Cohomological Dimension, Symbolic Powers and Matroids

Matteo Varbaro

Dipartimento di Matematica, Università di Genova

April 4, 2011

PAPERS AND STRUCTURE OF THE THESIS

PAPERS AND STRUCTURE OF THE THESIS

(1) L. Sharifan, M. Varbaro, Graded Betti numbers and ideals with linear quotients, Le Matematiche, Vol. LXIII (2008), pp. 257-265.
2 B. Benedetti, A. Constantinescu, M. Varbaro, Dimension, depth and zero-divisors of the algebra of basic k-covers, Le Matematiche, Vol. LXIII (2008), pp. 117-156.

3 M. Varbaro, Gröbner deformations, connectedness and cohomological dimension, Journal of Algebra, Vol. 322 (2009), pp. 2492-2507.
4 B. Benedetti, M. Varbaro, Unmixed graphs that are domains, to appear in Communications in Algebra.
5 M. Varbaro, Arithmetical rank of certain Segre embeddings, to appear in Transactions of the American Mathematical Society.
6 A. Constantinescu, M. Varbaro, Koszulness, Krull dimension and other properties of graph-related algebras, to appear in Journal of Algebraic Combinatorics.
7 M. Varbaro, Symbolic powers and matroids, to appear in Proceedings of the American Mathematical Society.
8 L. D. Nam, M. Varbaro, Cohen-Macaulayness of generically complete intersection monomial ideals, to appear in Communications in Algebra.
9 A. Constantinescu, M. Varbaro, On the h-vectors of Cohen-Macaulay Flag Complexes, submitted.
10 W. Bruns, A. Conca, M. Varbaro, Relations among the Minors of a Generic Matrix, in preparation.

PAPERS AND STRUCTURE OF THE THESIS

${ }^{1}$ L. Sharifan, M. Varbaro, Graded Betti numbers and ideals with linear quotients, Le Matematiche, Vol. LXIII (2008), pp. 257-265.
2 B. Benedetti, A. Constantinescu, M. Varbaro, Dimension, depth and zero-divisors of the algebra of basic k-covers, Le Matematiche, Vol. LXIII (2008), pp. 117-156.

3 M. Varbaro, Gröbner deformations, connectedness and cohomological dimension, Journal of Algebra, Vol. 322 (2009), pp. 2492-2507.
4 B. Benedetti, M. Varbaro, Unmixed graphs that are domains, to appear in Communications in Algebra.
5 M. Varbaro, Arithmetical rank of certain Segre embeddings, to appear in Transactions of the American Mathematical Society.
6 A. Constantinescu, M. Varbaro, Koszulness, Krull dimension and other properties of graph-related algebras, to appear in Journal of Algebraic Combinatorics.
7 M. Varbaro, Symbolic powers and matroids, to appear in Proceedings of the American Mathematical Society.
8 L. D. Nam, M. Varbaro, Cohen-Macaulayness of generically complete intersection monomial ideals, to appear in Communications in Algebra.
9 A. Constantinescu, M. Varbaro, On the h-vectors of Cohen-Macaulay Flag Complexes, submitted.
10 W. Bruns, A. Conca, M. Varbaro, Relations among the Minors of a Generic Matrix, in preparation.

PAPERS AND STRUCTURE OF THE THESIS

${ }^{1}$ L. Sharifan, M. Varbaro, Graded Betti numbers and ideals with linear quotients, Le Matematiche, Vol. LXIII (2008), pp. 257-265.
2 B. Benedetti, A. Constantinescu, M. Varbaro, Dimension, depth and zero-divisors of the algebra of basic k-covers, Le Matematiche, Vol. LXIII (2008), pp. 117-156.

3 M. Varbaro, Gröbner deformations, connectedness and cohomological dimension, Journal of Algebra, Vol. 322 (2009), pp. 2492-2507.
4 B. Benedetti, M. Varbaro, Unmixed graphs that are domains, to appear in Communications in Algebra.
5 M. Varbaro, Arithmetical rank of certain Segre embeddings, to appear in Transactions of the American Mathematical Society.
6 A. Constantinescu, M. Varbaro, Koszulness, Krull dimension and other properties of graph-related algebras, to appear in Journal of Algebraic Combinatorics.
7 M. Varbaro, Symbolic powers and matroids, to appear in Proceedings of the American Mathematical Society.
8 L. D. Nam, M. Varbaro, Cohen-Macaulayness of generically complete intersection monomial ideals, to appear in Communications in Algebra.
9 A. Constantinescu, M. Varbaro, On the h-vectors of Cohen-Macaulay Flag Complexes, submitted.
10 W. Bruns, A. Conca, M. Varbaro, Relations among the Minors of a Generic Matrix, in preparation.

PAPERS AND STRUCTURE OF THE THESIS

${ }^{1}$ L. Sharifan, M. Varbaro, Graded Betti numbers and ideals with linear quotients, Le Matematiche, Vol. LXIII (2008), pp. 257-265.
2 B. Benedetti, A. Constantinescu, M. Varbaro, Dimension, depth and zero-divisors of the algebra of basic k-covers, Le Matematiche, Vol. LXIII (2008), pp. 117-156.

3 M. Varbaro, Gröbner deformations, connectedness and cohomological dimension, Journal of Algebra, Vol. 322 (2009), pp. 2492-2507.
4 B. Benedetti, M. Varbaro, Unmixed graphs that are domains, to appear in Communications in Algebra.
5 M. Varbaro, Arithmetical rank of certain Segre embeddings, to appear in Transactions of the American Mathematical Society.
6 A. Constantinescu, M. Varbaro, Koszulness, Krull dimension and other properties of graph-related algebras, to appear in Journal of Algebraic Combinatorics.
7 M. Varbaro, Symbolic powers and matroids, to appear in Proceedings of the American Mathematical Society.
8 L. D. Nam, M. Varbaro, Cohen-Macaulayness of generically complete intersection monomial ideals, to appear in Communications in Algebra.
9 A. Constantinescu, M. Varbaro, On the h-vectors of Cohen-Macaulay Flag Complexes, submitted.
10 W. Bruns, A. Conca, M. Varbaro, Relations among the Minors of a Generic Matrix, in preparation.

ZARISKI TOPOLOGY
VS
ÉTALE TOPOLOGY

ZARISKI TOPOLOGY VS ÉTALE TOPOLOGY
The arithmetical rank

Let $S:=\mathbb{k}\left[x_{0}, \ldots, x_{n}\right]$ be the polynomial ring in $n+1$ variables over an algebraically closed field $\mathbb{k}, f_{1} \ldots \ldots f_{r}$ homogeneous polvnomials of S and

ZARISKI TOPOLOGY VS ÉTALE TOPOLOGY

 The arithmetical rankLet $S:=\mathbb{k}\left[x_{0}, \ldots, x_{n}\right]$ be the polynomial ring in $n+1$ variables over an algebraically closed field \mathbb{k} homogeneous

ZARISKI TOPOLOGY VS ÉTALE TOPOLOGY

 The arithmetical rankLet $S:=\mathbb{k}\left[x_{0}, \ldots, x_{n}\right]$ be the polynomial ring in $n+1$ variables over an algebraically closed field $\mathbb{k}, f_{1}, \ldots, f_{r}$ homogeneous polynomials of S

ZARISKI TOPOLOGY VS ÉTALE TOPOLOGY

Let $S:=\mathbb{k}\left[x_{0}, \ldots, x_{n}\right]$ be the polynomial ring in $n+1$ variables over an algebraically closed field $\mathbb{k}, f_{1}, \ldots, f_{r}$ homogeneous polynomials of S and

$$
X:=\left\{P \in \mathbb{P}^{n}: f_{1}(P)=\ldots=f_{r}(P)=0\right\} \subseteq \mathbb{P}^{n}
$$

ZARISKI TOPOLOGY VS ÉTALE TOPOLOGY

Let $S:=\mathbb{k}\left[x_{0}, \ldots, x_{n}\right]$ be the polynomial ring in $n+1$ variables over an algebraically closed field $\mathbb{k}, f_{1}, \ldots, f_{r}$ homogeneous polynomials of S and

$$
X:=\left\{P \in \mathbb{P}^{n}: f_{1}(P)=\ldots=f_{r}(P)=0\right\} \subseteq \mathbb{P}^{n}
$$

QUESTION: Which is the minimum number of homogeneous polynomials which define X ?

ZARISKI TOPOLOGY VS ÉTALE TOPOLOGY

Let $S:=\mathbb{k}\left[x_{0}, \ldots, x_{n}\right]$ be the polynomial ring in $n+1$ variables over an algebraically closed field $\mathbb{k}, f_{1}, \ldots, f_{r}$ homogeneous polynomials of S and

$$
X:=\left\{P \in \mathbb{P}^{n}: f_{1}(P)=\ldots=f_{r}(P)=0\right\} \subseteq \mathbb{P}^{n}
$$

QUESTION: Which is the minimum number of homogeneous polynomials which define X ?
$\operatorname{ara}(X):=$ minimum $s \in \mathbb{N}: \exists g_{1}, \ldots, g_{s} \in S$ homogeneous with

$$
X=\left\{P \in \mathbb{P}^{n}: g_{1}(P)=\ldots=g_{s}(P)=0\right\}
$$

ZARISKI TOPOLOGY VS ÉTALE TOPOLOGY

Let $S:=\mathbb{k}\left[x_{0}, \ldots, x_{n}\right]$ be the polynomial ring in $n+1$ variables over an algebraically closed field $\mathbb{k}, f_{1}, \ldots, f_{r}$ homogeneous polynomials of S and

$$
X:=\left\{P \in \mathbb{P}^{n}: f_{1}(P)=\ldots=f_{r}(P)=0\right\} \subseteq \mathbb{P}^{n}
$$

QUESTION: Which is the minimum number of homogeneous polynomials which define X ?
$\operatorname{ara}(X):=$ minimum $s \in \mathbb{N}: \exists g_{1}, \ldots, g_{s} \in S$ homogeneous with

$$
X=\left\{P \in \mathbb{P}^{n}: g_{1}(P)=\ldots=g_{s}(P)=0\right\}
$$

ZARISKI TOPOLOGY VS ÉTALE TOPOLOGY Some results to deal with this problem

(Eisenbud, Evans, 1972): $\quad X \neq \emptyset \Longrightarrow \quad \operatorname{ara}(X) \leq n$.

ZARISKI TOPOLOGY VS ÉTALE TOPOLOGY Some results to deal with this problem

(Eisenbud, Evans, 1972): $\quad X \neq \emptyset \Longrightarrow \quad \operatorname{ara}(X) \leq n$. (Krull, 1938): $\quad \operatorname{ara}(X) \geq \operatorname{codimp}_{\mathrm{p}}(X)$.

ZARISKI TOPOLOGY VS ÉTALE TOPOLOGY Some results to deal with this problem

(Eisenbud, Evans, 1972): $\quad X \neq \emptyset \Longrightarrow \quad \operatorname{ara}(X) \leq n$.
(Krull, 1938): $\quad \operatorname{ara}(X) \geq \operatorname{codim}_{\mathbb{P}^{n}}(X)$.
(Serre, 1955): $H^{i}\left(\mathbb{P}^{n} \backslash X, \mathcal{F}\right)=0 \forall i \geq \operatorname{ara}(X)$.

ZARISKI TOPOLOGY VS ÉTALE TOPOLOGY Some results to deal with this problem

(Eisenbud, Evans, 1972): $\quad X \neq \emptyset \Longrightarrow \quad \operatorname{ara}(X) \leq n$.
(Krull, 1938): $\quad \operatorname{ara}(X) \geq \operatorname{codim}_{\mathbb{P}^{n}}(X)$.
(Serre, 1955): $\quad H^{i}\left(\mathbb{P}^{n} \backslash X, \mathcal{F}\right)=0 \forall i \geq \operatorname{ara}(X)$.
(Grothendieck, 1973): $\quad H^{i}\left(\left(\mathbb{P}^{n} \backslash X\right)_{\text {ét }}, \mathcal{G}\right)=0 \forall i \geq \operatorname{ara}(X)+n$.

