RELATIONS AMONG MINORS

Matteo Varbaro

Dipartimento di Matematica
Universitá di Genova

Joint with Winfried Bruns and Aldo Conca

Introduction to the problem

Introduction to the problem

Let us consider the following (2×4)-matrix

Introduction to the problem

Let us consider the following (2×4)-matrix

$$
X=\left(\begin{array}{llll}
x_{11} & x_{12} & x_{13} & x_{14} \\
x_{21} & x_{22} & x_{23} & x_{24}
\end{array}\right)
$$

Introduction to the problem

Let us consider the following (2×4)-matrix

$$
X=\left(\begin{array}{llll}
x_{11} & x_{12} & x_{13} & x_{14} \\
x_{21} & x_{22} & x_{23} & x_{24}
\end{array}\right)
$$

Denote by $[p q]=x_{1 p} x_{2 q}-x_{1 q} x_{2 p}$ for any $1 \leq p<q \leq 4$.

Introduction to the problem

Let us consider the following (2×4)-matrix

$$
X=\left(\begin{array}{llll}
x_{11} & x_{12} & x_{13} & x_{14} \\
x_{21} & x_{22} & x_{23} & x_{24}
\end{array}\right)
$$

Denote by $[p q]=x_{1 p} x_{2 q}-x_{1 q} x_{2 p}$ for any $1 \leq p<q \leq 4$. Then

$$
[12][34]-[13][24]+[14][23]=0
$$

Introduction to the problem

Let us consider the following (2×4)-matrix

$$
X=\left(\begin{array}{llll}
x_{11} & x_{12} & x_{13} & x_{14} \\
x_{21} & x_{22} & x_{23} & x_{24}
\end{array}\right)
$$

Denote by $[p q]=x_{1 p} x_{2 q}-x_{1 q} x_{2 p}$ for any $1 \leq p<q \leq 4$. Then

$$
[12][34]-[13][24]+[14][23]=0
$$

The QUADRATIC equation above is called Plücker relation.

Introduction to the problem

The Plücker relation above is the only minimal relation among 2 -minors of a (2×4)-matrix.

Introduction to the problem

The Plücker relation above is the only minimal relation among 2 -minors of a (2×4)-matrix. This means that it generates the kernel of the following homomorphism between polynomial rings

$$
K[(p q): 1 \leq p<q \leq 4] \longrightarrow K\left[x_{i j}: i=1,2, j=1, \ldots, 4\right]
$$

Introduction to the problem

The Plücker relation above is the only minimal relation among 2-minors of a (2×4)-matrix. This means that it generates the kernel of the following homomorphism between polynomial rings

$$
K[(p q): 1 \leq p<q \leq 4] \longrightarrow K\left[x_{i j}: i=1,2, j=1, \ldots, 4\right]
$$

where $(p q)$ are new variables, s.t. $(p q) \mapsto[p q]=x_{1 p} x_{2 q}-x_{1 q} x_{2 p}$.

Introduction to the problem

The Plücker relation above is the only minimal relation among 2-minors of a (2×4)-matrix. This means that it generates the kernel of the following homomorphism between polynomial rings

$$
K[(p q): 1 \leq p<q \leq 4] \longrightarrow K\left[x_{i j}: i=1,2, j=1, \ldots, 4\right],
$$

where $(p q)$ are new variables, s.t. $(p q) \mapsto[p q]=x_{1 p} x_{2 q}-x_{1 q} x_{2 p}$.
The Plücker relations can be defined in general for t-minors of a ($m \times n$)-matrix, where $t \leq m \leq n$.

Introduction to the problem

The Plücker relation above is the only minimal relation among 2-minors of a (2×4)-matrix. This means that it generates the kernel of the following homomorphism between polynomial rings

$$
K[(p q): 1 \leq p<q \leq 4] \longrightarrow K\left[x_{i j}: i=1,2, j=1, \ldots, 4\right],
$$

where $(p q)$ are new variables, s.t. $(p q) \mapsto[p q]=x_{1 p} x_{2 q}-x_{1 q} x_{2 p}$.
The Plücker relations can be defined in general for t-minors of a ($m \times n$)-matrix, where $t \leq m \leq n$. When $t=m$ they still generate the kernel of the corresponding homomorphism.

Introduction to the problem

The Plücker relation above is the only minimal relation among 2-minors of a (2×4)-matrix. This means that it generates the kernel of the following homomorphism between polynomial rings

$$
K[(p q): 1 \leq p<q \leq 4] \longrightarrow K\left[x_{i j}: i=1,2, j=1, \ldots, 4\right],
$$

where $(p q)$ are new variables, s.t. $(p q) \mapsto[p q]=x_{1 p} x_{2 q}-x_{1 q} x_{2 p}$.
The Plücker relations can be defined in general for t-minors of a ($m \times n$)-matrix, where $t \leq m \leq n$. When $t=m$ they still generate the kernel of the corresponding homomorphism.

What about the case $t<m$?

Introduction to the problem

In 1991 Bruns noticed that already in the case of 2-minors of a
(3×4)-matrix CUBIC minimal relations appear.

Introduction to the problem

In 1991 Bruns noticed that already in the case of 2-minors of a (3×4)-matrix CUBIC minimal relations appear.

In 2001 Bruns and Conca asked whether the minimal relations among 2 -minors of a $(m \times n)$-matrix are all quadratic and cubic.

Introduction to the problem

In 1991 Bruns noticed that already in the case of 2-minors of a (3×4)-matrix CUBIC minimal relations appear.

In 2001 Bruns and Conca asked whether the minimal relations among 2 -minors of a $(m \times n)$-matrix are all quadratic and cubic.

More generally,

Introduction to the problem

In 1991 Bruns noticed that already in the case of 2-minors of a (3×4)-matrix CUBIC minimal relations appear.

In 2001 Bruns and Conca asked whether the minimal relations among 2-minors of a $(m \times n)$-matrix are all quadratic and cubic.

More generally,
are all the minimal relations among
t-minors of a $(m \times n)$-matrix quadratic and cubic?

Introduction to the problem

In 1991 Bruns noticed that already in the case of 2-minors of a (3×4)-matrix CUBIC minimal relations appear.

In 2001 Bruns and Conca asked whether the minimal relations among 2-minors of a $(m \times n)$-matrix are all quadratic and cubic.

More generally, are all the minimal relations among t-minors of a $(m \times n)$-matrix quadratic and cubic?

In this talk we are going to discuss the above problem.

Notation

Notation

-) $1 \leq t \leq m \leq n$ positive integers.

Notation

-) $1 \leq t \leq m \leq n$ positive integers.
-) k field of characteristic 0 .

Notation

-) $1 \leq t \leq m \leq n$ positive integers.
-) k field of characteristic 0 .
-) $x_{i j}$, with $i=1, \ldots, m$ and $j=1, \ldots, n$, indeterminates over k.

Notation

-) $1 \leq t \leq m \leq n$ positive integers.
-) k field of characteristic 0 .
-) $x_{i j}$, with $i=1, \ldots, m$ and $j=1, \ldots, n$, indeterminates over k.
-) $X=\left(x_{i j}\right)$ the corresponding $(m \times n)$-matrix.

Notation

-) $1 \leq t \leq m \leq n$ positive integers.
-) k field of characteristic 0 .
-) $x_{i j}$, with $i=1, \ldots, m$ and $j=1, \ldots, n$, indeterminates over k.
-) $X=\left(x_{i j}\right)$ the corresponding $(m \times n)$-matrix.
-) $S=k[X]$ the polynomial ring on the $x_{i j}$'s.

Notation

-) $1 \leq t \leq m \leq n$ positive integers.
-) k field of characteristic 0 .
-) $x_{i j}$, with $i=1, \ldots, m$ and $j=1, \ldots, n$, indeterminates over k.
-) $X=\left(x_{i j}\right)$ the corresponding $(m \times n)$-matrix.
-) $S=k[X]$ the polynomial ring on the $x_{i j}$'s.
-) For any $1 \leq i_{1}<\ldots<i_{t} \leq m$ and $1 \leq j_{1}<\ldots<j_{t} \leq n$

$$
\left[i_{1}, \ldots, i_{t} \mid j_{1}, \ldots, j_{t}\right]=\operatorname{det}\left(\begin{array}{ccc}
x_{i_{1} j_{1}} & \cdots & x_{i_{1} j_{t}} \\
\vdots & \ddots & \vdots \\
x_{i t j_{1}} & \cdots & x_{i_{t} j_{t}}
\end{array}\right)
$$

Notation

-) $1 \leq t \leq m \leq n$ positive integers.
-) k field of characteristic 0 .
-) $x_{i j}$, with $i=1, \ldots, m$ and $j=1, \ldots, n$, indeterminates over k.
-) $X=\left(x_{i j}\right)$ the corresponding $(m \times n)$-matrix.
-) $S=k[X]$ the polynomial ring on the $x_{i j}$'s.
-) For any $1 \leq i_{1}<\ldots<i_{t} \leq m$ and $1 \leq j_{1}<\ldots<j_{t} \leq n$

$$
\left[i_{1}, \ldots, i_{t} \mid j_{1}, \ldots, j_{t}\right]=\operatorname{det}\left(\begin{array}{ccc}
x_{i_{1} j_{1}} & \cdots & x_{i_{1} j_{t}} \\
\vdots & \ddots & \vdots \\
x_{i_{t} j_{1}} & \cdots & x_{i_{t} j_{t}}
\end{array}\right)
$$

-) $A_{t}=A_{t}(m, n) \subseteq S$ the k-algebra generated by the t-minors of X.

Notation

-) W and $V k$-vector space of dimension, respectively, m and n.

