C set-theoretic complete intersection in X
$\left(\operatorname{ara}_{R}(\mathfrak{a})=\operatorname{ht}(\mathfrak{a})=\operatorname{codim}_{X} C\right)$, then C connected.
In fact, (1) $\mathrm{c}(C)=\mathrm{c}(R / \mathfrak{a})-1, \quad \mathrm{c}(X)=\mathrm{c}(R)-1$ and
(2) $\min \{\mathrm{c}(R), \operatorname{dim} R-1\}=\operatorname{dim} X$, so

$$
\begin{gathered}
\mathrm{c}(C)=\mathrm{c}(R / \mathfrak{a})-1 \\
\geq \min \{\mathrm{c}(R), \operatorname{dim} R-1\}-\operatorname{cd}(R, \mathfrak{a})-1
\end{gathered}
$$

An example of application

$X=\operatorname{Proj} R$ projective scheme over k connected in codimension 1 , $C=\mathcal{V}_{+}(\mathfrak{a}) \subseteq X$ curve of X.

If C set-theoretic complete intersection in X $\left(\operatorname{ara}_{R}(\mathfrak{a})=\operatorname{ht}(\mathfrak{a})=\operatorname{codim}_{X} C\right)$, then C connected.

In fact, (1) $\mathrm{c}(C)=\mathrm{c}(R / \mathfrak{a})-1, \quad \mathrm{c}(X)=\mathrm{c}(R)-1$ and
(2) $\min \{\mathrm{c}(R), \operatorname{dim} R-1\}=\operatorname{dim} X$, so

$$
\begin{gathered}
\mathrm{c}(C)=\mathrm{c}(R / \mathfrak{a})-1 \\
\geq \min \{\mathrm{c}(R), \operatorname{dim} R-1\}-\operatorname{cd}(R, \mathfrak{a})-1= \\
=\operatorname{dim} X-\operatorname{cd}(R, \mathfrak{a})-1
\end{gathered}
$$

An example of application

$X=\operatorname{Proj} R$ projective scheme over k connected in codimension 1 , $C=\mathcal{V}_{+}(\mathfrak{a}) \subseteq X$ curve of X.

If C set-theoretic complete intersection in X
$\left(\operatorname{ara}_{R}(\mathfrak{a})=\operatorname{ht}(\mathfrak{a})=\operatorname{codim}_{X} C\right)$, then C connected.
In fact, (1) $\mathrm{c}(C)=\mathrm{c}(R / \mathfrak{a})-1, \quad \mathrm{c}(X)=\mathrm{c}(R)-1$ and
(2) $\min \{\mathrm{c}(R), \operatorname{dim} R-1\}=\operatorname{dim} X$, so

$$
\begin{gathered}
\mathrm{c}(C)=\mathrm{c}(R / \mathfrak{a})-1 \\
\geq \min \{\mathrm{c}(R), \operatorname{dim} R-1\}-\operatorname{cd}(R, \mathfrak{a})-1= \\
=\operatorname{dim} X-\operatorname{cd}(R, \mathfrak{a})-1 \geq \\
\geq \operatorname{dim} X-\operatorname{ara}_{R}(\mathfrak{a})-1
\end{gathered}
$$

An example of application

$X=\operatorname{Proj} R$ projective scheme over k connected in codimension 1 , $C=\mathcal{V}_{+}(\mathfrak{a}) \subseteq X$ curve of X.

If C set-theoretic complete intersection in X
$\left(\operatorname{ara}_{R}(\mathfrak{a})=\operatorname{ht}(\mathfrak{a})=\operatorname{codim}_{X} C\right)$, then C connected.
In fact, (1) $\mathrm{c}(C)=\mathrm{c}(R / \mathfrak{a})-1, \quad \mathrm{c}(X)=\mathrm{c}(R)-1$ and
(2) $\min \{\mathrm{c}(R), \operatorname{dim} R-1\}=\operatorname{dim} X$, so

$$
\begin{gathered}
\mathrm{c}(C)=\mathrm{c}(R / \mathfrak{a})-1 \\
\geq \min \{\mathrm{c}(R), \operatorname{dim} R-1\}-\operatorname{cd}(R, \mathfrak{a})-1= \\
=\operatorname{dim} X-\operatorname{cd}(R, \mathfrak{a})-1 \geq \\
\geq \operatorname{dim} X-\operatorname{ara}_{R}(\mathfrak{a})-1=0 .
\end{gathered}
$$

Another example of application

Another example of application

$X=\operatorname{Proj} R$ projective scheme over k connected in codimension 1 , D effective divisor on X.

