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Notation

Fix positive integers t ≤ m ≤ n, and consider the m × n-matrix

X =


x11 x12 · · · · · · x1n
x21 x22 · · · · · · x2n

...
...

. . .
. . .

...
xm1 xm2 · · · · · · xmn

 ,

whose entries are algebraically independent over a field K . Let
K [X ] be the polynomial ring generated by the entries of X , and
It ⊆ K [X ] the prime ideal defining the locus of rank < t matrices in
Amn. The ideal It is known to be generated by the t-minors of X .

Furthermore, let us fix K -vector spaces W of dimension m and V
of dimension n, and the group G = GL(W )×GL(V ).



The action of G on K [X ]

The group G acts on X by extending the rule:

(A,B) · X = AXB−1 ∀ (A,B) ∈ G = GL(W )×GL(V ).

Under such an action, the following K -vector spaces are stable:

(i) All the graded pieces of K [X ].

(ii) The ideal It .

(iii) All the powers I st for s ∈ N.

(iv) All the symbolic powers I
(s)
t for s ∈ N.



With the above action there is an isomorphism of G -modules:

K [X ] ∼=
⊕
d≥0

Symd(W ⊗ V ∗)

If char(K ) = 0, each graded piece Symd(W ⊗ V ∗) decomposes in
irreducible G -modules. An explicit decomposition is known since
Cauchy: Each irreducible G -submodule of Symd(W ⊗ V ∗) occurs
once in the decomposition, and is parametrized by a partition of d :

λ = (λ1, . . . , λk) ` d s. t. m ≥ λ1 ≥ . . . ≥ λk ≥ 1

This supplies a beautiful structure of K [X ] as a K -vector space,
that we are going to describe soon.



To the irreducible G -submodule of Symd(W ⊗ V ∗) associated to a
partition λ = (λ1, . . . , λk) ` d , corresponds in K [X ] the K -vector
subspace of the degree d-polynomials generated by the products:

∆ = δ1 · · · δk ,

where δi is a λi -minor of X for all i = 1, . . . , k .

We will say that such a product of minors ∆ has shape λ. Let us
denote such a vector space Mλ.

Products of minors are not linearly independent over K , however the

previous representation theoretic interpretation gives us a way to identify

a subset of products of minors which is indeed a K -basis of K [X ].



Standard monomial theory

First of all, we need a notation for r -minors (r ≤ m):

[i1, . . . , ir |j1, . . . , jr ] = det

xi1,j1 . . . xi1,jr
...

...
xir ,j1 . . . xir ,jr


Giving the following partial order to the set of minors:

[i1, . . . , ir |j1, . . . , jr ] ≤ [u1, . . . , us |v1, . . . , vs ] ⇔
r ≥ s, iq ≤ uq, jq ≤ vq ∀ q ∈ {1, . . . , s}

a standard monomial means a product of minors ∆ = δ1 · · · δk
such that δ1 ≤ δ2 ≤ . . . ≤ δk .



(Doubilet, Rota, Stein): The standard monomials form a K -basis
of K [X ] (for any field K ).

The first K -basis of the polynomial ring one would consider is that
consisting of monomials. Such a basis has the wonderful property
to be closed under multiplication, feature that makes monomial
ideals so simple.

The set of standard monomials is not closed under multiplication,
however the recipe to write a product of standard monomials as a
linear combination of standard monomials is beautiful. Such a
recipe, firstly described by Doubilet, Rota and Stein, is what makes
of K [X ] and its quotients by determinantal ideals algebras with
straightening law.



The multiplicative structure

Going back to the characteristic 0 case, the Cauchy decomposition
provides a good structure of K [X ] that is suitable for the study of
determinantal ideals as a K -vector space, but it doesn’t say much
on the multiplicative structure.

That is, if λ ` d and µ ` e, as Mλ and Mµ are both G -stable, also
Mλ ·Mµ is, so we can decompose it as

Mλ ·Mµ =
⊕

α∈A(λ,µ)

Mα,

where A(λ, µ) is a subset of partitions of d + e.

The question is: What is A(λ, µ)???