Notation

-) W and $V k$-vector space of dimension, respectively, m and n.
Notice that, once fixed a basis $\left\{f_{1}, \ldots, f_{m}\right\}$ of W and a basis $\left\{e_{1}, \ldots, e_{n}\right\}$ of V,

Notation

-) W and $V k$-vector space of dimension, respectively, m and n.
Notice that, once fixed a basis $\left\{f_{1}, \ldots, f_{m}\right\}$ of W and a basis $\left\{e_{1}, \ldots, e_{n}\right\}$ of V, we can identify $S=K[X] \cong \operatorname{Sym}(W \otimes V)$ sending $x_{i j}$ to $f_{i} \otimes e_{j}$.

Notation

-) W and V-vector space of dimension, respectively, m and n.
Notice that, once fixed a basis $\left\{f_{1}, \ldots, f_{m}\right\}$ of W and a basis $\left\{e_{1}, \ldots, e_{n}\right\}$ of V, we can identify $S=K[X] \cong \operatorname{Sym}(W \otimes V)$ sending $x_{i j}$ to $f_{i} \otimes e_{j}$.

By means of such an isomorphism, A_{t} corresponds to the subalgebra of $\operatorname{Sym}(W \otimes V)$ generated by $\bigwedge^{t} W \otimes \bigwedge^{t} V$,

Notation

-) W and $V k$-vector space of dimension, respectively, m and n.
Notice that, once fixed a basis $\left\{f_{1}, \ldots, f_{m}\right\}$ of W and a basis $\left\{e_{1}, \ldots, e_{n}\right\}$ of V, we can identify $S=K[X] \cong \operatorname{Sym}(W \otimes V)$ sending $x_{i j}$ to $f_{i} \otimes e_{j}$.

By means of such an isomorphism, A_{t} corresponds to the subalgebra of $\operatorname{Sym}(W \otimes V)$ generated by $\bigwedge^{t} W \otimes \bigwedge^{t} V$, by

$$
\left[i_{1}, \ldots, i_{t} \mid j_{1}, \ldots, j_{t}\right] \mapsto \overline{\left(f_{i_{1}} \wedge \ldots \wedge f_{i_{t}}\right) \otimes\left(e_{j_{1}} \wedge \ldots \wedge e_{j_{t}}\right)}
$$

Notation

-) $P_{t}=P_{t}(m, n)=\operatorname{Sym}\left(\Lambda^{t} W \otimes \Lambda^{t} V\right)$.

Notation

-) $P_{t}=P_{t}(m, n)=\operatorname{Sym}\left(\bigwedge^{t} W \otimes \Lambda^{t} V\right)$.
So we are interested in the kernel of $P_{t} \xrightarrow{\pi} A_{t}$,

Notation

-) $P_{t}=P_{t}(m, n)=\operatorname{Sym}\left(\Lambda^{t} W \otimes \Lambda^{t} V\right)$.
So we are interested in the kernel of $P_{t} \xrightarrow{\pi} A_{t}, \quad J_{t}=J_{t}(m, n)$.

Notation

-) $P_{t}=P_{t}(m, n)=\operatorname{Sym}\left(\bigwedge^{t} W \otimes \Lambda^{t} V\right)$.
So we are interested in the kernel of $P_{t} \xrightarrow{\pi} A_{t}, \quad J_{t}=J_{t}(m, n)$.

$$
\pi\left(\left(f_{i_{1}} \wedge \ldots \wedge f_{i_{t}}\right) \otimes\left(e_{j_{1}} \wedge \ldots \wedge e_{j_{t}}\right)\right)=\left[i_{1}, \ldots, i_{t} \mid j_{1}, \ldots, j_{t}\right],
$$

Notation

-) $P_{t}=P_{t}(m, n)=\operatorname{Sym}\left(\bigwedge^{t} W \otimes \Lambda^{t} V\right)$.
So we are interested in the kernel of $P_{t} \xrightarrow{\pi} A_{t}, \quad J_{t}=J_{t}(m, n)$.

$$
\pi\left(\left(f_{i_{1}} \wedge \ldots \wedge f_{i_{t}}\right) \otimes\left(e_{j_{1}} \wedge \ldots \wedge e_{j_{t}}\right)\right)=\left[i_{1}, \ldots, i_{t} \mid j_{1}, \ldots, j_{t}\right],
$$

thus J_{t} is the ideal of relations among the t-minors of X.

Notation

-) $P_{t}=P_{t}(m, n)=\operatorname{Sym}\left(\bigwedge^{t} W \otimes \Lambda^{t} V\right)$.
So we are interested in the kernel of $P_{t} \xrightarrow{\pi} A_{t}, \quad J_{t}=J_{t}(m, n)$.

$$
\pi\left(\left(f_{i_{1}} \wedge \ldots \wedge f_{i_{t}}\right) \otimes\left(e_{j_{1}} \wedge \ldots \wedge e_{j_{t}}\right)\right)=\left[i_{1}, \ldots, i_{t} \mid j_{1}, \ldots, j_{t}\right],
$$

thus J_{t} is the ideal of relations among the t-minors of X.
-) $d(t, m, n)$ the maximum degree of a minimal generator of J_{t}.

Notation

-) $P_{t}=P_{t}(m, n)=\operatorname{Sym}\left(\bigwedge^{t} W \otimes \Lambda^{t} V\right)$.
So we are interested in the kernel of $P_{t} \xrightarrow{\pi} A_{t}, \quad J_{t}=J_{t}(m, n)$.

$$
\pi\left(\left(f_{i_{1}} \wedge \ldots \wedge f_{i_{t}}\right) \otimes\left(e_{j_{1}} \wedge \ldots \wedge e_{j_{t}}\right)\right)=\left[i_{1}, \ldots, i_{t} \mid j_{1}, \ldots, j_{t}\right],
$$

thus J_{t} is the ideal of relations among the t-minors of X.
-) $d(t, m, n)$ the maximum degree of a minimal generator of J_{t}.
If $t=1$ or $n \leq t+1$, then $J_{t}=0$.

Notation

-) $P_{t}=P_{t}(m, n)=\operatorname{Sym}\left(\bigwedge^{t} W \otimes \Lambda^{t} V\right)$.
So we are interested in the kernel of $P_{t} \xrightarrow{\pi} A_{t}, \quad J_{t}=J_{t}(m, n)$.

$$
\pi\left(\left(f_{i_{1}} \wedge \ldots \wedge f_{i_{t}}\right) \otimes\left(e_{j_{1}} \wedge \ldots \wedge e_{j_{t}}\right)\right)=\left[i_{1}, \ldots, i_{t} \mid j_{1}, \ldots, j_{t}\right],
$$

thus J_{t} is the ideal of relations among the t-minors of X.
-) $d(t, m, n)$ the maximum degree of a minimal generator of J_{t}.
If $t=1$ or $n \leq t+1$, then $J_{t}=0$.
If $t=m \geq 2$ and $n \geq t+2$, then $d(t, m, n)=2$.

Notation

-) $P_{t}=P_{t}(m, n)=\operatorname{Sym}\left(\bigwedge^{t} W \otimes \Lambda^{t} V\right)$.
So we are interested in the kernel of $P_{t} \xrightarrow{\pi} A_{t}, \quad J_{t}=J_{t}(m, n)$.

$$
\pi\left(\left(f_{i_{1}} \wedge \ldots \wedge f_{i_{t}}\right) \otimes\left(e_{j_{1}} \wedge \ldots \wedge e_{j_{t}}\right)\right)=\left[i_{1}, \ldots, i_{t} \mid j_{1}, \ldots, j_{t}\right],
$$

thus J_{t} is the ideal of relations among the t-minors of X.
-) $d(t, m, n)$ the maximum degree of a minimal generator of J_{t}.
If $t=1$ or $n \leq t+1$, then $J_{t}=0$.
If $t=m \geq 2$ and $n \geq t+2$, then $d(t, m, n)=2$.
If $m>t>1$ and $n>t+1, d(t, m, n)$ is unknown.

Notation

-) $P_{t}=P_{t}(m, n)=\operatorname{Sym}\left(\bigwedge^{t} W \otimes \Lambda^{t} V\right)$.
So we are interested in the kernel of $P_{t} \xrightarrow{\pi} A_{t}, \quad J_{t}=J_{t}(m, n)$.

$$
\pi\left(\left(f_{i_{1}} \wedge \ldots \wedge f_{i_{t}}\right) \otimes\left(e_{j_{1}} \wedge \ldots \wedge e_{j_{t}}\right)\right)=\left[i_{1}, \ldots, i_{t} \mid j_{1}, \ldots, j_{t}\right],
$$

thus J_{t} is the ideal of relations among the t-minors of X.
-) $d(t, m, n)$ the maximum degree of a minimal generator of J_{t}.
If $t=1$ or $n \leq t+1$, then $J_{t}=0$.
If $t=m \geq 2$ and $n \geq t+2$, then $d(t, m, n)=2$.
If $m>t>1$ and $n>t+1, d(t, m, n)$ is unknown. Is $d(t, m, n)=3$?

What we are going to prove during the talk

What we are going to prove during the talk
-) $d(t, m, n) \geq 3$ in all the unknown cases.

What we are going to prove during the talk

-) $d(t, m, n) \geq 3$ in all the unknown cases.
-) $d(t, m, n) \leq d(t, m, m+t)$ (for instance $d(2,3, n) \leq d(2,3,5))$.

What we are going to prove during the talk

-) $d(t, m, n) \geq 3$ in all the unknown cases.
-) $d(t, m, n) \leq d(t, m, m+t)$ (for instance $d(2,3, n) \leq d(2,3,5))$.
-) $d(2,3, n)=3($ whenever $n \geq 4)$.

The action on A_{t}

The action on A_{t}
-) $G=\operatorname{GL}(W) \times \operatorname{GL}(V)$.

The action on A_{t}

-) $G=\mathrm{GL}(W) \times \mathrm{GL}(V)$.
Once fixed a basis for W, we can identify $\mathrm{GL}(W)$ with the group of invertible $(m \times m)$-matrices.

The action on A_{t}

-) $G=\mathrm{GL}(W) \times \mathrm{GL}(V)$.
Once fixed a basis for W, we can identify $\mathrm{GL}(W)$ with the group of invertible ($m \times m$)-matrices. Analogously for GL(V).

