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2 Properties preserved under Gröbner deformations and arithmetical rank 23
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Introduction

In this thesis we will discuss some aspects of Commutative Algebra, which have in-
teractions with Algebraic Geometry, Representation Theory and Combinatorics. In
particular, we will use local cohomology, combinatorial methods and the representa-
tion theory of the general linear group to study symbolic powers of monomial ideals,
connectedness properties, arithmetical rank and the defining equations of certain va-
rieties. Furthermore, we will focus on understanding when certain local cohomology
modules vanish. The heart of the thesis is in Chapters 1, 2, 3 and 4. They are based on
papers published by the author, but each chapter contains some results never appeared
anywhere.

Chapter 1 is an outcome of our papers [103, 104]. The aim of this chapter is to
inquire on a question raised by Grothendieck in his 1961 seminar on local cohomology
at Harvard (see the notes written by Hartshorne [51]). He asked to find conditions on
an ideal a of a ring R to locate the top-nonvanishing local cohomology module with
support in a, that is to compute the cohomological dimension of a. We show, under
some additional assumptions on the ring R, that the vanishing of H i

a(R) for i > c forces
some connectedness properties, depending on c, of the topological space Spec(R/a),
generalizing earlier results of Grothendieck [47] and of Hochster and Huneke [63].
When R is a polynomial ring over a field of characteristic 0 and a is a homogeneous
ideal such that R/a has an isolated singularity, we give a criterion to compute the
cohomological dimension of a, building ideas from Ogus [87]. Such a criterion leads
to the proof of:

(i) A relationship between cohomological dimension of a and depth of R/a, which
is a small-dimensional version of a result of Peskine and Szpiro [89] in positive
characteristic.

(ii) A remarkable case of a conjecture stated in [77] by Lyubeznik, concerning an
inequality about the cohomological dimension and the étale cohomological di-
mension of an open subscheme of Pn.

In order to show these results we use also ideas involving Complex Analysis and Al-
gebraic Topology.

In Chapter 2 we show some applications of the results gotten in the first chapter, us-
ing interactions between Commutative Algebra, Combinatorics and Algebraic Geom-
etry. It shapes, once again, on our papers [103, 104]. In the first half of the chapter we
generalize a theorem of Kalkbrener and Sturmfels obtained in [67]. In simple terms, we
show that Gröbner deformations preserve connectedness properties: As a consequence,
we get that if S/I is Cohen-Macaulay, then ∆(

√
in(I)) is a strongly connected simpli-

cial complex. This fact induced us to investigate on the question whether ∆(in(I)) is
Cohen-Macaulay provided that S/I is Cohen-Macaulay and in(I) is square-free, sup-
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plying some evidences for a positive answer to this question. Another consequence is
the settlement of the Eisenbud-Goto conjecture, see [37], for a new class of ideals. In
the second half of the chapter, we compute the number of equations needed to cut out
set-theoretically some algebraic varieties. For an overview on this important problem
we refer the reader to Lyubeznik [74]. The needed lower bounds for this number usu-
ally come from cohomological arguments: This is our case, in fact we get them from
the results of the first chapter. For what concerns upper bounds, there is no general
method, rather one has to invent ad hoc tricks, depending on the kind of varieties one
deals with. For the varieties we are interested in, we get ideas from the Theory of
Algebras with Straightening Laws, exhibiting the necessary equations. Among other
things, we extend a result of Singh and Walther [96].

Chapter 3 is based on a preprint in preparation with Bruns and Conca, namely [21].
This time, beyond Commutative Algebra, Algebraic Geometry and Combinatorics, one
of the primary roles is dedicated to Representation Theory. We investigate on a prob-
lem raised by Bruns and Conca in [18]: To find out the minimal relations between
2-minors of a generic m× n-matrix. When m = 2 (without loss of generality we can
assume m ≤ n), such relations define the Grassmannian of all the 2-dimensional sub-
spaces of an n-dimensional vector space. It is well known that the demanded equations
are, in this case, the celebrated Plücker relations. In particular, they are quadratic. Dif-
ferently, apart from the case m = n = 3, we show that there are always both quadratic
and cubic minimal relations. We describe them in terms of Young tableux, exploit-
ing the natural action of the group GL(W )×GL(V ) on X , the variety defined by the
relations (here W and V are vector spaces, respectively, of dimension m and n). Fur-
thermore, we show that these are the only minimal relations when m = 3,4, and we
give some reasons to believe that this is true also for higher m. Moreover, we compute
the Castelnuovo-Mumford regularity of X , we exhibit a finite Sagbi bases associated
to a toric deformation of X (solving a problem left open by Bruns and Conca in [19])
and we show a finite system of generators of the coordinate ring of the subvariety of
U-invariants of X , settling the “first main problem” of invariant theory in this case. The
most of the results are proved more in general, considering t-minors of an m×n-matrix.

Chapter 4 concerns our paper [105]. The aim is to compare algebraic properties
with combinatorial ones. The main result is quite surprising: We prove that the Cohen-
Macaulayness of all the symbolic powers of a Stanley-Reisner ideal is equivalent to the
fact that the related simplicial complex is a matroid! The beauty of this result is that the
concepts of “Cohen-Macaulay” and of “matroid”, a priori unrelated to each other, are
both fundamental, respectively, in Commutative Algebra and in Combinatorics. An-
other interesting fact is that the proof is not direct, passing through the study of the
symbolic fiber cone of the Stanley-Reisner ideal. It is fair to say that the same result
has been proven independently and with different methods by Minh and Trung [84].
Actually, here we prove the above result for a class of ideals more general than the
square-free ones, generalizing the result of our paper and of [84]. As a consequence,
we show that the Stanley-Reisner ideal of a matroid is a set-theoretic complete inter-
section after localizing at the maximal irrelevant ideal. We end the chapter presenting a
strategy, through an example, to produce non-Cohen-Macaulay square-free monomial
ideals of codimension 2 whose symbolic power’s depth is constant. Here the crucial
fact is that in the codimension 2-case the structure of the mentioned fiber cone has been
understood better thanks to our work with Constantinescu [25].
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In addition to the four chapters described above, we decided to include a prelimi-
nary chapter entitled “A quick survey of local cohomology”. It is a collection of known
results on local cohomology, the first topic studied at a certain level by the author. Lo-
cal cohomology appears throughout the thesis in some more or less evident form, so
we think that such a preliminary chapter will be useful to the reader. We added also
five appendixes at the end of the thesis, which should make the task of searching for
references less burdensome.
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Notation

Throughout the thesis we will keep notation more or less faithful to some textbooks:
(i) For what concerns Commutative Algebra: Matsumura [80], Atiyah and Macdon-

ald [3] and Bruns and Herzog [13].
(ii) For what concerns Algebraic Geometry: Hartshorne [56].

(iii) For what concerns Algebraic Combinatorics: Stanley [100], Miller and Sturm-
fels [81] and Bruns and Herzog [13, Chapter 5].

(iv) For what concerns Representation Theory: Fulton and Harris [43], Fulton [42]
and Procesi [90].

• We will often say “a ring R” instead of “a commutative, unitary and Noetherian
ring R”. Whenever some of these assumptions fail, we will explicitly remark it.

• The set of natural numbers will include 0, i.e. N= {0,1,2,3, . . .}.

• An ideal a of R will always be different from R.

• If R is a local ring with maximal ideal m, we will write (R,m) or (R,m,κ), where
κ = R/m.

• Given a ring R, an R-module M and a multiplicative system T ⊆ R, we will
denote by T−1M the localization of M at T . If ℘ is a prime ideal of R, we will
write M℘ instead of (R\℘)−1M.

• Given a ring R, an ideal a ⊆ R and an R-module M, we will denote by M̂a the
completion of M with respect to the a-adic topology. If (R,m) is local we will
just write M̂ instead of M̂m.

• The spectrum of a ring R is the topological space

Spec(R) := {℘⊆ R : ℘ is a prime ideal}

supplied with the Zariski topology. I.e. the closed sets are V (a) := {℘ ∈
Spec(R) : ℘⊇ a} with a varying among the ideals of R and R itself.

• Given a ring R and an R-module M, the support of M is the subset of Spec(R)

Supp(M) := {℘∈ Spec(R) : M℘ 6= 0}.

• We say that a ring R is graded if it is N-graded, i.e. if there is a decomposition
R = ⊕i∈NRi such that each Ri is an R0-module and RiR j ⊆ Ri+ j. The irrelevant
ideal of R is R+ := ⊕i>0Ri. An element x of R has degree i if x ∈ Ri. Therefore
0 has degree i for any i ∈ N.
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• The projective spectrum of a graded ring R is the topological space

Proj(R) := {℘⊆ R : ℘ is a homogeneous prime ideal not containing R+},

where the closed sets are V+(a) := {℘∈ Proj(R) : ℘⊇ a}with a varying among
the homogeneous ideals of R.

• When we speak about the grading on the polynomial ring S := k[x1, . . . ,xn] in n
variables over a field k we always mean the standard grading, unless differently
specified: I.e. deg(x1) = deg(x2) = . . . = deg(xn) = 1.

• For a poset Π := (P,≤) we mean a set P endowed with a partial order ≤.



A quick survey of local
cohomology

This is a preliminaries chapter, which contains no original results. Our aim is just to
collect some facts about local cohomology we will use throughout the thesis. This is
a fascinating subject, essentially introduced by Grothendieck during his 1961 Harvard
University seminar, whose notes have been written by Hartshorne in [51]. Besides it,
other references we will make use of are the book of Brodmann and Sharp [10], the
one of Iyengar et al. [66] and the notes written by Huneke and Taylor [65].

0.1 Definition
Let R be a commutative, unitary and Noetherian ring. Given an ideal a ⊆ R, we can
consider the a-torsion functor Γa, from the category of R-modules to itself, namely

Γa(M) :=
⋃

n∈N
(0 :M an) := {m ∈M : there exists n ∈ N for which anm = 0},

for any R-module M. Clearly Γa(M) ⊆M. Furthermore if φ : M→ N is a homomor-
phism of R-modules then φ(Γa(M))⊆ Γa(N). So Γa(φ) will simply be the restriction
of φ to Γa(M). It is easy to see that the functor Γa is left exact. Thus, for any i ∈ N,
we denote by H i

a the ith derived functor of Γa, which will be referred to as the ith local
cohomology functor with support in a. For an R-module M, we will refer to H i

a(M) as
the ith local cohomology module of M with support in a . The following remark is as
important as elementary.

Remark 0.1.1. If a and b are ideals of R such that
√

a =
√

b, then Γa = Γb. Therefore
H i

a = H i
b for every i ∈ N.

Example 0.1.2. We want to compute the local cohomology modules ofZ as aZ-module
with respect to the ideal (d)⊆ Z, where d is a nonzero integer. An injective resolution
of Z is:

0−→ Z ι−→Q π−→Q/Z−→ 0.

From the above resolution, we immediately realize that H i
(d)(Z) = 0 for any i ≥ 2.

Furthermore H0
(d)(Z) = Γ(d)(Z) = 0. So we have just to compute H1

(d)(Z). To this aim
let us apply Γ(d) to the above exact sequence, getting:

0−→ Γ(d)(Z)
Γ(d)(ι)−−−−→ Γ(d)(Q)

Γ(d)(π)
−−−−→ Γ(d)(Q/Z)−→ 0.
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By definition H1
(d)(Z) = Γ(d)(Q/Z)/Γ(d)(π)(Γ(d)(Q)). Since Γ(d)(Q) = 0, we have

H1
(d)(Z) = Γ(d)(Q/Z). Finally, Γ(d)(Q/Z) consists in all elements s/t ∈ Q/Z with

s, t ∈ Z and t dividing dn for some n ∈ N. In particular, notice that H1
(d)(Z) is not

finitely generated as a Z-module.

It is worthwhile to remark that from the definition of local cohomology we get the
following powerful instrument: Any short exact sequence of R-modules

0−→ P−→M −→ N −→ 0

yields the long exact sequence of R-modules:

0→ H0
a(P)−→ H0

a(M)−→ H0
a(N)−→ H1

a(P)−→ H1
a(M)→ . . .

. . .→ H i−1
a (N)−→ H i

a(P)−→ H i
a(M)−→ H i

a(N)−→ H i+1
a (P)→ . . . (0.1)

In Example 0.1.2 we had H i
(d)(Z) = 0 for each i > 1 = dimZ. Actually Grothendi-

eck showed that this is a general fact (for instance see [10, Theorem 6.1.2]):

Theorem 0.1.3. (Grothendieck) Let R and a be as above. For any R-module M, we
have H i

a(M) = 0 for all i > dimM.

Anyway, we should say that in Exemple 0.1.2 we were in a special case. In fact, an
R-module M has a finite injective resolution if and only if M is Gorenstein.

0.2 Basic properties
In addition to the long exact sequence (0.1), we want to give other three basic tools
which are essential in working with local cohomology. The first property we want to list
is that local cohomology commutes with direct limits (for example see [10, Theorem
3.4.10]).

Lemma 0.2.1. Let R and a be as usual. Let Π be a poset and {Mα : α ∈Π} a direct
system over Π of R-modules. Then

H i
a(lim−→Mα)∼= lim−→H i

a(Mα) ∀ i ∈ N.

As an immediate consequence of Lemma 0.2.1, we have that

H i
a(M⊕N)∼= H i

a(M)⊕H i
a(N)

for any i ∈ N and for any R-modules M and N.
The second property we would like to state allows us, in many cases, to control

local cohomology when the base ring changes. The proofs can be found, for instance,
in [10, Theorem 4.3.2, Theorem 4.2.1].

Lemma 0.2.2. Let R and a be as above, M an R-module, R
φ−→ S a homomorphism of

Noetherian rings and N an S-module.
(i) (Flat Base Change) If φ is flat, then H i

φ(a)S(M⊗R S)∼= H i
a(M)⊗R S for any i∈N.

The above isomorphism is functorial.
(ii) (Independence of the Base) H i

a(N) ∼= H i
φ(a)S(N) for any i ∈ N, where the first

local cohomology is computed over the base field R and the second over S. The
above isomorphism is functorial.



0.3 Equivalent definitions xiii

Lemma 0.2.2 has some very useful consequences: Let a and b be ideals of R, M an
R-module and T ⊆ R a multiplicative system. Then, for any i ∈ N, there are functorial
isomorphisms

T−1H i
a(M)∼= H i

aT−1R(T−1M) (0.2)

H i
a(M)⊗R R̂b ∼= H i

aR̂b
(M⊗R R̂b) (0.3)

Furthermore, if R is local, then its completion R̂ is faithfully flat over R. So, for any
i ∈ N,

H i
a(M) = 0 ⇐⇒ H i

aR̂
(M⊗R R̂) = 0. (0.4)

The last basic tool we want to present in this section is the Mayer-Vietories se-
quence, for instance see [10, 3.2.3]. Sometimes, it allows us to handle with the support
of the local cohomology modules. Let a and b be ideals of R and M an R-module.
There is the following exact sequence:

0→ H0
a+b(M)→ H0

a(M)⊕H0
b(M)→ H0

a∩b(M)→ H1
a+b(M)→ . . .

. . .→ H i
a+b(M)→ H i

a(M)⊕H i
b(M)→ H i

a∩b(M)→ H i+1
a+b(M)→ . . . (0.5)

0.3 Equivalent definitions

In this section we want to introduce two different, but equivalent, definitions of local
cohomology. Depending on the issue one has to deal with, among these definitions one
can be more suitable than the other.

0.3.1 Via Ext

Let R and a be as in the previous section. If n and m are two positive integers such
that n≥ m, then there is a well defined homomorphism of R-modules R/an −→ R/am.
Given an R-module M, the above map yields a homomorphism HomR(R/am,M) −→
HomR(R/an,M), and more generally, for all i ∈ N,

ExtiR(R/am,M)−→ ExtiR(R/an,M).

The above maps clearly yield a direct system overN, namely {ExtiR(R/an,M) : n∈N}.
So, we can form the direct limit lim−→ExtiR(R/an,M). Since HomR(R/an,M)∼= 0 :M an,
we get the isomorphism:

H0
a(M) = Γa(M)∼= lim−→HomR(R/an,M).

More generally the following theorem holds true (for instance see [10, Theorem 1.3.8]):

Theorem 0.3.1. Let R and a be as above. For any R-module M and i ∈ N, we have

H i
a(M)∼= lim−→ExtiR(R/an,M).

Furthermore, the above isomorphism is functorial.
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Actually, Theorem 0.3.1 can be stated as

H i
a(M)∼= lim−→ExtiR(R/an,M), (0.6)

where (an)n∈N is an inverse system of ideals cofinal with (an)n∈N, i.e. for any n ∈ N
there exist k,m ∈ N such that ak ⊆ an and am ⊆ an. Several inverse systems of ideals
cofinal with (an)n∈N have been used by many authors together with (0.6) to prove
important theorems. Let us list three examples:

(i) If R is a complete local domain and ℘ is a prime ideal such that dimR/℘= 1,
one can show that the inverse system of symbolic powers (℘(n))n∈N is cofinal
with (℘n)n∈N. On this fact is based the proof of the Hartshorne-Lichtenbaum
Vanishing Theorem [52], which essentially says the following:

Theorem 0.3.2. (Hartshorne-Lichtenbaum) Let R be a d-dimensional complete
local domain and a⊆ R an ideal. The following are equivalent:

(a) Hd
a(R) = 0;

(b) dimR/a > 0.

(ii) In the study of the local cohomology modules in characteristic p > 0 a very pow-
erful tool is represented by the inverse system (a[pn])n∈N of Frobenius powers of
a: The ideal a[pn] is generated by the pnth powers of the elements of a. The
above inverse system played a central role in the works of Peskine and Szpiro
[89], Hartshorne and Speiser [57] and Lyubeznik [78]. For instance, it was cru-
cial in the proof of the following result of Peskine and Szpiro:

Theorem 0.3.3. (Peskine-Szpiro) Let R be a regular local ring of positive char-
acteristic and a⊆ R an ideal. Then

H i
a(R) = 0 ∀ i > projdim(R/a).

(iii) The last example of inverse system we want to show was used by Lyubeznik in
[73] when R is a polynomial ring and a is a monomial ideal. The (pretended)
Frobenius nth power of a, denoted by a[n], is the ideal generated by the nth pow-
ers of the monomials in a. The inverse system (a[n])n∈N is obviously cofinal with
(an)n∈N. It was the fundamental ingredient in the proof of the following result:

Theorem 0.3.4. (Lyubeznik) Let R be a polynomial ring and a⊆ R be a square-
free monomial ideal. Then

H i
a(R) = 0 ∀ i > projdim(R/a) and Hprojdim(R/a)

a (R) 6= 0.

0.3.2 Via the C̆ech complex
Let a = a1, . . . ,ak be elements of R. The C̆ech complex of R with respect to a , C(a)•,
is the complex of R-modules

0 d−1
−−→C(a)0 d0

−→C(a)1→ . . .→C(a)k−1 dk−1
−−→C(a)k dk

−→ 0,

where:
(i) C(a)0 = R;
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(ii) For p = 1, . . . ,k, the R-module C(a)p is
⊕

1≤i1<i2<...<ip≤k

Rai1 ···aip
;

(iii) The composition

C(a)0 d0
−→C(a)1 −→ Rai

has to be the natural map from R to Rai ;
(iv) The maps dp are defined, for p = 1, . . . ,k−1, as follows: The composition

Rai1 ···aip
−→C(a)p dp

−→C(a)p+1 −→ Ra j1 ···a jp+1

has to be (−1)s−1 times the natural map from Rai1 ···aip
to Ra j1 ···a jp+1

whenever

(i1, . . . , ip) = ( j1, . . . , ĵs, . . . , jp+1); it has to be 0 otherwise.
It is straightforward to check that the C̆ech complex is actually a complex. Thus we

can define the cohomology groups H i(C(a)•) = Ker(di)/Im(di−1). For any R-module
M we can also define C(a,M)• = C(a)•⊗R M. We have the following result (see [10,
Theorem 5.1.19]):

Theorem 0.3.5. Let a = (a1, . . . ,ak) be an ideal of R. For any R-module M and i ∈ N,
we have

H i
a(M)∼= H i(C(a,M)•).

Furthermore, the above isomorphism is functorial.

Probably the C̆ech complex supplies the “easiest” way to compute the local coho-
mology modules. Anyway, even the computation of the local cohomology modules of
the polynomial ring with respect to the maximal irrelevant ideal requires some effort,
as the following example shows.

Example 0.3.6. Let S = k[x,y] be the polynomial ring on two variables over a field
k, a1 = x and a2 = y. Obviously H0

(x,y)(S) = 0. We want to compute H1
(x,y)(S) and

H2
(x,y)(S). In fact, we know by Theorem 0.1.3 that H i

(x,y)(S) = 0 for any i > 2 = dimS.

The C̆ech complex C(a)• is

0→ S d0
−→ Sx⊕Sy

d1
−→ Sxy

d2
−→ 0.

where the maps are:
(i) d0( f ) = ( f /1, f /1);

(ii) d1( f /xn,g/ym) = xmg/(xy)m− yn f /(xy)n.
One can easily realize that d1( f /xn,g/ym) = 0 if and only if xng = ym f . Since xn,ym

is a regular sequence, d1( f /xn,g/xm) = 0 if and only if there exists h ∈ S such that
f = xnh and g = ymh. This is the case if and only if d0(h) = ( f /xn,g/ym). Therefore
Ker(d1) = Im(d0) and Theorem 0.3.5 implies H1

(x,y)(S) = H1(C(a)•) = 0.
Notice that Sxy is generated by xnym as an S-module, where n and m vary in Z.

Furthermore, if n ≥ 0, then xnym = d1(0,xnym). Analogously, if m ≥ 0, then xnym =
d1(−ymxn,0). Moreover, if both n and m are negative, then it is clear that xnym does not
belong to the image of d1. Therefore, using Theorem 0.3.5, H2

(x,y)(S) ∼= H2(C(a)•) =
Sxy/Im(d1) is the S-module generated by the elements x−ny−m with both n and m bigger
than 0 supplied with the following multiplication:

(xpyq) · (x−ny−m) =

{
xp−nyq−m if p < n and q < m,

0 otherwise
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What done in Example 0.3.6 can be generalized to compute the local cohomology
modules H i

(x1,...,xn)(k[x1, . . . ,xn]).

0.4 Why is local cohomology interesting?
Local cohomology is an interesting subject on its own. However, it is also a valuable
tool to face many algebraic and geometric problems. In this section, we list some
subjects in which local cohomology can give a hand.

0.4.1 Depth
Let R and a be as usual and M be a finitely generated R-module such that aM 6= M. We
recall that

grade(a,M) := min{i : ExtiR(R/a,M) 6= 0}.

By the celebrated theorem of Rees (for instance see the book of Bruns and Herzog
[13, Theorem 1.2.5]), grade(a,M) is the lenght of any maximal regular sequence on M
consisting of elements of a. On the other hand, if a1, . . . ,ak is a regular sequence on M,
then an

1, . . . ,a
n
k is a regular sequence on M as well. So, (0.6) implies that H i

a(M) = 0
for any i < grade(a,M). Actually, it is not difficult to show the following (for instance
see [10, Theorem 6.2.7]):

grade(a,M) = min{i : H i
a(M) 6= 0}. (0.7)

In particular, if R is local with maximal ideal m, then

depthM = min{i : H i
m(M) 6= 0}. (0.8)

Therefore, one can read off the depth of a module by the local cohomology.

0.4.2 Cohomological dimension and arithmetical rank
The cohomological dimension of an ideal a⊆ R is the natural number

cd(R,a) := sup{i ∈ N : H i
a(R) 6= 0}

By Theorem 0.1.3 we have cd(R,a)≤ dimR.

Remark 0.4.1. If cd(R,a) = s then for any R-module M we have H i
a(M) = 0 for all

i > s. To see this, by contradiction suppose that there exists c > s and an R-module M
with Hc

a(M) 6= 0. By Theorem 0.1.3, we have c ≤ dimR, so we can assume that c is
maximal (considering all the R-modules). Consider an exact sequence

0−→ K −→ F −→M −→ 0,

where F is a free R-module. The above exact sequence yields the long exact sequence

. . .−→ Hc
a(F)−→ Hc

a(M)−→ Hc+1
a (K)−→ . . . .

By the maximality of c it follows that Hc+1
a (K) = 0. Furthermore Hc

a(F) = Hc
a(R) = 0

because local cohomology commutes with the direct limits (Lemma 0.2.1). So, we get
a contradiction.
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The arithmetical rank of an ideal a⊆ R is the natural number

ara(a) := min{k : ∃ r1, . . . ,rk ∈ R such that
√

(r1, . . . ,rk) =
√

a}.

If R = k[x1, . . . ,xn] is the polynomial ring over an algebraically closed field k, by Null-
stellensatz ara(a) is the minimal natural number k such that

Z (a) = H1∩H2∩ . . .∩Hk

set-theoretically, where Z (·) means the zero-locus of an ideal and the H j’s are hyper-
surfaces of An

k. From now on, anyway, we will consider varieties just in the schematic
sense: For instance, An

k = Spec(k[x1, . . . ,xn]), V (a) = {℘∈ An
k : ℘⊇ a} and for

H ⊆ An
k to be a hypersurface we mean that H = V (( f )), where f ∈ k[x1, . . . ,xn]. In

this sense we have that, even if k is not algebraically closed, ara(a) is the minimal
natural number k such that

V (a) = H1∩H2∩ . . .∩Hk,

where the H j’s are hypersurfaces of An
k. Actually, the same statement is true whenever

R is a UFD.
If R is graded and a homogeneous we can also define the homogeneous arithmetical

rank, namely:

arah(a) := min{k : ∃ r1, . . . ,rk ∈ R homogeneous such that
√

a =
√

(r1, . . . ,rk)}.