Another example of application

$X=\operatorname{Proj} R$ projective scheme over k connected in codimension 1 , D effective divisor on X.
D ample $\Rightarrow Z:=\operatorname{Supp} D$ connected in codimension 1.

Another example of application

$X=\operatorname{Proj} R$ projective scheme over k connected in codimension 1 ,
D effective divisor on X.
D ample $\Rightarrow Z:=\operatorname{Supp} D$ connected in codimension 1.

$$
i=i_{|n D|}: X \longrightarrow \mathbb{P}_{k}^{N} \text { closed immersion for } n \gg 0
$$

Another example of application

$X=\operatorname{Proj} R$ projective scheme over k connected in codimension 1,
D effective divisor on X.
D ample $\Rightarrow Z:=\operatorname{Supp} D$ connected in codimension 1.

$$
\begin{gathered}
i=i_{|n D|}: X \longrightarrow \mathbb{P}_{k}^{N} \text { closed immersion for } n \gg 0 \text {, so } \\
X \backslash Z=X \backslash \text { Supp } n D \text { affine. }
\end{gathered}
$$

Another example of application

$X=\operatorname{Proj} R$ projective scheme over k connected in codimension 1,
D effective divisor on X.
D ample $\Rightarrow Z:=\operatorname{Supp} D$ connected in codimension 1.

$$
\begin{gathered}
i=i_{|n D|}: X \longrightarrow \mathbb{P}_{k}^{N} \text { closed immersion for } n \gg 0 \text {, so } \\
X \backslash Z=X \backslash \text { Supp } n D \text { affine. }
\end{gathered}
$$

Affineness Serre's criterion $\Rightarrow \operatorname{cd}(R, \mathfrak{a}) \leq 1$, where $Z=\mathcal{V}_{+}(\mathfrak{a})$

Another example of application

$X=\operatorname{Proj} R$ projective scheme over k connected in codimension 1,
D effective divisor on X.
D ample $\Rightarrow Z:=\operatorname{Supp} D$ connected in codimension 1.

$$
\begin{gathered}
i=i_{|n D|}: X \longrightarrow \mathbb{P}_{k}^{N} \text { closed immersion for } n \gg 0 \text {, so } \\
X \backslash Z=X \backslash \text { Supp } n D \text { affine. }
\end{gathered}
$$

Affineness Serre's criterion $\Rightarrow \operatorname{cd}(R, \mathfrak{a}) \leq 1$, where $Z=\mathcal{V}_{+}(\mathfrak{a})$, so

$$
c(Z)=c(R / \mathfrak{a})-1
$$

Another example of application

$X=\operatorname{Proj} R$ projective scheme over k connected in codimension 1 ,
D effective divisor on X.
D ample $\Rightarrow Z:=\operatorname{Supp} D$ connected in codimension 1.

$$
\begin{gathered}
i=i_{|n D|}: X \longrightarrow \mathbb{P}_{k}^{N} \text { closed immersion for } n \gg 0 \text {, so } \\
X \backslash Z=X \backslash \text { Supp } n D \text { affine. }
\end{gathered}
$$

Affineness Serre's criterion $\Rightarrow \operatorname{cd}(R, \mathfrak{a}) \leq 1$, where $Z=\mathcal{V}_{+}(\mathfrak{a})$, so

$$
\begin{gathered}
\mathrm{c}(Z)=\mathrm{c}(R / \mathfrak{a})-1 \\
\geq \min \{\mathrm{c}(R), \operatorname{dim} R-1\}-\operatorname{cd}(R, \mathfrak{a})-1
\end{gathered}
$$

Another example of application

$X=\operatorname{Proj} R$ projective scheme over k connected in codimension 1 ,
D effective divisor on X.
D ample $\Rightarrow Z:=\operatorname{Supp} D$ connected in codimension 1.

