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In fact the h-vector of P/J is admissible, since
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We will generalize a theorem due to Kalkbrener and Sturmfels:
[KaSt, 1995] k =k , | € P = k[x,...,xn] and w € (Z,)".
If I is a prime ideal, then P/in,(l) is connected in codimension 1.

So, in particular, they proved that for every term order < on P

I prime = P/LTZ(I) connected in codimension 1
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Structure of the seminary

Two principal chapters:

- Local cohomology and connectedness

The main result joins:

cohomological dimension of an ideal in a local complete ring with

connectedness properties of the spectrum of the quotient ring.

Translate this result from complete to graded case.

- Applications to initial ideals

We will use the first part to prove the main result.
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Notations, definitions and "basic” results

- R noetherian ring, commutative with 1, a C R ideal.
- cd(R; a) is the infimum d € N s.t. Hi(R) = 0 for every i > d.

- ara(a) is the infimum r € N such that there exist fi,...,f, € R

such that v/a = +/(f1,...,f).

- If R is local or a polinomial ring , then

ht(a) < cd(R; a) < ara(a) < dimR.
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Let 7 be a noetherian topological space.

¢(T) is the infimum of dim Z such that Z C T is closed and

T \ Z is disconnected, with () disconnected of dimension —1.

EXAMPLES
a=(xz,xw,yz,yw) C C[x,y,z,w], T = Z(a) C A%,
T =Z2(x,y)UZ(z,w), and Z(x,y)N Z(z,w) = {(0,0,0,0)},
sodimT =2and c(T)=0.



Connectivity dimension

Let 7 be a noetherian topological space.

¢(T) is the infimum of dim Z such that Z C T is closed and

T \ Z is disconnected, with () disconnected of dimension —1.

If T =SpecR, then ¢(R) :=c¢(T) is the infimum of dim R/a
with a ideal such that Spec R\ V(a) is disconnected.
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A characterization of connectivity dimension
T.F.AE.:
(1) e(R) = d;
(2) V', 9" € Min R, are d-connected, i.e 3p' = o, o1,
o or=¢", pi € MinR and dm R /(p; + pj—1) > d.
We will say that R is connected in codimension dimR — d .
EXAMPLES
S =kix,y,z,v,w],a = (zv,yv,xv,yw,yz,xz),R = S/a.
R is connected in codimension 1, since
a=(xy,2)N(y,z,v) N (z,v,w) N (x,y,v) = 1 N2 N 31 04
dmR =2, dimS/(p1+ p2) =1,
dimS/(p2 + p3) =1, dimS/(p3 + pa) = 1.
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The main result of the first part

Let (R, m) be local and complete. Then

c(R/a) > min{c(R),dim R — 1} — c¢d(R, a)

Corollary (Hochster and Huneke)

(R, m) complete, loc., equidimensional, HSm R(R) indecomposable.
If cd(R,a) < dim R — 2 then Spec R/a \ {m} is connected.
Proof of Corollary

H4im R(R) indecomposable iff R connected in codimension 1.

c(Spec R/a\ m) =c(R/a) — 1.
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Sketch of the proof

Proof Grothendieck’s theor. in the book of Brodmann and Sharp.
There are some easy changes...

-cd(R;a) > hta

-If R — S, then cd(R,a) > cd(S, aS)

And one change more difficult:

- x € R, then cd(R,a+ (x)) <cd(R,a)+ 1 ? Yes!

More generally, one can prove that,
given another ideal b, there is a spectral sequence:

HE(HJ(R)) = HZJ(R)

from which cd(R,a + b) < cd(R,a) + cd(R, b)!
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The graded case

R k-algebra finitely generated positively graded, a homogeneus.
Then ¢(R/a) > min{c(R),dim R — 1} — cd(R, a).

Idea of the proof
Let be m = & ,-0R).

- R — Ry, faithfully flat =

local cohomology in R «~ local cohomology in I/?;

- R positively graded =

"connectedness in R" «~ "connectedness in Ry,"
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C =Vi(a) C X curve of X.

If C set-theoretic complete intersection in X

(arag(a) = ht(a) = codimy C), then C connected.
In fact, (1) c¢(C)=c(R/a)—1, ¢(X)=c(R)—1and
(2) min{c(R),dimR —1} =dim X , so

c(C)=c(R/a)—1
> min{c(R),dim R — 1} — cd(R, a) — 1=
=dimX —cd(R,a) — 1>

> dim X — arag(a) — 1= 0.
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Another example of application

X = ProjR projective scheme over k connected in codimension 1,

D effective divisor on X.
D ample = Z := Supp D connected in codimension 1.
i = ijnp| : X — P} closed immersion for n >> 0, so
X\ Z = X\ SuppnD affine.
Affineness Serre's criterion = cd(R,a) < 1, where Z =V, (a) , so

c(Z)=c(R/a)—1
> min{c(R),dimR — 1} — cd(R,a) — 1=
=dimX —cd(R,a) — 1>
>dimX -2 =dmZ — 1.



PART 2
APPLICATIONS TO INITIAL IDEALS
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v

P = k[x1,...,xn];

» | C P ideal;

v

we will say / Cohen-Macaulay for P/l Cohen-Macaulay;

v

< term order on P;

v

LT~(I) C P ideal of leading terms of / with respect to <;

> w=(wi,...,wy) € (Z4+)" weight vector;
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Initial ideals with respect to weight vectors

- f € P, in,(f) € P is the leading coefficient of
f(xpt“t, ..., xpt“") € Pt]

- ing(l):= (in,(f): fel)C P

for every |, < there exists w such that LT-(/) = in,(/)

- deg, f:=max{d " jwia; :x{*---x2" term of f}

X1

g,..

9 (xq, . X ) = F( .,%)tdegwf € P[t]

Y= (“f:fel)C P[t]
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Properties of ¢/

7o : P[t] — P
Xj — Xj
t— 0

7 P[] — P

Xj > X

t— 1

mo(“l) = ing, (/)

m1(“l) =1
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The main result

For every | and w

c(P/in,(l)) > min{c(P/I),dim P/l — 1}

Corollary For every w and graded I, the following holds:
¢(P/iny (1)) > depth(P/1) — 1.

So, | Cohen-Macaulay = P/ in,(I) connected in codimension 1.

Proof of Corollary

One can prove that c(P/l) > depth(P/I) — 1.
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Idea of the proof

Let be R := P[t]/“l and a := (“/ +t)/“l C R.
mo(“l) = iny,(/) = P/in,(l) 2 R/a

Give a positive graduation to R s.t. a is homogeneus as follows:

degx; = w;, degt=1

Graded version of the main result of the first part let us conclude!
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The answer to the initial question

J = (ua, za,ya,xa, uv, zv, yv, xv, Xyu, Xyz, Xzu, yzu)
The minimal primes of J C P := k[x,y,z,u,v,w,a| are:

P1 = (X./y,Z./ U) » 2 = (Xaya Vaa)v ©3 = (X727 Vaa)v
4 = (X7 u, Vva)' {5 = (}/727 Vaa)v

6 = (yv u,v, a)r P17 = (27 u,v, a)-
Note that dim P/(p1 + p;) = 1 whereas dim P/J = 3.
So P/J is not connected in codimension 1, therefore

cannot exist | C P Cohen-Macaulay and <'s. t. /LT<(l) = J!



