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Introduction to the problem

Let us consider the following (2× 4)-matrix

X =

(
x11 x12 x13 x14

x21 x22 x23 x24

)

Denote by [pq] = x1px2q − x1qx2p for any 1 ≤ p < q ≤ 4. Then

[12][34]-[13][24]+[14][23]=0

The QUADRATIC equation above is called Plücker relation.
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Introduction to the problem

Let us consider the following (2× 4)-matrix

X =

(
x11 x12 x13 x14

x21 x22 x23 x24

)

Denote by [pq] = x1px2q − x1qx2p for any 1 ≤ p < q ≤ 4. Then

[12][34]-[13][24]+[14][23]=0

The QUADRATIC equation above is called Plücker relation.
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Introduction to the problem

The Plücker relation above is the only minimal relation among

2-minors of a (2× 4)-matrix.

This means that it generates the

kernel of the following homomorphism between polynomial rings

K [(pq) : 1 ≤ p < q ≤ 4] −→ K [xij : i = 1, 2, j = 1, . . . , 4],

where (pq) are new variables, s.t. (pq) 7→ [pq] = x1px2q − x1qx2p.

The Plücker relations can be defined in general for t-minors of a

(m × n)-matrix, where t ≤ m ≤ n. When t = m they still generate

the kernel of the corresponding homomorphism.

What about the case t < m ?
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Introduction to the problem

In 1991 Bruns noticed that already in the case of 2-minors of a

(3× 4)-matrix CUBIC minimal relations appear.

In 2001 Bruns and Conca asked whether the minimal relations

among 2-minors of a (m × n)-matrix are all quadratic and cubic.

More generally,

are all the minimal relations among

t-minors of a (m × n)-matrix quadratic and cubic?

In this talk we are going to discuss the above problem.
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Notation

-) 1 ≤ t ≤ m ≤ n positive integers.

-) k field of characteristic 0.

-) xij , with i = 1, . . . ,m and j = 1, . . . , n, indeterminates over k .

-) X = (xij) the corresponding (m × n)-matrix.

-) S = k[X ] the polynomial ring on the xij ’s.

-) For any 1 ≤ i1 < . . . < it ≤ m and 1 ≤ j1 < . . . < jt ≤ n

[i1, . . . , it |j1, . . . , jt ] = det

 xi1j1 · · · xi1jt
...

. . .
...

xit j1 · · · xit jt

 .

-) At = At(m, n) ⊆ S the k-algebra generated by the t-minors of X .
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Notation

-) W and V k-vector space of dimension, respectively, m and n.

Notice that, once fixed a basis {f1, . . . , fm} of W and a basis

{e1, . . . , en} of V , we can identify S = K [X ] ∼= Sym(W ⊗ V )

sending xij to fi ⊗ ej .

By means of such an isomorphism, At corresponds to the

subalgebra of Sym(W ⊗ V ) generated by
∧t W ⊗

∧t V , by

[i1, . . . , it |j1, . . . , jt ] 7→ (fi1 ∧ . . . ∧ fit )⊗ (ej1 ∧ . . . ∧ ejt )
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Notation

-) Pt = Pt(m, n) = Sym(
∧t W ⊗

∧t V ).

So we are interested in the kernel of Pt
π−→ At , Jt = Jt(m, n).

π((fi1 ∧ . . . ∧ fit )⊗ (ej1 ∧ . . . ∧ ejt )) = [i1, . . . , it |j1, . . . , jt ],

thus Jt is the ideal of relations among the t-minors of X .

-) d(t,m, n) the maximum degree of a minimal generator of Jt .

If t = 1 or n ≤ t + 1, then Jt = 0.

If t = m ≥ 2 and n ≥ t + 2, then d(t,m, n) = 2.

If m > t > 1 and n > t + 1, d(t,m, n) is unknown. Is d(t,m, n) = 3?



Notation

-) Pt = Pt(m, n) = Sym(
∧t W ⊗

∧t V ).

So we are interested in the kernel of Pt
π−→ At ,

Jt = Jt(m, n).

π((fi1 ∧ . . . ∧ fit )⊗ (ej1 ∧ . . . ∧ ejt )) = [i1, . . . , it |j1, . . . , jt ],

thus Jt is the ideal of relations among the t-minors of X .

-) d(t,m, n) the maximum degree of a minimal generator of Jt .

If t = 1 or n ≤ t + 1, then Jt = 0.

If t = m ≥ 2 and n ≥ t + 2, then d(t,m, n) = 2.

If m > t > 1 and n > t + 1, d(t,m, n) is unknown. Is d(t,m, n) = 3?



Notation

-) Pt = Pt(m, n) = Sym(
∧t W ⊗

∧t V ).

So we are interested in the kernel of Pt
π−→ At , Jt = Jt(m, n).

π((fi1 ∧ . . . ∧ fit )⊗ (ej1 ∧ . . . ∧ ejt )) = [i1, . . . , it |j1, . . . , jt ],

thus Jt is the ideal of relations among the t-minors of X .

-) d(t,m, n) the maximum degree of a minimal generator of Jt .

If t = 1 or n ≤ t + 1, then Jt = 0.

If t = m ≥ 2 and n ≥ t + 2, then d(t,m, n) = 2.

If m > t > 1 and n > t + 1, d(t,m, n) is unknown. Is d(t,m, n) = 3?



Notation

-) Pt = Pt(m, n) = Sym(
∧t W ⊗

∧t V ).

So we are interested in the kernel of Pt
π−→ At , Jt = Jt(m, n).

π((fi1 ∧ . . . ∧ fit )⊗ (ej1 ∧ . . . ∧ ejt )) = [i1, . . . , it |j1, . . . , jt ],

thus Jt is the ideal of relations among the t-minors of X .

-) d(t,m, n) the maximum degree of a minimal generator of Jt .

If t = 1 or n ≤ t + 1, then Jt = 0.

If t = m ≥ 2 and n ≥ t + 2, then d(t,m, n) = 2.

If m > t > 1 and n > t + 1, d(t,m, n) is unknown. Is d(t,m, n) = 3?



Notation

-) Pt = Pt(m, n) = Sym(
∧t W ⊗

∧t V ).

So we are interested in the kernel of Pt
π−→ At , Jt = Jt(m, n).

π((fi1 ∧ . . . ∧ fit )⊗ (ej1 ∧ . . . ∧ ejt )) = [i1, . . . , it |j1, . . . , jt ],

thus Jt is the ideal of relations among the t-minors of X .

-) d(t,m, n) the maximum degree of a minimal generator of Jt .

If t = 1 or n ≤ t + 1, then Jt = 0.

If t = m ≥ 2 and n ≥ t + 2, then d(t,m, n) = 2.

If m > t > 1 and n > t + 1, d(t,m, n) is unknown. Is d(t,m, n) = 3?



Notation

-) Pt = Pt(m, n) = Sym(
∧t W ⊗

∧t V ).

So we are interested in the kernel of Pt
π−→ At , Jt = Jt(m, n).

π((fi1 ∧ . . . ∧ fit )⊗ (ej1 ∧ . . . ∧ ejt )) = [i1, . . . , it |j1, . . . , jt ],

thus Jt is the ideal of relations among the t-minors of X .

-) d(t,m, n) the maximum degree of a minimal generator of Jt .

If t = 1 or n ≤ t + 1, then Jt = 0.

If t = m ≥ 2 and n ≥ t + 2, then d(t,m, n) = 2.

If m > t > 1 and n > t + 1, d(t,m, n) is unknown. Is d(t,m, n) = 3?



Notation

-) Pt = Pt(m, n) = Sym(
∧t W ⊗

∧t V ).

So we are interested in the kernel of Pt
π−→ At , Jt = Jt(m, n).

π((fi1 ∧ . . . ∧ fit )⊗ (ej1 ∧ . . . ∧ ejt )) = [i1, . . . , it |j1, . . . , jt ],

thus Jt is the ideal of relations among the t-minors of X .

-) d(t,m, n) the maximum degree of a minimal generator of Jt .

If t = 1 or n ≤ t + 1, then Jt = 0.

If t = m ≥ 2 and n ≥ t + 2, then d(t,m, n) = 2.

If m > t > 1 and n > t + 1, d(t,m, n) is unknown. Is d(t,m, n) = 3?



Notation

-) Pt = Pt(m, n) = Sym(
∧t W ⊗

∧t V ).

So we are interested in the kernel of Pt
π−→ At , Jt = Jt(m, n).

π((fi1 ∧ . . . ∧ fit )⊗ (ej1 ∧ . . . ∧ ejt )) = [i1, . . . , it |j1, . . . , jt ],

thus Jt is the ideal of relations among the t-minors of X .

-) d(t,m, n) the maximum degree of a minimal generator of Jt .

If t = 1 or n ≤ t + 1, then Jt = 0.

If t = m ≥ 2 and n ≥ t + 2, then d(t,m, n) = 2.

If m > t > 1 and n > t + 1, d(t,m, n) is unknown. Is d(t,m, n) = 3?



Notation

-) Pt = Pt(m, n) = Sym(
∧t W ⊗

∧t V ).

So we are interested in the kernel of Pt
π−→ At , Jt = Jt(m, n).

π((fi1 ∧ . . . ∧ fit )⊗ (ej1 ∧ . . . ∧ ejt )) = [i1, . . . , it |j1, . . . , jt ],

thus Jt is the ideal of relations among the t-minors of X .

-) d(t,m, n) the maximum degree of a minimal generator of Jt .

If t = 1 or n ≤ t + 1, then Jt = 0.

If t = m ≥ 2 and n ≥ t + 2, then d(t,m, n) = 2.

If m > t > 1 and n > t + 1, d(t,m, n) is unknown.

Is d(t,m, n) = 3?



Notation

-) Pt = Pt(m, n) = Sym(
∧t W ⊗

∧t V ).

So we are interested in the kernel of Pt
π−→ At , Jt = Jt(m, n).

π((fi1 ∧ . . . ∧ fit )⊗ (ej1 ∧ . . . ∧ ejt )) = [i1, . . . , it |j1, . . . , jt ],

thus Jt is the ideal of relations among the t-minors of X .

-) d(t,m, n) the maximum degree of a minimal generator of Jt .

If t = 1 or n ≤ t + 1, then Jt = 0.

If t = m ≥ 2 and n ≥ t + 2, then d(t,m, n) = 2.

If m > t > 1 and n > t + 1, d(t,m, n) is unknown. Is d(t,m, n) = 3?



What we are going to prove during the talk

-) d(t,m, n) ≥ 3 in all the unknown cases.

-) d(t,m, n) ≤ d(t,m,m + t) (for instance d(2, 3, n) ≤ d(2, 3, 5)).

-) d(2, 3, n) = 3 (whenever n ≥ 4).



What we are going to prove during the talk

-) d(t,m, n) ≥ 3 in all the unknown cases.

-) d(t,m, n) ≤ d(t,m,m + t) (for instance d(2, 3, n) ≤ d(2, 3, 5)).

-) d(2, 3, n) = 3 (whenever n ≥ 4).



What we are going to prove during the talk

-) d(t,m, n) ≥ 3 in all the unknown cases.

-) d(t,m, n) ≤ d(t,m,m + t) (for instance d(2, 3, n) ≤ d(2, 3, 5)).

-) d(2, 3, n) = 3 (whenever n ≥ 4).



What we are going to prove during the talk

-) d(t,m, n) ≥ 3 in all the unknown cases.

-) d(t,m, n) ≤ d(t,m,m + t) (for instance d(2, 3, n) ≤ d(2, 3, 5)).

-) d(2, 3, n) = 3 (whenever n ≥ 4).



The action on At

-) G = GL(W )×GL(V ).

Once fixed a basis for W , we can identify GL(W ) with the group
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(A,B) X = A · X · B−1
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The representation theoretic point of view

There is an isomorphism of G -modules S ∼= Sym(W ⊗ V ).

Let λ = (λ1, . . . , λs) be a partition of a natural number d .

We will write λ ` d and we define ht(λ) = s.

-) Let LλW denote the Schür module associated to λ.

It is a suitable quotient of∧λ1 W ⊗
∧λ2 W ⊗ · · · ⊗

∧λs W

LλW is an irreducible GL(W )-module. The same holds for V .

The following G -isomorphism is known as the Cauchy formula:

S ∼=
⊕
d≥0
λ`d

LλW ⊗ LλV



The representation theoretic point of view

A partition λ is often represented as a Young diagram.

For example

λ = (5, 3, 3, 1) =

A standard tableu of shape λ is a filling of the boxes of λ which is

rows increasing and columns nondecreasing. For instance

T =
1
2
2
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The representation theoretic point of view

The standard tableux of shape λ and with entries in {1, . . . ,m}
are in correspondence with a basis of LλW .