$$
\begin{gathered}
i=i_{|n D|}: X \longrightarrow \mathbb{P}_{k}^{N} \text { closed immersion for } n \gg 0 \text {, so } \\
X \backslash Z=X \backslash \text { Supp } n D \text { affine. }
\end{gathered}
$$

Affineness Serre's criterion $\Rightarrow \operatorname{cd}(R, \mathfrak{a}) \leq 1$, where $Z=\mathcal{V}_{+}(\mathfrak{a})$, so

$$
\begin{gathered}
\mathrm{c}(Z)=\mathrm{c}(R / \mathfrak{a})-1 \\
\geq \min \{\mathrm{c}(R), \operatorname{dim} R-1\}-\operatorname{cd}(R, \mathfrak{a})-1= \\
=\operatorname{dim} X-\operatorname{cd}(R, \mathfrak{a})-1
\end{gathered}
$$

Another example of application

$X=\operatorname{Proj} R$ projective scheme over k connected in codimension 1 ,
D effective divisor on X.
D ample $\Rightarrow Z:=\operatorname{Supp} D$ connected in codimension 1.

$$
\begin{gathered}
i=i_{|n D|}: X \longrightarrow \mathbb{P}_{k}^{N} \text { closed immersion for } n \gg 0 \text {, so } \\
X \backslash Z=X \backslash \text { Supp } n D \text { affine. }
\end{gathered}
$$

Affineness Serre's criterion $\Rightarrow \operatorname{cd}(R, \mathfrak{a}) \leq 1$, where $Z=\mathcal{V}_{+}(\mathfrak{a})$, so

$$
\begin{gathered}
\mathrm{c}(Z)=\mathrm{c}(R / \mathfrak{a})-1 \\
\geq \min \{\mathrm{c}(R), \operatorname{dim} R-1\}-\operatorname{cd}(R, \mathfrak{a})-1= \\
=\operatorname{dim} X-\operatorname{cd}(R, \mathfrak{a})-1 \geq \\
\geq \operatorname{dim} X-2
\end{gathered}
$$

Another example of application

$X=\operatorname{Proj} R$ projective scheme over k connected in codimension 1 ,
D effective divisor on X.
D ample $\Rightarrow Z:=\operatorname{Supp} D$ connected in codimension 1.

$$
\begin{gathered}
i=i_{|n D|}: X \longrightarrow \mathbb{P}_{k}^{N} \text { closed immersion for } n \gg 0 \text {, so } \\
X \backslash Z=X \backslash \text { Supp } n D \text { affine. }
\end{gathered}
$$

Affineness Serre's criterion $\Rightarrow \operatorname{cd}(R, \mathfrak{a}) \leq 1$, where $Z=\mathcal{V}_{+}(\mathfrak{a})$, so

$$
\begin{gathered}
\mathrm{c}(Z)=\mathrm{c}(R / \mathfrak{a})-1 \\
\geq \min \{\mathrm{c}(R), \operatorname{dim} R-1\}-\operatorname{cd}(R, \mathfrak{a})-1= \\
=\operatorname{dim} X-\operatorname{cd}(R, \mathfrak{a})-1 \geq \\
\geq \operatorname{dim} X-2=\operatorname{dim} Z-1 .
\end{gathered}
$$

PART 2
 APPLICATIONS TO INITIAL IDEALS

Notations

Notations

- $P:=k\left[x_{1}, \ldots, x_{n}\right] ;$

Notations

- $P:=k\left[x_{1}, \ldots, x_{n}\right]$;
- $I \subseteq P$ ideal;

Notations

- $P:=k\left[x_{1}, \ldots, x_{n}\right] ;$
- $I \subseteq P$ ideal;
- we will say I Cohen-Macaulay for P / I Cohen-Macaulay;

Notations

- $P:=k\left[x_{1}, \ldots, x_{n}\right] ;$
- $I \subseteq P$ ideal;
- we will say I Cohen-Macaulay for P / I Cohen-Macaulay;
- \prec term order on P;

Notations

- $P:=k\left[x_{1}, \ldots, x_{n}\right] ;$
- $I \subseteq P$ ideal;
- we will say I Cohen-Macaulay for P / I Cohen-Macaulay;
- \prec term order on P;
- $L T_{\prec}(I) \subseteq P$ ideal of leading terms of I with respect to \prec;