ZARISKI TOPOLOGY VS ÉTALE TOPOLOGY Some results to deal with this problem

(Eisenbud, Evans, 1972): $\quad X \neq \emptyset \Longrightarrow \quad \operatorname{ara}(X) \leq n$.
(Krull, 1938): $\quad \operatorname{ara}(X) \geq \operatorname{codim}_{\mathbb{P}^{n}}(X)$.
(Serre, 1955): $\quad H^{i}\left(\mathbb{P}^{n} \backslash X, \mathcal{F}\right)=0 \forall i \geq \operatorname{ara}(X)$.
(Grothendieck, 1973): $\quad H^{i}\left(\left(\mathbb{P}^{n} \backslash X\right)_{\text {ét }}, \mathcal{G}\right)=0 \forall i \geq \operatorname{ara}(X)+n$.
For any scheme U, we define the cohomological dimension of U as:

$$
\operatorname{cd}(U):=\sup \left\{i \in \mathbb{N}: \exists \mathcal{F} \text { quasi-coherent }: H^{i}(U, \mathcal{F}) \neq 0\right\}
$$

ZARISKI TOPOLOGY VS ÉTALE TOPOLOGY Some results to deal with this problem

(Eisenbud, Evans, 1972): $\quad X \neq \emptyset \Longrightarrow \quad \operatorname{ara}(X) \leq n$.
(Krull, 1938): $\quad \operatorname{ara}(X) \geq \operatorname{codim}_{\mathbb{P}^{n}}(X)$.
(Serre, 1955): $\quad \operatorname{ara}(X) \geq \operatorname{cd}\left(\mathbb{P}^{n} \backslash X\right)+1$.
(Grothendieck, 1973): $\quad H^{i}\left(\left(\mathbb{P}^{n} \backslash X\right)_{\text {ét }}, \mathcal{G}\right)=0 \forall i \geq \operatorname{ara}(X)+n$.
For any scheme U, we define the cohomological dimension of U as:

$$
\operatorname{cd}(U):=\sup \left\{i \in \mathbb{N}: \exists \mathcal{F} \text { quasi-coherent }: H^{i}(U, \mathcal{F}) \neq 0\right\}
$$

ZARISKI TOPOLOGY VS ÉTALE TOPOLOGY Some results to deal with this problem

(Eisenbud, Evans, 1972): $\quad X \neq \emptyset \Longrightarrow \quad \operatorname{ara}(X) \leq n$.
(Krull, 1938): $\quad \operatorname{ara}(X) \geq \operatorname{codim}_{\mathbb{P}^{n}}(X)$.
(Serre, 1955): $\quad \operatorname{ara}(X) \geq \operatorname{cd}\left(\mathbb{P}^{n} \backslash X\right)+1$.
(Grothendieck, 1973): $\quad H^{i}\left(\left(\mathbb{P}^{n} \backslash X\right)_{\text {ét }}, \mathcal{G}\right)=0 \forall i \geq \operatorname{ara}(X)+n$.
For any scheme U, we define the cohomological dimension of U as:

$$
\operatorname{cd}(U):=\sup \left\{i \in \mathbb{N}: \exists \mathcal{F} \text { quasi-coherent }: H^{i}(U, \mathcal{F}) \neq 0\right\}
$$

The étale cohomological dimension of U is

$$
\operatorname{écd}(U):=\sup \left\{i \in \mathbb{N}: \exists \mathcal{G} \ell \text {-torsion: } H^{i}\left(U_{\text {ét }}, \mathcal{G}\right) \neq 0\right\} .
$$

ZARISKI TOPOLOGY VS ÉTALE TOPOLOGY Some results to deal with this problem

(Eisenbud, Evans, 1972): $\quad X \neq \emptyset \Longrightarrow \quad \operatorname{ara}(X) \leq n$.
(Krull, 1938): $\quad \operatorname{ara}(X) \geq \operatorname{codim}_{\mathbb{P}^{n}}(X)$.
(Serre, 1955): $\quad \operatorname{ara}(X) \geq \operatorname{cd}\left(\mathbb{P}^{n} \backslash X\right)+1$.
(Grothendieck, 1973): $\quad \operatorname{ara}(X) \geq$ écd $\left(\mathbb{P}^{n} \backslash X\right)-n+1$.
For any scheme U, we define the cohomological dimension of U as:

$$
\operatorname{cd}(U):=\sup \left\{i \in \mathbb{N}: \exists \mathcal{F} \text { quasi-coherent }: H^{i}(U, \mathcal{F}) \neq 0\right\}
$$

The étale cohomological dimension of U is

$$
\text { écd }(U):=\sup \left\{i \in \mathbb{N}: \exists \mathcal{G} \ell \text {-torsion: } H^{i}\left(U_{\text {ét }}, \mathcal{G}\right) \neq 0\right\} .
$$

ZARISKI TOPOLOGY VS ÉTALE TOPOLOGY Some results to deal with this problem

(Eisenbud, Evans, 1972): $\quad X \neq \emptyset \Longrightarrow \quad \operatorname{ara}(X) \leq n$.
(Krull, 1938): $\quad \operatorname{ara}(X) \geq \operatorname{codim}_{\mathbb{P}^{n}}(X)$.
(Serre, 1955): $\quad \operatorname{ara}(X) \geq \operatorname{cd}\left(\mathbb{P}^{n} \backslash X\right)+1$.
(Grothendieck, 1973): $\quad \operatorname{ara}(X) \geq$ écd $\left(\mathbb{P}^{n} \backslash X\right)-n+1$.
For any scheme U, we define the cohomological dimension of U as:

$$
\operatorname{cd}(U):=\sup \left\{i \in \mathbb{N}: \exists \mathcal{F} \text { quasi-coherent }: H^{i}(U, \mathcal{F}) \neq 0\right\}
$$

The étale cohomological dimension of U is

$$
\text { écd }(U):=\sup \left\{i \in \mathbb{N}: \exists \mathcal{G} \ell \text {-torsion: } H^{i}\left(U_{\text {ét }}, \mathcal{G}\right) \neq 0\right\} .
$$

ZARISKI TOPOLOGY VS ÉTALE TOPOLOGY
Some results to deal with this problem

ZARISKI TOPOLOGY VS ÉTALE TOPOLOGY Some results to deal with this problem

(Grothendieck, 1961): $\quad \operatorname{cd}\left(\mathbb{P}^{n} \backslash X\right) \geq \operatorname{codim}_{\mathbb{P}^{n}}(X)-1$. (Lyubeznik, 1993): écd($\left.\mathbb{P}^{n} \backslash X\right) \geq \operatorname{codimp}_{\mathbb{P}}(X)+n-1$.

ZARISKI TOPOLOGY VS ÉTALE TOPOLOGY Some results to deal with this problem

(Grothendieck, 1961): $\quad \operatorname{cd}\left(\mathbb{P}^{n} \backslash X\right) \geq \operatorname{codim}_{\mathbb{P}^{n}}(X)-1$.
(Lyubeznik, 1993): écd $\left(\mathbb{P}^{n} \backslash X\right) \geq \operatorname{codim}_{\mathbb{P}^{n}}(X)+n-1$.
As we learned in the above slide:

ZARISKI TOPOLOGY VS ÉTALE TOPOLOGY Some results to deal with this problem

(Grothendieck, 1961): $\quad \operatorname{cd}\left(\mathbb{P}^{n} \backslash X\right) \geq \operatorname{codim}_{\mathbb{P}^{n}}(X)-1$.
(Lyubeznik, 1993): écd $\left(\mathbb{P}^{n} \backslash X\right) \geq \operatorname{codim}_{\mathbb{P}^{n}}(X)+n-1$.
As we learned in the above slide:

ZARISKI TOPOLOGY VS ÉTALE TOPOLOGY Some results to deal with this problem

(Grothendieck, 1961): $\quad \operatorname{cd}\left(\mathbb{P}^{n} \backslash X\right) \geq \operatorname{codim}_{\mathbb{P}^{n}}(X)-1$.
(Lyubeznik, 1993): écd $\left(\mathbb{P}^{n} \backslash X\right) \geq \operatorname{codim}_{\mathbb{P}^{n}}(X)+n-1$.
As we learned in the above slide:

- $\operatorname{ara}(X) \geq \operatorname{codim}_{\mathbb{P}^{n}}(X)$.

ZARISKI TOPOLOGY VS ÉTALE TOPOLOGY Some results to deal with this problem

(Grothendieck, 1961): $\quad \operatorname{cd}\left(\mathbb{P}^{n} \backslash X\right) \geq \operatorname{codim}_{\mathbb{P}^{n}}(X)-1$.
(Lyubeznik, 1993): écd $\left(\mathbb{P}^{n} \backslash X\right) \geq \operatorname{codim}_{\mathbb{P}^{n}}(X)+n-1$.
As we learned in the above slide:

- $\operatorname{ara}(X) \geq \operatorname{codim}_{\mathbb{P}^{n}}(X)$.
- $\operatorname{ara}(X) \geq \operatorname{cd}\left(\mathbb{P}^{n} \backslash X\right)+1$.

ZARISKI TOPOLOGY VS ÉTALE TOPOLOGY Some results to deal with this problem

(Grothendieck, 1961): $\quad \operatorname{cd}\left(\mathbb{P}^{n} \backslash X\right) \geq \operatorname{codim}_{\mathbb{P}^{n}}(X)-1$.
(Lyubeznik, 1993): écd $\left(\mathbb{P}^{n} \backslash X\right) \geq \operatorname{codim}_{\mathbb{P}^{n}}(X)+n-1$.
As we learned in the above slide:

- $\operatorname{ara}(X) \geq \operatorname{codim}_{\mathbb{P}^{n}}(X)$.
- $\operatorname{ara}(X) \geq \operatorname{cd}\left(\mathbb{P}^{n} \backslash X\right)+1$.
- $\operatorname{ara}(X) \geq$ écd $\left(\mathbb{P}^{n} \backslash X\right)-n+1$.

ZARISKI TOPOLOGY VS ÉTALE TOPOLOGY Some results to deal with this problem

(Grothendieck, 1961): $\quad \operatorname{cd}\left(\mathbb{P}^{n} \backslash X\right) \geq \operatorname{codim}_{\mathbb{P}^{n}}(X)-1$.
(Lyubeznik, 1993): écd $\left(\mathbb{P}^{n} \backslash X\right) \geq \operatorname{codim}_{\mathbb{P}^{n}}(X)+n-1$.
As we learned in the above slide:

- $\operatorname{ara}(X) \geq \operatorname{cd}\left(\mathbb{P}^{n} \backslash X\right)+1$.
- $\operatorname{ara}(X) \geq$ écd $\left(\mathbb{P}^{n} \backslash X\right)-n+1$.

ZARISKI TOPOLOGY VS ÉTALE TOPOLOGY Some results to deal with this problem

(Grothendieck, 1961): $\quad \operatorname{cd}\left(\mathbb{P}^{n} \backslash X\right) \geq \operatorname{codim}_{\mathbb{P}^{n}}(X)-1$.
(Lyubeznik, 1993): écd $\left(\mathbb{P}^{n} \backslash X\right) \geq \operatorname{codim}_{\mathbb{P}^{n}}(X)+n-1$.
As we learned in the above slide:

- $\operatorname{ara}(X) \geq \operatorname{cd}\left(\mathbb{P}^{n} \backslash X\right)+1$.
- $\operatorname{ara}(X) \geq$ écd $\left(\mathbb{P}^{n} \backslash X\right)-n+1$.

