
LINEAR SYZYGIES, FLAG COMPLEXES, AND REGULARITY

ALEXANDRU CONSTANTINESCU, THOMAS KAHLE, AND MATTEO VARBARO

Abstract. We show that for every r ∈ Z>0 there exist monomial ideals generated in degree
two, with linear syzygies, and regularity of the quotient equal to r. Such examples can not
be found among Gorenstein ideals since the regularity of their quotients is at most four. We
also show that for most monomial ideals generated in degree two and with linear syzygies
the regularity is O(log(log(n)), where n is the number of variables.

Let n be a positive integer, S = K[x1, . . . , xn] the polynomial ring in n variables over a field
K. Any quotient S/I by some homogeneous ideal I ⊆ S has a minimal graded free resolution.
The number of minimal generators of a given degree of the free modules occurring in the
resolution are independent of the resolution chosen and define the Betti numbers βi,j(S/I).
The Castelnuovo-Mumford regularity of S/I is reg(S/I) := max{j − i : βi,j 6= 0}.

Bounding the regularity. Equipped with these definitions it is a basic question to under-
stand extreme values and shapes of the Betti numbers and the modules that realize them.
One line of research, which we contribute to here, is to bound the regularity in terms of
the number of variables for specified classes of ideals. To get interesting bounds one has to
put strong restrictions. A class of examples due to Mayr and Meyer shows that even for
quadratically generated binomial ideals in n variables, regularity of the order of 22n is possi-
ble [MM82, BS88]. In view of this result, interest shifted to specific classes of ideals with good
geometric or algebraic properties. For example, Eisenbud and Goto conjectured in [EG84]
that if I is a prime ideal defining a variety of codimension r and degree d in Pn−1, then
reg(S/I) ≤ d− r. See [BM93] for a broader overview. In other directions, the defining ideals
of Koszul algebras have a good bound: If S/I is Koszul, then reg(S/I) ≤ n. The same bound
is also satisfied by monomial ideals generated in degree two. In order to get stricter bounds,
one has to impose more restrictions on the class of ideals. In this note we are interested in
quadratically generated ideals whose resolutions are linear for a few steps:

Definition 1. For any positive integer p, the K-algebra S/I satisfies property Np if:

βi,j(S/I) = 0 ∀ i ∈ {1, . . . , p} and j 6= i+ 1.

If S/I is Koszul and satisfies property Np, a recent result of Avramov, Conca, and Iyen-
gar [ACI13, Theorem 6.1] implies that

reg(S/I) ≤ 2bn/(p+ 1)c+ 1.

It is currently unknown whether the above bound is sharp. However, ideals for which S/I is
Koszul, that satisfies property N2, and have reg(S/I) ∼

√
n exist [ACI13, Example 6.9]. In
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contrast to the belief that ideals defining Koszul rings and quadratic monomial ideals should
have similar homological properties (they often do), if I is a monomial ideal such that S/I
satisfies Np, a much better bound has been established by Dao, Huneke, and Schweig.

Theorem 2. [DHS13] Let I ⊆ S = K[x1, . . . , xn] be a monomial ideal such that S/I satisfies
Np for some p ≥ 2. Then

reg(S/I) < log(p+3)/2

(
2n

p

)
+ 2.

Even if the above bound becomes stricter when p grows, its logarithmic nature already
shows for p = 2. Thus, in a sense, the crucial assumption is that S/I satisfies N2. In other
words, when I is quadratically generated and its syzygy module is linear. For this reason, we
mainly work in the case where I is a monomial ideal such that S/I satisfies N2. Without loss
of generality we deal with square-free monomial ideals, since by polarization we can always
assume this (at most doubling the number of variables). Such ideals are known as edge ideals:
Given a simple graph G on n vertices, its edge ideal is defined as

I(G) = (xixj : {i, j} is an edge of G) ⊆ S = K[x1, . . . , xn].

It is often convenient to think of edge ideals as Stanley-Reisner ideals of flag simplicial com-
plexes. Precisely, I(G) = IIn(G) where In(G) is the independence complex of G. By definition,
every flag simplicial complex is of this form. From the explicit description of the syzygy
module of a monomial ideal, one can immediately check that

S/I(G) satisfies N2 ⇐⇒ In(G) has no induced 4-cycles.

More generally, it can be proved that Np is equivalent to In(G) having no induced (p + 2)-
cycles (cf. [DHS13, Theorem 2.7]). If ∆ is a flag simplicial complex with no induced 4-cycles,
we say that ∆ is flag-no-square.