Notations

- $P:=k\left[x_{1}, \ldots, x_{n}\right] ;$
- $I \subseteq P$ ideal;
- we will say I Cohen-Macaulay for P / I Cohen-Macaulay;
- \prec term order on P;
- $L T_{\prec}(I) \subseteq P$ ideal of leading terms of I with respect to \prec;
- $\omega=\left(\omega_{1}, \ldots, \omega_{n}\right) \in\left(\mathbb{Z}_{+}\right)^{n}$ weight vector;

Initial ideals with respect to weight vectors

Initial ideals with respect to weight vectors

- $f \in P, \operatorname{in}_{\omega}(f) \in P$ is the leading coefficient of

$$
f\left(x_{1} t^{\omega_{1}}, \ldots, x_{n} t^{\omega_{n}}\right) \in P[t]
$$

Initial ideals with respect to weight vectors

- $f \in P, \operatorname{in}_{\omega}(f) \in P$ is the leading coefficient of

$$
f\left(x_{1} t^{\omega_{1}}, \ldots, x_{n} t^{\omega_{n}}\right) \in P[t]
$$

E. g., $f=2 x_{1} x_{2}^{3}+x_{1} x_{3}^{3}+3 x_{2}^{4} x_{3} \in k\left[x_{1}, x_{2}, x_{3}\right]$ and $\omega=(3,2,1)$;

Initial ideals with respect to weight vectors

- $f \in P, \operatorname{in}_{\omega}(f) \in P$ is the leading coefficient of

$$
f\left(x_{1} t^{\omega_{1}}, \ldots, x_{n} t^{\omega_{n}}\right) \in P[t]
$$

E. g., $f=2 x_{1} x_{2}^{3}+x_{1} x_{3}^{3}+3 x_{2}^{4} x_{3} \in k\left[x_{1}, x_{2}, x_{3}\right]$ and $\omega=(3,2,1)$; then $f\left(x_{1} t^{3}, x_{2} t^{2}, x_{3} t\right)=2 x_{1} x_{2}^{3} t^{9}+x_{1} x_{3}^{3} t^{6}+3 x_{2}^{4} x_{3} t^{9}$

Initial ideals with respect to weight vectors

- $f \in P, \operatorname{in}_{\omega}(f) \in P$ is the leading coefficient of

$$
f\left(x_{1} t^{\omega_{1}}, \ldots, x_{n} t^{\omega_{n}}\right) \in P[t]
$$

E. g., $f=2 x_{1} x_{2}^{3}+x_{1} x_{3}^{3}+3 x_{2}^{4} x_{3} \in k\left[x_{1}, x_{2}, x_{3}\right]$ and $\omega=(3,2,1)$; then $f\left(x_{1} t^{3}, x_{2} t^{2}, x_{3} t\right)=2 x_{1} x_{2}^{3} t^{9}+x_{1} x_{3}^{3} t^{6}+3 x_{2}^{4} x_{3} t^{9}$, so

$$
\operatorname{in}_{\omega}(f)=2 x_{1} x_{2}^{3}+3 x_{2}^{4} x_{3}
$$

Initial ideals with respect to weight vectors

- $f \in P, \operatorname{in}_{\omega}(f) \in P$ is the leading coefficient of

$$
f\left(x_{1} t^{\omega_{1}}, \ldots, x_{n} t^{\omega_{n}}\right) \in P[t]
$$

$-\operatorname{in}_{\omega}(I):=\left(\operatorname{in}_{\omega}(f): f \in I\right) \subseteq P$

Initial ideals with respect to weight vectors

- $f \in P, \operatorname{in}_{\omega}(f) \in P$ is the leading coefficient of

$$
f\left(x_{1} t^{\omega_{1}}, \ldots, x_{n} t^{\omega_{n}}\right) \in P[t]
$$

$-\operatorname{in}_{\omega}(I):=\left(\operatorname{in}_{\omega}(f): f \in I\right) \subseteq P$
for every I, \prec there exists ω such that $L T_{\prec}(I)=\mathrm{in}_{\omega}(I)$