The action on A_{t}

-) $G=\mathrm{GL}(W) \times \mathrm{GL}(V)$.
Once fixed a basis for W, we can identify $\operatorname{GL}(W)$ with the group of invertible ($m \times m$)-matrices. Analogously for GL(V).

Given matrices $A \in \mathrm{GL}(W)$ and $B \in \mathrm{GL}(V)$ we have an action on $S=k[X]$ given by

The action on A_{t}

-) $G=\mathrm{GL}(W) \times \mathrm{GL}(V)$.
Once fixed a basis for W, we can identify $\operatorname{GL}(W)$ with the group of invertible ($m \times m$)-matrices. Analogously for GL(V).

Given matrices $A \in \mathrm{GL}(W)$ and $B \in \mathrm{GL}(V)$ we have an action on $S=k[X]$ given by

The action on A_{t}

-) $G=\mathrm{GL}(W) \times \mathrm{GL}(V)$.
Once fixed a basis for W, we can identify $\operatorname{GL}(W)$ with the group of invertible ($m \times m$)-matrices. Analogously for GL(V).

Given matrices $A \in \mathrm{GL}(W)$ and $B \in \mathrm{GL}(V)$ we have an action on $S=k[X]$ given by $(A, B) X=A \cdot X \cdot B^{-1}$.

The action on A_{t}

-) $G=\mathrm{GL}(W) \times \mathrm{GL}(V)$.
Once fixed a basis for W, we can identify $\operatorname{GL}(W)$ with the group of invertible $(m \times m)$-matrices. Analogously for GL(V).

Given matrices $A \in \mathrm{GL}(W)$ and $B \in \mathrm{GL}(V)$ we have an action on $S=k[X]$ given by $(A, B) X=A \cdot X \cdot B^{-1}$.

Since it is fixed by the above action,

The action on A_{t}

-) $G=\mathrm{GL}(W) \times \mathrm{GL}(V)$.
Once fixed a basis for W, we can identify $\mathrm{GL}(W)$ with the group of invertible $(m \times m)$-matrices. Analogously for GL(V).

Given matrices $A \in \mathrm{GL}(W)$ and $B \in \mathrm{GL}(V)$ we have an action on $S=k[X]$ given by $(A, B) X=A \cdot X \cdot B^{-1}$.

Since it is fixed by the above action, A_{t} is a G-module as well as S.

The representation theoretic point of view

The representation theoretic point of view

There is an isomorphism of G-modules $S \cong \operatorname{Sym}\left(W^{*} \otimes V\right)$.

The representation theoretic point of view

There is an isomorphism of G-modules $S \cong \operatorname{Sym}(W \otimes V)$.

The representation theoretic point of view

There is an isomorphism of G-modules $S \cong \operatorname{Sym}(W \otimes V)$.
Let $\lambda=\left(\lambda_{1}, \ldots, \lambda_{s}\right)$ be a partition of a natural number d.
We will write $\lambda \vdash d$ and we define $h t(\lambda)=s$.

The representation theoretic point of view

There is an isomorphism of G-modules $S \cong \operatorname{Sym}(W \otimes V)$.
Let $\lambda=\left(\lambda_{1}, \ldots, \lambda_{s}\right)$ be a partition of a natural number d.
We will write $\lambda \vdash d$ and we define $\operatorname{ht}(\lambda)=s$.
-) Let $L_{\lambda} W$ denote the Schür module associated to λ.

The representation theoretic point of view

There is an isomorphism of G-modules $S \cong \operatorname{Sym}(W \otimes V)$.
Let $\lambda=\left(\lambda_{1}, \ldots, \lambda_{s}\right)$ be a partition of a natural number d.
We will write $\lambda \vdash d$ and we define $\operatorname{ht}(\lambda)=s$.
-) Let $L_{\lambda} W$ denote the Schür module associated to λ.
It is a suitable quotient of

$$
\bigwedge^{\lambda_{1}} W \otimes \bigwedge^{\lambda_{2}} W \otimes \cdots \otimes \bigwedge^{\lambda_{s}} W
$$

The representation theoretic point of view

There is an isomorphism of G-modules $S \cong \operatorname{Sym}(W \otimes V)$.
Let $\lambda=\left(\lambda_{1}, \ldots, \lambda_{s}\right)$ be a partition of a natural number d.
We will write $\lambda \vdash d$ and we define $h t(\lambda)=s$.
-) Let $L_{\lambda} W$ denote the Schür module associated to λ. It is a suitable quotient of

$$
\bigwedge^{\lambda_{1}} W \otimes \bigwedge^{\lambda_{2}} W \otimes \cdots \otimes \bigwedge^{\lambda_{s}} W
$$

$L_{\lambda} W$ is an irreducible $\mathrm{GL}(W)$-module.

The representation theoretic point of view

There is an isomorphism of G-modules $S \cong \operatorname{Sym}(W \otimes V)$.
Let $\lambda=\left(\lambda_{1}, \ldots, \lambda_{s}\right)$ be a partition of a natural number d.
We will write $\lambda \vdash d$ and we define $h t(\lambda)=s$.
-) Let $L_{\lambda} W$ denote the Schür module associated to λ.
It is a suitable quotient of

$$
\bigwedge^{\lambda_{1}} W \otimes \bigwedge^{\lambda_{2}} W \otimes \cdots \otimes \bigwedge^{\lambda_{s}} W
$$

$L_{\lambda} W$ is an irreducible GL (W)-module. The same holds for V.

The representation theoretic point of view

There is an isomorphism of G-modules $S \cong \operatorname{Sym}(W \otimes V)$.
Let $\lambda=\left(\lambda_{1}, \ldots, \lambda_{s}\right)$ be a partition of a natural number d.
We will write $\lambda \vdash d$ and we define $\operatorname{ht}(\lambda)=s$.
-) Let $L_{\lambda} W$ denote the Schür module associated to λ.
It is a suitable quotient of

$$
\bigwedge^{\lambda_{1}} W \otimes \bigwedge^{\lambda_{2}} W \otimes \cdots \otimes \bigwedge^{\lambda_{s}} W
$$

$L_{\lambda} W$ is an irreducible GL (W)-module. The same holds for V.
The following G-isomorphism is known as the Cauchy formula:

The representation theoretic point of view

There is an isomorphism of G-modules $S \cong \operatorname{Sym}(W \otimes V)$.
Let $\lambda=\left(\lambda_{1}, \ldots, \lambda_{s}\right)$ be a partition of a natural number d.
We will write $\lambda \vdash d$ and we define $h t(\lambda)=s$.
-) Let $L_{\lambda} W$ denote the Schür module associated to λ.
It is a suitable quotient of

$$
\bigwedge^{\lambda_{1}} W \otimes \bigwedge^{\lambda_{2}} W \otimes \cdots \otimes \bigwedge^{\lambda_{s}} W
$$

$L_{\lambda} W$ is an irreducible GL (W)-module. The same holds for V.
The following G-isomorphism is known as the Cauchy formula:

$$
S \cong \bigoplus_{\substack{d \geq 0 \\ \lambda \vdash d}} L_{\lambda} W \otimes L_{\lambda} V
$$

The representation theoretic point of view

A partition λ is often represented as a Young diagram.

The representation theoretic point of view

A partition λ is often represented as a Young diagram. For example

$$
\lambda=(5,3,3,1)=\begin{array}{|l|l|l}
\square & & \\
\hline & \\
\hline & \\
\end{array}
$$

The representation theoretic point of view

A partition λ is often represented as a Young diagram. For example

$$
\lambda=(5,3,3,1)=\begin{array}{|l|l|l}
\square & & \\
\hline & \\
\square
\end{array}
$$

A standard tableu of shape λ is a filling of the boxes of λ which is rows increasing and columns nondecreasing.

The representation theoretic point of view

A partition λ is often represented as a Young diagram. For example

$$
\lambda=(5,3,3,1)=\begin{array}{|l|l|l}
\hline & & \\
\hline & \\
\hline & & \\
\hline
\end{array}
$$

A standard tableu of shape λ is a filling of the boxes of λ which is rows increasing and columns nondecreasing. For instance

$$
T=\begin{array}{|l|l|l|l|l|}
\hline 1 & 3 & 6 & 9 & 10 \\
\hline 2 & 5 & 7 & \\
\hline 2 & 6 & 7 & \\
\hline 3 & & & \\
\hline
\end{array}
$$

The representation theoretic point of view

The standard tableux of shape λ and with entries in $\{1, \ldots, m\}$ are in correspondence with a basis of $L_{\lambda} W$.

The representation theoretic point of view

The standard tableux of shape λ and with entries in $\{1, \ldots, m\}$ are in correspondence with a basis of $L_{\lambda} W$. Analogously for V.

The representation theoretic point of view

The standard tableux of shape λ and with entries in $\{1, \ldots, m\}$ are in correspondence with a basis of $L_{\lambda} W$. Analogously for V.

To a pair of standard tableux of shape λ we can associate a product of minors as in the example below

The representation theoretic point of view

The standard tableux of shape λ and with entries in $\{1, \ldots, m\}$ are in correspondence with a basis of $L_{\lambda} W$. Analogously for V.

To a pair of standard tableux of shape λ we can associate a product of minors as in the example below

$$
\begin{array}{|l|l|l|l|l|}
\hline 4 & 3 & 1 \\
\hline & 3 & \begin{array}{|l|l|l}
\hline 2 & 3 & 5 \\
\hline 2 & & \\
\hline
\end{array} \quad[1,3,4 \mid 2,3,5] \cdot[3 \mid 2] \\
\hline
\end{array}
$$

The representation theoretic point of view

The standard tableux of shape λ and with entries in $\{1, \ldots, m\}$ are in correspondence with a basis of $L_{\lambda} W$. Analogously for V.