Obviously we have
ara(a)≤ arah(a).

If R = k[x0, . . . ,xn] is the polynomial ring over a field k, then arah(a) is the minimal
natural number k such that

V+(a) = H1∩H2∩ . . .∩Hk

set-theoretically, where the H j’s are hypersurfaces of Pn
k. It is an open problem whether

ara(a) = arah(a) in this case (see the survey article of Lyubeznik [74]).
Remark 0.4.2. The reader should be careful to the following: If the base field is not
algebraically closed, the number ara(a), where a is an ideal of a polynomial ring, might
not give the minimal number of polynomials whose zero-locus is Z (a). For instance,
if a = ( f1, . . . , fm)⊆ R[x1, . . . ,xn], clearly

Z (a) = Z ( f 2
1 + . . .+ f 2

m).

However ara(a) can be bigger than 1 (for instance by (0.9)).
From what said up to now the arithmetical rank has a great geometrical interest.

Intuitively, everybody would say that there is no hope to define a curve of A4 as the
intersection of 2 hypersurfaces. Actually this intuition is a consequence of the cele-
brated Krull’s Hauptidealsatz (for instance see Matsumura [80, Theorem 13.5]), which
essentially says: Given an ideal a in a ring R,

ara(a)≥ ht(a). (0.9)

If equality holds in (0.9), a is said to be a set-theoretic complete intersection. Not all
the ideals are set-theoretic complete intersections, but how can we decide it? One lower
bound for the arithmetical rank is supplied by the cohomological dimension, namely

ara(a)≥ cd(R,a). (0.10)
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To see inequality (0.10) recall that the local cohomology modules H i
a(R) are the same

of H i√
a
(R) (Remark 0.1.1). Then inequality (0.10) is clear from the interpretation

of local cohomology by meaning of the C̆ech complex (Theorem 0.3.5). Actually,
inequality (0.10) is better than (0.9) thanks to the following theorem of Grothendieck
(for example see [10, Theorem 6.1.4]):

Theorem 0.4.3. (Grothendieck) Let a be an ideal of a ring R and M be a finitely
generated R-module. Let ℘ be a minimal prime ideal of a and dimM℘ = q. Then

Hq
a(M) 6= 0.

In particular cd(R,a)≥ ht(a).

Example 0.4.4. Inequality in Theorem 0.4.3 can be strict. Let R = k[[x,y,v,w]] be
the ring of formal series in 4 variables over a field k and a = (xv,xw,yv,yw) = (x,y)∩
(v,w). We have that ht(a) = 2. Let us consider the following piece of the Mayer-Vietoris
sequence (0.5)

H3
a(R)−→ H4

(x,y,v,w)(R)−→ H4
(x,y)(R)⊕H4

(v,w)(R).

By Theorem 0.4.3 H4
(x,y,v,w)(R) 6= 0, whereas H4

(x,y)(R)⊕H4
(v,w)(R) = 0 by (0.10). There-

fore H3
a(R) has to be different from zero, so that cd(R,a) ≥ 3 > 2 = ht(a). In partic-

ular ara(a) ≥ 3 > ht(a), thus a is not a set-theoretic complete intersection. Actually
ara(a) = 3, in fact one can easily show that a =

√
(xv, yw, xw+ yv).

In Chapters 1 and 2, we will see many examples of ideals which are not set-theoretic
complete intersections.

0.4.3 The graded setting
If R is a graded ring, a ⊆ R is a graded ideal and M is a Z-graded R-module, then
the local cohomology modules H i

a(M) carry on a natural Z-grading. For instance, we
can choose homogeneous generators of a, say a = a1, . . . ,ak. Then we can give a Z-
grading to the R-modules in the C̆ech complex C(a,M)• in the obvious way. Moreover,
it is straightforward to check that, this way, the maps in C(a,M)• are homogeneous.
Therefore, the cohomology modules of C(a,M)• are Z-graded, and so H i

a(M) is Z-
graded for any i ∈ N by Theorem 0.3.5. For any integer d ∈ Z, we will denote by
[H i

a(M)]d , or simply by H i
a(M)d , the graded piece of degree d of H i

a(M). Of course one
could try to give aZ-grading to H i

a(M) also using Theorem 0.3.1, or computing directly
the local cohomology functors as derived functors of Γa(·) restricted to the category
of Z-graded R-modules. Well, it turns out that all the above possible definitions agree
(see [10, Chapter 12]).

Suppose that R is a standard graded ring (i.e. R is graded and it is generated by R1
as an R0-algebra). The Castelnuovo-Mumford regularity of a Z-graded module M is
defined as

reg(M) := sup{d + i : [H i
R+(M)]d 6= 0 and i ∈ N}.

Unless H i
R+

(M) = 0 for all i ∈N, it turns out that the Castelnuovo-Mumford regularity
is always an integer (Theorem 0.1.3 and [10, Proposition 15.1.5 (ii)]). In the case in
which R0 is a field, if M is a finitely generated Cohen-Macaulay Z-graded module,
then, using (0.8) and Theorem 0.1.3 we have that

reg(M) = sup{d +dimM : [HdimM
R+ (M)]d 6= 0}.
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At this point it is worthwhile to introduce an invariant related to the regularity. Let
R be a Cohen-Macaulay graded algebra such that R0 is a field. The a-invariant of R is
defined to be

a(R) := sup{d ∈ Z : [HdimR
R+ (R)]d 6= 0}.

Therefore, if R is furthermore standard graded, then

reg(R) = a(R)+dimR. (0.11)

Example 0.4.5. Let S = k[x,y] be the polynomial ring in two variables over a field k.
By Example 0.3.6 we immediately see that a(S) =−2 and reg(S) = 0. More generally,
if S = k[x1, . . . ,xn] is the polynomial ring in n variables over a field k, then a(S) =−n
and reg(S) = 0.

Up to now, we have not yet stated one of the fundamental theorems in the theory of
local cohomology: The Grothendieck local duality theorem. We decided to do so be-
cause such a statement would require to introduce Matlis duality theory, which would
take too much space, for our purposes. However, if the ambient ring R is a graded
Cohen-Macaulay ring such that R0 is a field, we can state a weaker version of local
duality theorem, which actually turns out to be useful in many situations and which
avoids the introduction of Matlis duality. So let R be as above. By ωR we will denote
the canonical module of R (for the definition see [13, Definition 3.6.8], for the exis-
tence and unicity in this case put together [13, Example 3.6.10, Proposition 3.6.12 and
Proposition 3.6.9]).

Theorem 0.4.6. (Grothendieck) Let R be an n-dimensional Cohen-Macaulay graded
ring such that R0 = k is a field and let m = R+ be its maximal irrelevant ideal. For any
finitely generated Z-graded R-module M, we have

dimk(H i
m(M)−d) = dimk(Extn−i

R (M,ωR)d) ∀ d ∈ Z.

In particular, if R = S = k[x1, . . . ,xn] is the polynomial ring in n variables over a field
k, we have

dimk(H i
m(M)−d) = dimk(Extn−i

S (M,S)d−n) ∀ d ∈ Z.

Proof. The theorem follows at once by [13, Theorem 3.6.19]. For the part concerning
the polynomial ring S, simply notice that ωS = S(−n).

A consequence of Theorem 0.4.6 is that

dimk(Hn
m(R)−d) = dimk(HomR(R,ωR)d) = dimk([ωR]d) ∀ d ∈ Z.

So we get another interpretation of the a-invariant of a Cohen-Macaulay graded algebra
such that R0 is a field, namely

a(R) =−min{d ∈ Z : [ωR]d 6= 0}. (0.12)

If R = S is the polynomial ring in n variables over a field k, local duality supplies
another interpretation of the Castelnuovo-Mumford regularity. For any nonzero finitely
generated Z-graded S-module M there is a graded minimal free resolution of M:

0→
⊕
j∈Z

S(− j)βp, j →
⊕
j∈Z

S(− j)βp−1, j → . . .→
⊕
j∈Z

S(− j)β0, j →M→ 0
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with p ≤ n. Actually the natural numbers βi, j are numerical invariants of M, and they
are called the graded Betti numbers of M. Let us define

r := max{ j− i : βi, j 6= 0, i ∈ {0, . . . , p}}.

Then, for any i = 1, . . . , p, the S-module Fi :=
⊕

j∈Z S(− j)βi, j has not minimal gen-
erators in degree bigger than r + i. This implies that HomS(Fi,S)d = 0 whenever
d < −r− i. So, since ExtiS(M,S) is a quotient of a submodule of HomS(Fi,S), we
get that

d <−r− i =⇒ ExtiS(M,S)d = 0.

Actually, playing more attention, we can find an index i ∈ {0, . . . , p} such that

ExtiS(M,S)−r−i 6= 0

(for the details see Eisenbud [34, Proposition 20.16]). Therefore, by Theorem 0.4.6,
we get Hn−i

m (M)−d−n = 0 for any d <−r− i, which means that H j
m(M)k = 0 whenever

j + k > r. Moreover there exists a j such that H j
m(M)r− j 6= 0. Eventually, we get:

reg(M) = max{ j− i : βi, j 6= 0, i ∈ {0, . . . , p}}. (0.13)

From (0.13) it is immediate to check that a minimal generator of M has at most degree
reg(M). This fact is true over much more general rings than S.

Theorem 0.4.7. Let R be a standard graded ring and M be a finitely generated Z-
graded module. A minimal generator of M has at most degree reg(M).

We end this chapter remarking a relationship between local cohomology modules
and Hilbert polynomials. Let R be a graded ring such that R0 = k is a field and let M
be a finitely generated Z-graded R-module. We denote by HFM : Z→ N the Hilbert
function of M, i.e.

HFM(d) = dimk(Md).

A result of Serre (see [13, Theorem 4.4.3 (a)]) states that there exists a unique quasi-
polynomial function P : Z→ N such that P(m) = HFM(m) for any m� 0. Recall that
“P quasi-polynomial function” means that there exists a positive integer g and poly-
nomials Pi ∈ Q[X ] for i = 0, . . . ,g− 1 such that P(m) = Pi(m) for all m = kg + i with
k ∈ Z. Such a quasi-polynomial function is called the Hilbert quasi-polynomial of M,
and denoted by HPM . If R is standard graded, then HPM is actually a polynomial func-
tion of degree dimM−1 by a previous theorem by Hilbert (see [13, Theorem 4.1.3]),
and in this case HPM is simply called the Hilbert polynomial of M. The promised re-
lationship between local cohomology modules and Hilbert polynomials is once again
work of Serre ([13, Theorem 4.4.3 (b)]).

Theorem 0.4.8. (Serre) Let R be a graded ring such that R0 = k is a field and let
m = R+. If M is a nonzero finitely generated Z-graded R-module of dimension d, then

HFM(m)−HPM(m) =
d

∑
i=0

(−1)i dimkH i
m(M)m ∀ m ∈ Z.

Eventually, notice that Theorem 0.4.8 yields a third interpretation of the a-invariant.
If R is a Cohen-Macaulay graded ring such that R0 is a field, then:

a(R) = sup{i ∈ Z : HFR(i) 6= HPR(i)}. (0.14)



Chapter 1

Cohomological Dimension

In his seminair on local cohomology (see the notes written by Hartshorne [51, p. 79]),
Grothendieck raised the problem of finding conditions under which, fixed a positive
integer c, the local cohomology modules H i

a(R) = 0 for every i > c, where a is an ideal
in a ring R. In other words, looking for terms under which cd(R,a) ≤ c. Ever since
many mathematicians worked on this question: For instance, see Hartshorne [52, 53],
Peskine and Szpiro [89], Ogus [87], Hartshorne and Speiser [57], Faltings [39], Huneke
and Lyubeznik [64], Lyubeznik [78], Singh and Walther [97].

This chapter is dedicated to discuss the question raised by Grothendieck. Essen-
tially, we will divide the chapter in two parts. In the first one we will treat of necessary
conditions for cd(R,a) being smaller than a given integer, whereas in the second one
we will discuss about sufficient conditions for it. However, before describing the con-
tents and results of the chapter, we want to give a brief summary of the classical results
existing in the literature around this problem.

First of all, the reader might object: Why do not ask conditions about the lowest
nonvanishing local cohomology module, rather than the highest one? The reason is that
the smallest integer i such that H i

a(R) 6= 0 is well understood: It is the maximal length
of a regular sequence on R consisting of elements of a, see (0.7). The highest non-
vanishing local cohomology module, instead, is much more subtle to locate. Besides,
the number cd(R,a) is charge of informations. For instance, it supplies one of the few
known obstructions for an ideal being generated up to radical by a certain number of
elements, see (0.10). The two starting results about “the problem of the cohomological
dimension” are both due to Grothendieck: They are essential, as they fix the range in
which we must look for the natural number cd(R,a) (Theorems 0.4.3 and 0.1.3):

ht(a)≤ cd(R,a)≤ dimR.

Let us set n := dimR. In light of the results of Grothendieck, as a first step it was
natural to try to characterize when cd(R,a)≤ n−1. In continuing the discussion let us
suppose the ring R is local and complete. Such an assumption is reasonable, since for
any ring R:

(i) cd(R,a) = sup{cd(Rm,aRm) : m is a maximal ideal} by (0.2).
(ii) cd(Rm,aRm) = cd(R̂m,aR̂m) by (0.4).

First Lichtenbaum and then, more generally, Hartshorne [52, Theorem 3.1], settled the
problem of characterizing when cd(R,a) ≤ n− 1. Essentially, they showed that the
necessary and sufficient condition for this to happen is that dimR/a > 0, see Theorem
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0.3.2. By then, the next step should have been to describe when cd(R,a) ≤ n− 2. In
general this case is still not understood well as the first one. However, if R is regular, a
necessary and sufficient condition, besides being known, is very nice. Such a condition,
which has been proven under different assumptions in [52, 89, 64, 97], essentially is
that the punctured spectrum of R/a is connected. Actually, if the “ambient ring” R is
regular, cd(R,a) can always be characterized in terms of the ring R/a ([87, 57, 78]).
However, in any of these papers, the described conditions are quite difficult to verify.
Our task in this chapter will be to give some necessary and/or sufficient conditions, as
easier as possible to verify, for cd(R,a) being smaller than a fixed integer.

In the first section we will focus on giving necessary conditions for H i
a(R) vanishing

for any i bigger than a fixed integer. The framework of this section comes from the first
part of our paper [103]. As we remarked in 0.1.1, the local cohomology functors H i

a

depend just on the radical of a. Therefore, a way to face the Grothendieck’s problem
could be to study the topological properties of Spec(R/a). In fact, such a topological
space and Spec(R/

√
a) are obviously homeomorphic. Actually in this section we will

act in this way; particularly, we will study the connectedness properties of Spec(R/a),
in the sense explained in Appendix B. In [63], Hochster and Huneke proved that if a
is an ideal of an n-dimensional, (n− 1)-connected , local, complete ring R such that
cd(R,a)≤ n−2, then R/a is 1-connected, generalizing a result previously obtained by
Faltings in [40]. We prove, under the same hypotheses on the ring R, that

cd(R,a)≤ n− s =⇒ R/a is (s−1)-connected.

More generally, we prove that if R is r-connected, with r < n, then

cd(R,a)≤ r− s =⇒ R/a is s-connected, (1.1)

see Theorem 1.1.5. This result also strengthens a connectedness theorem due to Gro-
thendieck [47, Exposé XIII, Théorème 2.1], who got the same thesis under the assump-
tion that a could be generated by r−s elements. To prove (1.1) we drew on the proof of
Grothendieck’s theorem given in the book of Brodmann and Sharp [10, 19.2.11]. (The-
orem 1.1.5 has been proved independently in the paper of Divaani-Aazar, Naghipour
and Tousi [33, Theorem 2.8]. We illustrate a relevant mistake in [33, Theorem 3.4] in
Remark 1.1.8).

We prove (1.1) also for certain noncomplete rings R, such as local rings satisfying
the S2 Serre’s condition (Proposition 1.1.10), or graded rings over a field (in this case
the ideal a must be homogeneous), see Theorem 1.1.11. This last version of (1.1)
allows us to translate the result into a geometric point of view, dicscussing about the
cohomological dimension of an open subscheme U of a scheme X projective over a
field (Theorem 1.1.13). Particularly, we give topological necessary conditions on the
closed subset X \U for U being affine (Corollary 1.1.14).

We end the section discussing whether the implication of (1.1) can be reversed. In
general the answer is no, and we give explicit counterexamples.

The aim of the second section, whose results are part of our paper [104], is to ex-
plore the case in which R := k[x1, . . . ,xn] is a polynomial ring over a field k, usually of
characteristic 0, and a is a homogeneous ideal. In this setting we have a better under-
standing of the cohomological dimension. The characteristic 0 assumption allows us
to reduce the issues, the most of the times, to the case k = C: This way we can bor-
row results from Algebraic Topology and Complex Analysis. A key result we prove is
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Theorem 1.2.4. An essential ingredient in its proof is the work of Ogus [87], combined
with a comparison theorem of Grothendieck obtained in [48] and classical results from
Hodge theory. Theorem 1.2.4 gives a criterion to compute the cohomological dimen-
sion of a homogeneous ideal a in a polynomial ring R over a field of characteristic 0,
provided that R/a has an isolated singularity (see also Theorem 1.2.21 for a more al-
gebraic interpretation). Roughly speaking, such a criterion relates the cohomological
dimension cd(R,a) with the dimensions of the finite k-vector spaces

[H i
n(Λ j

ΩA/k)]0,

where A := R/a, n is the irrelevant maximal ideal of A and ΩA/k is the module of
Kähler differentials of A over k. In what follows, let us denote the A-module Λ jΩA/k
by Ω j. The advantages of such a characterization are essentially two:

(i) The cohomological dimension cd(R,a), in this case, is an intrinsic invariant of
A = R/a, which is not obvious a priori.

(ii) The dimensions dimk[H i
n(Ω j)]0 are moderately easy to compute, thanks to the

Grothendieck’s local duality (see Theorem 0.4.6):

dimk[H i
n(Ω j)]0 = dimk[Extn−i

R (Ω j,R)]−n.

Even if Theorem 1.2.4 will essentially be obtained putting together earlier results with-
out upsetting ideas, it has at least two amazing consequences. The first one regards a
relationship between depth and cohomological dimension. Before describing it, let us
remind the result of Peskine and Szpiro mentioned in Theorem 0.3.3. It implies that, if
char(k) > 0, then

depth(R/a)≥ t =⇒ cd(R,a)≤ n− t. (1.2)

In characteristic 0, the above fact does not hold true already for t = 4 (see Example
1.2.14). However, for t ≤ 2, (1.2) holds true also in characteristic 0 from [52] (more
generally see Proposition 1.2.15). Well, Theorem 1.2.4 enables us to settle the case
t = 3 of (1.2) also in characteristic 0, provided that R/a has an isolated singularity (see
Theorem 1.2.16). From this fact it is natural to raise the following problem:
Question 1.2.17. Suppose that R is a regular local ring, and that a⊆ R is an ideal such
that depth(R/a)≥ 3. Is it true that cd(R,a)≤ dimR−3?

The second consequence of Theorem 1.2.4 consists in the solution of a remarkable
case of a conjecture done by Lyubeznik in [77]. It concerns a relationship between
cohomological dimension and étale cohomological dimension of a scheme, already
wondered by Hartshorne in [53]. The truth of Lyubeznik’s guess would imply that
étale cohomological dimension provides a better lower bound for the arithmetical rank
than the one supplied by cohomological dimension (see (A.7) and (0.10)). In Theorem
1.2.20 we give a positive answer to the conjecture in characteristic 0, under a smooth-
ness assumption. On the other hand, Lyubeznik informed us that recently he found a
counterexample in positive characteristic.

1.1 Necessary conditions for the vanishing of local co-
homology

Let a be an ideal of an ring R, and c be a positive integer such that ht(a)≤ c < dimR.
As we anticipated in the introduction, this section is dedicated in finding necessary
conditions for H i

a(R) vanishing for any i > c. Mainly, we will care about the topological
properties which Spec(R/a) must have to this aim.
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1.1.1 Cohomological dimension vs connectedness
The purpose of this subsection is to prove Theorem 1.1.5. It fixes the connectedness
properties that Spec(R/a) must own in order to H i

a(R) vanish for all i > c. Theorem
1.1.5 has as consequences many previously known theorems. Especially, we remark a
theorem by Grothendieck (Theorem 1.1.6) and one by Hochster and Huneke (Theorem
1.1.7).

Let us start with a lemma which shows a sub-additive property of the cohomologi-
cal dimension. It will be crucial to prove Proposition 1.1.2.

Lemma 1.1.1. Let R be any ring, and a, b ideals of R. Then

cd(R,a+b)≤ cd(R,a)+ cd(R,b).

Proof. By [10, Proposition 2.1.4], Γb maps injective R-modules into injective ones.
Furthermore notice that Γa ◦Γb = Γa+b. So the statement follows at once by the spec-
tral sequence

E i, j
2 = H i

a(H j
b(R)) =⇒ H i+ j

a+b(R),

for instance see the book of Gelfand and Manin [44, Theorem III.7.7].

The next two propositions strengthen [10, Proposition 19.2.7] and [10, Lemma
19.2.8].

Proposition 1.1.2. Let (R,m) be a complete local domain and let a and b be ideals of
R such that dimR/a > dimR/(a+b) and dimR/b > dimR/(a+b). Then

cd(R,a∩b)≥ dimR−dimR/(a+b)−1

Proof. Set n := dimR and d := dimR/(a+b). We make an induction on d. If d = 0
we consider the Mayer-Vietoris sequence (0.5)

. . .−→ Hn−1
a∩b(R)−→ Hn

a+b(R)−→ Hn
a(R)⊕Hn

b(R)−→ . . . .

Hartshorne-Lichtenbaum Vanishing Theorem 0.3.2 implies that Hn
a(R) = Hn

b(R) = 0
and Hn

a+b(R) 6= 0. So the above exact sequence implies cd(R,a∩b)≥ n−1.
Consider the case in which d > 0. By prime avoidance we can choose an element

x ∈ m such that x does not belong to any minimal prime of a, b and a + b. Then
let a′ = a + (x) and b′ = b + (x). From the choice of x and by the Hauptidealsatz
of Krull it follows that dimR/(a′+ b′) = d− 1, dimR/a′ = dimR/a− 1 > d− 1 and
dimR/b′ = dimR/b− 1 > d− 1; hence by induction we have cd(R,a′ ∩ b′) ≥ n− d.
Because

√
a∩b+(x) =

√
a′∩b′, then H i

a′∩b′(R) = H i
a∩b+(x)(R) for all i ∈ N. From

Lemma 1.1.1 we have

n−d ≤ cd(R,a′∩b′) = cd(R,a∩b+(x))≤ cd(R,a∩b)+1.

Therefore the proof is completed.

The next result is a generalization of Proposition 1.1.2 to complete local rings
which are not necessarily domains.

Proposition 1.1.3. Let R be an r-connected complete local ring with r < dimR. Con-
sider two ideals a, b of R such that dimR/a > dimR/(a+b) < dimR/b. Then

cd(R,a∩b)≥ r−dimR/(a+b). (1.3)



1.1 Necessary conditions for the vanishing of local cohomology 5

Proof. Set d := dimR/(a+b), and let ℘1, . . . ,℘m be the minimal prime ideals of R.
First we consider the following case:

∃ i ∈ {1, . . . ,m} such that dimR/(a+℘i) > d and dimR/(b+℘i) > d.

In this case we can use Proposition 1.1.2, considering R/℘i as R, (a+℘i)/℘i as a and
(b+℘i)/℘i as b. Then

cd(R/℘i,((a+℘i)∩ (b+℘i))/℘i)≥ dimR/℘i−d−1.

Notice that

cd(R/℘i,((a+℘i)∩ (b+℘i))/℘i) = cd(R/℘i,((a∩b)+℘i)/℘i)≤ cd(R,a∩b)

by Lemma 0.2.2 (ii). Moreover dimR/℘i > r: If dimR/℘i = dimR, then this follows
by the assumptions. Otherwise R is a reducible ring, thus Lemma B.0.5 (ii) implies
dimR/℘i > r. So we get the thesis.

Thus we can suppose that

∀ i ∈ {1, . . . ,m} either dimR/(a+℘i)≤ d or dimR/(b+℘i)≤ d.

After a rearrangement we can pick s ∈ {1, . . . ,m− 1} such that for all i ≤ s we have
dimR/(a+℘i)≤ d and for all i > s we have dimR/(a+℘i) > d. The existence of such
an s is guaranteed from the fact that dimR/a > d and dimR/b > d. Let us consider the
ideal of R

q = (℘1∩ . . .∩℘s)+(℘s+1∩ . . .∩℘m)

and let℘be a minimal prime of q such that dimR/℘= dimR/q. Lemma B.0.5 (i) says
that dimR/℘≥ r. Moreover, since there exist i∈ {1, . . . ,s} and j ∈ {s+1, . . . ,m} such
that ℘i ⊆℘ e ℘j ⊆℘, we have

dimR/(a+℘)≤ dimR/(a+℘i)≤ d and
dimR/(b+℘)≤ dimR/(b+℘j)≤ d

Therefore we deduce that dimR/((a∩ b) +℘) ≤ d. But R/℘ is catenary, (see Mat-
sumura [80, Theorem 29.4 (ii)]), then

ht(((a∩b)+℘)/℘) = dimR/℘−dimR/((a∩b)+℘).

and hence ht(((a∩b)+℘)/℘)≥ r−d. So Lemma 0.2.2 (ii) and Theorem 0.4.3

cd(R,a∩b)≥ cd(R/℘,((a∩b)+℘)/℘)≥ r−d.