QUESTION (Hartshorne, 1970)

ZARISKI TOPOLOGY VS ÉTALE TOPOLOGY Some results to deal with this problem

(Grothendieck, 1961): $\quad \operatorname{cd}\left(\mathbb{P}^{n} \backslash X\right) \geq \operatorname{codim}_{\mathbb{P}^{n}}(X)-1$.
(Lyubeznik, 1993): écd $\left(\mathbb{P}^{n} \backslash X\right) \geq \operatorname{codim}_{\mathbb{P}^{n}}(X)+n-1$.
As we learned in the above slide:

- $\operatorname{ara}(X) \geq \operatorname{cd}\left(\mathbb{P}^{n} \backslash X\right)+1$
- $\operatorname{ara}(X) \geq$ écd $\left(\mathbb{P}^{n} \backslash X\right)-n+1$.

QUESTION (Hartshorne, 1970): Which is better???

ZARISKI TOPOLOGY VS ÉTALE TOPOLOGY Some results to deal with this problem

(Grothendieck, 1961): $\quad \operatorname{cd}\left(\mathbb{P}^{n} \backslash X\right) \geq \operatorname{codim}_{\mathbb{P}^{n}}(X)-1$.
(Lyubeznik, 1993): écd $\left(\mathbb{P}^{n} \backslash X\right) \geq \operatorname{codim}_{\mathbb{P}^{n}}(X)+n-1$.
As we learned in the above slide:

- $\operatorname{ara}(X) \geq \operatorname{cd}\left(\mathbb{P}^{n} \backslash X\right)+1$.
- $\operatorname{ara}(X) \geq$ écd $\left(\mathbb{P}^{n} \backslash X\right)-n+1$.

QUESTION (Hartshorne, 1970): Which is better???

$$
\operatorname{écd}\left(\mathbb{P}^{n} \backslash X\right) \stackrel{?}{\gtrless} \operatorname{cd}\left(\mathbb{P}^{n} \backslash X\right)+n
$$

ZARISKI TOPOLOGY VS ÉTALE TOPOLOGY Some results to deal with this problem

(Grothendieck, 1961): $\quad \operatorname{cd}\left(\mathbb{P}^{n} \backslash X\right) \geq \operatorname{codim}_{\mathbb{P}^{n}}(X)-1$.
(Lyubeznik, 1993): écd $\left(\mathbb{P}^{n} \backslash X\right) \geq \operatorname{codim}_{\mathbb{P}^{n}}(X)+n-1$.
As we learned in the above slide:

- $\operatorname{ara}(X) \geq \operatorname{cd}\left(\mathbb{P}^{n} \backslash X\right)+1$.
- $\operatorname{ara}(X) \geq$ écd $\left(\mathbb{P}^{n} \backslash X\right)-n+1$.

QUESTION (Hartshorne, 1970): Which is better???

$$
\operatorname{écd}\left(\mathbb{P}^{n} \backslash X\right) \stackrel{?}{\gtrless} \operatorname{cd}\left(\mathbb{P}^{n} \backslash X\right)+n
$$

ZARISKI TOPOLOGY VS ÉTALE TOPOLOGY
History
(Ogus, 1973): char $(\mathbb{k})=0$ and $X=v_{d}\left(\mathbb{P}^{k}\right) \subseteq \mathbb{P}^{n}$.

ZARISKI TOPOLOGY VS ÉTALE TOPOLOGY

(Ogus, 1973): $\operatorname{char}(\mathbb{k})=0$

ZARISKI TOPOLOGY VS ÉTALE TOPOLOGY

(Ogus, 1973): $\operatorname{char}(\mathbb{k})=0$ and $X=v_{d}\left(\mathbb{P}^{k}\right) \subseteq \mathbb{P}^{n}$.

ZARISKI TOPOLOGY VS ÉTALE TOPOLOGY

 History(Ogus, 1973): $\operatorname{char}(\mathbb{k})=0$ and $X=v_{d}\left(\mathbb{P}^{k}\right) \subseteq \mathbb{P}^{n}$.

$$
\operatorname{écd}\left(\mathbb{P}^{n} \backslash X\right)>\operatorname{cd}\left(\mathbb{P}^{n} \backslash X\right)+n
$$

ZARISKI TOPOLOGY VS ÉTALE TOPOLOGY

 History(Ogus, 1973): $\operatorname{char}(\mathbb{k})=0$ and $X=v_{d}\left(\mathbb{P}^{k}\right) \subseteq \mathbb{P}^{n}$.

$$
\operatorname{écd}\left(\mathbb{P}^{n} \backslash X\right)>\operatorname{cd}\left(\mathbb{P}^{n} \backslash X\right)+n
$$

(Newstead, 1980): $\operatorname{char}(\mathbb{k})>0$ and $X=\mathbb{P}^{s} \times \mathbb{P}^{t} \subseteq \mathbb{P}^{n}$

ZARISKI TOPOLOGY VS ÉTALE TOPOLOGY

 History(Ogus, 1973): $\operatorname{char}(\mathbb{k})=0$ and $X=v_{d}\left(\mathbb{P}^{k}\right) \subseteq \mathbb{P}^{n}$.

$$
\operatorname{écd}\left(\mathbb{P}^{n} \backslash X\right)>\operatorname{cd}\left(\mathbb{P}^{n} \backslash X\right)+n
$$

(Newstead, 1980): $\operatorname{char}(\mathbb{k})>0$ and $X=\mathbb{P}^{s} \times \mathbb{P}^{t} \subseteq \mathbb{P}^{n}$.

ZARISKI TOPOLOGY VS ÉTALE TOPOLOGY History

(Ogus, 1973): $\operatorname{char}(\mathbb{k})=0$ and $X=v_{d}\left(\mathbb{P}^{k}\right) \subseteq \mathbb{P}^{n}$.

$$
\text { écd }\left(\mathbb{P}^{n} \backslash X\right)>\operatorname{cd}\left(\mathbb{P}^{n} \backslash X\right)+n
$$

(Newstead, 1980): $\operatorname{char}(\mathbb{k})>0$ and $X=\mathbb{P}^{s} \times \mathbb{P}^{t} \subseteq \mathbb{P}^{n}$.

$$
\operatorname{écd}\left(\mathbb{P}^{n} \backslash X\right)>\operatorname{cd}\left(\mathbb{P}^{n} \backslash X\right)+n
$$

Since then several authors computed the arithmetical rank of certain varieties

ZARISKI TOPOLOGY VS ÉTALE TOPOLOGY

 History(Ogus, 1973): $\operatorname{char}(\mathbb{k})=0$ and $X=v_{d}\left(\mathbb{P}^{k}\right) \subseteq \mathbb{P}^{n}$.

$$
\text { écd }\left(\mathbb{P}^{n} \backslash X\right)>\operatorname{cd}\left(\mathbb{P}^{n} \backslash X\right)+n
$$

(Newstead, 1980): $\operatorname{char}(\mathbb{k})>0$ and $X=\mathbb{P}^{s} \times \mathbb{P}^{t} \subseteq \mathbb{P}^{n}$.

$$
\operatorname{écd}\left(\mathbb{P}^{n} \backslash X\right)>\operatorname{cd}\left(\mathbb{P}^{n} \backslash X\right)+n
$$

Since then several authors computed the arithmetical rank of certain varieties

ZARISKI TOPOLOGY VS ÉTALE TOPOLOGY

(Ogus, 1973): $\operatorname{char}(\mathbb{k})=0$ and $X=v_{d}\left(\mathbb{P}^{k}\right) \subseteq \mathbb{P}^{n}$.

$$
\text { écd }\left(\mathbb{P}^{n} \backslash X\right)>\operatorname{cd}\left(\mathbb{P}^{n} \backslash X\right)+n
$$

(Newstead, 1980): $\operatorname{char}(\mathbb{k})>0$ and $X=\mathbb{P}^{s} \times \mathbb{P}^{t} \subseteq \mathbb{P}^{n}$.

$$
\operatorname{écd}\left(\mathbb{P}^{n} \backslash X\right)>\operatorname{cd}\left(\mathbb{P}^{n} \backslash X\right)+n
$$

Since then several authors computed the arithmetical rank of certain varieties (Bruns-Schwänzl, Barile, Singh-Walther...) and
effective as the (ordinary) cohomological dimension.

ZARISKI TOPOLOGY VS ÉTALE TOPOLOGY

(Ogus, 1973): $\operatorname{char}(\mathbb{k})=0$ and $X=v_{d}\left(\mathbb{P}^{k}\right) \subseteq \mathbb{P}^{n}$.

$$
\text { écd }\left(\mathbb{P}^{n} \backslash X\right)>\operatorname{cd}\left(\mathbb{P}^{n} \backslash X\right)+n
$$

(Newstead, 1980): $\operatorname{char}(\mathbb{k})>0$ and $X=\mathbb{P}^{s} \times \mathbb{P}^{t} \subseteq \mathbb{P}^{n}$.

$$
\operatorname{écd}\left(\mathbb{P}^{n} \backslash X\right)>\operatorname{cd}\left(\mathbb{P}^{n} \backslash X\right)+n
$$

Since then several authors computed the arithmetical rank of certain varieties (Bruns-Schwänzl, Barile, Singh-Walther...) and the étale cohomological dimension has always proved at least as effective as the (ordinary) cohomological dimension.

ZARISKI TOPOLOGY VS ÉTALE TOPOLOGY

(Ogus, 1973): $\operatorname{char}(\mathbb{k})=0$ and $X=v_{d}\left(\mathbb{P}^{k}\right) \subseteq \mathbb{P}^{n}$.

$$
\text { écd }\left(\mathbb{P}^{n} \backslash X\right)>\operatorname{cd}\left(\mathbb{P}^{n} \backslash X\right)+n
$$

(Newstead, 1980): $\operatorname{char}(\mathbb{k})>0$ and $X=\mathbb{P}^{s} \times \mathbb{P}^{t} \subseteq \mathbb{P}^{n}$.

$$
\operatorname{écd}\left(\mathbb{P}^{n} \backslash X\right)>\operatorname{cd}\left(\mathbb{P}^{n} \backslash X\right)+n
$$

Since then several authors computed the arithmetical rank of certain varieties (Bruns-Schwänzl, Barile, Singh-Walther...) and the étale cohomological dimension has always proved at least as effective as the (ordinary) cohomological dimension.

CONJECTURE (Lyubeznik, 2002)

ZARISKI TOPOLOGY VS ÉTALE TOPOLOGY

(Ogus, 1973): $\operatorname{char}(\mathbb{k})=0$ and $X=v_{d}\left(\mathbb{P}^{k}\right) \subseteq \mathbb{P}^{n}$.

$$
\text { écd }\left(\mathbb{P}^{n} \backslash X\right)>\operatorname{cd}\left(\mathbb{P}^{n} \backslash X\right)+n
$$

(Newstead, 1980): $\operatorname{char}(\mathbb{k})>0$ and $X=\mathbb{P}^{s} \times \mathbb{P}^{t} \subseteq \mathbb{P}^{n}$.

$$
\operatorname{écd}\left(\mathbb{P}^{n} \backslash X\right)>\operatorname{cd}\left(\mathbb{P}^{n} \backslash X\right)+n
$$

Since then several authors computed the arithmetical rank of certain varieties (Bruns-Schwänzl, Barile, Singh-Walther...) and the étale cohomological dimension has always proved at least as effective as the (ordinary) cohomological dimension.

CONJECTURE (Lyubeznik, 2002): écd $\left(\mathbb{P}^{n} \backslash X\right) \geq \operatorname{cd}\left(\mathbb{P}^{n} \backslash X\right)+n$

ZARISKI TOPOLOGY VS ÉTALE TOPOLOGY

(Ogus, 1973): $\operatorname{char}(\mathbb{k})=0$ and $X=v_{d}\left(\mathbb{P}^{k}\right) \subseteq \mathbb{P}^{n}$.

$$
\text { écd }\left(\mathbb{P}^{n} \backslash X\right)>\operatorname{cd}\left(\mathbb{P}^{n} \backslash X\right)+n
$$

(Newstead, 1980): $\operatorname{char}(\mathbb{k})>0$ and $X=\mathbb{P}^{s} \times \mathbb{P}^{t} \subseteq \mathbb{P}^{n}$.

$$
\operatorname{écd}\left(\mathbb{P}^{n} \backslash X\right)>\operatorname{cd}\left(\mathbb{P}^{n} \backslash X\right)+n
$$

Since then several authors computed the arithmetical rank of certain varieties (Bruns-Schwänzl, Barile, Singh-Walther...) and the étale cohomological dimension has always proved at least as effective as the (ordinary) cohomological dimension.