Initial ideals with respect to weight vectors

- $f \in P, \operatorname{in}_{\omega}(f) \in P$ is the leading coefficient of

$$
f\left(x_{1} t^{\omega_{1}}, \ldots, x_{n} t^{\omega_{n}}\right) \in P[t]
$$

$-\operatorname{in}_{\omega}(I):=\left(\operatorname{in}_{\omega}(f): f \in I\right) \subseteq P$
for every I, \prec there exists ω such that $L T_{\prec}(I)=\operatorname{in}_{\omega}(I)$
$-{ }^{\omega_{f}} f\left(x_{1}, \ldots, x_{n}, t\right):=f\left(\frac{x_{1}}{t^{\omega_{1}}}, \ldots, \frac{x_{n}}{t^{\omega_{n}}}\right) t^{\operatorname{deg}_{\omega} f} \in P[t]$

Initial ideals with respect to weight vectors

- $f \in P, \operatorname{in}_{\omega}(f) \in P$ is the leading coefficient of

$$
f\left(x_{1} t^{\omega_{1}}, \ldots, x_{n} t^{\omega_{n}}\right) \in P[t]
$$

$-\operatorname{in}_{\omega}(I):=\left(\operatorname{in}_{\omega}(f): f \in I\right) \subseteq P$
for every I, \prec there exists ω such that $L T_{\prec}(I)=\operatorname{in}_{\omega}(I)$
$-\operatorname{deg}_{\omega} f:=\max \left\{\sum_{i=1}^{n} \omega_{i} a_{i} \quad: x_{1}^{a_{1}} \cdots x_{n}^{a_{n}}\right.$ term of $\left.f\right\}$
$-{ }^{\omega_{f}}\left(x_{1}, \ldots, x_{n}, t\right):=f\left(\frac{x_{1}}{t^{\omega_{1}}}, \ldots, \frac{x_{n}}{t^{\omega_{n}}}\right) t^{\operatorname{deg}_{\omega} f} \in P[t]$

Initial ideals with respect to weight vectors

- $f \in P, \operatorname{in}_{\omega}(f) \in P$ is the leading coefficient of

$$
f\left(x_{1} t^{\omega_{1}}, \ldots, x_{n} t^{\omega_{n}}\right) \in P[t]
$$

$-\operatorname{in}_{\omega}(I):=\left(\operatorname{in}_{\omega}(f): f \in I\right) \subseteq P$
for every I, \prec there exists ω such that $L T_{\prec}(I)=\operatorname{in}_{\omega}(I)$
$-\operatorname{deg}_{\omega} f:=\max \left\{\sum_{i=1}^{n} \omega_{i} a_{i}: x_{1}^{a_{1}} \cdots x_{n}^{a_{n}}\right.$ term of $\left.f\right\}$
$-{ }^{\omega_{f}}\left(x_{1}, \ldots, x_{n}, t\right):=f\left(\frac{x_{1}}{t^{\omega_{1}}}, \ldots, \frac{x_{n}}{t^{\omega_{n}}}\right) t^{\operatorname{deg}_{\omega} f} \in P[t]$
$-{ }^{\omega} /:=\left({ }^{\omega} f: f \in I\right) \subseteq P[t]$

Properties of ${ }^{\omega} /$

Properties of ${ }^{\omega} /$

$$
\pi_{0}: P[t] \longrightarrow P
$$

Properties of ${ }^{\omega} /$

$$
\pi_{0}: P[t] \longrightarrow P
$$

$$
\pi_{1}: P[t] \longrightarrow P
$$

Properties of ${ }^{\omega} /$

$$
\begin{aligned}
\pi_{0}: P[t] & \longrightarrow P \\
x_{i} & \longmapsto x_{i} \\
t & \longmapsto 0
\end{aligned}
$$

$$
\pi_{1}: P[t] \longrightarrow P
$$

Properties of ${ }^{\omega} /$

$$
\begin{gathered}
\pi_{0}: P[t] \longrightarrow P \\
x_{i} \longmapsto x_{i} \\
t \longmapsto 0 \\
\pi_{1}: P[t] \longrightarrow P \\
x_{i} \longmapsto x_{i} \\
t \longmapsto 1
\end{gathered}
$$