Analogously for V .

To a pair of standard tableux of shape λ we can associate

a product of minors as in the example below

134
3

2 3 5
2

 [1, 3, 4|2, 3, 5] · [3|2]

It turns out that the k-subspace of S generated by the products

of minors of shape λ is isomorphic as G -module to LλW ⊗ LλV .
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The irreducible G -modules in At

A result of De Concini, Eisenbud and Procesi implies

At
∼=
⊕
d≥0

⊕
λ`dt

ht(λ)≤d

LλW ⊗ LλV

For instance consider the partition λ = (4, 1, 1) ` 6

λ = (4, 1, 1) =

By the Cauchy formula LλW ⊗ LλV ⊆ S . LλW ⊗ LλV ⊆ A3 ?

No. In fact λ ` 6 = 2 · 3 and ht(λ) = 3 � 2. LλW ⊗ LλV ⊆ A2 ?

Yes. In fact λ ` 6 = 3 · 2 and ht(λ) = 3 ≤ 3.
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The irreducible G -modules in Pt

Pt = Sym(
∧t W ⊗

∧t V ) also admits a decomposition of the kind

Pt
∼=
⊕
d≥0

⊕
λ,µ`dt

ht(λ),ht(µ)≤d

a(λ, µ) LλW ⊗ LµV

where the a(λ, µ) ≥ 0 are integers (multiplicities). Unfortunately

we do not know the multiplicities above. Actually knowing them

would solve an open problem of inner plethysm in representation

theory. In general we do not even know when a(λ, µ) is zero or not.
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The irreducible G -modules in Pt

From now on if a(λ, µ) ≥ 1 we will say that LλW ⊗ LµV ⊆ Pt .

Since Pt
π−→ At is G -equivariant we have

At ⊇ π(LλW ⊗ LµV ) ∼=

{
LλW ⊗ LµV or

0

So LλW ⊗ LµV ⊆ Jt whenever λ 6= µ and LλW ⊗ LµV ⊆ Pt .

For instance one can show that LλW ⊗ LµV ⊆ P2 for λ = (4) and

µ = (2, 2). So LλW ⊗ LµV ⊆ Jt . Actually to such a Schür module

correspond the Plücker relations. Instead for the partitions

λ = (3, 1) and µ = (2, 2), LλW ⊗ LµV * P2 (i.e. a(λ, µ) = 0).
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Let us go a step more to the left

Since a decomposition of Pt as G -module is unknown may be

convenient go a “step more to the left”, considering the G -module

-) Qt = Qt(m, n) =
⊕∞

i=0(⊗i (
∧t W ))⊗ (⊗i (

∧t V )).

It turns out that the kernel of the G -homomorphism Qt
φ−→ Pt

is generated in degree 2 as a two-sided ideal.

Consider the G -equivariant map ψ : Qt
φ−→ Pt

π−→ At . T.F.A.E.

- ∃ a mimimal generator of degree d ≥ 3 in Ker(π) = Jt .

- ∃ a mimimal (two-sided) generator of degree d ≥ 3 in Ker(ψ).

So we will face the problem looking at Kt = Kt(m, n) = Ker(ψ).
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Pieri’s formula

We take advantage in considering Qt because its decomposition in

irreducible G -modules is provided by the Pieri’s formula, which

allows us to compute a decomposition as GL(W )-module of

LλW ⊗
∧t W .

To describe it we need a definition:

Given λ = (λ1, . . . , λs) ` d set λ̃ = (λ1 + t, λ1, λ2, . . . , λs).

We will say that µ ` d + t is a successor of λ if λ ⊆ µ ⊆ λ̃.

In this case we will also say that λ is a predecessor of µ.
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Pieri’s formula

For example, let t = 2 and λ = (3, 1).

Then λ̃ = (5, 3, 1).

In the Young-diagrams notation we have

λ = and λ̃ =

Thus the following γ is a successor of λ, whether µ is not

µ = and γ =

Pieri’s formula yields the isomorphism of GL(W )-modules

LλW ⊗
t∧

W ∼=
⊕

µ successor of λ

LµW .
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The irreducible G -modules in Qt

Therefore we have the following G -isomorphism

Qt
∼=
⊕
d≥0

⊕
λ,µ`dt

ht(λ),ht(µ)≤d

b(λ, µ) LλW ⊗ LµV

where b(λ, µ) ≥ 1.