CONJECTURE (Lyubeznik, 2002): écd $\left(\mathbb{P}^{n} \backslash X\right) \geq \operatorname{cd}\left(\mathbb{P}^{n} \backslash X\right)+n$

ZARISKI TOPOLOGY VS ÉTALE TOPOLOGY

 The result
ZARISKI TOPOLOGY VS ÉTALE TOPOLOGY

CONJECTURE (Lyubeznik, 2002): écd $\left(\mathbb{P}^{n} \backslash X\right) \geq \operatorname{cd}\left(\mathbb{P}^{n} \backslash X\right)+n$

ZARISKI TOPOLOGY VS ÉTALE TOPOLOGY

CONJECTURE (Lyubeznik, 2002): écd $\left(\mathbb{P}^{n} \backslash X\right) \geq \operatorname{cd}\left(\mathbb{P}^{n} \backslash X\right)+n$
(Lyubeznik, 2009): COUNTEREXAMPLE if $\operatorname{char}(\mathbb{k})>0$

ZARISKI TOPOLOGY VS ÉTALE TOPOLOGY

CONJECTURE (Lyubeznik, 2002): écd $\left(\mathbb{P}^{n} \backslash X\right) \geq \operatorname{cd}\left(\mathbb{P}^{n} \backslash X\right)+n$
(Lyubeznik, 2009): COUNTEREXAMPLE if $\operatorname{char}(\mathbb{k})>0$
(-, to appear in Trans. Amer. Math. Soc.):

ZARISKI TOPOLOGY VS ÉTALE TOPOLOGY

 The resultCONJECTURE (Lyubeznik, 2002): écd $\left(\mathbb{P}^{n} \backslash X\right) \geq \operatorname{cd}\left(\mathbb{P}^{n} \backslash X\right)+n$
(Lyubeznik, 2009): COUNTEREXAMPLE if $\operatorname{char}(\mathbb{k})>0$
(-, to appear in Trans. Amer. Math. Soc.):

TRUE in characteristic 0 , provided that X is smooth

ZARISKI TOPOLOGY VS ÉTALE TOPOLOGY

 The resultCONJECTURE (Lyubeznik, 2002): écd $\left(\mathbb{P}^{n} \backslash X\right) \geq \operatorname{cd}\left(\mathbb{P}^{n} \backslash X\right)+n$
(Lyubeznik, 2009): COUNTEREXAMPLE if $\operatorname{char}(\mathbb{k})>0$
(-, to appear in Trans. Amer. Math. Soc.):

TRUE in characteristic 0 , provided that X is smooth

ZARISKI TOPOLOGY VS ÉTALE TOPOLOGY Very sketchy version of the proof

First of all we reduce to the case $\mathbb{k}=\mathbb{C}$, so that X is a projective scheme over the complex numbers. So on X we have 3 topologies

ZARISKI TOPOLOGY VS ÉTALE TOPOLOGY Very sketchy version of the proof

First of all we reduce to the case $\mathbb{k}=\mathbb{C}$, so that X is a projective scheme over the complex numbers.

ZARISKI TOPOLOGY VS ÉTALE TOPOLOGY Very sketchy version of the proof

First of all we reduce to the case $\mathbb{k}=\mathbb{C}$, so that X is a projective scheme over the complex numbers. So on X we have 3 topologies:

ZARISKI TOPOLOGY VS ÉTALE TOPOLOGY Very sketchy version of the proof

First of all we reduce to the case $\mathbb{k}=\mathbb{C}$, so that X is a projective scheme over the complex numbers. So on X we have 3 topologies:

- Euclideian topology: $H_{\text {Sing }}^{i}\left(X^{h}\right), H_{D R}^{i}\left(X^{h}\right)$.

ZARISKI TOPOLOGY VS ÉTALE TOPOLOGY Very sketchy version of the proof

First of all we reduce to the case $\mathbb{k}=\mathbb{C}$, so that X is a projective scheme over the complex numbers. So on X we have 3 topologies:

- Euclideian topology: $H_{\text {Sing }}^{i}\left(X^{h}\right), H_{D R}^{i}\left(X^{h}\right)$.
- Zariski topology: $H^{i}\left(\mathbb{P}^{n} \backslash X, \mathcal{F}\right), \quad H_{A l g D R}^{i}(X)$.

ZARISKI TOPOLOGY VS ÉTALE TOPOLOGY Very sketchy version of the proof

First of all we reduce to the case $\mathbb{k}=\mathbb{C}$, so that X is a projective scheme over the complex numbers. So on X we have 3 topologies:

- Euclideian topology: $H_{\text {Sing }}^{i}\left(X^{h}\right), H_{D R}^{i}\left(X^{h}\right)$.
- Zariski topology: $H^{i}\left(\mathbb{P}^{n} \backslash X, \mathcal{F}\right), \quad H_{A l g D R}^{i}(X)$.
- Étale topology: $H^{i}\left(\left(\mathbb{P}^{n} \backslash X\right)_{\text {ét }}, \mathcal{G}\right), H^{i}\left(X_{\text {ét }}, \mathbb{Z} / p \mathbb{Z}\right)$.

ZARISKI TOPOLOGY VS ÉTALE TOPOLOGY Very sketchy version of the proof

First of all we reduce to the case $\mathbb{k}=\mathbb{C}$, so that X is a projective scheme over the complex numbers. So on X we have 3 topologies:

- Euclideian topology: $H_{\text {Sing }}^{i}\left(X^{h}\right), H_{D R}^{i}\left(X^{h}\right)$.
- Zariski topology: $H^{i}\left(\mathbb{P}^{n} \backslash X, \mathcal{F}\right), \quad H_{A l g D R}^{i}(X)$.
- Étale topology: $H^{i}\left(\left(\mathbb{P}^{n} \backslash X\right)_{\text {ét }}, \mathcal{G}\right), H^{i}\left(X_{\text {ét }}, \mathbb{Z} / p \mathbb{Z}\right)$.
$H^{i}\left(\mathbb{P}^{n} \backslash X, \mathcal{F}\right)$
$H_{A l g D R}^{i}(X)$

ZARISKI TOPOLOGY VS ÉTALE TOPOLOGY Very sketchy version of the proof

First of all we reduce to the case $\mathbb{k}=\mathbb{C}$, so that X is a projective scheme over the complex numbers. So on X we have 3 topologies:

- Euclideian topology: $H_{\text {Sing }}^{i}\left(X^{h}\right), H_{D R}^{i}\left(X^{h}\right)$.
- Zariski topology: $H^{i}\left(\mathbb{P}^{n} \backslash X, \mathcal{F}\right), \quad H_{A l g D R}^{i}(X)$.
- Étale topology: $H^{i}\left(\left(\mathbb{P}^{n} \backslash X\right)_{\text {ét }}, \mathcal{G}\right), H^{i}\left(X_{\text {ét }}, \mathbb{Z} / p \mathbb{Z}\right)$.
$H^{i}\left(\mathbb{P}^{n} \backslash X, \mathcal{F}\right) \quad \xrightarrow{\text { ogus }} \quad H_{A I g D R}^{i}(X)$

ZARISKI TOPOLOGY VS ÉTALE TOPOLOGY Very sketchy version of the proof

First of all we reduce to the case $\mathbb{k}=\mathbb{C}$, so that X is a projective scheme over the complex numbers. So on X we have 3 topologies:

- Euclideian topology: $H_{\text {Sing }}^{i}\left(X^{h}\right), H_{D R}^{i}\left(X^{h}\right)$.
- Zariski topology: $H^{i}\left(\mathbb{P}^{n} \backslash X, \mathcal{F}\right), \quad H_{A l g D R}^{i}(X)$.
- Étale topology: $H^{i}\left(\left(\mathbb{P}^{n} \backslash X\right)_{\text {ét }}, \mathcal{G}\right), H^{i}\left(X_{\text {ét }}, \mathbb{Z} / p \mathbb{Z}\right)$.
$H^{i}\left(\mathbb{P}^{n} \backslash X, \mathcal{F}\right) \quad \xrightarrow{\text { Ogus }} \quad H_{A l g D R}^{i}(X) \quad \xrightarrow{\text { Grothendieck }} H_{D R}^{i}\left(X^{h}\right)$

ZARISKI TOPOLOGY VS ÉTALE TOPOLOGY Very sketchy version of the proof

First of all we reduce to the case $\mathbb{k}=\mathbb{C}$, so that X is a projective scheme over the complex numbers. So on X we have 3 topologies:

- Euclideian topology: $H_{\text {Sing }}^{i}\left(X^{h}\right), H_{D R}^{i}\left(X^{h}\right)$.
- Zariski topology: $H^{i}\left(\mathbb{P}^{n} \backslash X, \mathcal{F}\right), \quad H_{A l g D R}^{i}(X)$.
- Étale topology: $H^{i}\left(\left(\mathbb{P}^{n} \backslash X\right)_{\text {ét }}, \mathcal{G}\right), H^{i}\left(X_{\text {ét }}, \mathbb{Z} / p \mathbb{Z}\right)$.

ZARISKI TOPOLOGY VS ÉTALE TOPOLOGY Very sketchy version of the proof

First of all we reduce to the case $\mathbb{k}=\mathbb{C}$, so that X is a projective scheme over the complex numbers. So on X we have 3 topologies:

- Euclideian topology: $H_{\text {Sing }}^{i}\left(X^{h}\right), H_{D R}^{i}\left(X^{h}\right)$.
- Zariski topology: $H^{i}\left(\mathbb{P}^{n} \backslash X, \mathcal{F}\right), \quad H_{A l g D R}^{i}(X)$.
- Étale topology: $H^{i}\left(\left(\mathbb{P}^{n} \backslash X\right)_{\text {ét }}, \mathcal{G}\right), H^{i}\left(X_{\text {ét }}, \mathbb{Z} / p \mathbb{Z}\right)$.

$$
\left.\begin{array}{rlll}
H^{i}\left(\mathbb{P}^{n} \backslash X, \mathcal{F}\right) & \xrightarrow{\text { Ogus }} & H_{A l g D R}^{i}(X) & \xrightarrow{\text { Grothendieck }}
\end{array} \begin{array}{c}
H_{D R}^{i}\left(X^{h}\right) \\
\downarrow
\end{array}\right)
$$

ZARISKI TOPOLOGY VS ÉTALE TOPOLOGY Very sketchy version of the proof

First of all we reduce to the case $\mathbb{k}=\mathbb{C}$, so that X is a projective scheme over the complex numbers. So on X we have 3 topologies:

- Euclideian topology: $H_{\text {Sing }}^{i}\left(X^{h}\right), H_{D R}^{i}\left(X^{h}\right)$.
- Zariski topology: $H^{i}\left(\mathbb{P}^{n} \backslash X, \mathcal{F}\right), H_{A l g D R}^{i}(X)$.
- Étale topology: $H^{i}\left(\left(\mathbb{P}^{n} \backslash X\right)_{\text {ét }}, \mathcal{G}\right), H^{i}\left(X_{\text {ét }}, \mathbb{Z} / p \mathbb{Z}\right)$.

$$
\left.\begin{array}{ccccc}
H^{i}\left(\mathbb{P}^{n} \backslash X, \mathcal{F}\right) & \stackrel{\text { Ogus }}{\longrightarrow} & H_{A l g D R}^{i}(X) & \xrightarrow{\text { Grothendieck }} & H_{D R}^{i}\left(X^{h}\right) \\
\downarrow
\end{array}\right)
$$

ZARISKI TOPOLOGY VS ÉTALE TOPOLOGY Very sketchy version of the proof

First of all we reduce to the case $\mathbb{k}=\mathbb{C}$, so that X is a projective scheme over the complex numbers. So on X we have 3 topologies:

- Euclideian topology: $H_{\text {Sing }}^{i}\left(X^{h}\right), H_{D R}^{i}\left(X^{h}\right)$.
- Zariski topology: $H^{i}\left(\mathbb{P}^{n} \backslash X, \mathcal{F}\right), H_{A l g D R}^{i}(X)$.
- Étale topology: $H^{i}\left(\left(\mathbb{P}^{n} \backslash X\right)_{\text {ét }}, \mathcal{G}\right), H^{i}\left(X_{\text {ét }}, \mathbb{Z} / p \mathbb{Z}\right)$.

$$
\left.\begin{array}{ccccc}
H^{i}\left(\mathbb{P}^{n} \backslash X, \mathcal{F}\right) & \stackrel{\text { Ogus }}{\longrightarrow} & H_{A l g D R}^{i}(X) & \xrightarrow{\text { Grothendieck }} & H_{D R}^{i}\left(X^{h}\right) \\
\downarrow
\end{array}\right)
$$

SYMBOLIC POWERS
MATROIDS

SYMBOLICS POWERS AND MATROIDS

Introduction to the problem

Let $S:=\mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$ be the polynomial ring in n variables over \mathbb{k}.