Properties of ${ }^{\omega} /$

$$
\begin{aligned}
\pi_{0}: P[t] & \longrightarrow P \\
x_{i} & \longmapsto x_{i} \\
t & \longmapsto 0
\end{aligned}
$$

$$
\begin{gathered}
\pi_{1}: P[t] \longrightarrow P \\
x_{i} \longmapsto x_{i} \\
t \longmapsto 1
\end{gathered}
$$

The main result

The main result

For every I and ω

The main result

For every I and ω

$$
\mathrm{c}\left(P / \operatorname{in}_{\omega}(I)\right) \geq \min \{\mathrm{c}(P / I), \operatorname{dim} P / I-1\}
$$

The main result

For every I and ω

$$
\mathrm{c}\left(P / \operatorname{in}_{\omega}(I)\right) \geq \min \{\mathrm{c}(P / I), \operatorname{dim} P / I-1\}
$$

Corollary

The main result

For every I and ω

$$
\mathrm{c}\left(P / \operatorname{in}_{\omega}(I)\right) \geq \min \{\mathrm{c}(P / I), \operatorname{dim} P / I-1\}
$$

Corollary (Kalkbrener and Sturmfels, [KaSt, 1995]).
For every ω and I, if I is prime, then

$$
P / \operatorname{in}_{\omega}(I) \text { is connected in codimension } 1 .
$$

The main result

For every I and ω

$$
\mathrm{c}\left(P / \operatorname{in}_{\omega}(I)\right) \geq \min \{\mathrm{c}(P / I), \operatorname{dim} P / I-1\}
$$

Corollary (Kalkbrener and Sturmfels, [KaSt, 1995]).
For every ω and I, if I is prime, then

$$
P / \operatorname{in}_{\omega}(I) \text { is connected in codimension } 1 .
$$

Proof of Corollary

The main result

For every I and ω

$$
\mathrm{c}\left(P / \operatorname{in}_{\omega}(I)\right) \geq \min \{\mathrm{c}(P / I), \operatorname{dim} P / I-1\}
$$

Corollary (Kalkbrener and Sturmfels, [KaSt, 1995]).
For every ω and I, if I is prime, then

$$
P / \operatorname{in}_{\omega}(I) \text { is connected in codimension } 1 .
$$

Proof of Corollary
I prime $\Rightarrow \mathrm{c}(P / I)=\operatorname{dim} P / I$.

The main result

For every I and ω

$$
\mathrm{c}\left(P / \operatorname{in}_{\omega}(I)\right) \geq \min \{\mathrm{c}(P / I), \operatorname{dim} P / I-1\}
$$

Corollary For every \prec and I, then

$$
c\left(P / L T_{\prec}(I)\right) \geq \min \{c(P / I), \operatorname{dim} P / I-1\}
$$

The main result

For every I and ω

$$
\mathrm{c}\left(P / \operatorname{in}_{\omega}(I)\right) \geq \min \{\mathrm{c}(P / I), \operatorname{dim} P / I-1\}
$$

Corollary For every \prec and I, then

$$
c\left(P / L T_{\prec}(I)\right) \geq \min \{c(P / I), \operatorname{dim} P / I-1\}
$$

Proof of Corollary

The main result

For every I and ω

$$
\mathrm{c}\left(P / \operatorname{in}_{\omega}(I)\right) \geq \min \{\mathrm{c}(P / I), \operatorname{dim} P / I-1\}
$$

Corollary For every \prec and I, then

$$
c\left(P / L T_{\prec}(I)\right) \geq \min \{c(P / I), \operatorname{dim} P / I-1\}
$$

Proof of Corollary
Choose ω such that $\operatorname{in}_{\omega}(I)=L T_{\prec}(I)$.