It is possible to describe recursively the b(λ, µ) as follows:

-) b(λ, µ) = 1 if λ = µ = (t) (if and only if λ, µ ` t).

-) If λ, µ ` dt with d > 1, then

b(λ, µ) =
∑

λ′ predecessor of λ
µ′ predecessor of µ

b(λ′, µ′).
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Minimal cubic relations among minors

We are going to give the idea to prove that there is a minimal

generator of degree 3 in Kt , the kernel of the map Qt
ψ−→ At .

Since ψ is G -equivariant, then Kt is a G -module. Moreover, if

∃ an element of LλW ⊗ LµV ⊆ Kt which is a minimal generator of

Kt , then any basis of LλW ⊗ LµV consists in minimal generators of

Kt . In this case we will say that LλW ⊗ LµV is minimal in Kt .
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Sketch of the proof

For simplicity we will exhibit a minimal cubic relation for t = 2,

however the technique works in general.

Consider λ0 = (3, 3) and µ0 = (4, 1, 1), i.e.

λ0 = and µ0 =

We have Lλ0W ⊗ Lµ0V ⊆ (Q2)3.

The only predecessor of the pair (λ0, µ0) is the pair (γ0, γ0) where

γ0 = (3, 1) =
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Sketch of the proof

λ0 6= µ0 ⇒ Lλ0W ⊗ Lµ0V ⊆ (K2)3.

There is the G -decomposition:

(Q2)2
∼= (K2)2 ⊕ (A2)2.

The only predecessor of (λ0, µ0), i.e. (γ0, γ0), has multiplicity 1.

This implies that the unique copy of Lγ0W ⊗ Lγ0V is in (A2)2.

Then Lλ0W ⊗ Lµ0V is in (K2)3 but cannot have any

predecessor in (K2)2. This implies that

Lλ0
W ⊗ Lµ0

V is minimal in K2
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A remark

We can also show that if (λ, µ) is a pair of partitions such that:

λ, µ ` 2d with d ≥ 3, λ 6= µ, b(λ, µ) = 1 and

the only predecessor of (λ, µ) is symmetric. Then (λ, µ) = (λ0, µ0).

Analog results hold true for any t ≥ 2, therefore:

There are minimal generators of degree 3 in Kt , and thus in Jt .

There are not any minimal generators of degree d ≥ 4 for

“reasons of shape” in Kt , and so neither in Jt .

This is one of the reasons for our initial question:

Are quadrics and cubics enough to generate Jt and Kt?
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The independence from n

We are going to show that d(t,m, n) ≤ d(t,m,m + t).

Let (λ, µ) be a pair of partition such that µ1 > λ1 + t.

If (λ′, µ′) is a predecessor of (λ, µ) then µ′1 > λ1 ≥ λ′1. Therefore

µ1 > λ1 + t ⇒ LλW ⊗ LµV is not minimal in Kt

Since λ1 ≤ m, then LλW ⊗ LµV is minimal in Kt whenever µ1 > m + t.

On the other hand, if µ1 ≤ m + t, there is a polynomial in

LλW ⊗ LµV that actually lies in Pt(m,m + t).
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The independence from n

For instance if t = 2 and m = 4, LλW ⊗ LµV , where λ = (4, 3, 1)

and µ = (6, 2), might be minimal in K2.

In any case the following

standard bi-tableu corresponds to a polynomial, say F , of P2(4, 6):

1
1
1

2
2

3
3

4 1
1

2
2

3 4 5 6

In fact F is in the variables (fi1 ∧ fi2)⊗ (ej1 ∧ ej2) with i2 ≤ 4 and j2 ≤ 6.

Moreover, if F is minimal in J2(4, n) it has to be minimal also in J2(4, 6).

So, in general, d(t,m, n) ≤ d(t,m,m + t).
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Relations among two-minors of a (3× n)-matrix

The above upper bounds yields d(2, 3, n) ≤ d(2, 3, 5).

The case of a 3× 5 matrix is doable by computer!

d(2, 3, n) = 3 whenever n ≥ 4

So, in a (3× n)-matrix, “essentially” the only relations among

2-minors are quadrics and cubics!
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