To a pair of standard tableux of shape λ we can associate a product of minors as in the example below

$$
\begin{array}{|l|l|l|l|l|l|l|}
\hline 4 & 3 & 1 \\
\hline & 3 & 3 & & \begin{array}{|l|l|}
\hline 2 & 3 \\
\hline 2 & \\
\hline
\end{array} \quad[1,3,4 \mid 2,3,5] \cdot[3 \mid 2] \\
\hline
\end{array}
$$

It turns out that the k-subspace of S generated by the products of minors of shape λ is isomorphic as G-module to $L_{\lambda} W \otimes L_{\lambda} V$.

The irreducible G-modules in A_{t}

The irreducible G-modules in A_{t}

A result of De Concini, Eisenbud and Procesi implies

The irreducible G-modules in A_{t}

A result of De Concini, Eisenbud and Procesi implies

$$
A_{t} \cong \bigoplus_{\substack{d \geq 0 \\ d \geq 0 \\(\lambda) \leq d}}^{\bigoplus} L_{\lambda} W \otimes L_{\lambda} V
$$

The irreducible G-modules in A_{t}

A result of De Concini, Eisenbud and Procesi implies

$$
A_{t} \cong \bigoplus_{\substack { d \geq 0 \\
d \geq 0 \\
\begin{subarray}{c}{\lambda t-d t \\
\mathrm{ht}(\lambda) \leq d{ d \geq 0 \\
d \geq 0 \\
\begin{subarray} { c } { \lambda t - d t \\
\mathrm { ht } (\lambda) \leq d } }\end{subarray}} L_{\lambda} W \otimes L_{\lambda} V
$$

For instance consider the partition $\lambda=(4,1,1) \vdash 6$

$$
\lambda=(4,1,1)=\begin{array}{|}
\square \\
\square
\end{array}
$$

The irreducible G-modules in A_{t}

A result of De Concini, Eisenbud and Procesi implies

$$
A_{t} \cong \bigoplus_{\substack{d \geq 0 \\ d \geq 0}}^{\bigoplus} \underbrace{}_{\substack{\lambda+d t \\ \mathrm{ht}(\lambda) \leq d}} L_{\lambda} W \otimes L_{\lambda} V
$$

For instance consider the partition $\lambda=(4,1,1) \vdash 6$

$$
\lambda=(4,1,1)=\begin{array}{|}
\square \\
\square
\end{array}
$$

By the Cauchy formula $L_{\lambda} W \otimes L_{\lambda} V \subseteq S$.

The irreducible G-modules in A_{t}

A result of De Concini, Eisenbud and Procesi implies

$$
A_{t} \cong \bigoplus_{\substack{d \geq 0 \\ d \geq 0}}^{\bigoplus}{ }_{\substack{\lambda+d t \\ \mathrm{ht}(\lambda) \leq d}} L_{\lambda} W \otimes L_{\lambda} V
$$

For instance consider the partition $\lambda=(4,1,1) \vdash 6$

$$
\lambda=(4,1,1)=\begin{array}{|}
\square \\
\square
\end{array}
$$

By the Cauchy formula $L_{\lambda} W \otimes L_{\lambda} V \subseteq S . L_{\lambda} W \otimes L_{\lambda} V \subseteq A_{3}$?

The irreducible G-modules in A_{t}

A result of De Concini, Eisenbud and Procesi implies

$$
A_{t} \cong \bigoplus_{\substack{d \geq 0 \\ d \geq 0}}^{\bigoplus}{ }_{\substack{\lambda+d t \\ \mathrm{ht}(\lambda) \leq d}} L_{\lambda} W \otimes L_{\lambda} V
$$

For instance consider the partition $\lambda=(4,1,1) \vdash 6$

$$
\lambda=(4,1,1)=\begin{array}{|}
\square \\
\square
\end{array}
$$

By the Cauchy formula $L_{\lambda} W \otimes L_{\lambda} V \subseteq S . L_{\lambda} W \otimes L_{\lambda} V \subseteq A_{3}$?
No.

The irreducible G-modules in A_{t}

A result of De Concini, Eisenbud and Procesi implies

$$
A_{t} \cong \bigoplus_{\substack{d \geq 0 \\ d \geq 0}}^{\bigoplus}{ }_{\substack{\lambda+d t \\ \mathrm{ht}(\lambda) \leq d}} L_{\lambda} W \otimes L_{\lambda} V
$$

For instance consider the partition $\lambda=(4,1,1) \vdash 6$

$$
\lambda=(4,1,1)=\begin{array}{|}
\square \\
\square
\end{array}
$$

By the Cauchy formula $L_{\lambda} W \otimes L_{\lambda} V \subseteq S . L_{\lambda} W \otimes L_{\lambda} V \subseteq A_{3}$?
No. In fact $\lambda \vdash 6=2 \cdot 3$ and $\operatorname{ht}(\lambda)=3 \not \leq 2$.

The irreducible G-modules in A_{t}

A result of De Concini, Eisenbud and Procesi implies

$$
A_{t} \cong \bigoplus_{\substack{d \geq 0 \\ d \geq 0}}^{\bigoplus}{ }_{\substack{\lambda+d t \\ \mathrm{ht}(\lambda) \leq d}} L_{\lambda} W \otimes L_{\lambda} V
$$

For instance consider the partition $\lambda=(4,1,1) \vdash 6$

$$
\lambda=(4,1,1)=\begin{array}{|}
\square \\
\square
\end{array}
$$

By the Cauchy formula $L_{\lambda} W \otimes L_{\lambda} V \subseteq S . L_{\lambda} W \otimes L_{\lambda} V \subseteq A_{3}$?
No. In fact $\lambda \vdash 6=2 \cdot 3$ and $\operatorname{ht}(\lambda)=3 \not \leq 2 . L_{\lambda} W \otimes L_{\lambda} V \subseteq A_{2}$?

The irreducible G-modules in A_{t}

A result of De Concini, Eisenbud and Procesi implies

$$
A_{t} \cong \bigoplus_{\substack{d \geq 0 \\ d \geq 0}}^{\bigoplus}{ }_{\substack{\lambda+d t \\ \mathrm{ht}(\lambda) \leq d}} L_{\lambda} W \otimes L_{\lambda} V
$$

For instance consider the partition $\lambda=(4,1,1) \vdash 6$

$$
\lambda=(4,1,1)=\begin{array}{|}
\square \\
\square
\end{array}
$$

By the Cauchy formula $L_{\lambda} W \otimes L_{\lambda} V \subseteq S . L_{\lambda} W \otimes L_{\lambda} V \subseteq A_{3}$?
No. In fact $\lambda \vdash 6=2 \cdot 3$ and $\operatorname{ht}(\lambda)=3 \not \leq 2 . L_{\lambda} W \otimes L_{\lambda} V \subseteq A_{2}$?
Yes.

The irreducible G-modules in A_{t}

A result of De Concini, Eisenbud and Procesi implies

$$
A_{t} \cong \bigoplus_{\substack{d \geq 0 \\ d \geq 0}}^{\bigoplus}{ }_{\substack{\lambda+d t \\ \mathrm{ht}(\lambda) \leq d}} L_{\lambda} W \otimes L_{\lambda} V
$$

For instance consider the partition $\lambda=(4,1,1) \vdash 6$

$$
\lambda=(4,1,1)=\begin{array}{|}
\square \\
\square
\end{array}
$$

By the Cauchy formula $L_{\lambda} W \otimes L_{\lambda} V \subseteq S . L_{\lambda} W \otimes L_{\lambda} V \subseteq A_{3}$?
No. In fact $\lambda \vdash 6=2 \cdot 3$ and $\operatorname{ht}(\lambda)=3 \not \leq 2 . L_{\lambda} W \otimes L_{\lambda} V \subseteq A_{2}$?
Yes. In fact $\lambda \vdash 6=3 \cdot 2$ and $\operatorname{ht}(\lambda)=3 \leq 3$.

The irreducible G-modules in P_{t}

The irreducible G-modules in P_{t}

$P_{t}=\operatorname{Sym}\left(\bigwedge^{t} W \otimes \Lambda^{t} V\right)$ also admits a decomposition of the kind

The irreducible G-modules in P_{t}

$$
\begin{aligned}
& P_{t}=\operatorname{Sym}\left(\Lambda^{t} W \otimes \bigwedge^{t} V\right) \text { also admits a decomposition of the kind } \\
& \qquad P_{t} \cong \bigoplus_{d \geq 0} \bigoplus_{\substack{\lambda(\lambda, \mu d t \\
h t(\lambda), t(\mu t) \leq d}} a(\lambda, \mu) L_{\lambda} W \otimes L_{\mu} V
\end{aligned}
$$

The irreducible G-modules in P_{t}

$P_{t}=\operatorname{Sym}\left(\bigwedge^{t} W \otimes \Lambda^{t} V\right)$ also admits a decomposition of the kind
where the $a(\lambda, \mu) \geq 0$ are integers (multiplicities).

The irreducible G-modules in P_{t}

$P_{t}=\operatorname{Sym}\left(\bigwedge^{t} W \otimes \Lambda^{t} V\right)$ also admits a decomposition of the kind
where the $a(\lambda, \mu) \geq 0$ are integers (multiplicities). Unfortunately we do not know the multiplicities above.

The irreducible G-modules in P_{t}

$P_{t}=\operatorname{Sym}\left(\bigwedge^{t} W \otimes \Lambda^{t} V\right)$ also admits a decomposition of the kind
where the $a(\lambda, \mu) \geq 0$ are integers (multiplicities). Unfortunately we do not know the multiplicities above. Actually knowing them would solve an open problem of inner plethysm in representation theory.

The irreducible G-modules in P_{t}

$P_{t}=\operatorname{Sym}\left(\bigwedge^{t} W \otimes \bigwedge^{t} V\right)$ also admits a decomposition of the kind

$$
P_{t} \cong \bigoplus_{d \geq 0} \bigoplus_{\substack{\lambda, \mu-d t \\ \operatorname{ht}(\lambda), h \mathrm{ht}(\mu) \leq d}} a(\lambda, \mu) L_{\lambda} W \otimes L_{\mu} V
$$

where the $a(\lambda, \mu) \geq 0$ are integers (multiplicities). Unfortunately we do not know the multiplicities above. Actually knowing them would solve an open problem of inner plethysm in representation theory. In general we do not even know when $a(\lambda, \mu)$ is zero or not.