The main result

For every I and ω

$$
\mathrm{c}\left(P / \operatorname{in}_{\omega}(I)\right) \geq \min \{\mathrm{c}(P / I), \operatorname{dim} P / I-1\}
$$

Corollary For every ω and graded I, the following holds:

$$
\mathrm{c}\left(P / \operatorname{in}_{\omega}(I)\right) \geq \operatorname{depth}(P / I)-1
$$

The main result

For every I and ω

$$
\mathrm{c}\left(P / \operatorname{in}_{\omega}(I)\right) \geq \min \{\mathrm{c}(P / I), \operatorname{dim} P / I-1\}
$$

Corollary For every ω and graded I, the following holds:

$$
\mathrm{c}\left(P / \operatorname{in}_{\omega}(I)\right) \geq \operatorname{depth}(P / I)-1
$$

So, I Cohen-Macaulay $\Rightarrow P / \operatorname{in}_{\omega}(I)$ connected in codimension 1.

The main result

For every I and ω

$$
\mathrm{c}\left(P / \operatorname{in}_{\omega}(I)\right) \geq \min \{\mathrm{c}(P / I), \operatorname{dim} P / I-1\}
$$

Corollary For every ω and graded I, the following holds:

$$
\mathrm{c}\left(P / \operatorname{in}_{\omega}(I)\right) \geq \operatorname{depth}(P / I)-1
$$

So, I Cohen-Macaulay $\Rightarrow P / \operatorname{in}_{\omega}(I)$ connected in codimension 1.
Proof of Corollary

The main result

For every I and ω

$$
\mathrm{c}\left(P / \operatorname{in}_{\omega}(I)\right) \geq \min \{\mathrm{c}(P / I), \operatorname{dim} P / I-1\}
$$

Corollary For every ω and graded I, the following holds:

$$
\mathrm{c}\left(P / \operatorname{in}_{\omega}(I)\right) \geq \operatorname{depth}(P / I)-1
$$

So, I Cohen-Macaulay $\Rightarrow P / \operatorname{in}_{\omega}(I)$ connected in codimension 1.
Proof of Corollary
One can prove that $\mathrm{c}(P / I) \geq \operatorname{depth}(P / I)-1$.

Idea of the proof

Idea of the proof

Let be $R:=P[t] / \omega /$ and $\mathfrak{a}:=\left({ }^{\omega} /+t\right) /{ }^{\omega} / \subseteq R$.

Idea of the proof

Let be $R:=P[t] /{ }^{\omega} /$ and $\mathfrak{a}:=\left({ }^{\omega} /+t\right) /{ }^{\omega} / \subseteq R$.

$$
\pi_{0}\left({ }^{\omega} I\right)=\operatorname{in}_{\omega}(I) \Rightarrow P / \operatorname{in}_{\omega}(I) \cong R / \mathfrak{a}
$$

Idea of the proof

Let be $R:=P[t] / \omega /$ and $\mathfrak{a}:=\left({ }^{\omega} /+t\right) /{ }^{\omega} \mid \subseteq R$.

$$
\pi_{0}\left({ }^{\omega} I\right)=\operatorname{in}_{\omega}(I) \Rightarrow P / \operatorname{in}_{\omega}(I) \cong R / \mathfrak{a}
$$

Give a positive graduation to R s.t. \mathfrak{a} is homogeneus as follows:

Idea of the proof

Let be $R:=P[t] /{ }^{\omega} /$ and $\mathfrak{a}:=\left({ }^{\omega} /+t\right) /{ }^{\omega} \mid \subseteq R$.

$$
\pi_{0}\left({ }^{\omega} I\right)=\operatorname{in}_{\omega}(I) \Rightarrow P / \operatorname{in}_{\omega}(I) \cong R / \mathfrak{a}
$$

Give a positive graduation to R s.t. \mathfrak{a} is homogeneus as follows:

$$
\operatorname{deg} \bar{x}_{i}=\omega_{i}, \quad \operatorname{deg} \bar{t}=1
$$

Idea of the proof

Let be $R:=P[t] / \omega /$ and $\mathfrak{a}:=\left({ }^{\omega} /+t\right) /{ }^{\omega} \mid \subseteq R$.

$$
\pi_{0}\left({ }^{\omega} I\right)=\operatorname{in}_{\omega}(I) \Rightarrow P / \operatorname{in}_{\omega}(I) \cong R / \mathfrak{a}
$$

Give a positive graduation to R s.t. \mathfrak{a} is homogeneus as follows:

$$
\operatorname{deg} \bar{x}_{i}=\omega_{i}, \quad \operatorname{deg} \bar{t}=1
$$

Graded version of the main result of the first part let us conclude!