SYMBOLICS POWERS AND MATROIDS Introduction to the problem

Let $S:=\mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$ be the polynomial ring in n variables over \mathbb{k}. (Cowsik, Nori, 1976): Given $I \subseteq S$ homogeneous and radical, then

SYMBOLICS POWERS AND MATROIDS
 Introduction to the problem

Let $S:=\mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$ be the polynomial ring in n variables over \mathbb{k}.
(Cowsik, Nori, 1976): Given $I \subseteq S$ homogeneous and radical, then S / I^{k} is Cohen-Macaulay $\forall k \Longleftrightarrow I$ is a complete intersection.
$S / I^{k} \mathrm{CM} \Longrightarrow I^{k}$ is equal to the k th symbolic power $I^{(k)}$ of I.

SYMBOLICS POWERS AND MATROIDS
 Introduction to the problem

Let $S:=\mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$ be the polynomial ring in n variables over \mathbb{k}.
(Cowsik, Nori, 1976): Given $I \subseteq S$ homogeneous and radical, then S / I^{k} is Cohen-Macaulay $\forall k \Longleftrightarrow I$ is a complete intersection.
$S / I^{k} \mathrm{CM} \Longrightarrow I^{k}$ is equal to the k th symbolic power $I^{(k)}$ of I.

SYMBOLICS POWERS AND MATROIDS
 Introduction to the problem

Let $S:=\mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$ be the polynomial ring in n variables over \mathbb{k}.
(Cowsik, Nori, 1976): Given $I \subseteq S$ homogeneous and radical, then S / I^{k} is Cohen-Macaulay $\forall k \Longleftrightarrow I$ is a complete intersection.
$S / I^{k} \mathrm{CM} \Longrightarrow I^{k}$ is equal to the k th symbolic power $I^{(k)}$ of I.

QUESTION: When is $S / /^{(k)}$ Cohen-Macaulay for all k ???

SYMBOLICS POWERS AND MATROIDS
 Introduction to the problem

Let $S:=\mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$ be the polynomial ring in n variables over \mathbb{k}.
(Cowsik, Nori, 1976): Given $I \subseteq S$ homogeneous and radical, then S / I^{k} is Cohen-Macaulay $\forall k \Longleftrightarrow I$ is a complete intersection.
$S / I^{k} \mathrm{CM} \Longrightarrow I^{k}$ is equal to the k th symbolic power $I^{(k)}$ of I.

QUESTION: When is $S / I^{(k)}$ Cohen-Macaulay for all k ???

SYMBOLIC POWERS AND MATROIDS
The result
We can supply an answer to the above question when l is a square-free monomial ideal.

SYMBOLIC POWERS AND MATROIDS

We can supply an answer to the above question when I is a square-free monomial ideal.

Set $[n]:=\{1, \ldots, n\}$ and recall the bijection of sets

SYMBOLIC POWERS AND MATROIDS

We can supply an answer to the above question when I is a square-free monomial ideal.

Set $[n]:=\{1, \ldots, n\}$ and recall the bijection of sets

SYMBOLIC POWERS AND MATROIDS

We can supply an answer to the above question when I is a square-free monomial ideal.

Set $[n]:=\{1, \ldots, n\}$ and recall the bijection of sets
$\{$ Square-free monomial ideals of $S\} \leftrightarrow\{$ Simplicial complexes on $[n]\}$

SYMBOLIC POWERS AND MATROIDS

We can supply an answer to the above question when I is a square-free monomial ideal.

Set $[n]:=\{1, \ldots, n\}$ and recall the bijection of sets
$\{$ Square-free monomial ideals of $S\} \leftrightarrow\{$ Simplicial complexes on $[n]\}$ I

SYMBOLIC POWERS AND MATROIDS

The result

We can supply an answer to the above question when I is a square-free monomial ideal.

Set $[n]:=\{1, \ldots, n\}$ and recall the bijection of sets
$\{$ Square-free monomial ideals of $S\} \leftrightarrow\{$ Simplicial complexes on $[n]\}$ I \rightarrow

SYMBOLIC POWERS AND MATROIDS

We can supply an answer to the above question when I is a square-free monomial ideal.

Set $[n]:=\{1, \ldots, n\}$ and recall the bijection of sets
$\{$ Square-free monomial ideals of $S\} \leftrightarrow\{$ Simplicial complexes on $[n]\}$

$$
I \rightarrow \Delta(I):=\left\{\left\{i_{1}, \ldots, i_{k}\right\}: x_{i_{1}} \cdots x_{i_{k}} \notin I\right\}
$$

SYMBOLIC POWERS AND MATROIDS

We can supply an answer to the above question when I is a square-free monomial ideal.

Set $[n]:=\{1, \ldots, n\}$ and recall the bijection of sets
$\{$ Square-free monomial ideals of $S\} \leftrightarrow\{$ Simplicial complexes on $[n]\}$

$$
I \rightarrow \Delta(I):=\left\{\left\{i_{1}, \ldots, i_{k}\right\}: x_{i_{1}} \cdots x_{i_{k}} \notin I\right\}
$$

SYMBOLIC POWERS AND MATROIDS

We can supply an answer to the above question when I is a square-free monomial ideal.

Set $[n]:=\{1, \ldots, n\}$ and recall the bijection of sets
$\{$ Square-free monomial ideals of $S\} \leftrightarrow\{$ Simplicial complexes on $[n]\}$

$$
I \rightarrow \Delta(I):=\left\{\left\{i_{1}, \ldots, i_{k}\right\}: x_{i_{1}} \cdots x_{i_{k}} \notin I\right\}
$$

$$
\leftrightarrow \Delta
$$

SYMBOLIC POWERS AND MATROIDS

We can supply an answer to the above question when I is a square-free monomial ideal.

Set $[n]:=\{1, \ldots, n\}$ and recall the bijection of sets
$\{$ Square-free monomial ideals of $S\} \leftrightarrow\{$ Simplicial complexes on $[n]\}$

$$
\begin{aligned}
& I \rightarrow \Delta(I):=\left\{\left\{i_{1}, \ldots, i_{k}\right\}: x_{i_{1}} \cdots x_{i_{k}} \notin I\right\} \\
& I_{\Delta}:=\left(x_{i_{1}} \cdots x_{i_{k}}:\left\{i_{1}, \ldots, i_{k}\right\} \notin \Delta\right) \leftrightarrow \Delta
\end{aligned}
$$

SYMBOLIC POWERS AND MATROIDS
 The result

We can supply an answer to the above question when I is a square-free monomial ideal.

Set $[n]:=\{1, \ldots, n\}$ and recall the bijection of sets
$\{$ Square-free monomial ideals of $S\} \leftrightarrow\{$ Simplicial complexes on $[n]\}$

$$
\begin{aligned}
& I \rightarrow \Delta(I):=\left\{\left\{i_{1}, \ldots, i_{k}\right\}: x_{i_{1}} \cdots x_{i_{k}} \notin I\right\} \\
& I_{\Delta}:=\left(x_{i_{1}} \cdots x_{i_{k}}:\left\{i_{1}, \ldots, i_{k}\right\} \notin \Delta\right) \leftrightarrow \Delta \Delta
\end{aligned}
$$

(-, to appear in Proc. Amer. Math. Soc.):

SYMBOLIC POWERS AND MATROIDS

We can supply an answer to the above question when I is a square-free monomial ideal.

Set $[n]:=\{1, \ldots, n\}$ and recall the bijection of sets
$\{$ Square-free monomial ideals of $S\} \leftrightarrow\{$ Simplicial complexes on $[n]\}$

$$
\begin{aligned}
& I \rightarrow \Delta(I):=\left\{\left\{i_{1}, \ldots, i_{k}\right\}: x_{i_{1}} \cdots x_{i_{k}} \notin I\right\} \\
& I_{\Delta}:=\left(x_{i_{1}} \cdots x_{i_{k}}:\left\{i_{1}, \ldots, i_{k}\right\} \notin \Delta\right) \leftrightarrow \Delta \Delta
\end{aligned}
$$

(-, to appear in Proc. Amer. Math. Soc.):
$S / I_{\Delta}^{(k)}$ is Cohen-Macaulay for any $k \Longleftrightarrow \Delta$ is a matroid

SYMBOLIC POWERS AND MATROIDS

We can supply an answer to the above question when I is a square-free monomial ideal.

Set $[n]:=\{1, \ldots, n\}$ and recall the bijection of sets
$\{$ Square-free monomial ideals of $S\} \leftrightarrow\{$ Simplicial complexes on $[n]\}$

$$
\begin{aligned}
& I \rightarrow \Delta(I):=\left\{\left\{i_{1}, \ldots, i_{k}\right\}: x_{i_{1}} \cdots x_{i_{k}} \notin I\right\} \\
& I_{\Delta}:=\left(x_{i_{1}} \cdots x_{i_{k}}:\left\{i_{1}, \ldots, i_{k}\right\} \notin \Delta\right) \leftrightarrow \Delta \Delta
\end{aligned}
$$

(-, to appear in Proc. Amer. Math. Soc.; Minh-Trung, 2010):
$S / I_{\Delta}^{(k)}$ is Cohen-Macaulay for any $k \Longleftrightarrow \Delta$ is a matroid

SYMBOLIC POWERS AND MATROIDS

We can supply an answer to the above question when I is a square-free monomial ideal.

Set $[n]:=\{1, \ldots, n\}$ and recall the bijection of sets
$\{$ Square-free monomial ideals of $S\} \leftrightarrow\{$ Simplicial complexes on $[n]\}$

$$
\begin{aligned}
& I \rightarrow \Delta(I):=\left\{\left\{i_{1}, \ldots, i_{k}\right\}: x_{i_{1}} \cdots x_{i_{k}} \notin I\right\} \\
& I_{\Delta}:=\left(x_{i_{1}} \cdots x_{i_{k}}:\left\{i_{1}, \ldots, i_{k}\right\} \notin \Delta\right) \leftrightarrow \Delta \Delta
\end{aligned}
$$

(-, to appear in Proc. Amer. Math. Soc.; Minh-Trung, 2010):
$S / I_{\Delta}^{(k)}$ is Cohen-Macaulay for any $k \Longleftrightarrow \Delta$ is a matroid

SYMBOLIC POWERS AND MATROIDS

A simplicial complex Δ is a matroid if

SYMBOLIC POWERS AND MATROIDS

 MatroidsA simplicial complex \triangle is a matroid if

SYMBOLIC POWERS AND MATROIDS

 MatroidsA simplicial complex Δ is a matroid if $\forall F, G \in \mathcal{F}(\Delta)$

SYMBOLIC POWERS AND MATROIDS

A simplicial complex Δ is a matroid if $(\mathcal{F}(\Delta):=\{$ facets of $\Delta\})$ $\forall F, G \in \mathcal{F}(\Delta)$

SYMBOLIC POWERS AND MATROIDS

A simplicial complex Δ is a matroid if $(\mathcal{F}(\Delta):=\{$ facets of $\Delta\})$ $\forall F, G \in \mathcal{F}(\Delta), \forall i \in F$

SYMBOLIC POWERS AND MATROIDS

A simplicial complex Δ is a matroid if $(\mathcal{F}(\Delta):=\{$ facets of $\Delta\})$

$$
\forall F, G \in \mathcal{F}(\Delta), \forall i \in F, \exists j \in G
$$

SYMBOLIC POWERS AND MATROIDS

Matroids

A simplicial complex Δ is a matroid if $(\mathcal{F}(\Delta):=\{$ facets of $\Delta\})$ $\forall F, G \in \mathcal{F}(\Delta), \forall i \in F, \exists j \in G:(F \backslash\{i\}) \cup\{j\} \in \mathcal{F}(\Delta)$

Among the properties of matroids the following is crucial in our proof:

SYMBOLIC POWERS AND MATROIDS

Matroids

A simplicial complex Δ is a matroid if $(\mathcal{F}(\Delta):=\{$ facets of $\Delta\})$

$$
\forall F, G \in \mathcal{F}(\Delta), \forall i \in F, \exists j \in G:(F \backslash\{i\}) \cup\{j\} \in \mathcal{F}(\Delta)
$$

Among the properties of matroids the following is crucial in our proof:
DUALITY: Let Δ^{c} be the simplicial complex whose facets are [n]
where $F \in \mathcal{F}(\Delta)$

SYMBOLIC POWERS AND MATROIDS

Matroids

A simplicial complex Δ is a matroid if $(\mathcal{F}(\Delta):=\{$ facets of $\Delta\})$

$$
\forall F, G \in \mathcal{F}(\Delta), \forall i \in F, \exists j \in G:(F \backslash\{i\}) \cup\{j\} \in \mathcal{F}(\Delta)
$$

Among the properties of matroids the following is crucial in our proof:
DUALITY: Let Δ^{c} be the simplicial complex whose facets are $[n] \backslash F$ where $F \in \mathcal{F}(\Delta)$.

SYMBOLIC POWERS AND MATROIDS

Matroids

A simplicial complex Δ is a matroid if $(\mathcal{F}(\Delta):=\{$ facets of $\Delta\})$

$$
\forall F, G \in \mathcal{F}(\Delta), \forall i \in F, \exists j \in G:(F \backslash\{i\}) \cup\{j\} \in \mathcal{F}(\Delta)
$$

Among the properties of matroids the following is crucial in our proof:
DUALITY: Let Δ^{c} be the simplicial complex whose facets are $[n] \backslash F$ where $F \in \mathcal{F}(\Delta)$. Then Δ is a matroid $\Longleftrightarrow \Delta^{c}$ is a matroid.

SYMBOLIC POWERS AND MATROIDS

Matroids

A simplicial complex Δ is a matroid if $(\mathcal{F}(\Delta):=\{$ facets of $\Delta\})$

$$
\forall F, G \in \mathcal{F}(\Delta), \forall i \in F, \exists j \in G:(F \backslash\{i\}) \cup\{j\} \in \mathcal{F}(\Delta)
$$

Among the properties of matroids the following is crucial in our proof:
DUALITY: Let Δ^{c} be the simplicial complex whose facets are $[n] \backslash F$ where $F \in \mathcal{F}(\Delta)$. Then Δ is a matroid $\Longleftrightarrow \Delta^{c}$ is a matroid.

EXAMPLES:

SYMBOLIC POWERS AND MATROIDS

Matroids

A simplicial complex Δ is a matroid if $(\mathcal{F}(\Delta):=\{$ facets of $\Delta\})$

$$
\forall F, G \in \mathcal{F}(\Delta), \forall i \in F, \exists j \in G:(F \backslash\{i\}) \cup\{j\} \in \mathcal{F}(\Delta)
$$

Among the properties of matroids the following is crucial in our proof:
DUALITY: Let Δ^{c} be the simplicial complex whose facets are $[n] \backslash F$ where $F \in \mathcal{F}(\Delta)$. Then Δ is a matroid $\Longleftrightarrow \Delta^{c}$ is a matroid.

EXAMPLES:

Let V be a \mathbb{k}-vector space and v_{1}, \ldots, v_{n} some vectors of V.

SYMBOLIC POWERS AND MATROIDS

Matroids

A simplicial complex Δ is a matroid if $(\mathcal{F}(\Delta):=\{$ facets of $\Delta\})$

$$
\forall F, G \in \mathcal{F}(\Delta), \forall i \in F, \exists j \in G:(F \backslash\{i\}) \cup\{j\} \in \mathcal{F}(\Delta)
$$

Among the properties of matroids the following is crucial in our proof:
DUALITY: Let Δ^{c} be the simplicial complex whose facets are $[n] \backslash F$ where $F \in \mathcal{F}(\Delta)$. Then Δ is a matroid $\Longleftrightarrow \Delta^{c}$ is a matroid.

EXAMPLES:

Let V be a \mathbb{k}-vector space and v_{1}, \ldots, v_{n} some vectors of V.

$$
\Delta:=\left\{F \subseteq[n]:|F|=\operatorname{dim}_{\mathbb{k}}<v_{i}: i \in F>\right\}
$$

SYMBOLIC POWERS AND MATROIDS

Matroids

A simplicial complex Δ is a matroid if $(\mathcal{F}(\Delta):=\{$ facets of $\Delta\})$

$$
\forall F, G \in \mathcal{F}(\Delta), \forall i \in F, \exists j \in G:(F \backslash\{i\}) \cup\{j\} \in \mathcal{F}(\Delta)
$$

Among the properties of matroids the following is crucial in our proof:
DUALITY: Let Δ^{c} be the simplicial complex whose facets are $[n] \backslash F$ where $F \in \mathcal{F}(\Delta)$. Then Δ is a matroid $\Longleftrightarrow \Delta^{c}$ is a matroid.

EXAMPLES:

Let V be a \mathbb{k}-vector space and v_{1}, \ldots, v_{n} some vectors of V.

$$
\Delta:=\left\{F \subseteq[n]:|F|=\operatorname{dim}_{\mathbb{k}}<v_{i}: i \in F>\right\}
$$

Such a Δ is easily seen to be a matroid:

SYMBOLIC POWERS AND MATROIDS

Matroids

A simplicial complex Δ is a matroid if $(\mathcal{F}(\Delta):=\{$ facets of $\Delta\})$

$$
\forall F, G \in \mathcal{F}(\Delta), \forall i \in F, \exists j \in G:(F \backslash\{i\}) \cup\{j\} \in \mathcal{F}(\Delta)
$$

Among the properties of matroids the following is crucial in our proof:
DUALITY: Let Δ^{c} be the simplicial complex whose facets are $[n] \backslash F$ where $F \in \mathcal{F}(\Delta)$. Then Δ is a matroid $\Longleftrightarrow \Delta^{c}$ is a matroid.

EXAMPLES:

Let V be a \mathbb{k}-vector space and v_{1}, \ldots, v_{n} some vectors of V.

$$
\Delta:=\left\{F \subseteq[n]:|F|=\operatorname{dim}_{\mathbb{k}}<v_{i}: i \in F>\right\}
$$

Such a Δ is easily seen to be a matroid: Actually, the concept of matroid is an "abstraction of linear independence".

SYMBOLIC POWERS AND MATROIDS

Matroids

A simplicial complex Δ is a matroid if $(\mathcal{F}(\Delta):=\{$ facets of $\Delta\})$

$$
\forall F, G \in \mathcal{F}(\Delta), \forall i \in F, \exists j \in G:(F \backslash\{i\}) \cup\{j\} \in \mathcal{F}(\Delta)
$$

Among the properties of matroids the following is crucial in our proof:
DUALITY: Let Δ^{c} be the simplicial complex whose facets are $[n] \backslash F$ where $F \in \mathcal{F}(\Delta)$. Then Δ is a matroid $\Longleftrightarrow \Delta^{c}$ is a matroid.

EXAMPLES:

Let \triangle be the i-skeleton of the $(n-1)$-simplex

SYMBOLIC POWERS AND MATROIDS

Matroids

A simplicial complex Δ is a matroid if $(\mathcal{F}(\Delta):=\{$ facets of $\Delta\})$

$$
\forall F, G \in \mathcal{F}(\Delta), \forall i \in F, \exists j \in G:(F \backslash\{i\}) \cup\{j\} \in \mathcal{F}(\Delta)
$$

Among the properties of matroids the following is crucial in our proof:
DUALITY: Let Δ^{c} be the simplicial complex whose facets are $[n] \backslash F$ where $F \in \mathcal{F}(\Delta)$. Then Δ is a matroid $\Longleftrightarrow \Delta^{c}$ is a matroid.

EXAMPLES:

Let Δ be the i-skeleton of the $(n-1)$-simplex, that is

$$
\Delta:=\{F \subseteq[n]:|F| \leq i\} .
$$

SYMBOLIC POWERS AND MATROIDS

Matroids

A simplicial complex Δ is a matroid if $(\mathcal{F}(\Delta):=\{$ facets of $\Delta\})$

$$
\forall F, G \in \mathcal{F}(\Delta), \forall i \in F, \exists j \in G:(F \backslash\{i\}) \cup\{j\} \in \mathcal{F}(\Delta)
$$

Among the properties of matroids the following is crucial in our proof:
DUALITY: Let Δ^{c} be the simplicial complex whose facets are $[n] \backslash F$ where $F \in \mathcal{F}(\Delta)$. Then Δ is a matroid $\Longleftrightarrow \Delta^{c}$ is a matroid.

EXAMPLES:

Let Δ be the i-skeleton of the $(n-1)$-simplex, that is

$$
\Delta:=\{F \subseteq[n]:|F| \leq i\} .
$$

Such a Δ is obviously a matroid.

SYMBOLIC POWERS AND MATROIDS

Matroids

A simplicial complex Δ is a matroid if $(\mathcal{F}(\Delta):=\{$ facets of $\Delta\})$

$$
\forall F, G \in \mathcal{F}(\Delta), \forall i \in F, \exists j \in G:(F \backslash\{i\}) \cup\{j\} \in \mathcal{F}(\Delta)
$$

Among the properties of matroids the following is crucial in our proof:
DUALITY: Let Δ^{c} be the simplicial complex whose facets are $[n] \backslash F$ where $F \in \mathcal{F}(\Delta)$. Then Δ is a matroid $\Longleftrightarrow \Delta^{c}$ is a matroid.

EXAMPLES:

Given an ideal $J \subseteq S=\mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$, its independence complex is:

SYMBOLIC POWERS AND MATROIDS

Matroids

A simplicial complex Δ is a matroid if $(\mathcal{F}(\Delta):=\{$ facets of $\Delta\})$

$$
\forall F, G \in \mathcal{F}(\Delta), \forall i \in F, \exists j \in G:(F \backslash\{i\}) \cup\{j\} \in \mathcal{F}(\Delta)
$$

Among the properties of matroids the following is crucial in our proof:
DUALITY: Let Δ^{c} be the simplicial complex whose facets are $[n] \backslash F$ where $F \in \mathcal{F}(\Delta)$. Then Δ is a matroid $\Longleftrightarrow \Delta^{c}$ is a matroid.

EXAMPLES:

Given an ideal $J \subseteq S=\mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$, its independence complex is:

$$
\Delta(J):=\left\{F \subseteq[n]: J \cap \mathbb{k}\left[x_{i}: i \in F\right]=(0)\right\}
$$

SYMBOLIC POWERS AND MATROIDS

Matroids

A simplicial complex Δ is a matroid if $(\mathcal{F}(\Delta):=\{$ facets of $\Delta\})$

$$
\forall F, G \in \mathcal{F}(\Delta), \forall i \in F, \exists j \in G:(F \backslash\{i\}) \cup\{j\} \in \mathcal{F}(\Delta)
$$

Among the properties of matroids the following is crucial in our proof:
DUALITY: Let Δ^{c} be the simplicial complex whose facets are $[n] \backslash F$ where $F \in \mathcal{F}(\Delta)$. Then Δ is a matroid $\Longleftrightarrow \Delta^{c}$ is a matroid.

EXAMPLES:

Given an ideal $J \subseteq S=\mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$, its independence complex is:

$$
\Delta(J):=\left\{F \subseteq[n]: J \cap \mathbb{k}\left[x_{i}: i \in F\right]=(0)\right\}
$$

One can show that if J is prime, then $\Delta(J)$ is a matroid.

SYMBOLIC POWERS AND MATROIDS

Matroids

A simplicial complex Δ is a matroid if $(\mathcal{F}(\Delta):=\{$ facets of $\Delta\})$

$$
\forall F, G \in \mathcal{F}(\Delta), \forall i \in F, \exists j \in G:(F \backslash\{i\}) \cup\{j\} \in \mathcal{F}(\Delta)
$$

Among the properties of matroids the following is crucial in our proof:
DUALITY: Let Δ^{c} be the simplicial complex whose facets are $[n] \backslash F$ where $F \in \mathcal{F}(\Delta)$. Then Δ is a matroid $\Longleftrightarrow \Delta^{c}$ is a matroid.

EXAMPLES:

Given an ideal $J \subseteq S=\mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$, its independence complex is:

$$
\Delta(J):=\left\{F \subseteq[n]: J \cap \mathbb{k}\left[x_{i}: i \in F\right]=(0)\right\}
$$

One can show that if J is prime, then $\Delta(J)$ is a matroid.

SYMBOLIC POWERS AND MATROIDS Switch to the cover ideal

The cover ideal of a simplicial complex Δ is:

SYMBOLIC POWERS AND MATROIDS Switch to the cover ideal

The cover ideal of a simplicial complex Δ is:

$$
J(\Delta):=\bigcap_{F \in \mathcal{F}(\Delta)} \wp F
$$

SYMBOLIC POWERS AND MATROIDS Switch to the cover ideal

The cover ideal of a simplicial complex Δ is:

$$
J(\Delta):=\bigcap_{F \in \mathcal{F}(\wedge)} \wp_{F} \quad\left(\wp F:=\left(x_{i}: i \in F\right) \subseteq S\right) .
$$

SYMBOLIC POWERS AND MATROIDS Switch to the cover ideal

The cover ideal of a simplicial complex Δ is:

$$
J(\Delta):=\bigcap_{F \in \mathcal{F}(\Delta)} \wp_{F} \quad\left(\wp_{F}:=\left(x_{i}: i \in F\right) \subseteq S\right) .
$$

One can easily show that $J(\Delta)=I_{\Delta^{c}}$ and $I_{\Delta}=J\left(\Delta^{c}\right)$.

SYMBOLIC POWERS AND MATROIDS Switch to the cover ideal

The cover ideal of a simplicial complex Δ is:

$$
J(\Delta):=\bigcap_{F \in \mathcal{F}(\Delta)} \wp_{F} \quad\left(\wp_{F}:=\left(x_{i}: i \in F\right) \subseteq S\right) .
$$

One can easily show that $J(\Delta)=I_{\Delta^{c}}$ and $I_{\Delta}=J\left(\Delta^{c}\right)$. So, by the duality for matroids, to show:

SYMBOLIC POWERS AND MATROIDS Switch to the cover ideal

The cover ideal of a simplicial complex Δ is:

$$
J(\Delta):=\bigcap_{F \in \mathcal{F}(\Delta)} \wp F \quad\left(\wp F:=\left(x_{i}: i \in F\right) \subseteq S\right) .
$$

One can easily show that $J(\Delta)=I_{\Delta^{c}}$ and $I_{\Delta}=J\left(\Delta^{c}\right)$. So, by the duality for matroids, to show:
$S / I_{\Delta}^{(k)}$ is CM for any $k \Longleftrightarrow \Delta$ is a matroid

SYMBOLIC POWERS AND MATROIDS Switch to the cover ideal

The cover ideal of a simplicial complex Δ is:

$$
J(\Delta):=\bigcap_{F \in \mathcal{F}(\Delta)} \wp F \quad\left(\wp F:=\left(x_{i}: i \in F\right) \subseteq S\right) .
$$

One can easily show that $J(\Delta)=I_{\Delta^{c}}$ and $I_{\Delta}=J\left(\Delta^{c}\right)$. So, by the duality for matroids, it is enough to show:

SYMBOLIC POWERS AND MATROIDS Switch to the cover ideal

The cover ideal of a simplicial complex Δ is:

$$
J(\Delta):=\bigcap_{F \in \mathcal{F}(\Delta)} \wp_{F} \quad\left(\wp_{F}:=\left(x_{i}: i \in F\right) \subseteq S\right) .
$$

One can easily show that $J(\Delta)=I_{\Delta^{c}}$ and $I_{\Delta}=J\left(\Delta^{c}\right)$. So, by the duality for matroids, it is enough to show:
$S / J(\Delta)^{(k)}$ is CM for any $k \Longleftrightarrow \Delta$ is a matroid

SYMBOLIC POWERS AND MATROIDS Switch to the cover ideal

The cover ideal of a simplicial complex Δ is:

$$
J(\Delta):=\bigcap_{F \in \mathcal{F}(\Delta)} \wp_{F} \quad\left(\wp_{F}:=\left(x_{i}: i \in F\right) \subseteq S\right) .
$$

One can easily show that $J(\Delta)=I_{\Delta^{c}}$ and $I_{\Delta}=J\left(\Delta^{c}\right)$. So, by the duality for matroids, it is enough to show:
$S / J(\Delta)^{(k)}$ is CM for any $k \Longleftrightarrow \Delta$ is a matroid

SYMBOLIC POWERS AND MATROIDS Symbolic powers and k-covers

One can show that, for any simplicial complex Δ, we have:

$$
J(\Delta)^{(k)}=\bigcap_{F \in \mathcal{F}(\Delta)} \wp_{F}^{k} .
$$

SYMBOLIC POWERS AND MATROIDS Symbolic powers and k-covers

One can show that, for any simplicial complex Δ, we have:

$$
J(\Delta)^{(k)}=\bigcap_{F \in \mathcal{F}(\Delta)} \wp_{F}^{k} .
$$

We want to describe which monomials belong to $J(\Delta)^{(k)}$. For each $k \in \mathbb{N}$, a nonzero function $\alpha:[n] \rightarrow \mathbb{N}$ is called a k-cover of
a simplicial complex Δ on $[n]$ if:

SYMBOLIC POWERS AND MATROIDS Symbolic powers and k-covers

One can show that, for any simplicial complex Δ, we have:

$$
J(\Delta)^{(k)}=\bigcap_{F \in \mathcal{F}(\Delta)} \wp_{F}^{k} .
$$

We want to describe which monomials belong to $J(\Delta)^{(k)}$. For each $k \in \mathbb{N}$, a nonzero function $\alpha:[n] \rightarrow \mathbb{N}$ is called a k-cover of a simplicial complex Δ on $[n]$ if:

SYMBOLIC POWERS AND MATROIDS Symbolic powers and k-covers

One can show that, for any simplicial complex Δ, we have:

$$
J(\Delta)^{(k)}=\bigcap_{F \in \mathcal{F}(\Delta)} \wp_{F}^{k} .
$$

We want to describe which monomials belong to $J(\Delta)^{(k)}$. For each $k \in \mathbb{N}$, a nonzero function $\alpha:[n] \rightarrow \mathbb{N}$ is called a k-cover of a simplicial complex Δ on $[n]$ if: $\sum_{i \in F} \alpha(i) \geq k \forall F \in \mathcal{F}(\Delta)$.

SYMBOLIC POWERS AND MATROIDS
 Symbolic powers and k-covers

One can show that, for any simplicial complex Δ, we have:

$$
J(\Delta)^{(k)}=\bigcap_{F \in \mathcal{F}(\Delta)} \wp_{F}^{k} .
$$

We want to describe which monomials belong to $J(\Delta)^{(k)}$. For each $k \in \mathbb{N}$, a nonzero function $\alpha:[n] \rightarrow \mathbb{N}$ is called a k-cover of a simplicial complex Δ on $[n]$ if: $\quad \sum_{i \in F} \alpha(i) \geq k \forall F \in \mathcal{F}(\Delta)$. A k-cover α is basic if there is not a k-cover β with $\beta<\alpha$.

SYMBOLIC POWERS AND MATROIDS
 Symbolic powers and k-covers

One can show that, for any simplicial complex Δ, we have:

$$
J(\Delta)^{(k)}=\bigcap_{F \in \mathcal{F}(\Delta)} \wp_{F}^{k} .
$$

We want to describe which monomials belong to $J(\Delta)^{(k)}$. For each $k \in \mathbb{N}$, a nonzero function $\alpha:[n] \rightarrow \mathbb{N}$ is called a k-cover of a simplicial complex Δ on $[n]$ if: $\sum_{i \in F} \alpha(i) \geq k \forall F \in \mathcal{F}(\Delta)$. A k-cover α is basic if there is not a k-cover β with $\beta<\alpha$.

EXAMPLES:

SYMBOLIC POWERS AND MATROIDS
 Symbolic powers and k-covers

One can show that, for any simplicial complex Δ, we have:

$$
J(\Delta)^{(k)}=\bigcap_{F \in \mathcal{F}(\Delta)} \wp_{F}^{k} .
$$

We want to describe which monomials belong to $J(\Delta)^{(k)}$. For each $k \in \mathbb{N}$, a nonzero function $\alpha:[n] \rightarrow \mathbb{N}$ is called a k-cover of a simplicial complex Δ on $[n]$ if: $\sum_{i \in F} \alpha(i) \geq k \forall F \in \mathcal{F}(\Delta)$. A k-cover α is basic if there is not a k-cover β with $\beta<\alpha$.

EXAMPLES:

SYMBOLIC POWERS AND MATROIDS
 Symbolic powers and k-covers

One can show that, for any simplicial complex Δ, we have:

$$
J(\Delta)^{(k)}=\bigcap_{F \in \mathcal{F}(\Delta)} \wp_{F}^{k} .
$$

We want to describe which monomials belong to $J(\Delta)^{(k)}$. For each $k \in \mathbb{N}$, a nonzero function $\alpha:[n] \rightarrow \mathbb{N}$ is called a k-cover of a simplicial complex Δ on $[n]$ if: $\sum_{i \in F} \alpha(i) \geq k \forall F \in \mathcal{F}(\Delta)$. A k-cover α is basic if there is not a k-cover β with $\beta<\alpha$.

EXAMPLES:

SYMBOLIC POWERS AND MATROIDS
 Symbolic powers and k-covers

One can show that, for any simplicial complex Δ, we have:

$$
J(\Delta)^{(k)}=\bigcap_{F \in \mathcal{F}(\Delta)} \wp_{F}^{k} .
$$

We want to describe which monomials belong to $J(\Delta)^{(k)}$. For each $k \in \mathbb{N}$, a nonzero function $\alpha:[n] \rightarrow \mathbb{N}$ is called a k-cover of a simplicial complex Δ on $[n]$ if: $\sum_{i \in F} \alpha(i) \geq k \forall F \in \mathcal{F}(\Delta)$. A k-cover α is basic if there is not a k-cover β with $\beta<\alpha$.

EXAMPLES:

SYMBOLIC POWERS AND MATROIDS
 Symbolic powers and k-covers

One can show that, for any simplicial complex Δ, we have:

$$
J(\Delta)^{(k)}=\bigcap_{F \in \mathcal{F}(\Delta)} \wp_{F}^{k} .
$$

We want to describe which monomials belong to $J(\Delta)^{(k)}$. For each $k \in \mathbb{N}$, a nonzero function $\alpha:[n] \rightarrow \mathbb{N}$ is called a k-cover of a simplicial complex Δ on $[n]$ if: $\sum_{i \in F} \alpha(i) \geq k \forall F \in \mathcal{F}(\Delta)$. A k-cover α is basic if there is not a k-cover β with $\beta<\alpha$.