The irreducible G-modules in P_{t}

From now on if $a(\lambda, \mu) \geq 1$ we will say that $L_{\lambda} W \otimes L_{\mu} V \subseteq P_{t}$.

The irreducible G-modules in P_{t}

From now on if $a(\lambda, \mu) \geq 1$ we will say that $L_{\lambda} W \otimes L_{\mu} V \subseteq P_{t}$.
Since $P_{t} \xrightarrow{\pi} A_{t}$ is G-equivariant we have

$$
A_{t} \supseteq \pi\left(L_{\lambda} W \otimes L_{\mu} V\right) \cong \begin{cases}L_{\lambda} W \otimes L_{\mu} V & \text { or } \\ 0\end{cases}
$$

The irreducible G-modules in P_{t}

From now on if $a(\lambda, \mu) \geq 1$ we will say that $L_{\lambda} W \otimes L_{\mu} V \subseteq P_{t}$.
Since $P_{t} \xrightarrow{\pi} A_{t}$ is G-equivariant we have

$$
A_{t} \supseteq \pi\left(L_{\lambda} W \otimes L_{\mu} V\right) \cong \begin{cases}L_{\lambda} W \otimes L_{\mu} V & \text { or } \\ 0 & \end{cases}
$$

So $L_{\lambda} W \otimes L_{\mu} V \subseteq J_{t}$ whenever $\lambda \neq \mu$ and $L_{\lambda} W \otimes L_{\mu} V \subseteq P_{t}$.

The irreducible G-modules in P_{t}

From now on if $a(\lambda, \mu) \geq 1$ we will say that $L_{\lambda} W \otimes L_{\mu} V \subseteq P_{t}$.
Since $P_{t} \xrightarrow{\pi} A_{t}$ is G-equivariant we have

$$
A_{t} \supseteq \pi\left(L_{\lambda} W \otimes L_{\mu} V\right) \cong \begin{cases}L_{\lambda} W \otimes L_{\mu} V & \text { or } \\ 0\end{cases}
$$

So $L_{\lambda} W \otimes L_{\mu} V \subseteq J_{t}$ whenever $\lambda \neq \mu$ and $L_{\lambda} W \otimes L_{\mu} V \subseteq P_{t}$.
For instance one can show that $L_{\lambda} W \otimes L_{\mu} V \subseteq P_{2}$ for $\lambda=(4)$ and $\mu=(2,2)$.

The irreducible G-modules in P_{t}

From now on if $a(\lambda, \mu) \geq 1$ we will say that $L_{\lambda} W \otimes L_{\mu} V \subseteq P_{t}$.
Since $P_{t} \xrightarrow{\pi} A_{t}$ is G-equivariant we have

$$
A_{t} \supseteq \pi\left(L_{\lambda} W \otimes L_{\mu} V\right) \cong \begin{cases}L_{\lambda} W \otimes L_{\mu} V & \text { or } \\ 0\end{cases}
$$

So $L_{\lambda} W \otimes L_{\mu} V \subseteq J_{t}$ whenever $\lambda \neq \mu$ and $L_{\lambda} W \otimes L_{\mu} V \subseteq P_{t}$.
For instance one can show that $L_{\lambda} W \otimes L_{\mu} V \subseteq P_{2}$ for $\lambda=$ (4) and $\mu=(2,2)$. So $L_{\lambda} W \otimes L_{\mu} V \subseteq J_{t}$.

The irreducible G-modules in P_{t}

From now on if $a(\lambda, \mu) \geq 1$ we will say that $L_{\lambda} W \otimes L_{\mu} V \subseteq P_{t}$.
Since $P_{t} \xrightarrow{\pi} A_{t}$ is G-equivariant we have

$$
A_{t} \supseteq \pi\left(L_{\lambda} W \otimes L_{\mu} V\right) \cong \begin{cases}L_{\lambda} W \otimes L_{\mu} V & \text { or } \\ 0 & \end{cases}
$$

So $L_{\lambda} W \otimes L_{\mu} V \subseteq J_{t}$ whenever $\lambda \neq \mu$ and $L_{\lambda} W \otimes L_{\mu} V \subseteq P_{t}$.
For instance one can show that $L_{\lambda} W \otimes L_{\mu} V \subseteq P_{2}$ for $\lambda=$ (4) and $\mu=(2,2)$. So $L_{\lambda} W \otimes L_{\mu} V \subseteq J_{t}$. Actually to such a Schür module correspond the Plücker relations.

The irreducible G-modules in P_{t}

From now on if $a(\lambda, \mu) \geq 1$ we will say that $L_{\lambda} W \otimes L_{\mu} V \subseteq P_{t}$.
Since $P_{t} \xrightarrow{\pi} A_{t}$ is G-equivariant we have

$$
A_{t} \supseteq \pi\left(L_{\lambda} W \otimes L_{\mu} V\right) \cong \begin{cases}L_{\lambda} W \otimes L_{\mu} V & \text { or } \\ 0 & \end{cases}
$$

So $L_{\lambda} W \otimes L_{\mu} V \subseteq J_{t}$ whenever $\lambda \neq \mu$ and $L_{\lambda} W \otimes L_{\mu} V \subseteq P_{t}$.
For instance one can show that $L_{\lambda} W \otimes L_{\mu} V \subseteq P_{2}$ for $\lambda=$ (4) and $\mu=(2,2)$. So $L_{\lambda} W \otimes L_{\mu} V \subseteq J_{t}$. Actually to such a Schür module correspond the Plücker relations. Instead for the partitions
$\lambda=(3,1)$ and $\mu=(2,2)$,

The irreducible G-modules in P_{t}

From now on if $a(\lambda, \mu) \geq 1$ we will say that $L_{\lambda} W \otimes L_{\mu} V \subseteq P_{t}$.
Since $P_{t} \xrightarrow{\pi} A_{t}$ is G-equivariant we have

$$
A_{t} \supseteq \pi\left(L_{\lambda} W \otimes L_{\mu} V\right) \cong \begin{cases}L_{\lambda} W \otimes L_{\mu} V & \text { or } \\ 0 & \end{cases}
$$

So $L_{\lambda} W \otimes L_{\mu} V \subseteq J_{t}$ whenever $\lambda \neq \mu$ and $L_{\lambda} W \otimes L_{\mu} V \subseteq P_{t}$.
For instance one can show that $L_{\lambda} W \otimes L_{\mu} V \subseteq P_{2}$ for $\lambda=(4)$ and $\mu=(2,2)$. So $L_{\lambda} W \otimes L_{\mu} V \subseteq J_{t}$. Actually to such a Schür module correspond the Plücker relations. Instead for the partitions $\lambda=(3,1)$ and $\mu=(2,2), L_{\lambda} W \otimes L_{\mu} V \nsubseteq P_{2}$ (i.e. $a(\lambda, \mu)=0$).

Let us go a step more to the left

Let us go a step more to the left

Since a decomposition of P_{t} as G-module is unknown may be convenient go a "step more to the left",

Let us go a step more to the left

Since a decomposition of P_{t} as G-module is unknown may be convenient go a "step more to the left", considering the G-module
-) $Q_{t}=Q_{t}(m, n)=\bigoplus_{i=0}^{\infty}\left(\otimes^{i}\left(\bigwedge^{t} W\right)\right) \otimes\left(\otimes^{i}\left(\bigwedge^{t} V\right)\right)$.

Let us go a step more to the left

Since a decomposition of P_{t} as G-module is unknown may be convenient go a "step more to the left", considering the G-module
-) $Q_{t}=Q_{t}(m, n)=\bigoplus_{i=0}^{\infty}\left(\otimes^{i}\left(\bigwedge^{t} W\right)\right) \otimes\left(\otimes^{i}\left(\bigwedge^{t} V\right)\right)$.
It turns out that the kernel of the G-homomorphism $Q_{t} \xrightarrow{\phi} P_{t}$ is generated in degree 2 as a two-sided ideal.

Let us go a step more to the left

Since a decomposition of P_{t} as G-module is unknown may be convenient go a "step more to the left", considering the G-module
-) $Q_{t}=Q_{t}(m, n)=\bigoplus_{i=0}^{\infty}\left(\otimes^{i}\left(\bigwedge^{t} W\right)\right) \otimes\left(\otimes^{i}\left(\bigwedge^{t} V\right)\right)$.
It turns out that the kernel of the G-homomorphism $Q_{t} \xrightarrow{\phi} P_{t}$ is generated in degree 2 as a two-sided ideal.
Consider the G-equivariant map $\psi: Q_{t} \xrightarrow{\phi} P_{t} \xrightarrow{\pi} A_{t}$.

Let us go a step more to the left

Since a decomposition of P_{t} as G-module is unknown may be convenient go a "step more to the left", considering the G-module
-) $Q_{t}=Q_{t}(m, n)=\bigoplus_{i=0}^{\infty}\left(\otimes^{i}\left(\bigwedge^{t} W\right)\right) \otimes\left(\otimes^{i}\left(\bigwedge^{t} V\right)\right)$.
It turns out that the kernel of the G-homomorphism $Q_{t} \xrightarrow{\phi} P_{t}$ is generated in degree 2 as a two-sided ideal.
Consider the G-equivariant map $\psi: Q_{t} \xrightarrow{\phi} P_{t} \xrightarrow{\pi} A_{t}$. T.F.A.E.
$-\exists$ a mimimal generator of degree $d \geq 3$ in $\operatorname{Ker}(\pi)=J_{t}$.

- \exists a mimimal (two-sided) generator of degree $d \geq 3$ in $\operatorname{Ker}(\psi)$.