The hypothesis r < dimR in Proposition 1.1.3 is crucial, as we are going to show
in the following example.

Example 1.1.4. Let R = k[[x,y]] the ring of formal power series over a field k, a =
(x) and b = (y). Being a domain, R is 2-connected by Remark B.0.3 (dimR = 2).
Moreover cd(R,a∩b) = cd(R,(xy))≤ 1 by (0.10). Finally dimR/(a+b) = 0, therefore
Proposition 1.1.3 does not hold if we chose r = 2. However in this case, and in general
when R is irreducible, we can use Proposition 1.1.3 choosing r = dimR−1.
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Eventually, we are ready to prove the main theorem of this section.

Theorem 1.1.5. Let R be an r-connected complete local ring with r < dimR. Given
an ideal a⊆ R, we have

cd(R,a)≤ r− s =⇒ R/a is s-connected.

Proof. Let ℘1, . . . ,℘m be the minimal primes of a. If m = 1, then R/a is (dimR/a)-
connected. Let ℘ be a minimal prime of R such that ℘⊆℘1. Using Lemma 0.2.2 (ii)
and Theorem 0.1.3 we have cd(R,a) = cd(R,℘1)≥ cd(R/℘,℘1/℘)≥ ht(℘1/℘). So,
since R/℘ is catenary, we have

dimR/a = dimR/℘1 = dimR/℘−ht(℘1/℘)≥ dimR/℘− cd(R,a).

By Lemma B.0.5 (ii) we get the thesis. If m > 1, let A and B be a pair of disjoint subsets
of {1, . . . ,m} such that A∪B = {1, . . . ,m} and, setting

c := dim
(

R
(∩i∈A℘i)+(∩ j∈B℘j)

)
,

R/a is c-connected (the existence of A and B is ensured by Lemma B.0.5 (i)). Set
J :=∩i∈A℘i and K :=∩ j∈B℘j. Since dimR/J > c and dimR/K > c, Proposition
1.1.3 implies

c = dimR/(J +K )≥ r− cd(R,J ∩K ).

Since
√

a = J ∩K , the theorem is proved.

As we have already mentioned Theorem 1.1.5 unifies many previous results con-
cerning relationships between connectedness properties and the cohomological dimen-
sion. For instance, since cd(R,a) bounds from below the number of generators of a
by (0.10), we immediately get a theorem obtained in [47, Exposé XIII, Théorème 2.1]
(see also [10, Theorem 19.2.11]).

Theorem 1.1.6. (Grothendieck) Let (R,m) be a complete local r-connected ring with
r < dimR. If an ideal a⊆ R is generated by r− s elements, then R/a is s-connected.

Theorem 1.1.5 implies also [63, Theorem 3.3], which is in turn a generalization of
a result of [40]. See also Schenzel [92, Corollary 5.10].

Theorem 1.1.7. (Hochster-Huneke) Let (R,m) be a complete equidimensional local
ring of dimension d such that Hd

m(R) is an indecomposable R-module. If cd(R,a) ≤
d−2, then the punctured spectrum Spec(R/a)\{m} is connected.

Proof. Since Hd
m(R) is indecomposable, [63, Theorem 3.6] implies that R is connected

in codimension 1. Because Spec(R/a) \ {m} is connected if and only if R/a is 1-
connected, the statement follows at once from Theorem 1.1.5.

Remark 1.1.8. In [33, Theorem 3.4] the authors claim that Theorem 1.1.7 holds with-
out the assumption that Hd

m(R) is indecomposable. This is not correct, as we are going
to show: Set R := k[[x,y,u,v]]/(xu,xv,yu,yv) and let a be the zero ideal of R. The min-
imal prime ideals of R are (x,y) and (u,v), so R is a complete equidimensional local
ring of dimension d = 2, and cd(R,a) = 0 = d− 2. From Lemma B.0.6 (i) one can
see that R/a = R is not 1-connected. Therefore the punctured spectrum of R/a is not
connected.
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1.1.2 Noncomplete case
So far, we have obtained a certain understanding of the problem assuming the ambient
ring R to be complete. Of course, in the results of the previous subsection we could
have avoided the completeness assumption. The inconvenient would have been that we
should have complicated the statements asking for properties of the rings after com-
pleting, e.g.: Let R be a local ring such that R̂ is r-connected. The aim of the present
subsection is to introduce rings for which, even if noncomplete, the results of the pre-
vious section still hold true, without using “completing-hypothesis”. We start with a
lemma.

Lemma 1.1.9. Let (R,m) be a d-dimensional local analytically irreducible ring (i.e.
R̂ is irreducible). Given an ideal a⊆ R, we have

cd(R,a)≤ d− s−1 =⇒ R/a is s-connected.

Proof. Since R̂ is irreducible, it is d-connected. In particular it is (d− 1)-connected.
Moreover, cd(R,a) = cd(R̂,aR̂) by (0.4). Thus Theorem 1.1.5 yields that R̂/aR̂ is s-
connected. Eventually, Lemma B.0.8 (i) implies that R/a is s-connected as well, and
we conclude.

The following proposition gives a class of rings for which we do not have to care
about their properties after completion. Let us remark that such a class comprehends
Cohen-Macaulay local rings.

Proposition 1.1.10. Let R be a d-dimensional local ring satisfying Serre’s condition
S2, which is a quotient of a Cohen-Macaulay local ring. Given an ideal a⊆ R, we have

cd(R,a)≤ d− s−1 =⇒ R/a is s-connected.

Proof. The completion of R satisfies S2 as well as R (see [80, Exercise 23.2]). Then R̂
is connected in codimension 1 by Corollary B.1.3. Arguing as in the proof of Lemma
1.1.9, we conclude.

Now we prove a version of Theorem 1.1.5 in the case when R is a graded algebra
over a field. Such a version will be useful also in the next chapter.

Theorem 1.1.11. Let R be a graded r-connected ring such that R0 is a field, with
r < dimR. Given a homogeneous ideal a⊆ R, we have

cd(R,a)≤ r− s =⇒ R/a is s-connected.

Proof. Let m be the irrelevant maximal ideal of R. Using Lemma B.0.5 (i), since the
minimal prime ideals of R are in m, we have that Rm is r-connected. Furthermore, let us
notice that R̂m

∼= R̂m. Since the minimal prime ideals of Rm come from homogeneous
prime ideals of R, by Lemma B.0.9 their extension ℘R̂m belongs to Spec(R̂m). Then
Lemma B.0.8 (ii) yields that R̂m is r-connected. Notice that, by (0.4) and (0.2) we have

cd(R̂m,aR̂m)≤ cd(R,a),

so R̂m/aR̂m is s-connected by Theorem 1.1.5. Lemma B.0.8 (i) implies that Rm/aRm is
s-connected as well. Eventually we conclude by Lemma B.0.5 (i): In fact the minimal
primes of a, being homogeneous, are in m, so R/a is s-connected as well as Rm/aRm.



8 Cohomological Dimension

1.1.3 Cohomological dimension and connectedness of open sub-
schemes of projective schemes

In this subsection we give a geometric interpretation of the results obtained in Subsec-
tion 1.1.2, using (A.6). More precisely, given a projective scheme X over a field k and
an open subscheme U ⊆ X , our purpose is to find necessary conditions for which the
cohomological dimension of U is less than a given integer. By a well known result of
Serre, there is a characterization of noetherian affine schemes in terms of the cohomo-
logical dimension, namely: A noetherian scheme X is affine if and only if cd(X) = 0
(see Hartshorne [56, Theorem 3.7]). Hence, as a particular case, in this subsection
we give necessary conditions for the affineness of an open subscheme of a projective
scheme over k. This is an interesting theme in algebraic geometry, and it was studied
from several mathematicians (see for example Goodman [45] or Brenner [9]). For in-
stance, it is well known that if X is a noetherian separated scheme and U ⊆ X is an
affine open subscheme, then every irreducible component of Z = X \U has codimen-
sion less than or equal to 1. Here it follows a quick proof.

Proposition 1.1.12. Let X a noetherian separated scheme, U ⊆ X an affine open sub-
scheme and Z = X \U. Then every irreducible component of Z has codimension less
than or equal to 1.

Proof. Let Z1 be an irreducible component of Z and let V be an open affine such that
V ∩ Z1 6= /0. Since X is separated, U ∩V is also affine, and since codim(Z1,X) =
codim(Z1 ∩V,V ), we can suppose that X is a notherian affine scheme. So let R and
a ⊆ R be such that X = Spec(R) and Z = V (a). By the affineness criterion of Serre,
we have H i(U,OX ) = 0 for all i > 0. Then (A.5) implies cd(R,a) ≤ 1. This implies
ht(℘)≤ 1 for all ℘ minimal prime of a (Theorem 0.4.3).

In light of this result it is natural to ask: What can we say about the codimension of
the intersection of the various components of Z? To answer this question we investigate
on the connectedness of Z.

Theorem 1.1.13. Let X be an r-connected projective scheme over a field k with r <
dimX, U ⊆ X an open subscheme and Z = X \U. Then

cd(U)≤ r− s−1 =⇒ Z is s-connected.

Proof. Let X = Proj(R), with R a graded finitely generated k-algebra, and let a⊆R be a
graded ideal defining Z. Then, from (A.6) it follows that cd(R,a)≤ r− s. By Example
B.0.4 (ii) we have that R is (r +1)-connected. Therefore, from Theorem 1.1.11 we get
that R/a is (s+1)-connected. So Z = V+(a) is s-connected, using Example (B.0.4) (ii)
once again.

From Theorem 1.1.13 we can immediately obtain the following corollary.

Corollary 1.1.14. Let X be an r-connected projective scheme over a field k with r <
dimX, U ⊆ X an open subscheme and Z = X \U. If U is affine, then Z is (r− 1)-
connected. In particular, if X is connected in codimension 1 and codimX Z = 1, then Z
is connected in codimension 1.

Proof. By the affineness criterion of Serre cd(U) = 0, so we conclude by Theorem
1.1.13.
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Example 1.1.15. Let R :=k[X0, . . . ,X4]/(X0X1X4−X2X3X4) and denote by xi the residue
class of Xi modulo R. Consider the ideal a = (x0x1,x0x3,x1x2,x2x3) = ℘1 ∩℘2 ⊆ R,
where ℘1 = (x0,x2) and ℘2 = (x1,x3). Clearly ℘1 and ℘2 are prime ideals of height 1,
therefore U = Proj(R)\V+(a) might be affine. Since Proj(R) is a complete intersection
of P4, it is connected in codimension 1 (Proposition B.1.2). But dimV+(℘1 +℘2) = 0,
therefore V+(a) is not 1-connected by Lemma B.0.5 (i). Thus, by Corollary 1.1.14 we
conclude that U is not affine.

1.1.4 Discussion about the sufficiency for the vanishing of local co-
homology

Theorem 1.1.5 gives a necessary condition for the cohomological dimension to be
smaller than a given integer. In order to make the below discussion easier, suppose
that the local complete ring (R,m) is an n-dimensional domain. In this case Theo-
rem 1.1.5 says the following: If a is an ideal of R such that cd(R,a) < c, then R/a is
(n− c)-connected. One question which might come in mind is if the condition R/a is
s-connected is also sufficient to cd(R,a) being smaller than n− s. If s = 1, with some
further assumptions on R, Theorem 1.1.5 can actually be reversed. This fact has been
proven by various authors, with different assumptions on the ring R and different tools,
see [52], [87], [89] and [97]. The more general version of the result has been settled in
[64, Theorem 2.9]. First recall that a local ring (A,m) is 1-connected if and only if its
punctured spectrum Spec(A)\{m} is connected (Example B.0.4 (i)).

Theorem 1.1.16. (Huneke and Lyubeznik) Let R be an n-dimensional local, complete,
regular ring containing a separably closed field. For an ideal a⊆ R,

cd(R,a)≤ n−2 ⇐⇒ dimR/a≥ 2 and R/a is 1-connected.

The next step we might consider is the case in which R/a is 2-connected. From
Theorem 1.1.5 we know the following implication:

cd(R,a)≤ n−3 =⇒ dimR/a≥ 3 and R/a is 2-connected. (1.4)

Unfortunately, this time, the converse does not hold, neither assuming R to be regular.
We show this in the following example.

Example 1.1.17. Let R := k[[x1,x2,x3,x4,x5]] be the (5-dimensional) ring of formal
power series in 5 variables over a field k. Let us consider the ideal of R

a := (x1x2x4,x1x3x4,x1x3x5,x2x3x5,x2x4) = (x1,x2)∩ (x2,x3)∩ (x3,x4)∩ (x4,x5).

One can see, for instance using Lemma B.0.7, that A = R/a is 2-connected. However
we are going to show that cd(R,a) ≥ 3 = 5− 2. To this aim, let us localize A at the
prime ideal ℘= (x1,x2,x4,x5). Since x3 is invertible in R℘, we have that

A℘
∼= R℘/(x1x4,x1x5,x2x4,x2x5).

Moreover, b = aR℘ = (x1x4,x1x5,x2x4,x2x5) = (x1,x2)∩ (x3,x4). By Lemma B.0.6 it
follows that A℘ is not 1-connected. Moreover notice that R℘ is analytically irreducible,
since R̂℘ is a 4-dimensional regular domain as well as R℘. Therefore, Proposition 1.1.9
implies that cd(R℘,b)≥ 3. So (0.2) implies that cd(R,a)≥ 3.
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In Example 1.1.17, we exploited the fact that the connectedness properties of a
ring, in general, do not pass to its localizations. More precisely, even if a ring A is r-
connected, in general it might happen that A℘ is not s-connected for some prime ideal℘
of A, where s = ht(℘)+r−dimA is the expected number. This fact was the peculiarity
of Example 1.1.17 which allowed us to use Theorem 1.1.5. So it is understandable if
the reader is not appeased from the above example, especially because there are rings
in which such a pathology cannot happen. For instance if the ring A is a domain, and
therefore dimA-connected, then A℘ is a domain for any prime ℘, and therefore ht℘-
connected. So, we decided to give a counterexample to the converse of (1.4) also in
this situation, i.e. when a is a prime ideal.

Example 1.1.18. Consider the polynomial ring R′′′ :=C[x1,x2,x3,x4] and theC-algebra
homomorphism

φ : R′′′ → C[t,u]
x1 7→ t
x2 7→ tu
x3 7→ u(u−1)
x4 7→ u2(u−1)

The image of φ is the coordinate ring of an irreducible surface in A4, and it has been
considered by Hartshorne in [50, Example 3.4.2]. It is not difficult to see that

a′′′ := Ker(φ) = (x1x4− x2x3,x2
1x3 + x1x2− x2

2,x
3
3 + x3x4− x2

4).

Obviously a′′′ is a prime ideal of R′′′. Let us denote by R′′ the ring of formal power
series C[[x1,x2,x3,x4]]. Doing some elementary calculations, one can show that there
exist g1,h1,g2,h2 ∈ R′′ such that (g1,h1,g2,h2) = (x1,x2,x3,x4) (we are considering
ideals in R′′) and √

a′′ =
√

(g1,h1)∩
√

(g2,h2),

where a′′ := a′′′R′′ (see [10, Example 4.3.7]). Using Lemma B.0.6, we infer that R′′/a′′

is not 1-connected.
Now let us homogenize a′′′ to a′, i.e. set

a′ = (x1x4− x2x3,x2
1x3 + x0x1x2− x0x2

2,x
3
3 + x0x3x4− x0x2

4)⊆ R′ = R′′′[x0].

The ideal a′ is prime as well as a′′′ (for instance see the book of Bruns and Vetter [15,
Proposition 16.26 (c)]). Furthermore dimR′/a′ = dimR′′′/a′′′+1 = 3. Eventually, set
R := C[[x0, . . . ,x5]] and a := a′R. The ideal a is prime by Lemma B.0.9. Moreover,
dimR/a = dimR′/a′ = 3. Thus R/a is 3-connected. In particular it is 2-connected!
Let us consider the prime ideal ℘= (x1,x2,x3,x4) ⊆ R. Since R℘ is a 4-dimensional
regular local ring containing C, then Cohen’s structure theorem implies R̂℘

∼= R′′.
Furthermore, since x0 is invertible in R℘, the ideal aR℘⊆ R℘ is generated by x1x4−
x2x3, x2

1x3 +x1x2−x2
2 and x3

3 +x3x4−x2
4. Therefore, the ideal a read in R′′ is the same

ideal of a′′. So, R̂℘/aR̂℘ is not 1-connected as R′′/a′′ is not. At this point, Theorem
1.1.5 implies

cd(R̂℘,aR̂℘)≥ 3.

So, using (0.4) and (0.2), we have

cd(R,a)≥ 3 > 5−3.

This shows that the converse of (1.4) does not hold, neither if we assume that R is the
ring of formal power series over the complex numbers and that a⊆ R is a prime ideal.
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As the reader can notice, also in the above example we used Theorem 1.1.5. In
fact, with that notation, the ideal a⊆ R, even if prime, was still a bit pathological. That
is, we found a prime ideal ℘ of A = R/a such that Â℘ was not ht℘-connected, at the
contrary of A℘. Once again, the reader might demand an example in which all the
completion of the localizations of A are domain. To this aim, for instance, it would be
enough to consider an ideal a⊆R such that A = R/a has an isolated singularity, i.e such
that A℘ is a regular ring for any non maximal prime ideal ℘. In fact the completion
of a regular ring is regular, thus a domain. Also in this situation, counterexamples to
(1.4) still exist. However to construct them are needed techniques different from those
developed in this section. How to establish these examples will be clear from the results
of the next section.

1.2 Sufficient conditions for the vanishing of local co-
homology

In this section, we will focus on giving sufficient conditions for cd(R,a)≤ c. However
the conditions we find will often be also necessary. To this aim we have to move to a
regular ambient ring. Actually, we will even suppose that the ring R is a polynomial
ring over a field of characteristic 0. Moreover the ideal a will be homogeneous and such
that R/a has an isolated singularity, which is a case of great interest by the discussion of
Subsection 1.1.4. Let us recall that the assumption “R/a has an isolated singularity” is
equivalent to “X = Proj(R/a) is a regular scheme”, i.e. the local rings OX ,P are regular
for all points P of X . If the field is algebraically closed, this is in turn equivalent to X
being nonsingular.

1.2.1 Open subschemes of the projective spaces over a field of char-
acteristic 0

In this subsection we prove the key-theorem of the section (Theorem 1.2.4), which will
let us achieve considerable consequences. We start with a remark which allows us to
use complex coefficients in many situations.

Remark 1.2.1. Let A be a ring, B a flat A-algebra, R an A-algebra and M an R-module.
Set RB := R⊗A B and MB := M⊗A B. Clearly RB is a flat R-algebra. Therefore Theorem
0.2.2 (i) implies that, for any ideal a⊆ R every j ∈ N:

H j
a(M)⊗A B∼= H j

a(M)⊗R RB ∼= H j
aRB

(M⊗R RB)∼= H j
aRB

(MB) (1.5)

We want to use (1.5) in the following particular case. Let S :=K[x0, . . . ,xn] be the
polynomial ring in n+1 variables over a field K of characteristic 0, and I ⊆ S an ideal.
Since I is finitely generated we can find a field k of characteristic 0 such that, setting
Sk := k[x0, . . . ,xn], the following properties hold:

k⊆K, Q⊆ k⊆ C, (I∩Sk)S = I

(to this aim we have simply to add to Q the coefficients of a set of generators of I).
Since K and C are faithfully flat k-algebras, (1.5) implies that

cd(S, I) = cd(Sk, I∩Sk) = cd(SC,(I∩Sk)SC), (1.6)

where SC := C[x1, . . . ,xn].
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In the above situation, assume that I is homogeneous and that X := Proj(S/I) is
a regular scheme. Then set Xk := Proj(Sk/(I ∩ Sk)) and XC := Proj(SC/((I ∩ Sk)C)).
Notice that X ∼= Xk×k Spec(K) and XC ∼= Xk×k Spec(C). Furthermore Xk and XC
are regular schemes. Since K and C are both flat k-algebras, we get, for all natural
numbers i, j,

H i(X ,Ω j
X/K)∼= H i(Xk,Ω

j
Xk/k

)⊗kK

and
H i(XC,Ω j

XC/C)∼= H i(Xk,Ω
j
Xk/k

)⊗kC

(for example see the book of Liu [79, Chapter 6, Proposition 1.24 (a) and Chapter 5,
Proposition 2.27]). Particularly we have

dimK(H i(X ,Ω j
X/K)) = dimC(H i(XC,Ω j

XC/C)). (1.7)

We will call the dimension of the K-vector space H i(X ,Ω j
X/K) the (i,j)-Hodge number

of X , denoting it by hi j(X).

In the next remark, for the convenience of the reader, we collect some well known
facts which we will use throughout the paper.

Remark 1.2.2. Let X be a projective scheme over C: Let us recall that Xh means X
regarded as an analytic space, as explained in Section A.2, and C denotes the constant
sheaf associated to C. We will denote by βi(X) the topological Betti number

βi(X) := rankZ(H
Sing
i (Xh,Z)) = rankZ(H i

Sing(X
h,Z)) =

= dimC(H i
Sing(X

h,C)) = dimC(H i(Xh,C)).

The equalities above hold true from the universal coefficient Theorems A.3.1 and A.3.2,
and by the isomorphism A.9. Pick another projective scheme overC, say Y , and denote
by Z the Segre product X ×Y . The Künneth formula for singular cohomology (for
instance see Hatcher [58, Theorem 3.16]) yields

H i
Sing(Z

h,C)∼=
⊕

p+q=i

H p
Sing(X

h,C)⊗CHq
Sing(Y

h,C).

Thus at the level of topological Betti numbers we have

βi(Z) = ∑
p+q=i

βp(X)βq(Y ). (1.8)

Now assume that X is a regular scheme projective over C. It is well known that Xh

is a Kähler manifold (see [56, Appendix B.4]), so the Hodge decomposition (see the
notes of Arapura [2, Theorem 10.2.4]) is available. Therefore, using Theorem A.2.1,
we have

H i
Sing(X

h,C)∼=
⊕

p+q=i

H p(Xh,Ωq
Xh)∼=

⊕
p+q=i

H p(X ,Ωq
X/C).

Thus
βi(X) = ∑

p+q=i
hpq(X) (1.9)

Finally, note that the restriction map on singular cohomology

H i
Sing(P(Cn+1),C)−→ H i

Sing(X
h,C) (1.10)
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is injective provided that i = 0, . . . ,2dimX (see Shafarevich [93, pp. 121-122]). So
Example A.3.3 implies that

β2i(X)≥ 1 provided that i≤ dimX (1.11)

The contents of the next remark do not concern the cohomological dimension. We
just want to let the reader notice a nice consequence of Remark 1.2.2 when combined
with a result of Barth.

Remark 1.2.3. Let X and Y be two positive dimensional regular scheme projective
over C. Chose any embedding of Z := X ×Y in PN . Then the dimension of the secant
variety of Z in PN is at least 2dimZ−1.

To show this notice that (1.11) yields β0(X) ≥ 1, β2(X) ≥ 1, β0(Y ) ≥ 1 and
β2(Y )≥ 1. Therefore using (1.8) we have

β2(Z)≥ β2(X)β0(Y )+β2(Y )β0(X)≥ 2.

By a theorem of Barth (see Lazarsfeld [71, Theorem 3.2.1]), it follows that Z cannot
be embedded in any PM with M < 2dimX − 1. If the dimension of the secant variety
were less than 2dimX − 1, it would be possible to project down in a biregular way X
from PN in P2dimX−2, and this would be a contradiction.

Note that the above lower bound is the best possible. For instance consider the
classical Segre embedding Z := Pr×Ps ⊆ Prs+r+s. The defining ideal of Z is generated
by the 2-minors of a generic (r + 1)× (s + 1)-matrix. The secant variety of Z is well
known to be generated by the 3-minors of the same matrix, therefore its dimension is
2(r + s)−1.

The following theorem provides some necessary and sufficient conditions for the
cohomological dimension of the complement of a smooth variety in a projective space
being smaller than a given integer. For the proof we recall the concept of DeRham-
depth introduced in [87, Definition 2.12]. The general definition requires the notion of
local algebraic DeRham cohomology (see Hartshorne [55, Chapter III.1]). However
for the case we are interested in there is an equivalent definition in terms of local
cohomology ([87, proof of Theorem 4.1]). Let X ⊆ Pn be a projective scheme over
a field k of characteristic 0. Let S := k[x0, . . . ,xn] be the polynomial ring and a ⊆ S
be the defining ideal of X . Then the DeRham-depth of X is equal to s if and only
if Supp(H i

a(S)) ⊆ {m} for all i > n− s and Supp(Hn−s
a (S)) * {m}, where m is the

maximal irrelevant ideal of S.

Theorem 1.2.4. Let X ⊆ Pn be a regular scheme projective over a field k of charac-
teristic 0. Moreover, let r be an integer such that codimPn X ≤ r ≤ n and U := Pn \X.
Then cd(U) < r if and only if

hpq(X) =
{

0 if p 6= q, p+q < n− r
1 if p = q, p+q < n− r

Moreover, if k= C, the above conditions are equivalent to:

βi(X) =
{

1 if i < n− r and i is even
0 if i < n− r and i is odd

Proof. Set XC ⊆ Pn
C as in Remark 1.2.1 and UC := Pn

C \XC. Then cd(U) = cd(UC) by
(1.6) and (A.6). Moreover, notice that hi j(X) = hi j(XC) by (1.7). Finally, since XC is
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regular, we can reduce to the case in which k = C. If cd(U) < r then r ≥ codimPn X
by Theorem 0.4.3 and (A.6). Thus the “only if”-part follows by [53, Corollary 7.5, p.
148].

