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2-minors

Let X = (Xij) a n ×m matrix of indeterminates over a field K ,

and I ⊆ K [X ] the ideal generated by the 2-minors of X .

Let ≺ be a term order which favours the diagonals of each minor,
for instance the lexicographic order induced by
X11 � X12 � . . . � X1m � X21 � . . . � X2m � . . . � Xn1 � . . . � Xnm.

Therefore LT≺(XijXhk − XikXhj) = XijXhk if i < h and j < k.

Using the Buchberger criterion, it is quite easy to see that the

2-minors of X form a Gröbner basis with respect to ≺.

In particular, LT≺(I ) = (XijXhk : i < h, j < k).

We will see that the above facts are true for t-minors, too.
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Notation

K will be an algebraically closed field.

x := x1, . . . , xn, y := y1, . . . , yn, z := z1, . . . , zn are indeterminates

If I is an ideal of K [x], by I (y) (resp. I (z)) we denote the ideal of

K [x, y, z] generated by the image of I under the homomorphism

xi 7→ yi (resp. xi 7→ zi )

Given two ideals I , J ⊆ K [x], their join is

I ∗ J := (I (y) + J(z) + (yi + zi − xi : i = 1, . . . , n)) ∩ K [x]

Recall that the join is associative, commutative and distributive
with respect to the intersection. In particular, it makes sense

write I1 ∗ I2 ∗ · · · ∗ Ir for r ideals of K [x].

Notice: f ∈ I ∗ J ⇔ f (y + z) ∈ I (y) + J(z)
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Notation

If I is an ideal of K [x] we denote the join I ∗ I ∗ · · · ∗ I︸ ︷︷ ︸
r

by I {r}:

This is called the r th secant of I .

In the graded case, V(I {r}) is the rth secant variety of V(I ):

i.e. the Zariski closure of the set of points of Pn−1

lying in a linear space spanned by r − 1 points of V(I ).

If I and J are prime, radical, primary also I ∗ J is so.

These and other properties about the join are proved in

A. Simis, B. Ulrich, On the ideal of embedded join, J. Alg. 226, 2000.
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What Nam did the last time

The join operation is well understood when the ideals are monomial.

First of all, the join of monomial ideals is monomial as well.

Of particular interest is the case of I (G ){r} where G is a graph and

I (G ) = (xixj : {i , j} is an edge of G ).

chromatic properties of G ←→ algebraic properties of I (G ){r}

When P is a poset on [n] then G (P) is the graph on [n]

whose edges are {i , j} where i and j are incomparable. In this case

I (G (P)){r} = (xi1 · · · xir+1 : {i1, . . . , ir+1} is an antichain of P)

where a subset of a poset is an antichain if it consists

in incomparable elements.
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Consequences

(1) LT≺(I {r}) ⊆ LT≺(I ){r}

(2) dimV(LT≺(I ){r}) ≤ dimV(I {r})

If equality holds in (2), then

(3) degV(LT≺(I ){r}) ≤ degV(I {r})

We say that ≺ is r -delightful for I if equality holds in (1). We say
that ≺ is deligthful if it is r -delightful for any r .
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EXAMPLES



Minors of a generic matrix

Let X = (Xij) be a n ×m matrix of indeterminates

and denote by Ir the ideal of K [X ] generated by the r -minors of X .

The variety V(Ir ) is the set of all the

matrices of Mn,m(K ) whose rank is less than or equal to r − 1.

Clearly the sum of r − 1 matrices of rank ≤ 1

is a matrix of rank ≤ r − 1.

Therefore the elements of Ir vanish on V(I
{r−1}
2 ).

Since I2 is radical I
{r−1}
2 is radical as well. So

Ir ⊆ I
{r−1}
2
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Minors of a generic matrix

We can get a poset structure on P = {{i , j} : i = 1, . . . , n, j = 1, . . . ,m}

(i , j) ≤ (h, k)⇔ i ≤ h and j ≥ k

At the beginning we said that if ≺ favours the diagonals then

LT≺(I2) = (XijXhk : i < h, j < k).

But then LT≺(I2) = I (G (P)), and therefore

LT≺(Ir ) ⊆ LT≺(I
{r−1}
2 ) ⊆ LT≺(I2){r−1} =

= (Xi1j1Xi2j2 · · ·Xir jr : i1 < . . . < ir , j1 < . . . < jr ) =: Jr

The monomials generating Jr are the leading terms of

the minors [i1, . . . , ir | j1, . . . , jr ],

so LT≺(Ir ) = Jr , and the r -minors of X are a Gröbener basis
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Minors of a generic symmetric matrix

Let X = (Xij) be a n × n symmetric matrix of indeterminates

and denote by Jr the ideal of K [X ] generated by the r -minors of X .

Since the sum of r − 1 symmetric matrices of rank ≤ 1

is a symmetric matrix of rank ≤ r − 1, arguing as above we get

Jr ⊆ J
{r−1}
2

Moreover, as in the above case, one can show by hands that

the 2-minors of X are a Gröbner basis of Jr with respect to

a term order ≺ that favours the diagonals, and that there is

a suitable poset P such that LT≺(J2) = I (G (P)).

In short, copying the proof above we can show that ≺ is delightful

for J2 and that the r -minors of X form a Gröbner basis for Jr .
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are squares of homogeneous polynomials of degree k .

These polynomials are called the 2k-subpfaffians of X , and the ideal
Pf2k(X ) ⊆ K [X ] they generate is the 2k-pfaffians ideal of X .

The rank of a skew-symmetric matrix is the maximum size of a
non-vanishing subfaffian.

So, since the sum of k−1 skew-symmetric matrices of rank ≤ 2 is a skew-

simmetric matrix of rank ≤ 2k−2, we deduce that Pf2k(X ) ⊆ Pf{k−1}
4 (X ).
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We define a poset P on the variables Xij by the rule

Xij ≤ Xhk ⇔ i ≤ h and j ≤ k

Let ≺ be the revlex on a linear extension of P.

Once again, LT≺(Pf4(X )) = I (G (P)).

Moreover one can show that every antichain of size k in P
correspondes to the leading term of a 2k-subpfaffian of X , so

≺ is delightful for Pf4(X ) and the 2k-subpfaffians of X are a
Gröbner basis of Pf2k(X ).

It is not known wether higer Grassmannians, Grass(r , n) with
r ≥ 3, admit a delightful term order.
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Hibi rings

Given a distributive lattice L on [n], the Hibi ring on L over K is
the ring K [x]/I (L),

where I (L) = (fij = xixj − xi∨jxi∧j : i , j are incomparable).

It is known that, if ≺ is the revlex on a linear extension of L, the
polynomials fij are a Gröbner basis for I (L).

So LT≺(I (L)) = (xixj : i , j are incomparable) = I (G (L))

The case of 2-minors of a generic matrix, which define the Segre
embedding of two projective spaces, corresponds to one of the most
simple Hibi rings, and we proved above that ≺ is delightful for it.

I think that it could be interesting to try to classify the distributive
lattices for which ≺ is delightful, or at least to give a class for which it is.
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