Let us go a step more to the left

Since a decomposition of P_{t} as G-module is unknown may be convenient go a "step more to the left", considering the G-module
-) $Q_{t}=Q_{t}(m, n)=\bigoplus_{i=0}^{\infty}\left(\otimes^{i}\left(\bigwedge^{t} W\right)\right) \otimes\left(\otimes^{i}\left(\bigwedge^{t} V\right)\right)$.
It turns out that the kernel of the G-homomorphism $Q_{t} \xrightarrow{\phi} P_{t}$ is generated in degree 2 as a two-sided ideal.
Consider the G-equivariant map $\psi: Q_{t} \xrightarrow{\phi} P_{t} \xrightarrow{\pi} A_{t}$. T.F.A.E.
$-\exists$ a mimimal generator of degree $d \geq 3$ in $\operatorname{Ker}(\pi)=J_{t}$.

- \exists a mimimal (two-sided) generator of degree $d \geq 3$ in $\operatorname{Ker}(\psi)$.

So we will face the problem looking at $K_{t}=K_{t}(m, n)=\operatorname{Ker}(\psi)$.

Pieri's formula

Pieri's formula

We take advantage in considering Q_{t} because its decomposition in irreducible G-modules is provided by the Pieri's formula,

Pieri's formula

We take advantage in considering Q_{t} because its decomposition in irreducible G-modules is provided by the Pieri's formula, which allows us to compute a decomposition as $\mathrm{GL}(W)$-module of
$L_{\lambda} W \otimes \Lambda^{t} W$.

Pieri's formula

We take advantage in considering Q_{t} because its decomposition in irreducible G-modules is provided by the Pieri's formula, which allows us to compute a decomposition as $\mathrm{GL}(W)$-module of
$L_{\lambda} W \otimes \Lambda^{t} W$.
To describe it we need a definition:

Pieri's formula

We take advantage in considering Q_{t} because its decomposition in irreducible G-modules is provided by the Pieri's formula, which allows us to compute a decomposition as GL(W)-module of

$$
L_{\lambda} W \otimes \Lambda^{t} W
$$

To describe it we need a definition:
Given $\lambda=\left(\lambda_{1}, \ldots, \lambda_{s}\right) \vdash d$ set $\tilde{\lambda}=\left(\lambda_{1}+t, \lambda_{1}, \lambda_{2}, \ldots, \lambda_{s}\right)$.

Pieri's formula

We take advantage in considering Q_{t} because its decomposition in irreducible G-modules is provided by the Pieri's formula, which allows us to compute a decomposition as GL (W)-module of

$$
L_{\lambda} W \otimes \Lambda^{t} W
$$

To describe it we need a definition:
Given $\lambda=\left(\lambda_{1}, \ldots, \lambda_{s}\right) \vdash d$ set $\tilde{\lambda}=\left(\lambda_{1}+t, \lambda_{1}, \lambda_{2}, \ldots, \lambda_{s}\right)$.
We will say that $\mu \vdash d+t$ is a successor of λ if $\lambda \subseteq \mu \subseteq \tilde{\lambda}$.

Pieri's formula

We take advantage in considering Q_{t} because its decomposition in irreducible G-modules is provided by the Pieri's formula, which allows us to compute a decomposition as GL(W)-module of

$$
L_{\lambda} W \otimes \Lambda^{t} W
$$

To describe it we need a definition:
Given $\lambda=\left(\lambda_{1}, \ldots, \lambda_{s}\right) \vdash d$ set $\tilde{\lambda}=\left(\lambda_{1}+t, \lambda_{1}, \lambda_{2}, \ldots, \lambda_{s}\right)$.
We will say that $\mu \vdash d+t$ is a successor of λ if $\lambda \subseteq \mu \subseteq \tilde{\lambda}$.
In this case we will also say that λ is a predecessor of μ.

Pieri's formula

For example, let $t=2$ and $\lambda=(3,1)$.

Pieri's formula

For example, let $t=2$ and $\lambda=(3,1)$. Then $\tilde{\lambda}=(5,3,1)$.

Pieri's formula

For example, let $t=2$ and $\lambda=(3,1)$. Then $\tilde{\lambda}=(5,3,1)$.
In the Young-diagrams notation we have

Pieri's formula

For example, let $t=2$ and $\lambda=(3,1)$. Then $\tilde{\lambda}=(5,3,1)$.
In the Young-diagrams notation we have

Thus the following γ is a successor of λ, whether μ is not

Pieri's formula

For example, let $t=2$ and $\lambda=(3,1)$. Then $\tilde{\lambda}=(5,3,1)$.
In the Young-diagrams notation we have

$$
\lambda=\square \square \quad \text { and } \quad \tilde{\lambda}=\square \square \square \square
$$

Thus the following γ is a successor of λ, whether μ is not

$$
\mu=\begin{array}{l|l}
\square & \square
\end{array} \quad \text { and } \quad \gamma=\begin{aligned}
& \square \\
& \square
\end{aligned} \quad \square \quad \square
$$

Pieri's formula yields the isomorphism of GL (W)-modules

$$
L_{\lambda} W \otimes \bigwedge^{t} W \cong \bigoplus_{\mu \text { successor of } \lambda} L_{\mu} W .
$$

The irreducible G-modules in Q_{t}

The irreducible G-modules in Q_{t}

Therefore we have the following G-isomorphism

The irreducible G-modules in Q_{t}

Therefore we have the following G-isomorphism

$$
Q_{t} \cong \bigoplus_{d \geq 0} \bigoplus_{\substack{\lambda, \mu \vdash d t \\ h t(\lambda), h t(\mu) \leq d}} b(\lambda, \mu) L_{\lambda} W \otimes L_{\mu} V
$$

The irreducible G-modules in Q_{t}

Therefore we have the following G-isomorphism

$$
Q_{t} \cong \bigoplus_{\substack { d \geq 0 \\
\begin{subarray}{c}{\lambda, \mu,-\sigma t \\
\mathrm{ht}(\lambda), h \mathrm{ht}(\mu) \leq d{ d \geq 0 \\
\begin{subarray} { c } { \lambda , \mu , - \sigma t \\
\mathrm { ht } (\lambda) , h \mathrm { ht } (\mu) \leq d } }\end{subarray}}^{\bigoplus} b(\lambda, \mu) L_{\lambda} W \otimes L_{\mu} V
$$

where $b(\lambda, \mu) \geq 1$.

The irreducible G-modules in Q_{t}

Therefore we have the following G-isomorphism

$$
Q_{t} \cong \bigoplus_{\substack { d \geq 0 \\
\begin{subarray}{c}{\lambda, \mu,-d t \\
\text { ht }(\lambda), h t(\mu) \leq d{ d \geq 0 \\
\begin{subarray} { c } { \lambda , \mu , - d t \\
\text { ht } (\lambda) , h t (\mu) \leq d } }\end{subarray}}^{\bigoplus} b(\lambda, \mu) L_{\lambda} W \otimes L_{\mu} V
$$

where $b(\lambda, \mu) \geq 1$.
It is possible to describe recursively the $b(\lambda, \mu)$ as follows:

The irreducible G-modules in Q_{t}

Therefore we have the following G-isomorphism

$$
Q_{t} \cong \bigoplus_{d \geq 0} \bigoplus_{\substack{\lambda, \mu-d t \\ h t(\lambda), h t(\mu) \leq d}} b(\lambda, \mu) L_{\lambda} W \otimes L_{\mu} V
$$

where $b(\lambda, \mu) \geq 1$.
It is possible to describe recursively the $b(\lambda, \mu)$ as follows:
-) $b(\lambda, \mu)=1$ if $\lambda=\mu=(t)$ (if and only if $\lambda, \mu \vdash t$).

The irreducible G-modules in Q_{t}

Therefore we have the following G-isomorphism

$$
Q_{t} \cong \bigoplus_{d \geq 0} \bigoplus_{\substack{\lambda, \mu \mathrm{dt} \\ \mathrm{ht}(\lambda), \mathrm{ht}(\mu) \leq d}} b(\lambda, \mu) L_{\lambda} W \otimes L_{\mu} V
$$

where $b(\lambda, \mu) \geq 1$.
It is possible to describe recursively the $b(\lambda, \mu)$ as follows:
-) $b(\lambda, \mu)=1$ if $\lambda=\mu=(t)$ (if and only if $\lambda, \mu \vdash t$).
-) If $\lambda, \mu \vdash d t$ with $d>1$, then

$$
b(\lambda, \mu)=\sum_{\substack{\lambda^{\prime} \text { predecessor of } \lambda \\ \mu^{\prime} \text { predecessor of } \mu}} b\left(\lambda^{\prime}, \mu^{\prime}\right) .
$$

Minimal cubic relations among minors

Minimal cubic relations among minors

We are going to give the idea to prove that there is a minimal generator of degree 3 in K_{t}, the kernel of the $\operatorname{map} Q_{t} \xrightarrow{\psi} A_{t}$.

Minimal cubic relations among minors

We are going to give the idea to prove that there is a minimal generator of degree 3 in K_{t}, the kernel of the map $Q_{t} \xrightarrow{\psi} A_{t}$.

Since ψ is G-equivariant, then K_{t} is a G-module.

Minimal cubic relations among minors

We are going to give the idea to prove that there is a minimal generator of degree 3 in K_{t}, the kernel of the map $Q_{t} \xrightarrow{\psi} A_{t}$.

Since ψ is G-equivariant, then K_{t} is a G-module. Moreover, if
\exists an element of $L_{\lambda} W \otimes L_{\mu} V \subseteq K_{t}$ which is a minimal generator of K_{t},

Minimal cubic relations among minors

We are going to give the idea to prove that there is a minimal generator of degree 3 in K_{t}, the kernel of the $\operatorname{map} Q_{t} \xrightarrow{\psi} A_{t}$.

Since ψ is G-equivariant, then K_{t} is a G-module. Moreover, if
\exists an element of $L_{\lambda} W \otimes L_{\mu} V \subseteq K_{t}$ which is a minimal generator of K_{t}, then any basis of $L_{\lambda} W \otimes L_{\mu} V$ consists in minimal generators of K_{t}.

Minimal cubic relations among minors

We are going to give the idea to prove that there is a minimal generator of degree 3 in K_{t}, the kernel of the map $Q_{t} \xrightarrow{\psi} A_{t}$.

Since ψ is G-equivariant, then K_{t} is a G-module. Moreover, if
\exists an element of $L_{\lambda} W \otimes L_{\mu} V \subseteq K_{t}$ which is a minimal generator of K_{t}, then any basis of $L_{\lambda} W \otimes L_{\mu} V$ consists in minimal generators of K_{t}. In this case we will say that $L_{\lambda} W \otimes L_{\mu} V$ is minimal in K_{t}.

Sketch of the proof

Sketch of the proof

For simplicity we will exhibit a minimal cubic relation for $t=2$,

Sketch of the proof

For simplicity we will exhibit a minimal cubic relation for $t=2$, however the technique works in general.

Sketch of the proof

For simplicity we will exhibit a minimal cubic relation for $t=2$, however the technique works in general.

Consider $\lambda_{0}=(3,3)$ and $\mu_{0}=(4,1,1)$, i.e.

Sketch of the proof

For simplicity we will exhibit a minimal cubic relation for $t=2$, however the technique works in general.

Consider $\lambda_{0}=(3,3)$ and $\mu_{0}=(4,1,1)$, i.e.

Sketch of the proof

For simplicity we will exhibit a minimal cubic relation for $t=2$, however the technique works in general.

Consider $\lambda_{0}=(3,3)$ and $\mu_{0}=(4,1,1)$, i.e.

We have $L_{\lambda_{0}} W \otimes L_{\mu_{0}} V \subseteq\left(Q_{2}\right)_{3}$.

Sketch of the proof

For simplicity we will exhibit a minimal cubic relation for $t=2$, however the technique works in general.

Consider $\lambda_{0}=(3,3)$ and $\mu_{0}=(4,1,1)$, i.e.

We have $L_{\lambda_{0}} W \otimes L_{\mu_{0}} V \subseteq\left(Q_{2}\right)_{3}$.
The only predecessor of the pair $\left(\lambda_{0}, \mu_{0}\right)$ is the pair $\left(\gamma_{0}, \gamma_{0}\right)$ where

Sketch of the proof

For simplicity we will exhibit a minimal cubic relation for $t=2$, however the technique works in general.

Consider $\lambda_{0}=(3,3)$ and $\mu_{0}=(4,1,1)$, i.e.

We have $L_{\lambda_{0}} W \otimes L_{\mu_{0}} V \subseteq\left(Q_{2}\right)_{3}$.
The only predecessor of the pair $\left(\lambda_{0}, \mu_{0}\right)$ is the pair $\left(\gamma_{0}, \gamma_{0}\right)$ where

$$
\gamma_{0}=(3,1)=\square \square
$$

Sketch of the proof

$$
\lambda_{0} \neq \mu_{0} \Rightarrow L_{\lambda_{0}} W \otimes L_{\mu_{0}} V \subseteq\left(K_{2}\right)_{3}
$$

Sketch of the proof

$\lambda_{0} \neq \mu_{0} \Rightarrow L_{\lambda_{0}} W \otimes L_{\mu_{0}} V \subseteq\left(K_{2}\right)_{3}$. There is the G-decomposition:

Sketch of the proof

$\lambda_{0} \neq \mu_{0} \Rightarrow L_{\lambda_{0}} W \otimes L_{\mu_{0}} V \subseteq\left(K_{2}\right)_{3}$. There is the G-decomposition:

$$
\left(Q_{2}\right)_{2} \cong\left(K_{2}\right)_{2} \oplus\left(A_{2}\right)_{2}
$$

Sketch of the proof

$\lambda_{0} \neq \mu_{0} \Rightarrow L_{\lambda_{0}} W \otimes L_{\mu_{0}} V \subseteq\left(K_{2}\right)_{3}$. There is the G-decomposition:

$$
\left(Q_{2}\right)_{2} \cong\left(K_{2}\right)_{2} \oplus\left(A_{2}\right)_{2}
$$

The only predecessor of $\left(\lambda_{0}, \mu_{0}\right)$, i.e. $\left(\gamma_{0}, \gamma_{0}\right)$, has multiplicity 1 .

Sketch of the proof

$\lambda_{0} \neq \mu_{0} \Rightarrow L_{\lambda_{0}} W \otimes L_{\mu_{0}} V \subseteq\left(K_{2}\right)_{3}$. There is the G-decomposition:

$$
\left(Q_{2}\right)_{2} \cong\left(K_{2}\right)_{2} \oplus\left(A_{2}\right)_{2}
$$

The only predecessor of $\left(\lambda_{0}, \mu_{0}\right)$, i.e. $\left(\gamma_{0}, \gamma_{0}\right)$, has multiplicity 1 .
This implies that the unique copy of $L_{\gamma_{0}} W \otimes L_{\gamma_{0}} V$ is in $\left(A_{2}\right)_{2}$.

Sketch of the proof

$\lambda_{0} \neq \mu_{0} \Rightarrow L_{\lambda_{0}} W \otimes L_{\mu_{0}} V \subseteq\left(K_{2}\right)_{3}$. There is the G-decomposition:

$$
\left(Q_{2}\right)_{2} \cong\left(K_{2}\right)_{2} \oplus\left(A_{2}\right)_{2}
$$

The only predecessor of $\left(\lambda_{0}, \mu_{0}\right)$, i.e. $\left(\gamma_{0}, \gamma_{0}\right)$, has multiplicity 1 .
This implies that the unique copy of $L_{\gamma_{0}} W \otimes L_{\gamma_{0}} V$ is in $\left(A_{2}\right)_{2}$.
Then $L_{\lambda_{0}} W \otimes L_{\mu_{0}} V$ is in $\left(K_{2}\right)_{3}$ but cannot have any predecessor in $\left(K_{2}\right)_{2}$.

Sketch of the proof

$\lambda_{0} \neq \mu_{0} \Rightarrow L_{\lambda_{0}} W \otimes L_{\mu_{0}} V \subseteq\left(K_{2}\right)_{3}$. There is the G-decomposition:

$$
\left(Q_{2}\right)_{2} \cong\left(K_{2}\right)_{2} \oplus\left(A_{2}\right)_{2}
$$

The only predecessor of $\left(\lambda_{0}, \mu_{0}\right)$, i.e. $\left(\gamma_{0}, \gamma_{0}\right)$, has multiplicity 1 .
This implies that the unique copy of $L_{\gamma_{0}} W \otimes L_{\gamma_{0}} V$ is in $\left(A_{2}\right)_{2}$.
Then $L_{\lambda_{0}} W \otimes L_{\mu_{0}} V$ is in $\left(K_{2}\right)_{3}$ but cannot have any predecessor in $\left(K_{2}\right)_{2}$. This implies that

$$
L_{\lambda_{0}} W \otimes L_{\mu_{0}} V \text { is minimal in } K_{2}
$$

A cubic relation among 2-minors of a (3×4)-matrix

A cubic relation among 2 -minors of a (3×4)-matrix

Which relation does $\left(\lambda_{0} \mid \mu_{0}\right)$ correspond to?

A cubic relation among 2-minors of a (3×4)-matrix

Which relation does $\left(\lambda_{0} \mid \mu_{0}\right)$ correspond to?
For example, for $t=2, m=3, n=4$, the following bi-tableu

$$
\begin{array}{|l|l|l|l|}
\hline 3 & 2 & 1 \\
\hline 3 & 2 & 1 \\
\hline
\end{array}
$$

A cubic relation among 2 -minors of a (3×4)-matrix

Which relation does $\left(\lambda_{0} \mid \mu_{0}\right)$ correspond to?
For example, for $t=2, m=3, n=4$, the following bi-tableu

$$
\begin{array}{|l|l|l|l|l|l|l|l|}
\hline 3 & 2 & 1 \\
\hline 3 & 2 & 1 \\
\hline & & \\
\hline
\end{array}
$$

corresponds to

$$
\operatorname{det}\left(\begin{array}{lll}
{[12 \mid 12]} & {[13 \mid 13]} & {[12 \mid 23]} \\
{[12 \mid 13]} & {[13 \mid 13]} & {[13 \mid 23]} \\
{[12 \mid 14]} & {[13 \mid 14]} & {[23 \mid 14]}
\end{array}\right)
$$

A remark

A remark

We can also show that if (λ, μ) is a pair of partitions such that:

A remark

We can also show that if (λ, μ) is a pair of partitions such that:

$$
\lambda, \mu \vdash 2 d \text { with } d \geq 3,
$$

A remark

We can also show that if (λ, μ) is a pair of partitions such that:

$$
\lambda, \mu \vdash 2 d \text { with } d \geq 3, \lambda \neq \mu,
$$

A remark

We can also show that if (λ, μ) is a pair of partitions such that:

$$
\lambda, \mu \vdash 2 d \text { with } d \geq 3, \lambda \neq \mu, b(\lambda, \mu)=1
$$

A remark

We can also show that if (λ, μ) is a pair of partitions such that:

$$
\lambda, \mu \vdash 2 d \text { with } d \geq 3, \lambda \neq \mu, b(\lambda, \mu)=1 \text { and }
$$

A remark

We can also show that if (λ, μ) is a pair of partitions such that:

$$
\lambda, \mu \vdash 2 d \text { with } d \geq 3, \lambda \neq \mu, b(\lambda, \mu)=1 \text { and }
$$ the only predecessor of (λ, μ) is symmetric.

A remark

We can also show that if (λ, μ) is a pair of partitions such that:

$$
\lambda, \mu \vdash 2 d \text { with } d \geq 3, \lambda \neq \mu, b(\lambda, \mu)=1 \text { and }
$$

the only predecessor of (λ, μ) is symmetric. Then $(\lambda, \mu)=\left(\lambda_{0}, \mu_{0}\right)$.