So, it remains to prove the “if”-part. By (A.11) algebraic De Rham cohomology
agrees with singular cohomology. Therefore by (1.10) the restriction maps

H i
DR(Pn)−→ H i

DR(X) (1.12)

are injective for all i≤ 2dimX . By the assumptions, equation (1.9) yields βi(X) = 1 if
i is even and i < n− r, 0 otherwise. Moreover by Example A.3.3 βi(Pn) = 1 if i is even
and i ≤ 2n, 0 otherwise. So the injections in (1.12) are actually isomorphisms for all
i < n− r.

We want to use [87, Theorem 4.4], and to this aim we will show that the De Rham-
depth of X is greater than or equal to n− r. This means that we have to show that
Supp(H i

a(S))⊆m for all i > r, where S =C[x0, . . . ,xn], a⊆ S is the ideal defining X and
m is the maximal irrelevant ideal of S. But this is easy to see, because if ℘ is a graded
prime ideal containing a and different from m, being X regular, aS℘ is a complete
intersection in S℘: Therefore (H i

a(S))℘ ∼= H i
aS℘

(S℘) = 0 for all i > r (≥ ht(aS℘)).
Hence [87, Theorem 4.4] yields the conclusion.

Finally, if k = C, the last condition in the statement is a consequence of the first
one by (1.9). Moreover, the restriction maps on singular cohomology

H i
Sing(P(Cn+1),C)−→ H i

Sing(X
h,C)

are compatible with the Hodge decomposition (see [2, Corollary 11.2.5]). The Hodge
numbers of the projective space are well known (for instance see [53, Exercise 7.8, p.
150]), namely

hpq(Pn) =
{

0 if p 6= q,
1 if p = q, p≤ n

Since the restriction maps on singular cohomology are injective for i < n− r by (1.10),
the last condition in the statement implies the first one. The theorem is proved.

Remark 1.2.5. Notice that Theorem 1.2.4 implies the following surprising fact: If
X ⊆ Pn is a regular scheme projective over a field of characteristic 0, then the natural
number n− cd(Pn \X) is an invariant of X, i.e. it does not depend on the embedding.
Actually the same statement is true also in positive characteristic, using [78, Theorems
5.1 and 5.2].

Theorem 1.2.4 is peculiar of the characteristic-zero-case. For instance pick an el-
liptic curve E over a field of positive characteristic, whose Hasse invariant is 0. This
means that the Frobenius morphism acts as 0 on H1(E,OE) (for a more explanatory
definition see [56, p. 332]). Such a curve exists in any positive characteristic by [56,
Corollary 4.22]. Then set X := E × P1 ⊆ P5 and U := P5 \ X . From the Künneth
formula for coherent sheaves (see Sampson and Washnitzer [91, Section 6, Theorem
1]), one can deduce that the Frobenius morphism acts as 0 on H1(X ,OX ) as well as
on H1(E,OE). Therefore [57, Theorem 2.5] implies cd(U) = 2 (see also [78, The-
orem 5.2]). However notice that, using again [91, Section 6, Theorem 1], we have
h10(X) = h10(E) = 1.

We want to state a consequence of Theorem 1.2.4 which, roughly speaking, says
that in characteristic 0 the cohomological dimension of the complement of the Segre
product of two projective schemes is always large. We will also show, in Remark 1.2.7,
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that in positive caharacteristic, at the contrary, such a cohomological dimension can be
as small as possible.

Proposition 1.2.6. Let X and Y be two positive dimensional regular schemes projective
over a field k of characteristic 0. Choose an embedding of Z := X×Y in some PN and
set U := PN \Z. Then cd(U)≥N−3. In particular if dimZ ≥ 3, Z is not a set-theoretic
complete intersection.

Proof. We can reduce the problem to the case k= C by (1.6). From (1.8) we have

β2(Z)≥ β2(X)β0(Y )+β2(Y )β0(X). (1.13)

Furthermore, (1.11) yields β0(X) ≥ 1, β2(X) ≥ 1, β0(Y ) ≥ 1 and β2(Y ) ≥ 1. If
cd(U) < N− 3, then Theorem 1.2.4 would imply that β2(Z) = 1. But, by what said
above, one reads from (1.13) that β2(Z)≥ 2, so we get the thesis.

In the next remark we will show that the characteristic-0-assumption is crucial in
Proposition 1.2.6. In fact in positive characteristic can happen that, using the notation
of Proposition 1.2.6, cd(U) is as small as possible, i.e. codimPN (Z)−1.
Remark 1.2.7. Let k be a field of positive characteristic. Let us consider two Cohen-
Macaulay graded k-algebras A and B of negative a-invariant (for instance two poly-
nomial rings over k). Set R := A#B := ⊕i∈NAi ⊗k Bi their Segre product (with the
notation of the paper of Goto and Watanabe [46]). By [46, Theorem 4.2.3], R is
Cohen-Macaulay. So, presenting R as a quotient of a polynomial ring of N + 1 vari-
ables, say R ∼= P/I, a theorem in [89] (see Theorem 0.3.3) implies that cd(P, I) =
N +1−dimR. Translating in the language of Proposition 1.2.6 we have X := Proj(A),
Y := Proj(B), Z := Proj(R) ⊆ PN = Proj(P) and cd(PN \ Z) = cd(P, I)− 1 = N −
dimZ−1 = codimPN (Z)−1.

1.2.2 Étale cohomological dimension
If the characteristic of the base field is 0 we have seen in the previous subsection that we
can, usually, reduce the problem to k= C. In this context, thanks to the work of Serre
described in Section A.2, is available the complex topology, so we can use methods
from algebraic topology and from complex analysis.

Unfortunately, when the characteristic of k is positive, the above techniques are
not available. Moreover some of the results obtained in Subsection 1.2.1 are not true
in positive characteristic, as we have shown just below Theorem 1.2.4 and in Remark
1.2.7. In this subsection we want to let the reader notice that, in order to have, in
positive characteristic, cohomological results similar to those gettable in characteristic
0, sometimes it is better to use the étale site rather than the Zariski one. Moreover,
as well as local cohomology, étale cohomology gives a lower bound for the number
of set-theoretically defining equations of a projective scheme by (A.7), therefore the
results of this subsection will be useful also in the next chapter.

We recall the following result of Lyubeznik [76, Proposition 9.1, (iii)], that can be
seen as an étale version of [53, Theorem 8.6, p. 160].

Theorem 1.2.8. (Lyubeznik) Let k be a separably closed field of arbitrary character-
istic, Y ⊆ X two projective schemes over k such that U := X \Y is nonsingular. Set
N := dimX and let ` ∈ Z be coprime with the characteristic of k. If écd(U) < 2N− r,
then the restriction maps

H i(Xét ,Z/`Z)−→ H i(Yét ,Z/`Z)
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are isomorphism for i < r and injective for i = r.

Remark 1.2.9. An étale version of Theorem 1.2.4 cannot exist. In fact, if X ⊆ Pn

is a regular scheme projective over a field k, the natural number écd(Pn \X) is not an
invariant of X and n, as instead is for cd(Pn\X), see Remark 1.2.5. For instance, we can
consider P2 ⊆ P5 embedded as a linear subspace and v2(P2)⊆ P5 (where v2(P2) is the
2nd Veronese embedding): the first one is a complete intersection, so écd(P5 \P2)≤ 7
by (A.7). Instead, écd(P5 \ v2(P2)) = 8 by a result of Barile [5].

Notice that the above argument shows that the number of defining equations of a
projective scheme X ⊆ Pn depends on the embedding, and not only on X and on n. This
suggests the limits of the use of local cohomology on certain problems regarding the
arithmetical rank.

We want to end this subsection stating a result similar to Proposition 1.2.6. First
we need a remark, which is analogous to the last part of Remark 1.2.2.

Remark 1.2.10. Let X be a regular scheme projective over a field k and ` an integer
coprime to char(k). The cycle map is a graded homomorphism⊕

i∈N
CHi(X)⊗Q` −→

⊕
i∈N

H2i(Xét ,Q`(i)),

where by CH∗(X) we denote the Chow ring of X (for the definition of the cycle map see
the book of Milne [82, Chapter VI]). Let Ni(X) be the group CHi(X) modulo numerical
equivalence. To prove [82, Chapter VI, Theorem 11.7], it is shown that the degree i-part
of the kernel of the cycle map is contained in the kernel of

CHi(X)⊗Q` −→ Ni(X)⊗Q`.

As X is projective, Ni(X) is nonzero for any i = 0, . . . ,dimX . Therefore, H2i(Xét ,Z`(i))
is nonzero for any i = 0, . . . ,dimX . Finally, by the definition of H2i(Xét ,Z`(i)), there
exists an integer m such that

H2i(Xét ,Z/`mZ(i)) 6= 0

for any i = 0, . . . ,dimX .

Proposition 1.2.11. Let k a separably closed field of arbitrary characteristic. Let X
and Y be two positive dimensional regular schemes projective over k. Let us choose
an embedding Z := X ×Y ⊆ PN , and set U := PN \ Z. Then écd(U) ≥ 2N − 3. In
particular if dimZ ≥ 3, Z is not a set-theoretic complete intersection.

Proof. By Remark 1.2.10 there is an integer ` coprime with char(k) such that the mod-
ules

H2i(Xét ,Z/`Z(i)) 6= 0 and H2i(Yét ,Z/`Z(i)) 6= 0

for i = 0,1. Therefore, using Künneth formula for étale cohomology, [82, Chapter VI,
Corollary 8.13], one can easily show that H2(Zét ,Z/`Z(1)) cannot be isomorphic to
Z/`Z. However H2(PN

ét ,Z/`Z(1)) ∼= Z/`Z (see [82, p. 245]). Now Theorem 1.2.8
implies the conclusion.

Remark 1.2.12. With the notation of Proposition 1.2.11, if dimZ ≥ 3, then it is not
a set-theoretic complete intersection even if k is not separably closed. In fact, if it
were, Z×k Spec(ks) would be a set-theoretic complete intersection (ks stands for the
separable closure of k). This would contradict Proposition 1.2.11.
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1.2.3 Two consequences
In this subsection we draw two nice consequences of the investigations we made in the
first part of the section.

The first fact we want to present is a consequence of Theorem 1.2.4, and regards a
relationship between cohomological dimension of an ideal in a polynomial ring and the
depth of the relative quotient ring. Let us recall a result by Peskine and Szpiro, already
mentioned in the Preliminaries’ chapter.

Theorem 1.2.13. (Peskine and Szpiro) Let R be an n-dimensional regular local ring of
positive characteristic and a⊆ R an ideal. If depth(R/a)≥ t, then cd(R,a)≤ n− t.

The same assertion does not hold in characteristic 0. In the following example we
show how, if the characteristic is not positive, Theorem 1.2.13 can fail already with
t = 4.

Example 1.2.14. Let A := k[x,y,z], B := k[u,v] and T := A]B their Segre product.
Clearly T is a quotient of S := k[X0, . . . ,X5]. Let I be the kernel of the surjection
S→ T . Arguing like in Remark 1.2.7, T is Cohen-Macaulay. Since dimT = 4, we
have that depth(S/I) = depth(T ) = 4. If char(k) = 0, Proposition 1.2.6 implies that
cd(P5 \Proj(T )) ≥ 2. Using (A.6), we get cd(S, I) ≥ 3. Now we can easily carry this
example in the local case. Let m := (X0, . . . ,X5) denote the maximal irrelevant ideal of
S, and set R := Sm. Clearly R is a 6-dimensional regular local ring. If a := IR, we have
depth(R/a) = depth(S/I) = 4. Furthermore H i

a(R)∼= (H i
I(S))m for any i ∈N by (0.2).

Since H i
I(S) = 0 if and only if (H i

I(S))m = 0 (see Bruns and Herzog [13, Proposition
1.5.15 c)]),

cd(R,a) = cd(S, I)≥ 3 > 6−4.

When t = 2, Theorem 1.2.13 holds true also for regular local rings containing a
field of characteristic 0. This fact easily follows from [64, Theorem 2.9], as we are
going to show below.

Proposition 1.2.15. Let R be an n-dimensional regular local ring containing a field
and a⊆ R an ideal. If depth(R/a)≥ 2, then cd(R,a)≤ n−2.

Proof. Let A := ((R̂)sh)∧ the completion of the strict Henselization of R̂. Since A is
faithfully flat over R, we have cd(A,aA) = cd(R,a) using Lemma 0.2.2 (i). More-
over, since A/aA is faithfully flat over R/a, by Lemma 0.2.2 (i) and (0.8) we get
depth(A/aA)= depth(R/a)≥ 2. Therefore, by Proposition B.1.2, A/aA is 1-connected.
At this point the thesis follows by [64], see Theorem 1.1.16.

Notice that Theorem 1.2.13 and Proposition 1.2.15 can be stated also if R is a
polynomial ring over a field and a is a homogeneous ideal. In fact it would be enough
to localize at the maximal irrelevant ideal to reduce the problem to the local case. From
Theorem 1.2.4 we are able to settle another case, in characteristic 0, of Theorem 1.2.13.

Theorem 1.2.16. Let S := k[x1, . . . ,xn] be a polynomial ring over a field k. Let I ⊆ S
be a homogeneous prime ideal such that (S/I)℘ is a regular local ring for any homo-
geneous prime ideal ℘ 6= m := (x1, . . . ,xn). If depth(S/I)≥ 3, then cd(S, I)≤ n−3.

Proof. If the characteristic of k is positive, the statement easily follows from Theorem
1.2.13. Therefore we can assume char(k) = 0. Suppose by contradiction that cd(S, I)≥
n−2. Set X := Proj(S/I)⊆ Pn−1 = Proj(S). So we are supposing that cd(Pn−1 \X)≥
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n−3 by (A.6). By the assumptions, X is a regular scheme projective over k, therefore
Theorem 1.2.4 implies that h10(X) 6= 0 or that h01(X) 6= 0. But, with the notation of
Remark 1.2.1, we have that h10(X) = h10(XC) and h01(X) = h01(XC). Since Xh

C is a
compact Kähler manifold, it is a well known fact of Hodge theory that

H1(Xh
C,OXh

C
)∼= H0(Xh

C,ΩXh
C
)

(for instance see [2, Theorem 10.2.4]). Therefore Theorem A.2.1 implies h10(XC) =
h01(XC). So

h10(X) 6= 0.

By (A.4) we have H1(X ,OX ) = [H2
m(S/I)]0 ⊆ H2

m(S/I). But therefore (0.8) implies
depth(S/I)≤ 2, which is a contradiction.

Together with Theorem 1.2.13 and Proposition 1.2.15, Theorem 1.2.16 raises the
following question:

Question 1.2.17. Suppose that R is a regular local ring, and that a⊆ R is an ideal such
that depth(R/a)≥ 3. Is it true that cd(R,a)≤ dimR−3?

But Theorem 1.2.16, another supporting fact for a positive answer to Question
1.2.17 is provided by the following theorem.

Theorem 1.2.18. Let (R,m) be an n-dimensional regular local ring containing a field,
and let a be an ideal of R. If depth(R/a)≥ 3, then:

(i) cd(R,a)≤ n−2;
(ii) Supp(Hn−2

a (R))⊆ {m}.

Proof. By Proposition 1.2.15 we have cd(R,a)≤ n−2. So we have just to show that,
given a prime ideal ℘ different from m, we have (Hn−2

a (R))℘ = 0. Using (0.2) this is
equivalent to show that

Hn−2
aR℘

(R℘) = 0 ∀℘∈ Spec(R)\{m}. (1.14)

Let us denote by h the height of℘. Then h≤ n−1 because℘ 6= m. We can furthermore
suppose that h ≥ n−2, since otherwise dimR℘ < n−2 and Hn−2

aR℘
(R℘) would be zero

from Theorem 0.1.3. In such a case ℘ cannot be a minimal prime ideal of a because
depth(R/a)≥ 3 (for instance, see [80, Theorem 17.2]). Particularly, dimR℘/aR℘ > 0.

First let us suppose that h = n− 2. Notice that both R℘ and R̂℘ are (n− 2)-
dimensional regular local domains. Moreover,

dim R̂℘/aR̂℘ = dimR℘/aR℘ > 0.

Therefore Hartshorne-Lichtenbaum Theorem 0.3.2 implies that Hn−2
aR̂℘

(R̂℘) = 0. So, by

(0.4) we get (1.14).
So we can suppose h = n−1. A theorem of Ishebeck ([80, Theorem 17.1]) yields

Ext0R(R/℘,R/a) = Ext1R(R/℘,R/a) = 0.

This means that grade(℘,R/a) > 1 and so that H0
℘(R/a) = H1

℘(R/a) = 0 by (0.7).
Using (0.2) this implies

H0
℘R℘

(R℘/aR℘) = H1
℘R℘

(R℘/aR℘) = 0.
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This means that depth(R℘/aR℘) ≥ 2 by (0.8). Since R℘ is an (n− 1)-dimensional
regular local ring containing a field, Proposition 1.2.15 yields

Hn−2
aR℘

(R℘) = 0.

This concludes the proof.

The second fact we want to present in this subsection concerns a possible relation-
ship between ordinary and étale cohomological dimension. Such a kind of question
was already done by Hartshorne in [53, p. 185, Problem 4.1]. In [77, Conjecture, p.
147] Lyubeznik made a precise conjecture about this topic:

Conjecture 1.2.19. (Lyubeznik). If U is an n-dimensional scheme of finite type over
a separably closed field, then écd(U)≥ n+ cd(U).

Using Theorems 1.2.4 and 1.2.8, we are able to solve the conjecture in a special
case.

Theorem 1.2.20. Let X ⊆ Pn be a regular scheme projective over an algebraically
closed field K of characteristic 0, and U := Pn \X. Then

écd(U)≥ n+ cd(U)

Proof. Let k be the field obtained from Q adding the coefficients of a set of generators
of the defining ideal of X , like in Remark 1.2.1, and let k denote the algebraic closure
of k (recall that in characteristic 0 separable and algebraic closures are the same thing).
So we have

Q⊆ k⊆ C and Q⊆ k⊆K.

Therefore, from [82, Chapter VI, Corollary 4.3], we have

écd(U) = écd(Uk) = écd(UC).

Moreover, (1.6) yields cd(U) = cd(UC). So, from now on, we suppose K= C.
Set cd(U) := s, and define an integer ρs to be 0 (resp. 1) if n− s− 1 is odd

(resp. if n− s− 1 is even). By Theorem 1.2.4 and by equation (1.11), it follows that
βn−s−1(X) > ρs. Consider, for a prime number p, the Z/pZ-vector space

HomZ(H
Sing
i (Xh,Z),Z/pZ).

Since HSing
i (Xh,Z) is of rank bigger than ρs, the above Z/pZ-vector space has dimen-

sion greater than ρs. Therefore by the surjection given by Theorem A.3.2

Hn−s−1
Sing (Xh,Z/pZ)−→ HomZ(H

Sing
n−s−1(X

h,Z),Z/pZ),

we infer that dimZ/pZHn−s−1
Sing (Xh,Z/pZ) > ρs. Now a comparison theorem due to

Grothendieck (see Theorem A.2.2) yields

dimZ/pZHn−s−1(Xét ,Z/pZ) > ρs.

Since dimZ/pZ(Hn−s−1(Pn
ét ,Z/pZ)) = ρs by [82, p. 245], Theorem 1.2.8 implies that

écd(U)≥ 2n− (n− s) = n+ s.
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Theorem 1.2.20 might look like a very special case of Conjecture 1.2.19. However
the case when U is the complement of a projective variety in a projective space is a very
important case. In fact the truth of Conjecture 1.2.19 would ensure that to bound the
homogeneous arithmetical rank from below it would be enough to work just with the
étale site, and not with the Zariski one. Since usually one is interested in computing the
number of (set-theoretically) defining equations of a projective scheme in the projective
space, in some sense the most interesting case of Conjecture 1.2.19 is when U = Pn \X
for some projective scheme X . From this point of view, one can look at Theorem
1.2.20 in the following way: In order to give a lower bound for the minimal number
of hypersurfaces of Pn

C cutting out set-theoretically a regular scheme projective over
a field of characteristic 0, say X ⊆ Pn, it is better to compute écd(Pn \X) rather than
cd(Pn \X).

Recently Lyubeznik, who informed us by a personal communication, found a coun-
terexample to Conjecture 1.2.19 when the characteristic of the base field is positive: His
counterexample, not yet published, consists in a scheme U which is the complement in
Pn of a reducible projective scheme.

1.2.4 Translation into a more algebraic language
We want to end this chapter translating Theorem 1.2.4, for the convenience of some
readers, in a more algebraic language. So, we leave the geometric notation, setting
S := k[x1, . . . ,xn] the polynomial ring in n variables over a field k of characteristic 0.

Theorem 1.2.21. Let I ⊆ S = k[x1, . . . ,xn] be a nonzero homogeneous ideal such that
A℘ is a regular ring for any homogeneous prime ideal ℘ of A := S/I different from
the irrelevant maximal ideal n := A+. If r is an integer such that ht(I)≤ r≤ n−1, then
the following are equivalent:

(i) Local cohomology with support in I vanish beyond r, that is cd(S, I)≤ r.
(ii) Denoting by ΩA/k the module of Kähler differentials of A over k and by Ω j its

jth exterior power Λ jΩA/k,

dimk(H i
n(Ω j)0) =


0 if i≥ 2, i 6= j +1, i+ j < n− r
1 if i≥ 2, i = j +1, i+ j < n− r
dimk(H0

n(Ω j)0)−1 if i = 1, j 6= 0, j < n− r−1
dimk(H0

n(A)0) if i = 1, j = 0, r < n−1

(iii) Viewing A and Ω j as S-modules,

dimk(ExtiS(Ω
j,S)−n) =


0 if i≤ n−2, i 6= n− j−1, i− j > r
1 if i≤ n−2, i = n− j−1, i− j > r
dimk(ExtnS(Ω

j,S)−n)−1 if i = n−1, j 6= 0, j < n− r−1
dimk(ExtnS(A,S)−n) if i = n−1, j = 0,r < n−1

Proof. Set X := V+(I)⊆ Pn−1 and U := Pn−1 \X . Then cd(S, I)≤ r ⇐⇒ cd(U) < r
by (A.6). By the assumptions X is a regular scheme, therefore we can use the charac-
terization of Theorem 1.2.4 as follows: First of all notice that Ω

q
X/k
∼= Ω̃q. So, (A.4)

implies:
hpq(X) = dimk(H

p+1
n (Ωq)0) ∀ p≥ 1.

Moreover, by (A.3), we have:

h0q(X) = dimk(H1
n(Ωq)0)−dimk([H0

n(Ωq)]0)+1.

Thus, using Theorem 1.2.4 we get the equivalence between (i) and (ii). The equivalence
between (ii) and (iii) follows by local duality, see Theorem 0.4.6. In fact, viewing
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Ωq both as A- and S-modules, point (ii) of Theorem 0.2.2 guarantees that H p
n(Ωq) ∼=

H p
m(Ωq), where m is the irrelevant maximal ideal of S. Therefore Theorem 0.4.6 yields

dimk(H
p
n(Ωq)0) = dimk(Extn−p

S (Ωq,S)−n).

At first blush, conditions (ii) and (iii) of Theorem 1.2.21 may seem even more
difficult than understanding directly whether H i

I(S) = 0 for each i > r. However, one
should focus on the fact that the modules H i

n(Ω j) depend only on the ring A, and not by
the chosen presentation as a quotient of a polynomial ring. Furthermore, the S-modules
ExtiS(Ω

j,S), being finitely generated, are much more wieldy with respect to the local
cohomology modules H i

I(S).
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Chapter 2

Properties preserved under
Gröbner deformations and
arithmetical rank

This chapter is devoted to some applications of the results of Chapter 1. Essentially,
it is structureted in two different parts, which we are going to describe. Most of the
results appearing in this chapter are borrowed from our works [103, 104].

In Section 2.1, we study the connectedness behavior under Gröbner deformations.
That is, if I is an ideal of the polynomial ring S := k[x1, . . . ,xn] and ≺ is a monomial
order on S, we study whether the ring S/ in≺(I) inherits some connectedness properties
of S/I. The answer is yes, in fact we prove that, if r is an integer less than dimS/I, then
S/ in≺(I) is r-connected whenever S/I is r-connected (Corollary 2.1.3). Actually, more
generally, we prove the analog version for initial objects with respect to weights (The-
orem 2.1.2). This fact generalizes the result of Kalkbrener and Sturmfels [67, Theorem
1], which says that, if I is a geometrically prime ideal, in the sense that it is prime and it
remains prime once we tensor with the algebraic closure of k, then the simplicial com-
plex ∆(

√
in≺(I)) is pure and strongly connected (Theorem 2.1.4). As a consequence

they settled a fact conjectured by Kredel and Weispfenning [68]. However, our proof
is different from the one of Kalkbrener and Sturmfels: In fact, it leads to their result
just assuming the primeness of I, and not the geometrically primeness. If anything,
the proof of Theorem 2.1.2 is inspired to the approach used in the lectures of Huneke
and Taylor [65] to show the theorem of Kalkbrener and Sturmfels. Another immediate
consequence of Corollary 2.1.3 is that, if I is homogeneous and V+(I) is a positive di-
mensional connected projective scheme, then V+(in≺(I)) is connected too (Corollary
2.1.5). Eventually, we prove an even more general version of Corollary 2.1.3, replacing
S with any k-subalgebra A⊆ S such that in≺(A) is finitely generated (Corollary 2.1.7).