A complete answer has been given by Whitehead, who showed that
the set A(λ, µ) is given by the Littlewood-Richardson rule for the
tensor product of the Schur modules associated to λ and µ.

A partial answer was previously given by De Concini, Eisenbud and
Procesi, who gave a decomposition of

M(t) ·M(t) ·M(t) · · ·M(t)︸ ︷︷ ︸
s times

.

Being M(t) the K -vector space generated by the t-minors, the
result of De Concini, Eisenbud and Procesi allows us to understand
the powers of determinantal ideals.



(De Concini, Eisenbud and Procesi): If char(K ) = 0, a product of
minors of shape (λ1, . . . , λk) ` st belongs to I st if and only if k ≤ s.

The above statement is false in positive characteristic. However,
Bruns could prove the following by using the straightening law:

(Bruns): Without restriction on the characteristic, a product of
minors of shape (λ1, . . . , λk) ` st belongs to I st if and only if k ≤ s.



The F -pure threshold of determinantal ideals

If I ⊆ S = K [x1, . . . , xN ] is a homogeneous ideal and
char(K ) = p > 0, then we define

νI (q) = max{r ∈ N : I r 6⊂ m[q]},

where m is the maximal irrelevant ideal and q = pe .

The F -pure threshold of I is then defined as:

fpt(I ) = lim
q→∞

νI (q)

q

(Miller, Singh, V): The F -pure threshold of determinantal ideals is:

fpt(It) = min

{
(m − k)(n − k)

t − k
: k = 0, . . . , t − 1

}



Sketch of the proof

First, let us prove that

fpt(It) ≤
(m − k)(n − k)

t − k
∀ k = 0, . . . , t − 1

Take δk and δt minors of size k and t respectively. Bruns’ result ⇒

δt−k−1k δt ∈ I t−kk+1 ,

and hence δt−k−1k It ⊆ I t−kk+1 . By the Briançon-Skoda theorem
there exists an integer N such that(

δt−k−1k It
)N+`

∈ I
(t−k)`
k+1

for each integer ` ≥ 1.



Localizing at the prime ideal Ik+1 of K [X ], one has

IN+`
t ⊆ I

(t−k)`
k+1 K [X ]Ik+1

for each ` ≥ 1.

Since K [X ]Ik+1
is a regular local ring of dimension (m − k)(n − k):

IN+`
t ⊆ I

[q]
k+1K [X ]Ik+1

for positive integers ` and q = pe satisfying

(t − k)` > (q − 1)(m − k)(n − k) .

By the flatness of the Frobenius, then, we have:

IN+`
t ⊆ I

[q]
k+1

for all integers q, ` satisfying the above inequality. This implies that

νIt (q) ≤ N + 1 +
(q − 1)(m − k)(n − k)

t − k
.

Dividing by q and passing to the limit, one obtains

fpt(It) ≤
(m − k)(n − k)

t − k
.



To show that

fpt(It) ≥ min

{
(m − k)(n − k)

t − k
: k = 0, . . . , t − 1

}
one must exhibit some elements in suitable powers of I which do
not belong to some Frobenius powers of m.

Let’s give the idea of how to produce such elements in the example
t = 2,m = 3, n = 4, where we have to prove that fpt(I2) ≥ 6.
Consider the element:

∆ = [3|1] · [2, 3|1, 2] · [1, 2, 3|1, 2, 3] · [1, 2, 3|2, 3, 4] · [1, 2|3, 4] · [1|4].

Bruns ⇒ ∆ ∈ I 62 . Because we can choose a suitable term order
such that in(∆) is squarefree, we get that:

∆q−1 ∈
(
I 62
)q−1 \m[q]



We can get rid of integral closure by picking 0 6= f ∈ K [X ] s. t.:

f ·∆` ∈ I 6`2 ∀ ` ≥ 1,

and by taking ` = q − 1− deg(f ), we have that f ·∆` /∈ m[q].

So we get:

νI (q) ≥ 6(q − 1− deg(f ))

q
.

Dividing by q and passing to the limit as q →∞, we get
fpt(I2) ≥ 6. �


