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We start with a simple question

Given J = (ua, za, ya, xa, uv , zv , yv , xv , xyu, xyz , xzu, yzu)

in P := k[x , y , z , u, v ,w , a] is it possible to find:

(a) a term order ≺ on P

(b) I ⊆ P homogeneus such that P/I is Cohen-Macaulay

such that: √
LT≺(I ) = J ?
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The answer to the question is NO

We will see this fact as a consequence of the main result.

However notice that:

the Hilbert series of P/J doesn’t obstruct the existence of I

In fact the h-vector of P/J is admissible, since

HSP/J(z) =
h(z)

(1− z)2
=

1 + 4z + 2z2

(1− z)2
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MAIN GOAL

We will generalize a theorem due to Kalkbrener and Sturmfels:

[KaSt, 1995] k = k̄ , I ⊆ P := k[x1, . . . , xn] and ω ∈ (Z+)n.

If I is a prime ideal, then P/ inω(I ) is connected in codimension 1.

So, in particular, they proved that for every term order ≺ on P

I prime ⇒ P/LT≺(I ) connected in codimension 1
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Structure of the seminary

Two principal chapters:

- Local cohomology and connectedness

The main result joins:

cohomological dimension of an ideal in a local complete ring with

connectedness properties of the spectrum of the quotient ring.

Translate this result from complete to graded case.

- Applications to initial ideals

We will use the first part to prove the main result.
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PART 1

LOCAL COHOMOLOGY AND CONNECTEDNESS
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Notations, definitions and ”basic” results

- R noetherian ring, commutative with 1, a ⊆ R ideal.

- cd(R; a) is the infimum d ∈ N s.t. H i
a(R) = 0 for every i ≥ d .

- ara(a) is the infimum r ∈ N such that there exist f1, . . . , fr ∈ R
such that

√
a =

√
(f1, . . . , fr ).

- If R is local or a polinomial ring , then

ht(a) ≤ cd(R; a) ≤ ara(a) ≤ dim R.
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Connectivity dimension

Let T be a noetherian topological space.

c(T ) is the infimum of dim Z such that Z ⊆ T is closed and

T \ Z is disconnected, with ∅ disconnected of dimension −1.

EXAMPLES

a = (xz , xw , yz , yw) ⊆ C[x , y , z ,w ], T = Z(a) ⊆ A4.

T = Z(x , y) ∪ Z(z ,w), and Z(x , y) ∩ Z(z ,w) = {(0, 0, 0, 0)},

so dim T = 2 and c(T ) = 0.



Connectivity dimension

Let T be a noetherian topological space.

c(T ) is the infimum of dim Z such that Z ⊆ T is closed and

T \ Z is disconnected, with ∅ disconnected of dimension −1.

If T = Spec R, then c(R) := c(T ) is the infimum of dim R/a

with a ideal such that Spec R \ V(a) is disconnected.



A characterization of connectivity dimension

T.F.A.E.:

(1) c(R) ≥ d ;

(2) ∀℘′, ℘′′ ∈ Min R, are d-connected, i.e ∃℘′ = ℘0, ℘1,

. . . , ℘r = ℘′′, ℘i ∈ Min R and dim R/(℘j + ℘j−1) ≥ d.

We will say that R is connected in codimension dim R − d .
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(1) c(R) ≥ d ;
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There are some easy changes...

- cd(R; a) ≥ ht a

- If R −→ S , then cd(R, a) ≥ cd(S , aS)

And one change more difficult:

- x ∈ R, then cd(R, a + (x)) ≤ cd(R, a) + 1 ? Yes!

More generally, one can prove that,

given another ideal b, there is a spectral sequence:

Hp
a (Hq

b (R))⇒ Hp+q
a+b (R)

from which cd(R, a + b) ≤ cd(R, a) + cd(R, b)!
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Corollary For every ω and graded I , the following holds:

c(P/ inω(I )) ≥ depth(P/I )− 1.

So, I Cohen-Macaulay ⇒ P/ inω(I ) connected in codimension 1.

Proof of Corollary

One can prove that c(P/I ) ≥ depth(P/I )− 1.



Idea of the proof

Let be R := P[t]/ωI and a := (ωI + t)/ωI ⊆ R.

π0(ωI ) = inω(I )⇒ P/ inω(I ) ∼= R/a

Give a positive graduation to R s.t. a is homogeneus as follows:

deg x̄i = ωi , deg t̄ = 1

Graded version of the main result of the first part let us conclude!
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The answer to the initial question

J = (ua, za, ya, xa, uv , zv , yv , xv , xyu, xyz , xzu, yzu)

The minimal primes of J ⊆ P := k[x , y , z , u, v ,w , a] are:

℘1 = (x , y , z , u) , ℘2 = (x , y , v , a), ℘3 = (x , z , v , a),

℘4 = (x , u, v , a), ℘5 = (y , z , v , a),

℘6 = (y , u, v , a), ℘7 = (z , u, v , a).

Note that dim P/(℘1 + ℘i ) = 1 whereas dim P/J = 3.

So P/J is not connected in codimension 1, therefore

cannot exist I ⊆ P Cohen-Macaulay and ≺ s. t.
√

LT≺(I ) = J!
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