Another nice consequence of Corollary 2.1.3 is the solution of the conjecture of
Eisenbud and Goto, formulated in their paper [37], for a new class of ideals. Namely,
we prove the conjecture for ideals I which have an initial ideal with no embedded
primes (Theorem 2.1.11). In particular, we show that the Eisenbud-Goto conjecture is
true for ideals defining ASL, see Corollary 2.1.12.

In Subsection 2.1.3, we noticed that Corollary 2.1.3 also implies that the simpli-
cial complex ∆ := ∆(

√
in≺(I)) is pure and strongly connected whenever I is a ho-
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mogeneous ideal such that S/I is Cohen-Macaulay (Theorem 2.1.13). At first blush,
the reader might ask whether k[∆] is even Cohen-Macaulay whenever S/I is Cohen-
Macaulay. However, Conca showed, using the computer algebra system Cocoa [23],
that this is not the case (see Example 2.1.14). A more reasonable question could be the
following:
Question 2.1.16 If S/I is Cohen-Macaulay and in≺(I) is square-free, is S/ in≺(I)
Cohen-Macaulay as well as S/I?

Maybe the answer to this question is negative, and the reason why we cannot find a
counterexample to it is that the property of in≺(I) being square-free is very rare. How-
ever, in some cases we can give an affirmative answer to the above question, namely:

(i) If dim(S/I)≤ 2 (Proposition 2.1.17).
(ii) If S/I is Cohen-Macaulay with minimal multiplicity (Proposition 2.1.18).

(iii) For certain ASL (Proposition 2.1.19).

Section 2.2 is dedicated to the study of the arithmetical rank of certain algebraic va-
rieties. The beauty of finding the number of defining equations of a variety is expressed
by Lyubeznik in [75] as follows:

Part of what makes the problem about the number of defining equations so inter-
esting is that it can be very easily stated, yet a solution, in those rare cases when it is
known, usually is highly nontrivial and involves a fascinating interplay of Algebra and
Geometry.

The varieties whose we study the number of defining equations are certain Segre
products of two projective varieties. In Subsection 2.2.2 we prove that, if X and Y
are two smooth projective schemes over a field k, then, to define set-theoretically the
Segre product X ×Y embedded in some projective space PN , are needed at least N−2
equations (Proposition 2.2.2). Furthermore, if X is a curve of positive genus, then
the needed equations are at least N− 1 (Proposition 2.2.3). Both these results come
from cohomological considerations, and they are consequences of the work done in
Chapter 1. On the other hand, the celebrated theorem of Eisenbud and Evans [36,
Theorem 2] tells us that, in any case, N homogeneous equations are enough to define
set-theoretically any projective scheme in PN . Unfortunately, to decide, once fixed X
and Y , whether the minimum number of equations is N, N−1 or N−2, is a very hard
problem. We will solve this issue in some special cases. Let us list some works that
already exist in this direction.

(i) In their paper [14], Bruns and Schwänzl studied the number of defining equations
of a determinantal variety. In particular they proved that the Segre product

Pn×Pm ⊆ PN where N := nm+n+m

can be defined set-theoretically by N− 2 homogeneous equations and not less.
In particular, it is a set-theoretic complete intersection if and only if n = m = 1.

(ii) In their work [96], Singh and Walther gave a solution in the case of

E×P1 ⊆ P5,

where E is a smooth elliptic plane curve: The authors proved that the arithmetical
rank of this Segre product is 4. Later, in [98], Song proved that the arithmetical
rank of C×P1, where C ⊆ P2 is a Fermat curve (i.e. a curve defined by the
equation xd

0 + xd
1 + xd

2), is 4 provided that d ≥ 3. In particular both E×P1 and
C×P1 are not set-theoretic complete intersections.



2.1 Gröbner deformations 25

In light of these results (especially we have been inspired to [96]), it is natural to study
the following problem.

Let n,m,d be natural numbers such that n ≥ 2 and m,d ≥ 1, and let X ⊆ Pn be
a smooth hypersurface of degree d. Consider the Segre product Z := X ×Pm ⊆ PN ,
where N := nm + n + m. What can we say about the number of defining equations of
Z?

Notice that the arithmetical rank of Z can depend, at least a priori, by invariant
different from n,m,d: In fact we will need other conditions on X . However, for certain
n,m,d, we can provide some answers to this question.

In the case n = 2 and m = 1, we introduce, for every d, a locus of special smooth
projective plane curves of degree d, that we will denote by Vd (see Remark 2.2.13):
This locus consists in those smooth projective curves X of degree d which have a d-
flex, i.e. a point p at which the multiplicity intersection of X and the tangent line in p is
equal to d. Using methods coming from “ASL theory” (see De Concini, Eisenbud and
Procesi [29] or Bruns and Vetter [15]), we prove that for such a curve X the arithmetical
rank of the Segre product X×P1 ⊆ P5 is 4, provided that d ≥ 3 (see Theorem 2.2.7). It
is easy to show that every smooth elliptic curve belongs to V3 and that every Fermat’s
curve of degree d belongs to Vd , so we recover the results of [96] and of [98] (see
Corollaries 2.2.9 and 2.2.11). However, the equations that we will find are different
from the ones found in those papers, and our result is characteristic free. Moreover, a
result of Casnati and Del Centina [22] shows that the codimension of Vd in the locus of
all the smooth projective plane curves of degree d is d−3, provided that d ≥ 3 (Remark
2.2.13). So we compute the arithmetical rank of X ×P1 ⊆ P5 for a lot of new plane
curves X .

For a general n, we can prove that if X ⊆ Pn is a general smooth hypersurface of
degree not bigger than 2n−1, then the arithmetical rank of X ×P1 ⊆ P2n+1 is at most
2n (Corollary 2.2.15). To establish this we need a higher-dimensional version of Vd
and Lemma 2.2.14, suggested us by Ciliberto. This result is somehow in the direction
of the open question whether any connected projective scheme of positive dimension
in PN can be defined set-theoretically by N−1 equations.

With some similar tools we can show that, if F := xd
n + ∑

n−3
i=0 xiGi(x0, . . . ,xn) and

X := V+(F) is smooth, then the arithmetical rank of X ×P1 ⊆ P2n+1 is exactly 2n−1
(Theorem 2.2.16).

Eventually, using techniques similar to those of [96], we are able to show the fol-
lowing: The arithmetical rank of the Segre product X ×Pm ⊆ P3m+2, where X is a
smooth conic of P2, is equal to 3m, provided that char(k) 6= 2 (Theorem 2.2.18). In
particular, X×Pm is a set-theoretic complete intersection if and only if m = 1.

2.1 Gröbner deformations

2.1.1 Connectedness preserves under Gröbner deformations
The main result of this subsection is Theorem 2.1.2, which will launch the results of
the two next subsections.

Lemma 2.1.1. Let I be an ideal of S and ω ∈Nn
≥1. For all r ∈ Z, if S/I is r-connected,

then S[t]/homω(I) is (r +1)-connected.

Proof. Let ℘1, . . . ,℘m be the minimal prime ideals of I. Then, by Lemma C.3.2 (v),
it follows that homω(℘1), . . . ,homω(℘m) are the minimal prime ideals of homω(I).
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Suppose by contradiction that S[t]/homω(I) is not (r+1)-connected. Then, by Lemma
B.0.5 (i), we can choose A,B ⊆ {1, . . . ,m} disjoint, such that A∪B = {1, . . . ,m} and
such that, setting J := ∩i∈A homω(℘i) and K := ∩ j∈B homω(℘j),

dimS[t]/(J +K )≤ r.

Set J := ∩i∈A℘i and K := ∩ j∈B℘j. Lemma C.3.2 (i) implies that homω(J) = J and
homω(K) = K . Obviously, J +K ⊆ homω(J + K). So, using Lemma C.3.2 (vi),
we get

r ≥ dimS[t]/(J +K )≥ dimS[t]/homω(J +K) = dimS/(J +K)+1.

At this point, Lemma B.0.5 (i) implies that S/I is not r-connected, which is a contra-
diction.

Theorem 2.1.2. Let I be an ideal of S, ω ∈ Nn
≥1 and r an integer less than dimS/I. If

S/I is r-connected, then S/ inω(I) is r-connected.

Proof. Note that S[t]/homω(I) is a graded ring with k as degree 0-part (considering
the ω-graduation). Moreover, (t̄) := (homω(I)+ (t))/homω(I) ⊆ S[t]/homω(I) is a
homogeneous ideal of S[t]/homω(I). The ring S[t]/homω(I) is (r + 1)-connected by
Lemma 2.1.1, and

cd(S[t]/homω(I),(t̄))≤ 1 = (r +1)− r

by (0.10). So Theorem 1.1.11 yields that S[t]/(homω(I)+(t)) is r-connected. Eventu-
ally, we get the conclusion, because Proposition C.2.2 says that

S[t]/(homω(I)+(t))∼= S/ inω(I).

Using Theorem C.2.3, we immediately get the following Corollary.

Corollary 2.1.3. Let I be an ideal of S, ≺ a monomial order on S and r an integer less
than dimS/I. If S/I is r-connected, then S/ in≺(I) is r-connected.

Given a monomial order ≺ on S, for any ideal I let ∆≺(I) denote the simplicial
complex ∆(

√
in≺(I)) on [n] (see E). Corollary 2.1.3 gets immediately [67, Theorem

1].

Theorem 2.1.4. (Kalkbrener and Sturmfels). Let ≺ a monomial order on S. If I is a
prime ideal, then ∆≺(I) is pure of dimension dimS/I−1 and strongly connected.

Proof. Since I is prime, S/I is d-connected, where d := dimS/I. So S/I is (d −
1)-connected, and Corollary 2.1.3 implies that S/ in≺(I) is (d − 1)-connected. So
S/
√

in≺(I) is connected in codimension 1, which is equivalent to ∆≺(I) being strongly
connected by Remark E.0.3.

The following is another nice consequence of Theorem 2.1.2.

Corollary 2.1.5. Let I be a homogeneous ideal of S and ω ∈ Nn
≥1. If V+(I)⊆ Pn−1 is

a positive dimensional connected projective scheme, then V+(inω(I)) ⊆ Pn−1 is con-
nected as well.
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Proof. We recall that the fact that V+(I) is connected is equivalent to V+(I) being 0-
connected. Moreover, Remark B.0.4, since V+(I) is homeomorphic to Proj(S/I), yields
that S/I is 1-connected. Because V+(I) is positive dimensional, we have dimS/I ≥ 2.
So, Theorem 2.1.2 implies that S/ inω(I) is 1-connected. At this point, we can go
backwards getting the connectedness of V+(inω(I)).

Remark 2.1.6. Once fixed an ideal I ⊆ S, an integer r < dimS/I =: d and a monomial
order ≺, Corollary 2.1.3 yields

S/I r-connected =⇒ S/ in≺(I) r-connected.

In general, the reverse of such an implication does not hold true. To see this, let us recall
that there exists a nonempty Zariski open set U ⊆ GL(V ), where V is a k-vector space
of dimension n, and a Borel-fixed ideal J ⊆ S, i.e an ideal fixed under the action of the
subgroup of all upper triangular matrices B+(V ) ⊆ GL(V ), such that in≺(gI) = J for
all g ∈U . The ideal J is called the generic initial ideal of I, for instance see the book of
Eisenbud [34, Theorem 15.18, Theorem 15.20]. It is known that, since J is Borel-fixed,√

J = (x1, . . . ,xc) where c = ht(I), see [34, Corollary 15.25]). Hence S/J = S/ in≺(gI)
(for g ∈U) is d-connected. On the other hand, for all g ∈ GL(V ), S/gI is r-connected
if and only if S/I is r-connected, and clearly, for any r≥ 1, we could have started from
a homogeneous ideal not r-connected.

The last corollary of Theorem 2.1.2 we present in this subsection actually strength-
ens Theorem 2.1.2.

Corollary 2.1.7. Let A be a k-subalgebra of S and ω ∈ Nn
≥1 be such that inω(A) is

finitely generated. If J is an ideal of A and r is an integer less than dimA/J, then
inω(A)/ inω(J) is r-connected whenever A/J is r-connected.

Proof. We can reduce the situation to Theorem 2.1.2 using the result [20, Lemma 2.2]
of the notes of Bruns and Conca.

2.1.2 The Eisenbud-Goto conjecture
Theorem 2.1.2 gives also a new class of ideals for which the Eisenbud-Goto conjecture
holds true. First of all we recall what the conjecture claims. Let I be a homogeneous
ideal of S. The Hilbert series of S/I is:

HSS/I(z) := ∑
k∈N

HFS/I(k)z
d ∈ N[[z]],

where HF is the Hilbert function, see 0.4.3. It is well known that

HSS/I(z) =
hS/I(z)
(1− z)d

where d is the dimension of S/I and hS/I ∈ Z[z], usually called the h-vector of S/I, is
such that hS/I(1) 6= 0 (for instance see the book of Bruns and Herzog [13, Corollary
4.1.8]). The multiplicity of S/I is:

e(S/I) = hS/I(1).

Eisenbud and Goto, in [37], conjectured an inequality involving the multiplicity, the
Castelnuovo-Mumford regularity and the height of a homogeneous ideal, namely:
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Conjecture 2.1.8. (Eisenbud-Goto). Let I ⊆ S be a homogeneous radical ideal con-
tained in m2, where m := (x1, . . . ,xn). If S/I is connected in codimension 1, then

reg(S/I)≤ e(S/I)−ht(I).

Remark 2.1.9. Conjecture 2.1.8 can be easily shown when S/I is Cohen-Macaulay.
For an account of other known cases see the book of Eisenbud [35].

We recall that, for a monomial ideal I ⊆ S, we denote Ĩ ⊆ S̃ the polarization of I
(see E.3).

Lemma 2.1.10. Let I be a monomial ideal of S with no embedded prime ideals. Then,
fixed c > 0, S/I is connected in codimension c if and only if S̃/Ĩ is connected in codi-
mension c.

Proof. Since I has not embedded prime ideals, it has a unique primary decomposition,
which is of the form:

I =
⋂

F∈F (∆)

IF ,

where ∆ = ∆(
√

I) and for any facet F ∈F (∆), the ideal IF is a primary monomial ideal
with

√
IF =℘F = (xi : i ∈ F). Because polarization commutes with intersections, see

(E.6), we have that:
Ĩ =

⋂
F∈F (∆)

ĨF ⊆ S̃.

Being each IF a primary monomial ideal, it turns out that S/IF is Cohen-Macaulay
for any F ∈F (∆). Therefore S̃/ĨF is Cohen-Macaulay for all F ∈F (∆) by Theorem
E.3.4. In particular, for all facets F ∈F (∆), the ring S̃/ĨF is connected in codimension
1 by Proposition B.1.2. So, using Lemma B.0.7, for any two minimal prime ideals
℘ and ℘′ of ĨF , there is a sequence ℘ = ℘0, . . . ,℘s = ℘′ of minimal prime ideals of
ĨF such that ht(℘i +℘i−1) ≤ ht(ĨF) + 1 = ht(IF) + 1 = |F |+ 1 for any i = 1, . . . ,s.
Furthermore, one can easily show that the prime ideal

℘̃F = (xi1,1,xi2,1, . . . ,xi|F |,1)⊆ S̃,

where F = {i1, . . . , i|F |}, is a minimal prime ideal of ĨF , and therefore of Ĩ. Set h :=
ht(I). Using Lemma B.0.5 (ii) and the fact that c > 0, one can easily show:

h≤ |F |< h+ c.

Suppose that S/I is connected in codimension c. Let us consider two minimal prime
ideals℘and℘′ of Ĩ. To show that S̃/Ĩ is connected in codimension c, by Lemma B.0.7
we have to exhibit a sequence ℘=℘0, . . . ,℘s =℘′ of minimal prime ideals of Ĩ such
that ht(℘i +℘i−1)≤ h+c for any i = 1, . . . ,s. Assume that ℘ is a minimal prime of ĨF
and that ℘′ is a minimal prime of ĨG, where F,G ∈F (∆). First of all, from what said
above, there are two sequences ℘=℘0, . . . ,℘t =℘̃F and ℘′ =℘′0, . . . ,℘

′
q =℘̃G such

that℘i ∈Min(ĨF), ℘′j ∈Min(ĨG), ht(℘i +℘i−1)≤ |F |+1≤ h+c and ht(℘′j +℘′j−1)≤
|G|+1≤ h+c. Then, since S/I is connected in codimension c, there exists a sequence
F = F0, . . . ,Fs = G of facets of ∆ such that ht(℘Fi +℘Fi−1) ≤ h + c. Eventually, the
desired sequence connecting ℘ with ℘′ is:

℘=℘0,℘1, . . . ,℘t =℘̃F =℘̃F0 ,℘̃F1 , . . . ,℘̃Fs =℘̃G =℘
′
q,℘

′
q−1, . . . ,℘

′
0 =℘

′.

For the converse, the same argument works backwards.
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Theorem 2.1.11. Let I ⊆ S be a homogeneous radical ideal contained in m2, and
suppose that S/I is connected in codimension 1. If there exists a monomial order ≺ on
S such that in≺(I) has no embedded prime ideals, then

reg(S/I)≤ e(S/I)−ht(I).

Proof. Let≺ be a monomial order such that J := in≺(I) has no embedded prime ideals.
The following are standard facts: reg(S/I) ≤ reg(S/J) ([20, Corollary 3.5]), ht(I) =
ht(J) ([20, Theorem 3.9 (a)]) and e(S/I) = e(S/J) ([20, Proposition 1.4 (e)]). Also,
obviously we have that J ⊆m2 as well as I. At last, Corollary 2.1.3 implies that S/J is
connected in codimension 1.

Because S/J has no embedded prime ideals, Lemma 2.1.10 implies that S̃/J̃ is con-
nected in codimension 1. From Theorem E.3.4, we have reg(S/J) = reg(S̃/J̃) (recall
the interpretation of the Castelnuovo-Mumford regularity in terms of the graded Betti
numbers (0.13)). Moreover, using Remark E.3.3, we get ht(J) = ht(J̃) and e(S/J) =
e(S̃/J̃). Besides, obviously J̃ ⊆M2, where by M we denote the maximal irrelevant
ideal of S̃. Nevertheless, Eisenbud-Goto conjecture has been showed for square-free
monomial ideals by Terai in [102, Theorem 0.2], so that:

reg(S̃/J̃)≤ e(S̃/J̃)−ht(J̃).

Since, from what said above, reg(S/I) ≤ reg(S̃/J̃), ht(I) = ht(J̃) and e(S/I) =
e(S̃/J̃), we eventually get the conclusion.

In view of Theorem 2.1.11, it would be interesting to discover classes of ideals for
which there exists a monomial order such that the initial ideal with respect to it has no
embedded prime ideals. Actually, we already have for free a class like that: Namely,
the homogeneous ideals defining an Algebra with Straightening Laws (ASL for short)
over k. For the convenience of the reader we give the definition here: Let @ be a partial
order on [n], and let us denote by Π the poset ([n],@). To Π is associated a Stanley-
Reisner ideal, namely the one of the order complex ∆(Π) whose faces are the chains of
Π:

IΠ := I∆(Π) = (xix j : i and j are incomparable elements of Π).

Given a homogeneous ideal I ⊆ S, the standard graded algebra R := S/I is called a ASL
on Π over k if:

(i) The residue classes of the monomials not in IΠ are linearly independent in R.
(ii) For every i, j ∈Π such that i and j are incomparable the ideal I contains a poly-

nomial of the form
xix j−∑λxhxk

with λ ∈ k, h,k ∈Π, hv k, h @ i and h @ j. The above sum is allowed to run on
the empty-set.

The polynomials in (ii) give a way of rewriting in R the product of two incomparable
elements. These relations are called the straightening relations. Let ≺ be a degrevlex
monomial order on a linear extension of @. Then the polynomials in (ii) form a Gröbner
basis of I and in≺(I) = IΠ. Particularly, being square-free, in≺(I) has no embedded
prime ideals. So, we have the following:

Corollary 2.1.12. Let I ⊆ S be a homogeneous ideal defining an ASL. Then, the
Eisenbud-Goto conjecture 2.1.8 holds true for I. That is, if S/I is connected in codi-
mension 1, then

reg(S/I)≤ e(S/I)−ht(I).
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Proof. Let ≺ be a degrevlex monomial order on a linear extension of the partial order
given by the poset underlining the structure of ASL of S/I. Since in≺(I) is square-free,
Theorem 2.1.11 implies the thesis.

2.1.3 The initial ideal of a Cohen-Macaulay ideal
Combining Theorem 2.1.2 with Proposition B.1.2 we immediately get the following
nice consequence:

Theorem 2.1.13. Let I be a homogeneous ideal of S, and ω ∈ Nn
≥1. If depth(S/I) ≥

r + 1, then S/ inω(ω) is r-connected. In particular, if S/I is Cohen-Macaulay, then
S/ inω(I) is connected in codimension 1.

At first blush, the reader might ask whether Theorem 2.1.13 could be strengthened
saying that “S/

√
inω(I) is Cohen-Macaulay whenever S/I is Cohen-Macaulay”. How-

ever, this is far to be true, as we are going to show in the following example due to
Conca.

Example 2.1.14. Consider the graded ideal:

I = (x1x5 + x2x6 + x2
4, x1x4 + x2

3− x4x5, x2
1 + x1x2 + x2x5)⊆ C[x1, . . . ,x6] = S.

Using some computer algebra system, for instance Cocoa [23], one can verify that I
is a prime ideal which is a complete intersection of height 3. In particular, S/I is a
Cohen-Macaulay domain of dimension 3. Moreover, S/I is normal. At last, the radical
of the initial ideal of I with respect to the lexicographical monomial order is:√

in(I) = (x1,x2,x3)∩ (x1,x3,x6)∩ (x1,x2,x5)∩ (x1,x4,x5).

In accord with Theorem 2.1.13, R := S/
√

in(I) is connected in codimension 1. How-
ever, R is not Cohen-Macaulay. Were it, R℘ would be Cohen-Macaulay, where ℘ is the
homomorphic image of the prime ideal (x1,x3,x4,x5,x6). In particular, R℘ would be 1-
connected by Propsition B.1.2. The minimal prime ideals of R℘ are the homomorphic
image of those of R which are contained in ℘, namely (x1,x3,x6) and (x1,x4,x5). Since
their sum is ℘, the ring R℘ cannot be 1-connected.

This example shows also as the cohomological dimension of an ideal, in general,
cannot be compared with the one of its initial ideal. In fact cd(S, I) = 3 because I is
a complete intersection of height 3 (see (0.10)). But cd(S, in(I)) = projdim(R) > 3,
where the equality follows by a result of Lyubeznik in [73] (it is reported in Theorem
0.3.4). On the other hand, examples of ideals J ⊆ S such that cd(S/J) > cd(S/ in(J))
can be easily produced following the guideline of Remark 2.1.6.

In Example 2.1.14, the dimension of S/I is 3. Moreover, starting from it, we can
construct other similar example for any dimension greater than or equal to 3. Oppo-
sitely, such an example cannot exist in the dimension 2-case by the following result.

Proposition 2.1.15. Let I ⊆ S be a homogeneous ideal such that V+(I) ⊆ Pn−1 is a
positive dimensional connected projective scheme and ≺ a monomial order. Then

depth(S/
√

in≺(I))≥ 2.

In particular, depth(S/
√

in≺(I))≥ 2 whenever depth(S/I)≥ 2.
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Proof. Corollary 2.1.5 implies that V+(
√

in≺(I)) ⊆ Pn−1 is connected. As one can
easily check, this is the case if and only if the associated simplicial complex ∆ :=
∆(
√

in≺(I)) is connected. In turn, it is well known that this is the case if and only if
the depth of k[∆] = S/

√
in≺(I) is at least 2. The last part of the statement follows at

once by Proposition B.1.2.

As we already said, the higher dimensional analog of the last part of the statement
of Proposition 2.1.15 is not true. However, one can notice that the ideal of Example
2.1.14 is such that its initial ideal is not square-free. Actually, even if Conca attempted
to find such an example with a square-free initial ideal, he could not find it. This facts
lead him to formulate, in one of our informal discussions, the following question:
Question 2.1.16. Let I ⊆ S be a homogeneous ideal and suppose that ≺ is a monomial
order on S such that in≺(I) is square-free. Is depth(S/I) = depth(S/ in≺(I))?

Actually, we do not know whether to expect an affirmative answer to Question
2.1.16 or a negative one. In any case, we think it could be interesting to inquire into it.
In the rest of this subsection, we are going to show some situations in which Ques-
tion 2.1.16 has an affirmative answer. First of all, we inform the reader that it is
well known that in general, even without the assumption that in≺(I) is square-free,
depth(S/I) ≥ depth(S/ in≺(I)) (for example see [20, Corollary 3.5]). So, the inter-
esting part of Question 2.1.16 is whether, under the constraining assumption about the
square-freeness of in≺(I), the inequality depth(S/I)≤ depth(S/ in≺(I)) holds true. The
first result we present in this direction is that Question 2.1.16 has an affirmative answer
in low dimension.

Proposition 2.1.17. Let I ⊆ S be a homogeneous ideal and suppose that ≺ is a mono-
mial order on S such that in≺(I) is square-free. If dimS/I ≤ 2, then

depth(S/I) = depth(S/ in≺(I)).

Proof. Since depth(S/ in≺(I)) ≥ 1, being in≺(I) square-free, the only nontrivial case
is when depth(S/I) = 2. In this case Proposition 2.1.15 supplies the conclusion.

For the next result, we need to recall a definition: Let us suppose that I ⊆ S is a
homogeneous ideal, contained in m2, such that S/I is Cohen-Macaulay d-dimensional
ring. The h-vector of S/I will have the form:

hS/I(z) = 1+(n−d)z+h2z2 + . . .+hszs,

where the Cohen-Macaulayness of S/I forces all the hi’s to be natural numbers. There-
fore, we have that

e(S/I) = hS/I(1)≥ n−d +1.