Remark 3. Flag-no-square simplicial complexes are called 5-large in the literature on hyper-
bolic Coxeter groups, such as [JŚ03]. More generally a flag complex is k-large if its systole—the
shortest induced cycle—has length at least k. Confusingly, in that literature an induced sub-
complex is called a full subcomplex (even if then what is arguably an empty cycle goes by the
name of full cycle).

Our first result strengthens Theorem 2 in the case that S/I, besides satisfying N2, is also
Gorenstein. Then there is a universal bound for the regularity. We learned the averaging
argument in its proof from Davis’ book on Coxeter groups [Dav08, Lemma 6.11.5].

Theorem 4. Let I ⊆ S be a monomial ideal such that S/I is Gorenstein.
(i) If S/I satisfies N2, then reg(S/I) ≤ 4.
(ii) If S/I satisfies N3, then reg(S/I) ≤ 2.

Proof. Up to polarization, we can assume that I = I∆ where ∆ is a Gorenstein flag simplicial
complex. By [Sta77, Theorem 7] there exist a Gorenstein∗ complex Γ and a simplex τ such
that ∆ = τ ∗Γ. Thus, without loss of generality, we assume that ∆ is Gorenstein∗ of dimension
d− 1, so that

dim(K[∆]) = reg(K[∆]) = d.
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Let σ be a (d−3)-dimensional face of ∆. Since C = lk∆ σ is a 1-dimensional flag Gorenstein∗
complex, it must be a k-cycle for some k ≥ 4. Using flagness again, it follows that C is an
induced k-cycle of ∆.

Let A be the average number of facets of ∆ containing a given (d − 3)-dimensional face.
Since any facet of ∆ contains exactly

(
d
2

)
faces of dimension d− 3, the average number is

A =
fd−1

fd−3

(
d

2

)
.

Since K[∆] is Gorenstein of regularity d, the Dehn-Sommerville equations hi = hd−i hold for
i = 0, . . . , δ := bd/2c. Let

ĥi :=

{
hi if i < d/2

hi/2 if i = d/2.

From the relation between f - and h-vector (fj−1 =
∑j

i=0

(
d−i
j−i
)
hi for j = 0, . . . , d) we get

fd−1 = 2 ·
δ∑
i=0

ĥi and fd−3 =
δ∑
i=0

((
d− i

2

)
+

(
i

2

))
ĥi.

Since
(
d−i

2

)
+
(
i
2

)
<
(
d−(i−1)

2

)
+
(
i−1

2

)
for i = 1, . . . , δ we get fd−3 >

((
d−δ

2

)
+
(
δ
2

))∑δ
i=0 ĥi.

Therefore

A <
2 ·
(
d
2

)(
d−δ

2

)
+
(
δ
2

) .
The right hand side of the above inequality evaluates as

A <

{
4(d−1)
d−2 if d is even
4d
d−1 if d is odd

In particular, if d > 4, then A < 5, so there exists a (d − 3)-dimensional face σ of ∆ such
that lk∆ σ is a 4-cycle. If d > 2, then A < 6, so there exists a (d − 3)-dimensional face σ of
∆ such that lk∆ σ is a 5-cycle. By the first paragraph of this proof, such cycles are induced
cycles of ∆, so we get a contradiction to S/I satisfying, respectively, N2 or N3. �

Among edge ideals with linear syzygies, the example with highest regularity in [DHS13]
achieved the value four. This limitation may be due to the fact that the natural strategy
to produce such examples is to construct a flag-no-square triangulation of a d-sphere for
high d. However, by Theorem 4, such triangulations do not exist whenever d > 3. Even more,
Theorem 4 implies that, in order to find examples of unbounded regularity, one has to leave
the world of manifolds too:

Remark 5. Let ∆ be a flag-no-square triangulation of a (homology) d-manifold. Then d ≤ 4.
This follows immediately from Theorem 4, because lk∆ v is a flag-no-square triangulation of
a (homology) (d− 1)-sphere.
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Dropping the insistence on manifolds, however, it is possible to find edge ideals with linear
syzygies and arbitrarily high regularity. We found them—somewhat surprisingly—related to
a question of Gromov on the existence of hyperbolic Coxeter groups with arbitrarily high
virtual cohomological dimension. The question was answered positively by Januszkiewicz and
Świa̧tkowski in [JŚ03]. The interesting fact for our purposes is that, to answer Gromov’s
question, they built a flag-no-square closed orientable pseudomanifold of dimension r for any
positive integer r. These complexes are denoted Lr (see [JŚ03, Section 6]).