A remark

We can also show that if (λ, μ) is a pair of partitions such that:

$$
\lambda, \mu \vdash 2 d \text { with } d \geq 3, \lambda \neq \mu, b(\lambda, \mu)=1 \text { and }
$$

the only predecessor of (λ, μ) is symmetric. Then $(\lambda, \mu)=\left(\lambda_{0}, \mu_{0}\right)$.
Analog results hold true for any $t \geq 2$, therefore:

A remark

We can also show that if (λ, μ) is a pair of partitions such that:

$$
\lambda, \mu \vdash 2 d \text { with } d \geq 3, \lambda \neq \mu, b(\lambda, \mu)=1 \text { and }
$$

the only predecessor of (λ, μ) is symmetric. Then $(\lambda, \mu)=\left(\lambda_{0}, \mu_{0}\right)$.
Analog results hold true for any $t \geq 2$, therefore:
There are minimal generators of degree 3 in K_{t}, and thus in J_{t}.

A remark

We can also show that if (λ, μ) is a pair of partitions such that:

$$
\lambda, \mu \vdash 2 d \text { with } d \geq 3, \lambda \neq \mu, b(\lambda, \mu)=1 \text { and }
$$

the only predecessor of (λ, μ) is symmetric. Then $(\lambda, \mu)=\left(\lambda_{0}, \mu_{0}\right)$.
Analog results hold true for any $t \geq 2$, therefore:
There are minimal generators of degree 3 in K_{t}, and thus in J_{t}.
There are not any minimal generators of degree $d \geq 4$ for "reasons of shape" in K_{t}, and so neither in J_{t}.

A remark

We can also show that if (λ, μ) is a pair of partitions such that:

$$
\lambda, \mu \vdash 2 d \text { with } d \geq 3, \lambda \neq \mu, b(\lambda, \mu)=1 \text { and }
$$

the only predecessor of (λ, μ) is symmetric. Then $(\lambda, \mu)=\left(\lambda_{0}, \mu_{0}\right)$.
Analog results hold true for any $t \geq 2$, therefore:
There are minimal generators of degree 3 in K_{t}, and thus in J_{t}.
There are not any minimal generators of degree $d \geq 4$ for "reasons of shape" in K_{t}, and so neither in J_{t}.

This is one of the reasons for our initial question:

A remark

We can also show that if (λ, μ) is a pair of partitions such that:

$$
\lambda, \mu \vdash 2 d \text { with } d \geq 3, \lambda \neq \mu, b(\lambda, \mu)=1 \text { and }
$$

the only predecessor of (λ, μ) is symmetric. Then $(\lambda, \mu)=\left(\lambda_{0}, \mu_{0}\right)$.
Analog results hold true for any $t \geq 2$, therefore:
There are minimal generators of degree 3 in K_{t}, and thus in J_{t}.
There are not any minimal generators of degree $d \geq 4$ for "reasons of shape" in K_{t}, and so neither in J_{t}.

This is one of the reasons for our initial question:
Are quadrics and cubics enough to generate J_{t} and K_{t} ?

The independence from n

The independence from n

We are going to show that $d(t, m, n) \leq d(t, m, m+t)$.

The independence from n

We are going to show that $d(t, m, n) \leq d(t, m, m+t)$.
Let (λ, μ) be a pair of partition such that $\mu_{1}>\lambda_{1}+t$.

The independence from n

We are going to show that $d(t, m, n) \leq d(t, m, m+t)$.
Let (λ, μ) be a pair of partition such that $\mu_{1}>\lambda_{1}+t$. If $\left(\lambda^{\prime}, \mu^{\prime}\right)$ is a predecessor of (λ, μ) then $\mu_{1}^{\prime}>\lambda_{1} \geq \lambda_{1}^{\prime}$.

The independence from n

We are going to show that $d(t, m, n) \leq d(t, m, m+t)$.
Let (λ, μ) be a pair of partition such that $\mu_{1}>\lambda_{1}+t$. If $\left(\lambda^{\prime}, \mu^{\prime}\right)$ is a predecessor of (λ, μ) then $\mu_{1}^{\prime}>\lambda_{1} \geq \lambda_{1}^{\prime}$. Therefore

$$
\mu_{1}>\lambda_{1}+t \Rightarrow L_{\lambda} W \otimes L_{\mu} V \text { is not minimal in } K_{t}
$$

The independence from n

We are going to show that $d(t, m, n) \leq d(t, m, m+t)$.
Let (λ, μ) be a pair of partition such that $\mu_{1}>\lambda_{1}+t$. If $\left(\lambda^{\prime}, \mu^{\prime}\right)$ is a predecessor of (λ, μ) then $\mu_{1}^{\prime}>\lambda_{1} \geq \lambda_{1}^{\prime}$. Therefore

$$
\mu_{1}>\lambda_{1}+t \Rightarrow L_{\lambda} W \otimes L_{\mu} V \text { is not minimal in } K_{t}
$$

Since $\lambda_{1} \leq m$, then $L_{\lambda} W \otimes L_{\mu} V$ is minimal in K_{t} whenever $\mu_{1}>m+t$.

The independence from n

We are going to show that $d(t, m, n) \leq d(t, m, m+t)$.
Let (λ, μ) be a pair of partition such that $\mu_{1}>\lambda_{1}+t$. If $\left(\lambda^{\prime}, \mu^{\prime}\right)$ is a predecessor of (λ, μ) then $\mu_{1}^{\prime}>\lambda_{1} \geq \lambda_{1}^{\prime}$. Therefore

$$
\mu_{1}>\lambda_{1}+t \Rightarrow L_{\lambda} W \otimes L_{\mu} V \text { is not minimal in } K_{t}
$$

Since $\lambda_{1} \leq m$, then $L_{\lambda} W \otimes L_{\mu} V$ is minimal in K_{t} whenever $\mu_{1}>m+t$.
On the other hand, if $\mu_{1} \leq m+t$, there is a polynomial in
$L_{\lambda} W \otimes L_{\mu} V$ that actually lies in $P_{t}(m, m+t)$.

The independence from n

For instance if $t=2$ and $m=4, L_{\lambda} W \otimes L_{\mu} V$, where $\lambda=(4,3,1)$ and $\mu=(6,2)$, might be minimal in K_{2}.

The independence from n

For instance if $t=2$ and $m=4, L_{\lambda} W \otimes L_{\mu} V$, where $\lambda=(4,3,1)$ and $\mu=(6,2)$, might be minimal in K_{2}. In any case the following standard bi-tableu corresponds to a polynomial, say F, of $P_{2}(4,6)$:

The independence from n

For instance if $t=2$ and $m=4, L_{\lambda} W \otimes L_{\mu} V$, where $\lambda=(4,3,1)$ and $\mu=(6,2)$, might be minimal in K_{2}. In any case the following standard bi-tableu corresponds to a polynomial, say F, of $P_{2}(4,6)$:

The independence from n

For instance if $t=2$ and $m=4, L_{\lambda} W \otimes L_{\mu} V$, where $\lambda=(4,3,1)$ and $\mu=(6,2)$, might be minimal in K_{2}. In any case the following standard bi-tableu corresponds to a polynomial, say F, of $P_{2}(4,6)$:

In fact F is in the variables $\left(f_{i_{1}} \wedge f_{i_{2}}\right) \otimes\left(e_{j_{1}} \wedge e_{j_{2}}\right)$ with $i_{2} \leq 4$ and $j_{2} \leq 6$.

The independence from n

For instance if $t=2$ and $m=4, L_{\lambda} W \otimes L_{\mu} V$, where $\lambda=(4,3,1)$ and $\mu=(6,2)$, might be minimal in K_{2}. In any case the following standard bi-tableu corresponds to a polynomial, say F, of $P_{2}(4,6)$:

In fact F is in the variables $\left(f_{i_{1}} \wedge f_{i_{2}}\right) \otimes\left(e_{j_{1}} \wedge e_{j_{2}}\right)$ with $i_{2} \leq 4$ and $j_{2} \leq 6$. Moreover, if F is minimal in $J_{2}(4, n)$ it has to be minimal also in $J_{2}(4,6)$.

The independence from n

For instance if $t=2$ and $m=4, L_{\lambda} W \otimes L_{\mu} V$, where $\lambda=(4,3,1)$ and $\mu=(6,2)$, might be minimal in K_{2}. In any case the following standard bi-tableu corresponds to a polynomial, say F, of $P_{2}(4,6)$:

In fact F is in the variables $\left(f_{i_{1}} \wedge f_{i_{2}}\right) \otimes\left(e_{j_{1}} \wedge e_{j_{2}}\right)$ with $i_{2} \leq 4$ and $j_{2} \leq 6$. Moreover, if F is minimal in $J_{2}(4, n)$ it has to be minimal also in $J_{2}(4,6)$.

So, in general, $d(t, m, n) \leq d(t, m, m+t)$.

Relations among two-minors of a $(3 \times n)$-matrix

Relations among two-minors of a $(3 \times n)$-matrix

The above upper bounds yields $d(2,3, n) \leq d(2,3,5)$.

Relations among two-minors of a $(3 \times n)$-matrix

The above upper bounds yields $d(2,3, n) \leq d(2,3,5)$.
The case of a 3×5 matrix is doable by computer!

Relations among two-minors of a $(3 \times n)$-matrix

The above upper bounds yields $d(2,3, n) \leq d(2,3,5)$.
The case of a 3×5 matrix is doable by computer!

$$
d(2,3, n)=3 \text { whenever } n \geq 4
$$

Relations among two-minors of a $(3 \times n)$-matrix

The above upper bounds yields $d(2,3, n) \leq d(2,3,5)$.
The case of a 3×5 matrix is doable by computer!

$$
d(2,3, n)=3 \text { whenever } n \geq 4
$$

So, in a $(3 \times n)$-matrix, "essentially" the only relations among 2-minors are quadrics and cubics!