The answer to the initial question

The answer to the initial question

$$
J=(u a, z a, y a, x a, u v, z v, y v, x v, x y u, x y z, x z u, y z u)
$$

The answer to the initial question

$$
J=(u a, z a, y a, x a, u v, z v, y v, x v, x y u, x y z, x z u, y z u)
$$

The minimal primes of $J \subseteq P:=k[x, y, z, u, v, w, a]$ are:

$$
\begin{gathered}
\wp_{1}=(x, y, z, u), \wp_{2}=(x, y, v, a), \wp_{3}=(x, z, v, a), \\
\wp_{4}=(x, u, v, a), \wp_{5}=(y, z, v, a), \\
\wp_{6}=(y, u, v, a), \wp_{7}=(z, u, v, a) .
\end{gathered}
$$

The answer to the initial question

$$
J=(u a, z a, y a, x a, u v, z v, y v, x v, x y u, x y z, x z u, y z u)
$$

The minimal primes of $J \subseteq P:=k[x, y, z, u, v, w, a]$ are:

$$
\begin{gathered}
\wp_{1}=(x, y, z, u), \wp_{2}=(x, y, v, a), \wp_{3}=(x, z, v, a) \\
\wp_{4}=(x, u, v, a), \wp_{5}=(y, z, v, a) \\
\wp_{6}=(y, u, v, a), \wp_{7}=(z, u, v, a)
\end{gathered}
$$

Note that $\operatorname{dim} P /\left(\wp_{1}+\wp_{i}\right)=1$

The answer to the initial question

$$
J=(u a, z a, y a, x a, u v, z v, y v, x v, x y u, x y z, x z u, y z u)
$$

The minimal primes of $J \subseteq P:=k[x, y, z, u, v, w, a]$ are:

$$
\begin{gathered}
\wp_{1}=(x, y, z, u), \wp_{2}=(x, y, v, a), \wp_{3}=(x, z, v, a), \\
\wp_{4}=(x, u, v, a), \wp_{5}=(y, z, v, a), \\
\wp_{6}=(y, u, v, a), \wp_{7}=(z, u, v, a) .
\end{gathered}
$$

Note that $\operatorname{dim} P /\left(\wp_{1}+\wp_{i}\right)=1$ whereas $\operatorname{dim} P / J=3$.

The answer to the initial question

$$
J=(u a, z a, y a, x a, u v, z v, y v, x v, x y u, x y z, x z u, y z u)
$$

The minimal primes of $J \subseteq P:=k[x, y, z, u, v, w, a]$ are:

$$
\begin{gathered}
\wp_{1}=(x, y, z, u), \wp_{2}=(x, y, v, a), \wp_{3}=(x, z, v, a), \\
\wp_{4}=(x, u, v, a), \wp_{5}=(y, z, v, a), \\
\wp_{6}=(y, u, v, a), \wp_{7}=(z, u, v, a) .
\end{gathered}
$$

Note that $\operatorname{dim} P /\left(\wp_{1}+\wp_{i}\right)=1$ whereas $\operatorname{dim} P / J=3$.
So P / J is not connected in codimension 1 ,

The answer to the initial question

$$
J=(u a, z a, y a, x a, u v, z v, y v, x v, x y u, x y z, x z u, y z u)
$$

The minimal primes of $J \subseteq P:=k[x, y, z, u, v, w, a]$ are:

$$
\begin{gathered}
\wp_{1}=(x, y, z, u), \wp_{2}=(x, y, v, a), \wp_{3}=(x, z, v, a), \\
\wp_{4}=(x, u, v, a), \wp_{5}=(y, z, v, a), \\
\wp_{6}=(y, u, v, a), \wp_{7}=(z, u, v, a) .
\end{gathered}
$$

Note that $\operatorname{dim} P /\left(\wp_{1}+\wp_{i}\right)=1$ whereas $\operatorname{dim} P / J=3$.
So P / J is not connected in codimension 1 , therefore
cannot exist $I \subseteq P$ Cohen-Macaulay and $\prec \mathrm{s} . \mathrm{t} . \sqrt{L T_{\prec}(I)}=J$!