The ring S/I is said Cohen-Macaulay with minimal multiplicity when e(S/I) is pre-
cisely n−d +1. We have the following:

Proposition 2.1.18. Let I ⊆ S be a homogeneous ideal contained in m2, and suppose
that ≺ is a monomial order on S such that in≺(I) is square-free. If S/I is Cohen-
Macaulay with minimal multiplicity, then S/ in≺(I) is Cohen-Macaulay too.

Proof. Obviously, in≺(I) ⊆ m2. Furthermore, e(S/ in≺(I)) = e(S/I) (for example see
[20, Proposition 1.4 (e)]). So, using Theorem 2.1.13, we have that S/ in≺(I) is a d-
dimensional Stanley-Reisner ring (where d = dimS/I) connected in codimension 1
such that e(S/ in≺(I)) = n−d +1. Then, a result of our paper with Nam [85, Proposi-
tion 4.1] implies that S/ in≺(I) is Cohen-Macaulay with minimal multiplicity.
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A particular case of Question 2.1.16 is whether depth(S/I) = depth(S/IΠ), where
S/I is a homogeneous ASL on a poset Π over k. The result below provides an af-
firmative answer to this question in a particular case. First, we need to recall that, if
Π = ([n],@) is a poset, then the rank of an element i ∈Π, is the maximum k such that
there is a chain

i = ik A ik−1 A . . . A i1, i j ∈Π.

Proposition 2.1.19. Let I ⊆ S be a homogeneous ideal such that S/I is an ASL on a
poset Π over k. Assume that, for each k ∈ [n], there are at most two elements of Π of
rank k. Then S/I is Cohen-Macaulay if and only if S/IΠ is Cohen-Macaulay.

Proof. The only implication to show is that if S/I is Cohen-Macaulay, then S/IΠ is
Cohen-Macaulay. Since IΠ is the initial ideal of I with respect to a degrevlex mono-
mial order on a linear extension on [n] of the poset order, Theorem 2.1.13 yields that
S/IΠ is connected in codimension 1. At this point, the result got by the author and
Constantinescu [26, Theorem 2.3] implies that, because the peculiarity of Π, S/IΠ is
Cohen-Macaulay.

2.2 The defining equations of certain varieties
As we already said in the introduction, in this section, making use of results from the
second part of Chapter 1, we will estimate the number of equations needed to define
certain projective schemes.

2.2.1 Notation and first remarks
We want to fix some notation that we will use throughout this section. By k we denote
an algebraically closed field of arbitrary characteristic. We recall that the Segre product
of two finitely generated graded k-algebra A and B is defined as

A]B :=
⊕
k∈N

Ak⊗k Bk.

This is a graded k-algebra and it is clearly a direct summand of the tensor product A⊗k
B. The name “Segre product”, as one can expect, comes from Algebraic Geometry.
In the rest of this chapter, we leave the setting of the last section: In fact, instead of
working with the polynomial ring in n variables S = k[x1, . . . ,xn], we will work with
the polynomial ring in n+1 variables

R := k[x0, . . . ,xn].

This is due to the fact that in this section we will often have a geometric point of view:
Thus, just for the sake of notation, we prefer to work with Pn rather than Pn−1. We also
need another polynomial ring: Fixed a positive integer m, let

T := k[y0, . . . ,ym]

denote the polynomial ring in m + 1 variables over k. Let X ⊆ Pn and Y ⊆ Pm be two
projective schemes defined respectively by the standard graded ideals a⊆ R and b⊆ T .
Set A := R/a and B := T/b. Then, we have the isomorphism

X×Y ∼= Proj(A]B),
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where X×Y is the Segre product of X and Y . Moreover, if

Q := k[xiy j : i = 0, . . . ,n; j = 0, . . . ,m]⊆ k[x0, . . . ,xn,y0, . . . ,ym] = R⊗k T,

then A]B∼= Q/I with I ⊆Q the homogeneous ideal we are going to describe: If a =
( f1, . . . , fr) and b = (g1, . . . ,gs) with deg fi = di and degg j = e j, then I is generated
by the following polynomials:

(i) M · fi where M varies among the monomials in Tdi for every i = 1, . . . ,r.
(ii) g j ·N where N varies among the monomial in Re j for every j = 1, . . . ,s.

We want to present A]B as a quotient of a polynomial ring. So, consider the polynomial
ring in (n+1)(m+1) variables over k:

P := k[zi j : i = 0, . . . ,n : j = 0, . . . ,m].

Moreover, consider the k-algebra homomorphism

φ : P
ψ−→ Q π−→ A]B,

where ψ(zi j) := xiy j and π is just the projection. Therefore, we are interested into
describe I := Ker(φ). In fact, I is the defining ideal of X×Y , since we have:

X×Y ∼= Proj(P/I)⊆ PN , N := nm+n+m.

Let us describe a system of generators of I. For any i = 1, . . . ,r and for all monomials
M ∈ Tdi , let us choose a polynomial fi,M ∈ P such that ψ( fi,M) = M · fi. Analogously,
pick a polynomial g j,N ∈ P for all j = 1, . . . ,s and for each monomial N ∈ Re j . It turns
out that

I = I2(Z)+ J,

where:

(i) I2(Z) denotes the ideal generated by the 2-minors of the matrix Z := (zi j).
(ii) J := ( fi,M,g j,N : i ∈ [r], j ∈ [s], M and N are monomials of Tdi and Re j).

Our purpose is to study the defining equations (up to radical) of I in P, and so to
compute the arithmetical rank of I. In general, this is a very hard problem. It is enough
to think that the case in which a = b = 0 is nothing but trivial (see [14]). We will give
a complete answer to this question in some other special cases. We end this subsection
remarking that, if we are interested in defining X×Y set-theoretically rather than ideal-
theoretically, the number of equations immediately lowers a lot.

Remark 2.2.1. It turns out that the number of polynomials generating the kernel of
P→ A]B is, in general, huge. In fact, for any minimal generator fi of the ideal a⊆ A,
we have to consider all the polynomials fi,M with M varying in Tdi : These are

(m+di
m

)
polynomials! The same applies for the minimal generators of b ⊆ B. At the contrary,
up to radical, it is enough to choose m+1 monomials for every fi and n+1 monomials
for every g j, in a way we are going to explain.

For every i = 1, . . . ,r and l = 0, . . . ,m, set M := ydi
l . A possible choice for fi,M is:

fi,l := fi(z0l , . . . ,znl) ∈ P.

In the same way, for every j = 1, . . . ,s and k = 0, . . . ,n we define:

g j,k := g j(zk0, . . . ,zkm) ∈ P.



34 Properties preserved under Gröbner deformations and arithmetical rank

If we call J′ the ideal of P generated by the fi,l’s and the g j,k’s, then we claim that:
√

I =
√

I2(Z)+ J′.

Since k is algebraically closed, Nullstellensatz implies that it is enough to prove that
Z (I) = Z (I2(Z) + J′), where Z (·) denotes the zero locus. Obviously, we have
Z (I)⊆Z (I2(Z)+ J′). So, pick a point

p := [p00, p10, . . . , pn0, p01, . . . , pn1, . . . , p0m, . . . , pnm] ∈Z (I2(Z)+ J′).

It is convenient to write p = [p0, . . . , pm], where ph := [p0h, . . . , pnh] is [0,0, . . . ,0] or a
point of Pn. Since p ∈Z (I2(Z)), it follows that the nonzero points among the ph’s are
equal as points of Pn. Moreover, if ph is a nonzero point, actually it is a point of X ,
because fi,h(p) = 0 for all i = 1, . . . ,r. Then, we get that fi,M(p) = 0 for every i,M and
any choice of fi,M . By the same argument, we can prove that also all the g j,N’s vanish
at p, so we conclude.

The authors of [14] described nm + n + m− 2 homogeneous equations defining
I2(Z) up to radical. So, putting this information together with the discussion above, we
got nm+(s+1)n+(r+1)m+s+r homogeneous equations defining set-theoretically
X×Y ⊆ PN .

2.2.2 Lower bounds for the number of defining equations
In this subsection, we provide the necessary lower bounds for the number of (set-
theoretically) defining equations of the varieties we are interested in. The results of
this subsection will be immediate consequences of those of Chapter 1. As the reader
will notice, the lower bounds derivable from cohomological considerations are more
general than the gettable upper bounds. However, in general, while to obtain upper
bounds one can think up a lot of clever ad hoc arguments, depending on the situation,
to get lower bounds, essentially, the only available tools are cohomological consider-
ations. In the cases in which they does not work we are, for the moment, completely
helpless.

Proposition 2.2.2. Let X and Y be smooth projective schemes over k of positive di-
mension. Let X ×Y ⊆ PN be any embedding of the Segre product X ×Y , and let I be
the ideal defining it (in a polynomial ring in N +1 variables over k). Then:

N−2≤ ara(I)≤ arah(I)≤ N.

Proof. The fact that arah(I) ≤ N is a consequence of [36, Theorem 2]. Combining
(A.7) with (A.8), we get that

ara(I)≥ écd(U)−N +1,

where U := PN \ (X×Y ). Eventually, Proposition 1.2.11 implies écd(U)≥ 2N−3, so
we conclude.

The lower bound of Proposition 2.2.2 can be improved by one when X is a smooth
curve of positive genus.

Proposition 2.2.3. Let X be a smooth projective curve over k of positive genus and
Y a smooth projective scheme over k. Let X ×Y ⊆ PN be any embedding of the Segre
product X×Y , and let I be the ideal defining it (in a polynomial ring in N +1 variables
over k). Then:

N−1≤ ara(I)≤ arah(I)≤ N.
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Proof. Once again, the fact that arah(I) ≤ N is a consequence of [36, Theorem 2].
Set g the genus of X , and choose an integer ` prime with char(k). It is well known
(see for instance the notes of Milne [83, Proposition 14.2 and Remark 14.4]) that
H1(Xét ,Z/`Z)∼= (Z/lZ)2g. Moreover H0(Yét ,Z/`Z) 6= 0 and H1(PN

ét ,Z/`Z) = 0. But
by Künneth formula for étale cohomology (for instance see the book of Milne [82,
Chapter VI, Corollary 8.13]) H1((X ×Y )ét ,Z/`Z) 6= 0, therefore Theorem 1.2.8 im-
plies that écd(U) ≥ 2N− 2, where U := PN \ (X ×Y ). At this point we can conclude
as in Proposition 2.2.2, since

ara(I)≥ écd(U)−N +1.

.

2.2.3 Hypersurfaces cross a projective spaces
Proposition 2.2.2 implies that the number of equations defining set-theoretically X ×
Y ⊆ PN described in Remark 2.2.1, where N = nm + n + m, are still too much. In this
subsection we will improve the upper bound given in Proposition 2.2.2 in some special
cases. In some situations we will determine the exact number of equations needed to
define X×Y set-theoretically.
Remark 2.2.4. Assume that X := V+(F)⊆ Pn is a projective hypersurface defined by
a homogeneous polynomial F , m := 1 and Y := P1. In this case X ×Y ⊆ P2n+1 and
Remark 2.2.1 gives us the same upper bound for the arithmetical rank of the ideal I
defining X×Y than Proposition 2.2.2, namely

arah(I)≤ 2n+1.

Remark 2.2.1 also gets an explicit set of homogeneous polynomials generating I up to
radical. Using the notation of the book of Bruns and Vetter [15], we denote by [i, j] the
2-minor zi0z j1− z j0zi1 of the matrix Z, for every i and j such that 0≤ i < j≤ n. In [14]
is proven that

I2(Z) =
√

( ∑
i+ j=k

[i, j] : k = 1, . . . ,2n−1)

By Remark 2.2.1, to get a set of generator of I up to radical, we have only to add

F0 := F(z00, . . . ,zn0) and F1 := F(z01, . . . ,zn1).

Notice that the generators up to radical we exhibited have the (unusual) property of
being part of a set of minimal generators of I.

Theorem 2.2.5. Let X = V+(F) ⊆ Pn be a hypersurface such that there exists a line
`⊆ Pn that meets X only at a point p. If I is the ideal defining X×P1 ⊆ P2n+1, then:

arah(I)≤ 2n

Proof. By a change of coordinates we can assume that ` = V+((x0, . . . ,xn−2)). The set

Ω := {[i, j] : 0≤ i < j ≤ n, i+ j ≤ 2n−2}

is an ideal of the poset of the minors of the matrix Z = (zi j): That is, for any two positive
integers h and k such that h < k, if [i, j] ∈ Ω with h ≤ i and k ≤ j, then [h,k] ∈ Ω. So,
[15, Lemma 5.9] implies:

ara(ΩP)≤ rank(Ω) = 2n−2
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(let us remind that P = k[zi j : i = 0, . . . ,n j = 0,1]). We want to prove that I =
√

K,
where K := ΩP+(F0,F1) (with the notation of Remark 2.2.4). To this aim, by Remark
2.2.4 and Nullstellensatz, it is enough to prove Z (I2(Z)+(F0,F1)) = Z (K). So, set

q := [q0,q1] = [q00, . . . ,qn0,q01, . . . ,qn1] ∈Z (K).

If q0 = 0 or q1 = 0 trivially q ∈Z (I2(Z)), so we assume that both q0 and q1 are points
of Pn. First let us suppose that qi j 6= 0 for some i≤ n−2 and j ∈ {0,1}. Let us assume
that j = 0 (the case j = 1 is the same). In such a case, notice that for any h ∈ {0, . . . ,n}
different from i we have that [h, i] (or [i,h]) is an element of Ω. Because q ∈Z (K), we
get that, setting λ := qi1/qi0:

qh1 = λqh0 ∀ h = 0, . . . ,n.

This means that q1 and q0 are the same point of Pn, so that q ∈ Z (I2(Z)). We can
therefore assume that qi j = 0 for all i ≤ n− 2 and j = 0,1. In this case, q0 and q1
belong to `∩X = {p}, so q0 = q1 = p. Once again, this yields q ∈Z (I2(Z)).

Combining Theorem 2.2.5 and Proposition 2.2.2, we get the following corollary.

Corollary 2.2.6. Let X ⊆ Pn be a smooth hypersurface such that there exists a line
`⊆ Pn that meets X only at a point p. If I is the ideal defining X×P1 ⊆ P2n+1, then:

2n−1≤ ara(I)≤ arah(I)≤ 2n

Besides, combining Theorem 2.2.5 and Proposition 2.2.3, we get the following
result.

Theorem 2.2.7. Let X ⊆ P2 be a smooth projective curve of degree d ≥ 3 over k.
Assume that there exists a line ` ⊆ P2 that meets X only at a point p, and let I be the
ideal defining the Segre product X×P1 ⊆ P5. Then

ara(I) = arah(I) = 4.

Proof. We recall that the genus g of the curve X is given by the formula:

g = 1/2(d−1)(d−2).

In particular, under our assumptions, it is positive. Thus Propsition 2.2.3, together with
Theorem 2.2.5, lets us conclude.

Remark 2.2.8. In Theorem 2.2.7, actually, we prove something more than the arith-
metical rank being 4. If X = V+(F), then the four polynomials generating I up to
radical are the following:

F(z00,z10,z20), F(z10,z11,z12), z00z11− z01z10, z00z12− z02z10.

It turns out that these polynomials are part of a minimal generating set of I. This is a
very uncommon fact.

Theorem 2.2.7 generalizes [96, Theorem 1.1] and [98, Theorem 2.8]. In fact we
get them in the next two corollaries.

Corollary 2.2.9. Let X ⊆ P2 be a smooth elliptic curve over k and let I be the ideal
defining the Segre product X×P1 ⊆ P5. Then

ara(I) = arah(I) = 4.
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Proof. It is well known that any plane projective curve X of degree at least three has an
ordinary flex, or an ordinary inflection point (see the book of Hartshorne [56, Chapter
IV, Exercise 2.3 (e)]). That is, a point p ∈ X such that the tangent line ` at p has
intersection multiplicity 3 with X at p. If X has degree exactly 3, which actually is our
case, such a line ` does not intersect X in any other point but p. Therefore we are under
the assumptions of Theorem 2.2.7, so we may conclude.

Remark 2.2.10. The equations exhibited in Corollary 2.2.9 are different from those
found in [96, Theorem 1.1]. In fact, our result is characteristic free, while the authors
of [96] had to assume char(k) 6= 3.

Corollary 2.2.11. Let X = V+(F)⊆ P2 be a Fermat curve of degree d ≥ 2 over k, that
is F = xd

0 + xd
1 + xd

2 , and let I be the ideal defining the Segre product X ×P1 ⊆ P5. If
char(k) does not divide d, then:

ara(I) = arah(I) = 4.

Proof. Let λ ∈ k be such that λ d =−1. So, let `⊆ P2 be the line defined by the linear
form x0−λx1. One can easily check that:

X ∩ ` = {[λ ,1,0]}.

Eventually, since char(k) does not divide d, X is smooth, so Theorem 2.2.7 lets us
conclude.

Remark 2.2.12. In the situation of Corollary 2.2.11, if char(k) divides d, then X×P1

is a set-theoretic complete intersection in P5, that is ara(I) = arah(I) = 3. In fact, more
in general, this is always the case when F = `d , where ` ∈ k[x0,x1,x2]1, independently
of the characteristic of k. To see this, up to a change of coordinates we can assume that
` = V+(x2). Using the Nullstellensatz as usual, it is easy to see that:√

(z20, z21, z00z11− z01z10) =
√

I.

On the other hand, ara(I)≥ 3 by the Hauptidealsatz (0.9).

Curves satisfying the hypothesis of Theorem 2.2.7, however, are much more than
those of Corollaries 2.2.9 and 2.2.11. The next remark will clarify this point.

Remark 2.2.13. In light of Theorem 2.2.5, it is natural to introduce the following
set. For every natural numbers n,d ≥ 1 we define V n−1

d as the set of all the smooth
hypersurfaces X ⊆ Pn, modulo PGLn(k), of degree d which have a point p as in The-
orem 2.2.5. Notice that any hypersurface of V n−1

d can be represented, by a change of
coordinates, by V+(F) with

F = xd
n−1 +

n−2

∑
i=0

xiGi(x0, . . . ,xn),

where the Gi’s are homogeneous polynomials of degree d−1.
We start to analyze the case n = 2, and for simplicity we will write Vd instead of

V 1
d . So our question is: How many smooth projective plane curves of degree d do

belong to Vd? Some plane projective curves belonging to Vd are:
(i) Obviously, every smooth conic belongs to V2.

(ii) Every smooth elliptic curve belongs to V3, as we already noticed in the proof of
Corollary 2.2.9.



38 Properties preserved under Gröbner deformations and arithmetical rank

(iii) Every Fermat’s curve of degree d belongs to Vd , as we already noticed in Corol-
lary 2.2.11.

In [22, Theorem A], the authors compute the dimension of the loci Vd,α , α = 1,2, of
all the smooth plane curves of degree d with exactly α points as in Theorem 2.2.5 (if
these points are nonsingular, as in this case, they are called d-flexes). They showed
that Vd,α is an irreducible rational locally closed subvariety of the moduli space Mg of
curves of genus g = 1/2(d−1)(d−2). Furthermore the dimension of Vd,α is

dim(Vd,α) =
(

d +2−α

2

)
−8+3α.

Moreover, it is not difficult to show that Vd,1 is an open Zariski subset of Vd , (see [22,
Lemma 2.1.2]), and so

dim(Vd) =
(

d +1
2

)
−5.

The locus Hd of all smooth plane curves of degree d up to isomorphism is a nonempty
open Zariski subset of P(d+2

2 ) modulo the group PGL2(k), so

dim(Hd) =
(

d +2
2

)
−9.

Particularly, the codimension of Vd in Hd , provided d ≥ 3, is d−3. So, for example, if
we pick a quartic X in the hypersurface V4 of H4, Theorem 2.2.7 implies that X×P1 ⊆
P5 can be defined by exactly four equations. However, it remains an open problem to
compute the arithmetical rank of X×P1 ⊆ P5 for all the quartics X ⊆ P2.

In the general case (n≥ 2 arbitrary) we can state the following lemma.

Lemma 2.2.14. Let X ⊆ Pn be a smooth hypersurface of degree d. If d ≤ 2n−3, or if
d ≤ 2n−1 and X is generic, then X ∈ V n−1

d .

Proof. First we prove the following:

Claim. If X ⊆ Pn is a smooth hypersurface of degree d ≤ 2n− 1 not containing
lines, then X ∈ V n−1

d .
We denote by G(2,n + 1) the Grassmannian of lines of Pn. Let us introduce the

following incidence variety:

Wn := {(p, `) ∈ Pn×G(2,n+1) : p ∈ `}.

It turns out that this is an irreducible variety of dimension 2n−1. Now set

Tn,d := {(p, `,F) ∈Wn×Ln,d : i(`,V+(F); p)≥ d},

where by Ln,d we denote the projective space of all the polynomials of k[x0, . . . ,xn]d ,
and by i(`,V+(F); p) the intersection multiplicity of ` and V+(F) at p (if ` ⊆ V+(F),
then i(`,V+(F); p) := +∞). Assume that p = [1,0, . . . ,0] and that ` is given by the
equations

x1 = x2 = . . . = xn = 0.

Then it is easy to see that, for a polynomial F ∈ Ln,d , the condition (p, `,F) ∈ Tn,d

is equivalent to the fact that the coefficients of xd
0 , xd−1

0 x1, . . . , x0xd−1
1 in F are 0.

This implies that Tn,d is a closed subset of Pn×G(2,n+1)×Ln,d : Therefore, Tn,d is a
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projective scheme over k. Consider the restriction of the first projection π1 : Tn,d −→
Wn. Clearly π1 is surjective; moreover, it follows by the above discussion that all the
fibers of π1 are projective subspaces of Ln,d of dimension dim(Ln,d)− d. Therefore,
Tn,d is an irreducible projective variety of dimension

dim(Tn,d) = 2n−1+dim(Ln,d)−d.

Now consider the restriction of the second projection π2 : Tn,d −→ Ln,d . Clearly, if
X ∈ π2(Tn,d) is smooth and does not contain any line, then X ∈ V n−1

d . So, to prove the
claim, we have to check the surjectivity of π2 whenever d ≤ 2n−1. To this aim, since
both Tn,d and Ln,d are projective, it is enough to show that for a general F ∈ π2(Tn,d),
the dimension of the fiber π

−1
2 (F) is exactly 2n− 1− d. On the other hand it is clear

that the codimension of π2(Tn,d) in Tn,d is at least d−2n+1 when d ≥ 2n. We proceed
by induction on n (for n = 2 we already know this).

First consider the case in which d≤ 2n−3. Let F be a general form of π2(Tn,d), and
set r = dim(π−1

2 (F)). By contradiction assume that r > 2n−1−d. Consider a general
hyperplane section of V+(F), and let F ′ be the polynomial defining it. Obviously,
any element of π2(Tn−1,d) comes from π2(Tn,d) in this way, so F ′ is a generic form of
π2(Tn,d). The condition for a line to belong to a hyperplane is of codimension 2, so the
dimension of the fiber of F ′ is at least r−2. Since F ′ is a polynomial of K[x0, . . . ,xn−1]
of degree d ≤ 2(n− 1)− 1, we can apply an induction getting r− 2 ≤ 2n− 3− d, so
that r ≤ 2n−1−d, which is a contradiction.

We end with the case in which d = 2n−1 (the case d = 2n−2 is easier). Let F and
r be as above, and suppose by contradiction that r ≥ 1. This implies that there exists a
hypersurface H ⊆G(n,n+1) such that for any general H ∈H the polynomial defin-
ing V+(F)∩H belongs to π2(Tn−1,d). This implies that the codimension of π2(Tn−1,d)
in Tn−1,d is less than or equal to 1, but we know that this is at least 2.

So we proved the claim. Now, we prove the lemma by induction on n. Once again,
if n = 2, then it is well known to be true.

If d ≤ 2n−3, then we cut X by a generic hyperplane H. It turns out (using Bertini’s
theorem) that X ∩H ⊆ Pn−1 is the generic smooth hypersurface of degree d ≤ 2(n−
1)−1, so by induction there exist a line `⊆H and a point p∈Pn such that (X∩H)∩` =
{p}. So we conclude that X ∈ V n−1

d .
It is known that the generic hypersurface of degree d ≥ 2n− 2 does not contain

lines. So if d = 2n−2 or d = 2n−1 the statement follows by the claim.

Combining Lemma 2.2.14 with Theorem 2.2.5 we get the following.

Corollary 2.2.15. Let X ⊆ Pn be a smooth hypersurface of degree d, and let I be the
ideal defining the Segre product X×P1 ⊆ P2n+1. If d ≤ 2n−3, or if d ≤ 2n−1 and X
is generic, then

2n−1≤ arah(I)≤ 2n.

Putting some stronger assumptions on the hypersurface X , we can even compute
the arithmetical rank of the ideal I (and not just to give an upper bound as in Theorem
2.2.5).

Theorem 2.2.16. Let X = V+(F) ⊆ Pn be such that, F = xd
n + ∑

n−3
i=0 xiGi(x0, . . . ,xn)

(Gi homogeneous polynomials of degree d − 1), and let I be the ideal defining the
Segre product X×P1 ⊆ P2n+1. Then

arah(I)≤ 2n−1.
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Moreover, if X is smooth, then

ara(I) = arah(I) = 2n−1.

Proof. If X is smooth, Proposition 2.2.2 implies that ara(I) ≥ 2n− 1. Therefore,we
need to prove that the upper bound holds true. Consider the set

Ω := {[i, j] : i < j, i+ j ≤ 2n−3}.

As in the proof of Theorem 2.2.5, we have

ara(ΩR)≤ rank(Ω) = 2n−3.

The rest of the proof is completely analog to that of Theorem 2.2.5.

Remark 2.2.17. Notice that, if n ≥ 4, the generic hypersurface of Pn defined by the
form F = xd

n + ∑
n−3
i=0 xiGi(x0, . . . ,xn) is smooth (whereas if n ≤ 3 and d ≥ 2 such a

hypersurface is always singular).

The below argument uses ideas from [96]. Unfortunately, to use these kinds of
tools, we have to put some assumptions to char(k).

Theorem 2.2.18. Assume char(k) 6= 2. Let X = V+(F) be a smooth conic of P2, and
let I be the ideal defining the Segre product X×Pm ⊆ P3m+2. Then

ara(I) = arah(I) = 3m.

In particular X ×Pm ⊆ P3m+2 is a set-theoretic complete intersection if and only if
m = 1.

Proof. First we want to give 3m homogeneous polynomials of the polynomial ring
P = k[zi j : i = 0,1,2, j = 0, . . . ,m] which define I up to radical. For j = 0, . . . ,m
choose set, similarly to Remark 2.2.1,

Fj := F(z0 j,z1 j,z2 j)

Then, for all 0≤ j < i≤ m, set

Fi j :=
2

∑
k=0

∂F
∂xk

(z0i,z1i,z2i)z jk.

Eventually, for all h = 1, . . . ,2m−1, let us put:

Gh := ∑
i+ j=h

Fi j.

We claim that

I =
√

J, where J := (Fi,G j : i = 0, . . . ,m, j = 1, . . . ,2m−1).

The inclusion J ⊆ I follows from the Euler’s formula, since char(k) 6= 2. As usual,
to prove I ⊆

√
J, thanks to Nullstellensatz, we may prove that Z (J) ⊆ Z (I). Pick

p ∈Z (J), and write it as

p := [p0, p1, . . . , pm] where p j := [p0 j, p1 j, p2 j].
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Since Fi(p) = 0, for every i = 0, . . . ,m, the nonzero pi’s are points of X . So, by Remark
2.2.1, it remains to prove that the nonzero pi’s are equal as points of P2.

By contradiction, let i be the minimum integer such that pi 6= 0 and there exists k
such that pk 6= 0 and pi 6= pk as points of P2. Moreover let j be the least among these
k (so i < j). Set h := i+ j. We claim that pk = pl provided that k + l = h, k < l, k 6= i,
pk 6= 0 and pl 6= 0. In fact, if l < j, then pi = pl by the minimal property of j. For the
same reason, also pk = pi, so pk = pl . On the other hand, if l > j, then k < i, so pk = pl
by the minimality of i. So Flk(p) = 0 for any (k, l) 6= (i, j) such that k + l = h, because
pk belongs to the tangent line of X in pl (being pl = pk). Then Gh(p) = Fji(p), and so,
since p ∈Z (J), Fji(p) = 0: This means that pi belongs to the tangent line of X in p j,
which is possible, being X a conic, only if pi = p j, a contradiction.

For the lower bound, we just have to notice that, in this case, Proposition 2.2.2
yields ara(I)≥ 3m.

Remark 2.2.19. Bădescu and Valla, computed recently in [4], independently from
this work, the arithmetical rank of the ideal defining any rational normal scroll. Since
the Segre product of a conic with Pm is a rational normal scroll, Theorem 2.2.18 is a
particular case of their result.

We end this subsection with a result that yields a natural question.

Proposition 2.2.20. Let n ≥ 2 and m ≥ 1 be two integers. Let X = V+(F) ⊆ Pn be
a hypersurface smooth over k and let I ⊆ P = k[z0, . . . ,zN ] be the ideal defining an
embedding X×Pm ⊆ PN . Then

cd(P, I) =
{

N−1 if n = 2 and deg(F)≥ 3
N−2 otherwise

Proof. By Remark 1.2.1 we can assume k= C. If Z := X ×Pm ⊆ PN , Using equation
(1.8) we have

β0(Z) = 1, β1(Z) = β1(X) and β2(Z) = β2(X)+1≥ 2,

where the last inequality follows by (1.11). If n = 2, notice that β1(X) 6= 0 if and only
if deg(F)≥ 3. In fact, equation (1.9) yields

β1(X) = h01(X)+h10(X) = 2h01(X),

where the last equality comes from Serre’s duality (see [56, Chapter III, Corollary
7.13]). But h01(X) is the geometric genus of X , therefore it is different from 0 if and
only if deg(F) ≥ 3. So if n = 2 we conclude by Theorem 1.2.4. If n > 2, then we
have β1(X) = 0 by the Lefschetz hyperplane theorem (see the book of Lazarsfeld [71,
Theorem 3.1.17], therefore we can conclude once again using Theorem 1.2.4.

In light of the above proposition, it is natural the following question.

Question 2.2.21. With the notation of Proposition 2.2.20, if we consider the classical
Segre embedding of X×Pm (and so N = nm+n+m), do the integers ara(I) and arah(I)
depend only on n, m and deg(F)?
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2.2.4 The diagonal of the product of two projective spaces
In [99] Speiser, among other things, computed the arithmetical rank of the diagonal

∆ = ∆(Pn)⊆ Pn×Pn,

provided that the characteristic of the base field is 0. In positive characteristic he proved
that the cohomological dimension of Pn×Pn \∆ is the least possible, namely n−1, but
he did not compute the arithmetical rank of ∆. In this short subsection we will give
a characteristic free proof of Speiser’s result. Actually Theorem 1.2.8 easily implies
that the result of Speiser holds in arbitrary characteristic, since the upper bound found
in [99] is valid in any characteristic. However, since in that paper the author did not
describe the equations needed to define set-theoretically ∆, we provide the upper bound
with a different method, that yields an explicit set of equations for ∆.

To this aim, we recall that the coordinate ring of Pn×Pn is

A := k[xiy j : i, j = 0, . . . ,n]

and the ideal I ⊆ A defining ∆ is

I := (xiy j− x jyi : 0≤ i < j ≤ n).

Proposition 2.2.22. In the situation described above ara(I) = arah(I) = 2n−1.

Proof. As said above, by [99, Proposition 2.1.1] we already know that arah(I)≤ 2n−1.
However, we want to exhibit a new proof of this fact: Let us consider the following
over-ring of A

R := k[xi,y j : i, j = 0, . . . ,n].

Notice that A is a direct summand of the A-module R. The extension of I in R, namely
IR, is the ideal generated by the 2-minors of the following 2× (n+1) matrix:(

x0 . . . xn
y0 . . . yn

)
.

So, by [15, (5.9) Lemma], a set of generators of IR⊆ R up to radical is

gk := ∑
0≤i< j≤n

i+ j=k

(xiy j− x jyi), k = 1, . . . ,2n−1.

Since these polynomials belong to A and since A is a direct summand of R, we get√
(g1, . . . ,g2n−1)A = I,

therefore
ara(I)≤ arah(I)≤ 2n−1.

For the lower bound choose ` coprime with char(k). Künneth formula for étale
cohomology [82, Chapter VI, Corollary 8.13] implies that

H2(Pn
ét ×Pn

ét ,Z/`Z)∼= (Z/`Z)2,

while H2(∆ét ,Z/`Z)∼= H2(Pn
ét ,Z/`Z)∼= Z/`Z. So, Theorem 1.2.8 yields

écd(U)≥ 4n−2,

where U := Pn×Pn \∆. Therefore, combining (A.8) and (A.7), we get

2n−1≤ ara(I)≤ arah(I).



Chapter 3

Relations between Minors

In Commutative Algebra, in Algebraic Geometry and in Representation Theory the
minors of a matrix are an interesting object for many reasons. Surprisingly, in general,
the minimal relations among the t-minors of a m×n generic matrix X are still unknown.
In this chapter, which is inspired to our work joint with Bruns and Conca [21], we will
investigate them.

Let us consider the following matrix:

X :=
(

x11 x12 x13 x14
x21 x22 x23 x24

)
where the xi j’s are indeterminates over a field k. We remind that, as in the second
part of Chapter 2, we denote the 2-minor insisting on the columns i and j of X by [i j],
namely [i j] := x1ix2 j− x1 jx2i. One can verify the identity:

[12][34]− [13][24]+ [14][23] = 0.

This is one of the celebrated Plücker relations, and in this case it is the only minimal
relation, i.e. it generates the ideal of relations between the 2-minors of X . Actually,
the case t = min{m,n} is well understood in general, even if anything but trivial: In
fact in such a situation the Plücker relations are the only minimal relations among the
t-minors of X . In particular, there are only quadratic minimal relations. This changes
already for 2-minors of a 3×4-matrix. For 2-minors of a matrix with more than 2 rows
we must first modify our notation in order to specify the rows of a minor:

[i j|pq] := xipx jq− xiqx jp.

Of course, we keep the Plücker relations, but they are no more sufficient: Some cubics
appear among the minimal relations, for example the following identity

det

[12|12] [12|13] [12|14]
[13|12] [13|13] [13|14]
[23|12] [23|13] [23|14]

= 0

does not come from the Plücker relations, see Bruns [12].
One reason for which the case of maximal minors is easier than the general case

emerges from a representation-theoretic point of view. Let R be the polynomial ring
over k generated by the variables xi j, and At ⊆ R denote the k-subalgebra of R gen-
erated by the t-minors of X . When t = min{m,n}, the ring At is nothing but than the
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coordinate ring of the Grassmannian G(m,n) of all k-subspaces of dimension m of a
k-vector space V of dimension n (we assume m ≤ n). In the general case, At is the
coordinate ring of the Zariski closure of the image of the following homomorphism:

Λt : Homk(W,V )→ Homk(
t∧

W,
t∧

V ), Λt(φ) := ∧t
φ ,

where W is a k-vector space of dimension m. Notice that the group G := GL(W )×
GL(V ) acts on each graded component [At ]d of At . If t = min{m,n}, each [At ]d is actu-
ally an irreducible G-representation (for the terminology about Representation Theory
see Appendix D). This is far from being true in the general case, complicating the
situation tremendously.

In this paper, under the assumption that the characteristic of k is 0, we will prove
that quadric and cubics are the only minimal relations among the 2-minors of a 3× n
matrix and of a 4× n matrix (Theorem 3.2.8). This confirms the impression of Bruns
and Conca in [18]. We will use tools from the representation theory of the general
linear group in order to reduce the problem to a computer calculation. In fact, more
generally, we will prove in Theorem 3.2.6 that a minimal relation between t-minors of a
m×n matrix must already be in a m× (m+ t)-matrix. In general, apart from particular
well known cases, we prove that cubic minimal relations always exist (Corollary 3.1.8),
and we interpret them in a representation-theoretic fashion. A type of these relations
can be written in a nice determinantal form: A minimal cubic relation is given by
the vanishing of the following determinant (just for a matter of space below we put
s = t−1, u = t +1 and v = t +2):

det

[1, . . . ,s, t,u|1, . . . ,s, t] [1, . . . ,s, t,u|1, . . . ,s,u] [1, . . . ,s, t,u|1, . . . ,s,v]
[1, . . . ,s, t,v|1, . . . ,s, t] [1, . . . ,s, t,v|1, . . . ,s,u] [1, . . . ,s, t,v|1, . . . ,s,v]
[1, . . . ,s,u,v|1, . . . ,s, t] [1, . . . ,s,u,v|1, . . . ,s,u] [1, . . . ,s,u,v|1, . . . ,s,v]

 .

The above polynomial actually corresponds to the highest weight vector of the irre-
ducible G-representation LγW ⊗LλV ∗, where

γ := (t +1, t +1, t−2) and λ := (t +2, t−1, t−1).

However, for t ≥ 4 there are also other irreducible G-representations of degree 3 which
correspond to minimal relations, as we point out in Theorem 3.1.6. We also prove that
there are no other minimal relations for “reasons of shape”. The only minimal rela-
tions of degree more than 3 which might exist would be for “reasons of multiplicity”
(Proposition 3.2.11).

In Thoerem 3.2.1 we can write down a formula for the Castelnuovo-Mumford reg-
ularity of At in all the cases. This is quite surprising: We do not even know a set of
minimal generators of the ideal of relations between minors, but we can estimate its
regularity, which is usually computed by its minimal free resolution. Essentially this
is possible thanks to a result in [18] describing the canonical module of At , combined
with the interpretation of the Castelnuovo-Mumford regularity in terms of local co-
homology as explained in Subsection 0.4.3. The regularity yields an upper bound on
the degree of a minimal relation. Even if such a bound, in general, is quadratic in m
(Corollary 3.2.7), it is the best general upper bound known to us.

In the last section we also exhibit a finite Sagbi basis of At (Theorem 3.3.2). This
problem was left open by Bruns and Conca in [19], where they proved the existence
of a finite Sagbi basis without describing it. With similar tools, in Theorem 3.3.5, we
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give a finite system of k-algebra generators of the ring of invariants AU
t , where U :=

U−(W )×U+(V ) is the subgroup of G with U−(W ) (respectively U+(V )) the subgroup
of lower (respectively upper) triangular matrices of GL(W ) (respectively of GL(V ))
with 1’s on the diagonals. This is part of a classical sort of problems in invariant
theory, namely the “first main problem” of invariant theory.

3.1 Some relations for the defining ideal of At

Let k be a field of characteristic 0, m and n two positive integers such that m≤ n and

X :=


x11 x12 · · · · · · x1n
x21 x22 · · · · · · x2n
...

...
. . . . . .

...
xm1 xm2 · · · · · · xmn


a m×n matrix of indeterminates over k. Moreover let

R(m,n) := k[xi j : i = 1, . . . ,m, j = 1, . . . ,n]

be the polynomial ring in m · n variables over k. As said in the introduction, we are
interested in understanding the relations between the t-minors of X . In other words, we
have to consider the kernel of the following homomorphism of k-algebras:

π : St(m,n)−→ At(m,n),

where At(m,n) is the algebra of minors, i.e. the k-subalgebra of R(m,n) generated
by the t-minors of X , and St(m,n) is the polynomial ring over k whose variables are
indexed on the t-minors of X . Since all the generators of the k-algebra At(m,n) have
the same degree, namely t, we can “renormalize” them: That is, a t-minor will have
degree 1. This way π becomes a homogeneous homomorphism. Let W and V are two
k-vector spaces of dimension m and n. Of course we have the identification

St(m,n)∼= Sym(
t∧

W ⊗
t∧

V ∗) =
⊕
i∈N

Symd(
t∧

W ⊗
t∧

V ∗),

thus G := GL(W )×GL(V ) acts on St(m,n). The algebra of minors At(m,n) is also a
G-representation, as explained in Appendix D, Section D.3. Actually, for any natural
number d, the graded components St(m,n)d and At(m,n)d are finite dimensional G-
representations, and the map π is G-equivariant. Let us denote

Jt(m,n) := Ker(π).

When it does not raise confusion we just write R, St , Jt and At in place of R(m,n),
St(m,n), Jt(m,n) and At(m,n).

Remark 3.1.1. Consider the following numerical situations:

t = 1 or n≤ t +1 (3.1)
t = m (3.2)

In the cases (3.1) the algebra At is a polynomial ring, so that Jt = 0 (for the case
m = n = t + 1 look at the book of Bruns and Vetter, [15, Remark 10.17]). In the case
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(3.2) At is the coordinate ring of the Grassmannian G(m,n) of k-subspaces of V of
dimension m. In this case, if 2 ≤ m ≤ n− 2, the ideal Jt is generated by the Plücker
relations. In particular it is generated in degree two. Clearly the Plücker relations occur
in all the remaining cases too. So the ideal Jt is generated in degree at least 2 in the
cases different from (3.1).

Because Remark 3.1.1, throughout the paper we will assume to being in cases dif-
ferent from (3.1) and (3.2). So, from now on, we feel free to assume

1 < t < m and n > t +1.

Our purpose for this section is to show that in the above range minimal generators of
degree 3 always appear in Jt . Notice that, since π is G-equivariant, then Jt is a G-
subrepresentation of St . Moreover, if LγW ⊗LλV ∗ is an irreducible representation of St
then Schur’s Lemma D.1.1 implies that either it collapses to zero or it is mapped 1-1 to
itself. In other words π is a “shape selection”. Therefore, Theorem D.3.2 implies that
LγW ⊗LλV ∗ ⊆ Jt whenever LγW ⊗LλV ∗ ⊆ St , and γ and λ are different partitions of
a natural number d. However, it is difficult to say something more at this step. In fact,
in contrast with At , a decomposition of St as direct sum of irreducible representations
is unknown. For instance a decomposition of Sym(

∧m V ) as a GL(V )-representation
is known just for m ≤ 2, see Weyman [107, Proposition 2.3.8]. When m > 2, this
is an open problem in representation theory, which is numbered among the plethysm’s
problems. In order to avoid such a difficulty, we go “one step more to the left”, in a way
that we are going to outline. For any natural number d we have the natural projection

pd :
d⊗

(
t∧

W ⊗
t∧

V ∗)−→ Symd(
t∧

W ⊗
t∧

V ∗)∼= St(m,n)d .

The projection pd is a G-equivariant surjective map. We have also the following G-
equivariant isomorphism

fd : (
d⊗ t∧

W )⊗ (
d⊗ t∧

V ∗)−→
d⊗

(
t∧

W ⊗
t∧

V ∗).

Therefore, for any natural number d, we have the G-equivariant surjective map

φd := pd ◦ fd : (
d⊗ t∧

W )⊗ (
d⊗ t∧

V ∗)−→ St(m,n)d .

Putting together the φd’s we get the following (G-equivariant and surjective) homoge-
neous k-algebra homomorphism

φ : Tt(m,n) :=
⊕
d∈N

((
d⊗ t∧

W )⊗ (
d⊗ t∧

V ∗))−→ St(m,n).

When it does not raise confusion we will write Tt for Tt(m,n).
Remark 3.1.2. Notice that Tt is not commutative. The ideals I ⊆ Tt we consider will
always be two-sided, i.e. they are k-vector spaces such that st and ts belong to I
whenever t ∈ I and s ∈ Tt . Moreover, if we say that an ideal I ⊆ Tt is generated by
t1, . . . , tq we mean that

I = {
q

∑
i=1

fitigi : fi,gi ∈ Tt(m,n)}.

In this sense Tt is Noetherian. However, Tt is neither left-Noetherian nor right-Noetherian.
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By definition and by meaning of the fd’s, the kernel of φ is generated in degree 2,
namely

Ker(φ) = (( f ⊗ f ′)⊗ (e⊗ e′))− ( f ′⊗ f )⊗ (e′⊗ e)) : f , f ′ ∈
t∧

W, e,e′ ∈
t∧

V ∗).

Finally, we have a G-equivariant surjective graded homomorphism

ψ := π ◦φ : Tt(m,n)→ At(m,n).

We call Kt(m,n) (Kt when it does not raise any confusion) the kernel of the above map.
Since Ker(φ) is generated in degree two and Jt is generated in degree at least two, in
order to understand which is the maximum degree of a minimal generator of Jt , we can
study which is the maximum degree of a minimal generator of Kt .

Lemma 3.1.3. Let d be an integer bigger than 2. There exists a minimal generator of
degree d in Kt if and only if there exists a minimal generator of degree d in Jt .

The advantages of passing to Tt are that it “separates rows and columns” and that
it is available a decomposition of it in irreducible G-representations, see Proposition
3.1.4. The disadvantage is that we have to work in a noncommutative setting.

Proposition 3.1.4. As a G-representation Tt decomposes as

Tt(m,n)d ∼=
⊕

γ and λ d-admissible
ht(γ)≤ m, ht(λ )≤ n

(LγW ⊗LλV ∗)n(γ,λ ),

where the multiplicities n(γ,λ ) are the nonzero natural numbers described recursively
as follows:

1. If d = 1, i.e. if γ = λ = (t), then n(γ,λ ) = 1;
2. If d > 1, then n(γ,λ )= ∑n(γ ′,λ ′) where the sum runs over the (d−1)-admissible

diagrams γ ′ and λ ′ such that γ ′ ⊆ γ ⊆ γ ′(t) and λ ′ ⊆ λ ⊆ λ ′(t) (for the notation
see Theorem D.2.11).

Proof. Since Tt(m,n)1 =
∧t W ⊗

∧t V , we can prove the statement by induction. So
suppose that

Tt(m,n)d−1 ∼=
⊕

γ and λ (d−1)-admissible
ht(γ)≤ m, ht(λ )≤ n

(LγW ⊗LλV ∗)n(γ,λ )

for d ≥ 2. Therefore, since Tt(m,n)d ∼= Tt(m,n)d−1⊗ (
∧t W ⊗

∧t V ∗), we have

Tt(m,n)d ∼=
⊕

γ and λ (d−1)-admissible
ht(γ)≤ m, ht(λ )≤ n

((LγW ⊗
t∧

W )⊗ (LλV ∗⊗
t∧

V ∗))n(γ,λ ).

At this point we get the desired decomposition from Pieri’s Theorem D.2.11.

As the reader will realize during this chapter, the fact that the n(γ,λ )’s may be,
and in fact usually are, bigger than 1, is one of the biggest troubles to say something
about the relations between minors. We will say that a pair of d-admissible diagrams,
a d-admissible bi-diagram for short, (γ ′|λ ′) is a predecessor of a (d + 1)-admissible
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bi-diagram (γ|λ ) if γ ′ ⊆ γ ⊆ γ ′(t) and λ ′ ⊆ λ ⊆ λ ′(t). In order to simplify the notation,
from now on a sentence like “(γ|λ ) is an irreducible representation of Tt (or St or Jt
etc.)” will mean that LγW ⊗LλV ∗ occurs with multiplicity at least 1 in the decomposi-
tion of Tt (or St or Jt etc.). Furthermore, since both Jt and Kt are generated, as ideals, by
irreducible representations, we say that “(γ|λ ) is a minimal irreducible representation
of Jt (or of Kt )” if the elements in LγW ⊗LλV ∗ are minimal generators of Jt (or Kt ).

We are going to list some equations of degree 3 which are minimal generators of
Jt (in situations different from (3.1) and (3.2)). To this purpose we define some special

bi-diagrams (γ i|λ i) for any i = 1, . . . ,
⌊ t

2

⌋
, for which both γ i and λ i have exactly 3t

boxes. In Theorem 3.1.6, we will prove that some of these diagrams will be minimal
irreducible representations of degree 3 in Jt . It is convenient to consider separately the
cases in which t is even or odd.

Suppose that t is even. For each i = 1, . . . ,
t
2

we set ai :=
3t
2
− i+1, bi := 2(i−1),

ci := 2(t− i+1) and di :=
t
2

+ i−1. Then

γ
i := (ai,ai,bi), (3.3)

λ
i := (ci,di,di).

It turns out that γ i and λ i are both partitions of 3t.

If t is odd, then for each i = 1, . . . ,
t−1

2
set a′i :=

3t−1
2
− i+1, b′i := 2(i−1)+1,

c′i := 2(t− i+1)−1 and d′i :=
t +1

2
+ i−1. Then

γ
i := (a′i,a

′
i,b
′
i), (3.4)

λ
i := (c′i,d

′
i ,d
′
i).

Once again it turns out that γ i and λ i are both partitions of 3t.

Example 3.1.5. For t = 2 there is only one (γ i|λ i), namely (γ1|λ 1). The picture below
features this bi-diagram.

(γ1|λ 1) =

Notice that the above bi-diagram has only one predecessor, namely

(α1|α1) =

It turns out that (α1|α1) has multiplicity one and is symmetric. As we are going to see
in the proof of Theorem 3.1.6 this facts holds true in general, and it is the key to find
minimal relations in Jt .
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Theorem 3.1.6. The bi-diagram (γ i|λ i) is a minimal irreducible representation of Jt
of degree 3 in the following cases:

1. if t is even, when
t
2
≥ i≥max

{
0,

3t
2
−m+1, t− n

2
+1
}

.

2. if t is odd, when
t−1

2
≥ i≥max

{
0,

3t−1
2
−m+1, t− n+1

2

}
.

Proof. By Lemma 3.1.3 it is enough to show that the bi-diagram (γ i|λ i) is a minimal
irreducible representation of degree 3 of Kt . Both γ i and λ i are 3-admissible partitions.
Furthermore, the assumptions on i imply that γ i

1≤m and λ i
1≤ n. Therefore (γ i|λ i) is an

irreducible representation of [Tt ]3 by Proposition 3.1.4. Notice that [Tt ]3 decomposes as
[Kt ]3⊕ [At ]3. But (γ i|λ i) is an asymmetric bi-diagram, i.e. γ i 6= λ i, thus it cannot be an
irreducible representation of At by Theorem D.3.2. This implies that it is an irreducible
representation of [Kt ]3.

It remains to prove that (γ i|λ i) is minimal. First of all we show that it has multiplic-
ity 1 in Tt . If t is even the unique predecessor of (γ i|λ i) is the symmetric bi-diagram
(α i|α i), where:

α
i
1 =

3t
2
− i+1

α
i
2 =

t
2

+ i−1.

Also if t is odd the unique predecessor of (γ i|λ i), which we denote again by (α i|α i),
is symmetric. The G-representation [Tt ]2 decomposes as [Kt ]2⊕ [At ]2. Now, the ir-
reducible representations of Tt of degree 2 have obviously multiplicity 1, since their
unique predecessor is ((t)|(t)) that has multiplicity 1. So (α i|α i) is not an irreducible
representation of [Kt ]2, because it is an irreducible representation of [At ]2 by Theorem
D.3.2 and it has multiplicity 1 in [Tt ]2. Therefore we conclude that (γ i|λ i) is a minimal
irreducible representation of Kt of degree 3.