A simplicial complex ∆ is a closed pseudomanifold if it is strongly connected (in particular
pure) and any codimension 1 face is contained in exactly two facets. A closed pseudomanifold
is called orientable when for any codimension 1 face F , if F ∪ {i} and F ∪ {j} are the two
facets containing it then |{k ∈ F : k < i}|+ |{k ∈ F : k < j}| is odd.

Theorem 6. For any integer r ≥ 1, there exists a graph Gr on n(r) vertices such that S/I(Gr)
satisfies N2, where S = K[x1, . . . , xn(r)], and

reg(S/I(Gr)) = r.

Proof. Let Gr be the complement of the 1-skeleton of Lr−1, so that Lr−1 = In(Gr). Then
S/I(Gr) satisfies N2. Furthermore, because Lr−1 is a closed orientable pseudomanifold of
dimension r − 1, it is straightforward to check that∑

F facet of Lr−1

F

is a top-dimensional cycle. In particular

H̃r−1(Lr−1;K) 6= 0.

By Hochster’s formula [MS05, Corollary 5.12]), reg(K[Lr−1]) = r. �

As noted in [JŚ03], the number n(r) in the above theorem is huge, growing much more
quickly than exponential in r. Consequently the family {Lr}r is not suitable to show that
Theorem 2 is (asymptotically) sharp. In [JŚ03] it was also observed that any family of flag-
no-square pseudomanifolds ∆ of dimension d is forced to have a huge number of vertices.

In the remainder of this work we quantify their result and extend its proof to flag-no-square
complexes with no free codimension 1 faces, i.e. codimension 1 faces contained in only one
facet (Theorem 8). To this end we prove that the number of vertices of such a simplicial
complex is at least doubly exponential in the dimension.

Lemma 7. For any integer k ≥ 3,
k−3∏
i=0

(k − i)2i < 122k−3
.

Proof. This is a routine computation using the inequality (i−1)(i+1) < i2 several times. �

Theorem 8. Let ∆ be a d-dimensional flag-no-square simplicial complex with no free (d−1)-
faces. Then, if (f−1, f0, . . . , fd) is the f -vector of ∆,

fd > (25/12)2d−2
and f0 > (25/12)2d−3

.
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Proof. Let vd and sd denote respectively the minimal f0(∆) and fd(∆) attained in the class of
simplicial complexes in the statement. Let ∆ be such a complex. The link lk∆ v of any vertex
v ∈ ∆ is a (d − 1)-dimensional flag-no-square simplicial complex with no free (d − 2)-faces.
By double counting, we find

fd(∆) =
1

d+ 1

∑
v∈∆

fd−1(lk∆ v).

Therefore

fd(∆) ≥ f0(∆) · sd−1

d+ 1
.

Fix a vertex v ∈ ∆. Any facet of lk∆ v is a (d−1)-face of ∆. Since ∆ has no free (d−1)-faces,
to any facet of lk∆ v, we can associate a vertex of ∆ which does not belong to the star of v.
In other words we defined a function

φ : Fd−1(lk∆ v) −→ F0(∆) \ F0(star∆v).

Because of the no-square condition, and since lk∆ v is an induced subcomplex of ∆, one can
check that φ is injective and thus

f0(∆) ≥ sd−1 + vd−1 + 1.

In particular, putting together the above inequalities we get

sd >
s2
d−1

d+ 1
vd > sd−1.

Since s1 = 5, we find

fd(∆) >
52d−1∏d−2

i=0 (d+ 1− i)2i
.

Finally, by Lemma 7,

fd(∆) >
52d−1

122d−2 = (25/12)2d−2
. �

Remark 9. Unfortunately the doubly exponential bound in Theorem 8 can not be easily
extended to arbitrary flag-no-square simplicial complexes (replacing d with the top degree
in which the homology does not vanish). While it is always possible to get rid of the free
faces by collapses, indeed, this operation does not preserve flagness. For a general flag-no-
square simplicial complex, the exponential bound found by Dao, Huneke, and Schweig is to
our knowledge the best possible.

Remark 10. If a flag-no-square simplicial complex of dimension 2 has a free 1-face e ⊂ F ,
where F is the only 2-face containing e, then if we collapse the pair (e, F ) we still get a flag-
no-square simplicial complex (this is a peculiarity of the dimension 2 case). This observation,
together with the proof of Theorem 8, yields the following: Let I(G) ⊆ S = K[x1, . . . , xn] be
an edge ideal such that dim(S/I(G)) = reg(S/I(G)) = 3. If S/I(G) satisfies N2, then n ≥ 12.
If n = 12, then In(G) is the boundary of the icosahedron.
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