EXAMPLES:

basic 3-cover

SYMBOLIC POWERS AND MATROIDS
 Symbolic powers and k-covers

One can show that, for any simplicial complex Δ, we have:

$$
J(\Delta)^{(k)}=\bigcap_{F \in \mathcal{F}(\Delta)} \wp_{F}^{k} .
$$

We want to describe which monomials belong to $J(\Delta)^{(k)}$. For each $k \in \mathbb{N}$, a nonzero function $\alpha:[n] \rightarrow \mathbb{N}$ is called a k-cover of a simplicial complex Δ on $[n]$ if: $\sum_{i \in F} \alpha(i) \geq k \forall F \in \mathcal{F}(\Delta)$. A k-cover α is basic if there is not a k-cover β with $\beta<\alpha$.

$$
J(\Delta)^{(k)}=\left(x_{1}^{\alpha(1)} \cdots x_{n}^{\alpha(n)}: \alpha \text { is a } k \text {-cover }\right) .
$$

SYMBOLIC POWERS AND MATROIDS
 Symbolic powers and k-covers

One can show that, for any simplicial complex Δ, we have:

$$
J(\Delta)^{(k)}=\bigcap_{F \in \mathcal{F}(\Delta)} \wp_{F}^{k} .
$$

We want to describe which monomials belong to $J(\Delta)^{(k)}$. For each $k \in \mathbb{N}$, a nonzero function $\alpha:[n] \rightarrow \mathbb{N}$ is called a k-cover of a simplicial complex Δ on $[n]$ if: $\sum_{i \in F} \alpha(i) \geq k \forall F \in \mathcal{F}(\Delta)$. A k-cover α is basic if there is not a k-cover β with $\beta<\alpha$.

$$
J(\Delta)^{(k)}=\left(x_{1}^{\alpha(1)} \cdots x_{n}^{\alpha(n)}: \alpha \text { is a basic } k \text {-cover }\right) .
$$

SYMBOLIC POWERS AND MATROIDS
 Symbolic powers and k-covers

One can show that, for any simplicial complex Δ, we have:

$$
J(\Delta)^{(k)}=\bigcap_{F \in \mathcal{F}(\Delta)} \wp_{F}^{k} .
$$

We want to describe which monomials belong to $J(\Delta)^{(k)}$. For each $k \in \mathbb{N}$, a nonzero function $\alpha:[n] \rightarrow \mathbb{N}$ is called a k-cover of a simplicial complex Δ on $[n]$ if: $\sum_{i \in F} \alpha(i) \geq k \forall F \in \mathcal{F}(\Delta)$. A k-cover α is basic if there is not a k-cover β with $\beta<\alpha$.

$$
J(\Delta)^{(k)}=\left(x_{1}^{\alpha(1)} \cdots x_{n}^{\alpha(n)}: \alpha \text { is a basic } k \text {-cover }\right)
$$

We have to consider the symbolic fiber cone of $J(\Delta)$, namely:

SYMBOLIC POWERS AND MATROIDS Sketch of the proof

We have to consider the symbolic fiber cone of $J(\Delta)$,

SYMBOLIC POWERS AND MATROIDS Sketch of the proof

We have to consider the symbolic fiber cone of $J(\Delta)$, namely:

$$
\bar{A}(\Delta):=\bigoplus_{k \in \mathbb{N}} J(\Delta)^{(k)} / \mathfrak{m} J(\Delta)^{(k)},
$$

SYMBOLIC POWERS AND MATROIDS Sketch of the proof

We have to consider the symbolic fiber cone of $J(\Delta)$, namely:

$$
\bar{A}(\Delta):=\bigoplus_{k \in \mathbb{N}} J(\Delta)^{(k)} / \mathfrak{m} J(\Delta)^{(k)}, \mathfrak{m}=\left(x_{1}, \ldots, x_{n}\right) \subseteq S
$$

SYMBOLIC POWERS AND MATROIDS Sketch of the proof

We have to consider the symbolic fiber cone of $J(\Delta)$, namely:

$$
\bar{A}(\Delta):=\bigoplus_{k \in \mathbb{N}} J(\Delta)^{(k)} / \mathfrak{m} J(\Delta)^{(k)}, \mathfrak{m}=\left(x_{1}, \ldots, x_{n}\right) \subseteq S
$$

It is a general fact that $\operatorname{dim} \bar{A}(\Delta) \geq h t(J(\Delta))=\operatorname{dim} \Delta+1$.
Using tools from the theory of blow-up algebras, we can prove:

SYMBOLIC POWERS AND MATROIDS Sketch of the proof

We have to consider the symbolic fiber cone of $J(\Delta)$, namely:

$$
\bar{A}(\Delta):=\bigoplus_{k \in \mathbb{N}} J(\Delta)^{(k)} / \mathfrak{m} J(\Delta)^{(k)}, \mathfrak{m}=\left(x_{1}, \ldots, x_{n}\right) \subseteq S
$$

It is a general fact that $\operatorname{dim} \bar{A}(\Delta) \geq h t(J(\Delta))=\operatorname{dim} \Delta+1$.
Using tools from the theory of blow-up algebras, we can prove:

SYMBOLIC POWERS AND MATROIDS

 Sketch of the proofWe have to consider the symbolic fiber cone of $J(\Delta)$, namely:

$$
\bar{A}(\Delta):=\bigoplus_{k \in \mathbb{N}} J(\Delta)^{(k)} / \mathfrak{m} J(\Delta)^{(k)}, \mathfrak{m}=\left(x_{1}, \ldots, x_{n}\right) \subseteq S
$$

It is a general fact that $\operatorname{dim} \bar{A}(\Delta) \geq h t(J(\Delta))=\operatorname{dim} \Delta+1$.
Using tools from the theory of blow-up algebras, we can prove:

$$
S / J(\Delta)^{(k)} \text { is CM for any } k \Longleftrightarrow \operatorname{dim} \bar{A}(\Delta)=\operatorname{dim} \Delta+1
$$

SYMBOLIC POWERS AND MATROIDS

 Sketch of the proofWe have to consider the symbolic fiber cone of $J(\Delta)$, namely:

$$
\bar{A}(\Delta):=\bigoplus_{k \in \mathbb{N}} J(\Delta)^{(k)} / \mathfrak{m} J(\Delta)^{(k)}, \mathfrak{m}=\left(x_{1}, \ldots, x_{n}\right) \subseteq S
$$

It is a general fact that $\operatorname{dim} \bar{A}(\Delta) \geq h t(J(\Delta))=\operatorname{dim} \Delta+1$.
Using tools from the theory of blow-up algebras, we can prove:

$$
S / J(\Delta)^{(k)} \text { is CM for any } k \Longleftrightarrow \operatorname{dim} \bar{A}(\Delta)=\operatorname{dim} \Delta+1
$$

SYMBOLIC POWERS AND MATROIDS Sketch of the proof

So we have to show that:

SYMBOLIC POWERS AND MATROIDS Sketch of the proof

So we have to show that:
Δ is a matroid $\Longleftrightarrow \operatorname{dim} \bar{A}(\Delta)=\operatorname{dim} \Delta+1$.

SYMBOLIC POWERS AND MATROIDS Sketch of the proof

So we have to show that:

By meaning of the Hilbert polynomial we have:

SYMBOLIC POWERS AND MATROIDS Sketch of the proof

So we have to show that:

$$
\Delta \text { is a matroid } \Longleftrightarrow \operatorname{dim} \bar{A}(\Delta)=\operatorname{dim} \Delta+1 .
$$

By meaning of the Hilbert polynomial we have:

$$
\operatorname{dim} \bar{A}(\Delta)=\operatorname{dim} \Delta+1 \Longleftrightarrow \lim _{k \rightarrow \infty} \frac{\operatorname{dim}_{k} \bar{A}(\Delta)_{k}}{k^{\operatorname{dim} \Delta}}<\infty .
$$

SYMBOLIC POWERS AND MATROIDS Sketch of the proof

So we have to show that:

$$
\Delta \text { is a matroid } \Longleftrightarrow \operatorname{dim} \bar{A}(\Delta)=\operatorname{dim} \Delta+1 .
$$

By meaning of the Hilbert polynomial we have:

$$
\operatorname{dim} \bar{A}(\Delta)=\operatorname{dim} \Delta+1 \Longleftrightarrow \lim _{k \rightarrow \infty} \frac{\operatorname{dim}_{\mathrm{k}} \bar{A}(\Delta)_{k}}{k^{\operatorname{dim} \Delta}}<\infty .
$$

Since a \mathbb{k}-basis of $\bar{A}(\Delta)_{k}$ corresponds to a minimal generating set of $J(\Delta)^{(k)}$:

$$
\operatorname{dim}_{k} \bar{A}(\Delta)_{k}=\mid\{\text { basic } k \text {-covers of } \Delta\}
$$

SYMBOLIC POWERS AND MATROIDS Sketch of the proof

So we have to show that:

$$
\Delta \text { is a matroid } \Longleftrightarrow \operatorname{dim} \bar{A}(\Delta)=\operatorname{dim} \Delta+1 .
$$

By meaning of the Hilbert polynomial we have:

$$
\operatorname{dim} \bar{A}(\Delta)=\operatorname{dim} \Delta+1 \Longleftrightarrow \lim _{k \rightarrow \infty} \frac{\operatorname{dim}_{\mathrm{k}} \bar{A}(\Delta)_{k}}{k^{\operatorname{dim} \Delta}}<\infty .
$$

Since a \mathbb{k}-basis of $\bar{A}(\Delta)_{k}$ corresponds to a minimal generating set of $J(\Delta)^{(k)}$: $\operatorname{dim}_{k} \bar{A}(\Delta)_{k}=\mid\{$ basic k-covers of $\Delta\} \mid$.

SYMBOLIC POWERS AND MATROIDS Sketch of the proof

So we have to show that:

$$
\Delta \text { is a matroid } \Longleftrightarrow \operatorname{dim} \bar{A}(\Delta)=\operatorname{dim} \Delta+1
$$

By meaning of the Hilbert polynomial we have:

$$
\operatorname{dim} \bar{A}(\Delta)=\operatorname{dim} \Delta+1 \Longleftrightarrow \lim _{k \rightarrow \infty} \frac{\operatorname{dim}_{\mathrm{k}} \bar{A}(\Delta)_{k}}{k^{\operatorname{dim} \Delta}}<\infty .
$$

Since a \mathbb{k}-basis of $\bar{A}(\Delta)_{k}$ corresponds to a minimal generating set of $J(\Delta)^{(k)}$:

$$
\operatorname{dim}_{\mathrm{k}} \bar{A}(\Delta)_{k}=\mid\{\text { basic } k \text {-covers of } \Delta\} \mid \text {. }
$$

From now on the proof is purely combinatorial:

SYMBOLIC POWERS AND MATROIDS Sketch of the proof

So we have to show that:

$$
\Delta \text { is a matroid } \Longleftrightarrow \operatorname{dim} \bar{A}(\Delta)=\operatorname{dim} \Delta+1 .
$$

By meaning of the Hilbert polynomial we have:

$$
\operatorname{dim} \bar{A}(\Delta)=\operatorname{dim} \Delta+1 \Longleftrightarrow \lim _{k \rightarrow \infty} \frac{\operatorname{dim}_{k} \bar{A}(\Delta)_{k}}{k^{\operatorname{dim} \Delta}}<\infty .
$$

Since a \mathbb{k}-basis of $\bar{A}(\Delta)_{k}$ corresponds to a minimal generating set of $J(\Delta)^{(k)}$:

$$
\operatorname{dim}_{k} \bar{A}(\Delta)_{k}=\mid\{\text { basic } k \text {-covers of } \Delta\} \mid \text {. }
$$

From now on the proof is purely combinatorial: Some beautiful results from "matroid theory" are necessary to get it.....

THANKS FOR YOUR ATTENTION