Definition 3.1.7. The bi-diagram (γ i|λ i) such that i satisfies the condition of Theorem
3.1.6 are called shape relations.

Corollary 3.1.8. In our situation, i.e. if 1 < t < m and n > t +1, the ideal Jt has some
minimal generators of degree 3.

Proof. It is enough to verify that there is at least one i satysfying the conditions of
Theorem 3.1.6.

3.1.1 Make explicit the shape relations
The reader might recriminate that we have not yet described explicitly the degree 3
minimal relations we found in Theorem 3.1.6. Actually we think that the best way to
present them is by meaning of shape, as we did. But of course it is legitimate to pretend
to know the polynomials corresponding to them, therefore we are going to explain how
to pass from bi-diagrams to polynomials. Consider one of the bi-diagrams (γ i|λ i) of
Theorem 3.1.6. Let us call it (γ|λ ). Then choose two tableux Γ and Λ of shape,
respectively, γ and λ and such that c(Γ) = c(Λ) = 3t. We can consider the following
map

e(Γ)⊗ e(Λ)∗ :
3t⊗

W ⊗
3t⊗

V ∗ −→
3t⊗

W ⊗
3t⊗

V ∗,
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where e(·) are the Young symmetrizers (see D.2.1). Actually the image of e(Γ)⊗e(Λ)∗

is in
⊗3∧t W ⊗

⊗3∧t V ∗, therefore we can compose it with the map

3⊗ t∧
W ⊗

3⊗ t∧
V ∗ −→ [St ]3.

The polynomials in the image do not depend from the chosen tableu, since LγW⊗LλV ∗

has multiplicity one in Tt .
Actually, among the bi-diagrams (γ i|λ i) of Theorem 3.1.6, there is one such that the

relative U-invariant (see Subsection D.3) can be written in a very plain way. Namely,
the bi-diagram under discussion is (γ|λ ) := (γbt/2c|λ bt/2c), namely:

(γ|λ ) = ((t +1, t +1, t−2)|(t +2, t−1, t−1)).

The corresponding equation can be written in a determinantal form: More precisely, it
is given by the vanishing of the following determinant (just for a matter of space below
we put s = t−1, u = t +1 and v = t +2):

det

(
[1, . . . ,s, t,u|1, . . . ,s, t] [1, . . . ,s, t,u|1, . . . ,s,u] [1, . . . ,s, t,u|1, . . . ,s,v]
[1, . . . ,s, t,v|1, . . . ,s, t] [1, . . . ,s, t,v|1, . . . ,s,u] [1, . . . ,s, t,v|1, . . . ,s,v]
[1, . . . ,s,u,v|1, . . . ,s, t] [1, . . . ,s,u,v|1, . . . ,s,u] [1, . . . ,s,u,v|1, . . . ,s,v]

)
= 0. (3.5)

We are going to prove that (3.5) gives actually the U-invariant of the irreducible rep-
resentation (γ|λ ) described above. In particular, this means that the determinant (3.5)
generates LγW⊗LλV ∗ as a G-module. Furthermore, notice that in the cases t = 2,3 the
unique minimal irreducible representation of Jt of degree 3 we described in Theorem
3.1.6 is (γ|λ ). So, in these two cases we have a very good description of the (guessed)
minimal equations between t-minors.

Proposition 3.1.9. If 1 < t < m and n > t + 1, the equation (3.5) supplies the U-
invariant of the minimal irreducible representation (γ|λ ) of Jt , where γ = (t + 1, t +
1, t−2) and λ = (t +2, t−1, t−1). Particularly, it is a minimal cubic generator of Jt .

Proof. First of all notice that the polynomial of the determinant of (3.5) is nonzero
in St . This is obvious, since it is the determinant of a 3× 3 matrix whose entries are
variables all different between them.

Let us call f the polynomial associated to the determinant of (3.5). To see that f
is an U-invariant, we have to show that (A,B) · f = α f for some α ∈ k \ {0}, where
A ∈U−(W )⊆GL(W ) is a lower triangular matrices and B ∈U+(V )⊆GL(V ) is an up-
per triangular matrices. To prove this, it suffices to show that f vanishes formally every
time that we substitute an index, of the columns or of the rows of the variables appear-
ing in f , with a smaller one. This is easily checkable: For example, if we substitute the
(t + 2)th row with the tth one, that is, using the notation of (3.5), if we substitute the
vth row with the tth one, then f becomes:

det

 [1, . . . ,s, t,u|1, . . . ,s, t] [1, . . . ,s, t,u|1, . . . ,s,u] [1, . . . ,s, t,u|1, . . . ,s,v]
0 0 0

−[1, . . . ,s,u, t|1, . . . ,s, t] −[1, . . . ,s,u, t|1, . . . ,s,u] −[1, . . . ,s,u, t|1, . . . ,s,v]

 ,

which is obviously formally 0. Or, if we substitute the vth column with the tth one, f
becomes:
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det

[1, . . . ,s, t,u|1, . . . ,s, t] [1, . . . ,s, t,u|1, . . . ,s,u] [1, . . . ,s, t,u|1, . . . ,s, t]
[1, . . . ,s, t,v|1, . . . ,s, t] [1, . . . ,s, t,v|1, . . . ,s,u] [1, . . . ,s, t,v|1, . . . ,s, t]
[1, . . . ,s,u,v|1, . . . ,s, t] [1, . . . ,s,u,v|1, . . . ,s,u] [1, . . . ,s,u,v|1, . . . ,s, t]

 ,

which is formally 0 since the first and third columns are the same.
To see that (3.5) becomes 0 in At , under π , we have to observe that f becomes the

expansion in t-minors of the determinant of the following 3t×3t matrix:

x11 x12 . . . x1s x1t x11 x12 . . . x1s x1u x11 x12 . . . x1s x1v
x21 x22 . . . x2s x2t x21 x22 . . . x2s x2u x21 x22 . . . x2s x2v

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
xs1 xs2 . . . xss xst xs1 xs2 . . . xss xsu xs1 xs2 . . . xss xsv
xt1 xt2 . . . xts xtt xt1 xt2 . . . xts xtu xt1 xt2 . . . xts xtv
xu1 xu2 . . . xus xut xu1 xu2 . . . xus xuu xu1 xu2 . . . xus xuv

x11 x12 . . . x1s x1t x11 x12 . . . x1s x1u x11 x12 . . . x1s x1v
x21 x22 . . . x2s x2t x21 x22 . . . x2s x2u x21 x22 . . . x2s x2v

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
xs1 xs2 . . . xss xst xs1 xs2 . . . xss xsu xs1 xs2 . . . xss xsv
xt1 xt2 . . . xts xtt xt1 xt2 . . . xts xtu xt1 xt2 . . . xts xtv
xv1 xv2 . . . xvs xvt xv1 xv2 . . . xvs xvu xv1 xv2 . . . xvs xvv

x11 x12 . . . x1s x1t x11 x12 . . . x1s x1u x11 x12 . . . x1s x1v
x21 x22 . . . x2s x2t x21 x22 . . . x2s x2u x21 x22 . . . x2s x2v

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
xs1 xs2 . . . xss xst xs1 xs2 . . . xss xsu xs1 xs2 . . . xss xsv
xu1 xu2 . . . xus xut xu1 xu2 . . . xus xuu xu1 xu2 . . . xus xuv
xv1 xv2 . . . xvs xvt xv1 xv2 . . . xvs xvu xv1 xv2 . . . xvs xvv



.

Such a determinant is zero (for instance because the 1st row is equal to the (t +1)th).
So far, we have shown that the polynomial f ∈ St associated to (3.5) is a nonzero

U-invariant of Jt . Now, it clearly has bi-weigth (tγ|tλ ), so it is the U-invariant of the
irreducible representation (γ|λ ). Particularly, it is a minimal cubic generator of Jt by
Theorem 3.1.6.

Remark 3.1.10. Actually, in the proof of Proposition 3.1.9 it is not necessary to show
that the determinant of (3.5) vanishes in At . In fact, once proved that it is the U-invariant
of (γ|λ ), that it goes to zero follows because γ 6= λ . However we wanted to show that it
vanishes because the huge matrix of Proposition 3.1.9 has been the first mental image
that suggested us the equation 3.5.

3.2 Upper bounds on the degrees of minimal relations
among minors

During the previous section we have found out some cubics among the minimal gener-
ators of Jt . The authors of [18] said that there are indications that quadrics and cubics
are enough for generating Jt , at least for t = 2. In this section we are going to prove that
their guess is right for 3×n and 4×n matrices. The way to get these results will be to



52 Relations between Minors

notice that the “minimal” U-invariants of a J2(3,n) must be already in J2(3,5), and a
similar fact for a 4×n-matrix. These cases are then doable with a computer calculation.
Furthermore, we will give some reasons to believe to the guess of [18] in general, even
for t ≥ 3. First of all, anyway, we will give a formula for the Castelnuovo-Mumford
regularity of At(m,n) in all the cases. Since At(m,n) = St(m,n)/Jt(m,n), we will also
get a general upper bound for the degree of a minimal relation between minors (see
0.4.3).

3.2.1 Tha Castelnuovo-Mumford regularity of the algebra of mi-
nors

The authors of [18] noticed that At is a Cohen-Macaulay k-algebra with negative a-
invariant. This implies that the degrees of the minimal generators of Jt are less than or
equal to dimAt = mn (for the last equality see [15, Proposition 10.16]). It would be
desirable to know the exact value of a(At), equivalently of reg(At). To this aim we will
pass through a toric deformation of At . If≺ is a diagonal term order on R = R(m,n), i.e.
such that in([i1 . . . ip| j1 . . . jp]) = xi1 j1 · · ·xip jp , then the initial algebra in(At) is a finitely
generated normal Cohen-Macaulay k-algebra, see [19, Theorem 7.10]. Furthermore in
[18, Lemma 3.3], the authors described the canonical module ωin(At ) of in(At). By
(0.12) we have that a(in(At)) = −min{d : [ωin(At )]d 6= 0}. Thus it is natural to expect
to get the Castelnuovo-Mumford regularity of in(At) from ωin(At ). Actually this is true,
albeit anything but trivial, and we are going to prove it in Theorem 3.2.1. Eventually,
it is easy to prove that reg(At) = reg(in(At)).

Theorem 3.2.1. Suppose to be in cases different from (3.1) and (3.2), that is 1 < t < m
and n > t + 1. Then At and in(At) are finitely generated graded Cohen-Macaulay
algebras such that:

(i) If m+n−1 < bmn/tc, then

a(At) = a(in(At)) =−dmn/te,
reg(At) = mn−dmn/te.

(ii) Otherwise, i.e. if m+n−1≥ bmn/tc, we have

a(At) = a(in(At)) =−bm(n+ k0)/tc,
reg(At) = mn−bm(n+ k0)/tc.

where k0 = d(tm+ tn−mn)/(m− t)e.

Proof. The k-algebras At and in(At) are finitely generated and Cohen-Macaulay by [19,
Theorem 7.10]. By [18, Lemma 3.3], it turns out that the canonical module ω = ωin(At )
of the initial algebra of At with respect to a diagonal term order ≺ is the ideal of in(At)
generated by in(∆), where ∆ is a product of minors of X of shape γ = (γ1, . . . ,γh) where
|γ|= td, h < d and such that x := ∏xi j divides in(∆). To prove the theorem we need to
find the least d for which such a ∆ exists. Of course such a d must be such that td ≥mn,
but in general this is not sufficient. First we prefer to illustrate the strategy we will use
to locate d with an example:
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Example 3.2.2. Set t = 3 and m = n = 5. So our matrix looks like

X =


x11 x12 x13 x14 x15
x21 x22 x23 x24 x25
x31 x32 x33 x34 x35
x41 x42 x43 x44 x45
x51 x52 x53 x54 x55

 .

Notice that we are in the case (ii) of the theorem. We are interested in finding the least
d ∈ N such that there exists a product of minors ∆ ∈ A3(5,5) of shape γ = (γ1, . . . ,γh)
such that |γ|= 3d, h < d and x = ∏xi j divides in(∆). The first product of minors which
comes in mind is

∆2 := [12345|12345][1234|2345][2345|1234][123|345][345|123][12|45][45|12][1|5][5|1].

Obviously in(∆2) is a multiple of x, but its shape is γ2 = (5,4,4,3,3,2,2,1,1). This is
a partition of 25, which is not divisible by 3. This means that ∆2 does not even belong
to A3(5,5). Moreover the parts of γ2 are 9, whereas b25/3c = 8 (it should be bigger
than 9). To fix this last problem, it is natural to multiply ∆2 for 5-minors till the desired
result is gotten. For instance, setting ∆1 := ∆2 · [12345|12345]3, we have that ∆1 is a
product of minors of shape γ1 = (5,5,5,5,4,4,3,3,2,2,1,1). This is a partition of 40
with 12 parts, and b40/3c= 13 > 12. However ∆1 is still not good, because 40 is not a
multiple of 3. In some sense ∆1 is too big, in fact we can replace in its shape a 5-minor
by a 4-minor, to get a partition of 39. For instance, set

∆ := ∆2 · [12345|12345]2[1234|1234].

The shape of ∆ is γ = (5,5,5,4,4,4,3,3,2,2,1,1), which is a partition of 39 with 12
parts. Since 39 = 3 · 13, 12 < 13 and x divides in(∆), the natural number d we were
looking for is at most 13. Actually it is exactly 13, and we will prove that the strategy
used here to find it works in general. Before coming back to the general case, notice
that in this case k0 = 3, and 13 = b40/3c= bm(n+ k0)/tc.

First let us suppose to be in the case (i). Let us define the product of minors

Π := π1 · · ·πm+n−1

where

πi :=


[m− i+1,m− i+2, . . . ,m|1,2, . . . , i] if 1≤ i < m
[1,2, . . . ,m|i−m+1, i−m+2, . . . , i] if m≤ i≤ n
[1,2, . . . ,m+n− i|i−m+1, i−m+2, . . . ,n] if n < i≤ m+n−1

The shape of Π is λ = (mn−m+1,(m− 1)2,(m− 2)2, . . . ,12), which is a partition of
mn. Moreover x divides in(Π). Let r0 be the unique integer such that 0 ≤ r0 < t and
mn + r0 = d0t. If r0 = 0, then we put ∆ := Π and γ := λ . Then γ has m + n− 1 parts
and m + n− 1 < bmn/tc = mn/t = d0. Since in(∆) is a multiple of x, we deduce that
ωd0 6= 0, i.e.

a(At)≥−d0 =−mn/t =−dmn/te. (3.6)

Now suppose that r0 > 0, i.e. mn is not a multiple of t. So, in this case, dmn/te =
bmn/tc+1. We multiply Π by an r0-minor, for instance set

∆ := Π · [1,2, . . . ,r0|1,2, . . . ,r0].
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The shape of ∆ is γ = (mn−m+1,(m− 1)2,(r0 + 1)2,r3
0,(r0 − 1)2, . . . ,12). This is a

partition of d0t with m+n parts. Since m+n−1 < bmn/tc, we get m+n < dmn/te=
d0. Since x divides in(∆) (because it divides in(Π)), we get ωd0 6= 0, i.e.

a(At)≥−d0 =−dmn/te. (3.7)

Clearly equality must hold true both in (3.6) and in (3.7), since if x divides a monomial
in(Γ) for some Γ ∈ At , then deg(Γ)≥ dmn/te.

Now let us assume to be in the case (ii). Notice that the integer k0 of the assumption
is bigger than 0. Let p0 be the unique integer such that 0 ≤ p0 < t and m(n + k0) =
d0t + p0. Let us define the product of minors

∆ := Π · [1,2, . . . ,m|1,2, . . . ,m]k0−1 · [1,2, . . . ,m− p0|1,2, . . . ,m− p0].

The shape of ∆ is

γ = (mk0+n−m,(m−1)2,(m− p0 +1)2,(m− p0)3,(m− p0−1)2, . . . ,12).

This is a partition of d0t with k0 +n+m−1 parts. By the choice of k0, one can verify
that k0 + n + m− 1 < d0. Furthermore, being ∆ a multiple of Π, x divides in(∆). So
in(∆) ∈ ω , which implies ωd0 6= 0 and

a(At)≥−d0 =−bm(n+ k0)/tc. (3.8)

To see that the a-invariant of in(At) is actually−d0 in (3.8), we need the following easy
lemma.

Lemma 3.2.3. With a little abuse of notation set X := {xi j : i = 1, . . . ,m, j = 1, . . . ,n}.
Define a poset structure on X in the following way:

xi j ≤ xhk if i = h and j = k or i < h and j < k.

Suppose that X = X1∪ . . .∪Xh where each Xi is a chain, i.e. any two elements of Xi are
comparable, and set N := ∑

h
i=1 |Xi|. Then

h≥ N
m

+m−1.

Proof. For any ` = 1, . . . ,m−1 set

X(`) := {xi j ∈ X : or m+ j− i = ` or n+(i− j) = `}.

It is easy to see that for any `, |X(`)|= 2`. Moreover, if Y is a chain such that X(`)∩Y 6=
/0 for some `, then |Y | ≤ `. Notice that xmk ∈ X(k) for all k = 1, . . . ,m−1. So, choosing
an ik such that xmk ∈ Xik , we have that |Xik | ≤ k. Note that ik 6= ih whenever k 6= h since
xmk and xmh are not comparable. In the same way we choose a X jk containing x1,n+1−k
for any k = 1, . . . ,m−1. Once again |X jk | ≤ k since x1,n+1−k ∈ X(k). Furthermore the
jk’s are distinct because different x1,n+1−k’s are incomparable. Actually, for the same
reason, all the ih’s and jk’s are distinct. In general, for any i = 1, . . . ,h we have |Xi| ≤m.
Thus, setting A := {ik, jk : k = 1, . . . ,m−1}, we get

N =
h

∑
i=1
|Xi|= ∑

i∈A
|Xi|+ ∑

i∈{1,...,h}\A
|Xi| ≤ (m−1)m+m(h−2m+2),

which supplies the desired inequality h≥ N
m

+m−1.
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Now take a product of minors ∆ = δ1 · · ·δh such that in(∆) ∈ ω . Let λ be the shape
of ∆ and suppose that |λ |= td with d < d0. For any i = 1, . . . ,h set

Xi := {xpr : xpr| in(δi)}.

Since x divides in(∆), with the notation of Lemma 3.2.3 we have that X =∪h
i=1Xi where

each Xi is a chain with respect to the order defined on X . So by Lemma 3.2.3 we have
that

h≥ dt
m

+m−1.

We recall that d0t = mn + mk0− p0, where 0 ≤ p0 < t. Of course we can write in a
unique way dt = mn+ms−q, where 0≤ q < m. Before going on, notice that k0 is the
smallest natural number k satisfying the inequality

m+n+ k−1 <

⌊
m(n+ k)

t

⌋
.

By what said s≤ k0. There are two cases:
1. If s = k0, consider the inequalities

m+n+(s−1)−1 =
dt +q

m
+m−2 <

dt
m

+m−1≤ h≤ d−1.

Notice that, since d < d0, we have that q ≥ p0 + t. Moreover m < 2t, otherwise
we would be in case (i) of the theorem. Thus

d−1 =
m(n+ s)−q− t

t
≤
⌊

m(n+(s−1))
t

⌋
.

The inequalities above contradicts the minimality of k0.
2. If s < k0, then

n+ s+m−1 =
dt +q

m
+m−1≤ h < d =

m(n+ s)−q
t

≤
⌊

m(n+ s)
t

⌋
.

Once again, this yields a contradiction to the minimality of k0.
Finally, it turns out that the Hilbert function of a graded k-algebra and the one of its

initial algebra (with respect to any term order) coincide, see Conca, Herzog and Valla
[24, Proposition 2.4]. In particular we have HFAt = HFin(At ) and HPAt = HPin(At ). So
by the characterization of the a-invariant given in (0.14), we have

a(At) = a(in(At)).

Furthermore reg(At) = dimAt +a(At) from (0.11), and dimAt = mn by [15, Proposition
10.16].

Remark 3.2.4. Let us look at the cases in Theorem 3.2.1.
(i) If X is a square matrix, that is m = n, one can easily check that we are in case

(i) of Theorem 3.2.1 if and only if m is at least twice the size of the minors, i.e.
m≥ 2t.

(ii) The natural number k0 of Theorem 3.2.1 may be very large: For instance, let us
consider the case t = m− 1 and n = m + 1. Since in the interesting situations
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m≥ 3, one can easily check that we are in the case (ii) of Theorem 3.2.1. In this
case we have k0 = m2−2m−1. Therefore Theorem 3.2.1 yields

a(Am−1(m,m+1)) =−m2

and
reg(Am−1(m,m+1)) = m.

Since reg(Jt) = reg(At)+ 1 and reg(Jt) bounds from above the degree of a mini-
mal generator of Jt by Theorem 0.4.7, as a consequence of Theorem 3.2.1 we get the
following:

Corollary 3.2.5. Let us call d the maximum degree of a minimal generator of Jt .
(i) If m+n−1 < bmn/tc, then

d ≤ mn−dmn/te+1.

(ii) Otherwise, i.e. if m+n−1≥ bmn/tc, we have

d ≤ mn−bm(n+ k0)/tc+1,

where k0 = d(tm+ tn−mn)/(m− t)e.

For instance, the degree of a minimal generator of J2 can be at most bmn/2c+ 1.
Instead, a minimal generator of Jm−1(m,m+1) has degree at most m+1.

3.2.2 The independence on n for the minimal relations
Given a degree d minimal relation between t-minors of the m× n matrix X , clearly it
insists at most on td columns of X . Therefore it must be a minimal relation already in
a m× td matrix. This fact can be useful when d is small: For instance, to see if there
are minimal relations of degree 4 between 2-minors of a 3× n-matrix, it is enough
to check if they are in a 3× 8 matrix. However, even once checked that there are no
minimal relations of degree 4, there might be anyway of degree 5, 6 or so on; and
with d growing up this observation is useless. In fact, unfortunately, so far the best
upper bound we have for the degree of a minimal relation is given by the Castelnuovo-
Mumford regularity of At(m,n), see Theorem 3.2.1. For example, the degree of a
minimal generator of J2(3,n) might be d = b3n/2c+1, provided n≥ 6. So we should
control if such a minimal relation is in a m× td matrix; but td = 2b3n/2c+ 2 > n,
so we would be in a worse situation than the initial one. In this subsection we will
make an observation somehow similar, but finer, to the one discussed above. The size
of the “reduction-matrix”, besides being independent on n, will not even depend on d.
Precisely, in Theorem 3.2.6 we will show that a a degree d minimal relation between
t-minors of an m×n matrix must be already in a m×(m+t) matrix! Thus, in principle,
once fixed m we could check by hand the maximum degree of a minimal generator of
Jt(m,n). In practice, however, a computer can actually supply an answer just for small
values of m. Actually the proof of Theorem 3.2.6 is not very difficult: Essentially we
have just to exploit the structure as G-representations of our objects.

Theorem 3.2.6. Let d(t,m,n) denote the highest degree of a minimal generator of
Jt(m,n). Then

d(t,m,n)≤ d(t,m,m+ t)
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Proof. We can assume to be in a numerical case different from (3.1). So d(t,m,n) is
the highest degree of a minimal generator of Kt(m,n), too (Lemma 3.1.3). Therefore
suppose that (γ|λ ) is a minimal irreducible representation of Kt(m,n). Then we claim
that λ1 ≤ m + t: If not, for any predecessor (γ ′|λ ′) of (γ|λ ) we have that λ ′1 > m. On
the other side γ ′1 ≤m. This implies that any predecessor of (γ|λ ) is asymmetric, and so
for any (γ ′|λ ′) predecessor of (γ|λ )

Lγ ′W ⊗Lλ ′V
∗ ⊆ Kt(m,n).

Since there must exist some predecessor (γ ′|λ ′) such that

LγW ⊗LλV ∗ ⊆ (Lγ ′W ⊗Lλ ′V
∗)⊗ (

t∧
W ⊗

t∧
V ∗),

it turns out that (γ|λ ) cannot be minimal. So if (γ|λ ) is minimal in Kt(m,n), then
λ1≤m+t. Let us consider the canonical bi-tableu of (γ|λ ) , namely (cγ |cλ ). Such a bi-
tableu corresponds to a minimal generator of Kt(m,n). By the definition of the Young
symmetrizers (see D.2.1), actually (cγ |cλ ) can be seen as an element of Tt(m,m + t),
because λ1 ≤ m + t. So it belongs to Kt(m,m + t). Furthermore, if (cγ |cλ ) were not
minimal in Kt(m,m+ t), all the more reason it would not be minimal in Kt(m,n). This
thereby implies the thesis.

So, putting together Corollary 3.2.5 and Theorem 3.2.6, we get:

Corollary 3.2.7. Let d(t,n,m) be as in Theorem 3.2.6.
(i) If m+ t−1 < bm2/tc, then

d(t,m,n)≤ m2 +m(t−1)−dm2/te+1.

(ii) Otherwise, we have

d(t,m,n)≤ m2 +m(t−1)−bm(m+ k0)/tc+1,

where k0 = d(t2 + tm−m2)/(m− t)e.

For instance, Corollary 3.2.7 implies that a minimal relation between 2-minors of a
3×n matrix has degree at most 7. Actually we will see in the next subsection that such
a relation is at most a cubic.

3.2.3 Relations between 2-minors of a 3×n and a 4×n matrix
In this paragraph we want to explain the strategy to prove the following result:

Theorem 3.2.8. For all n≥ 4, the ideals J2(3,n) and J2(4,n) are generated by quadrics
and cubics.

Of course we have to use Theorem 3.2.6. It implies that d(2,3,n) ≤ d(2,3,5)
and d(2,4,n) ≤ d(2,4,6). Since we already know that there are minimal relations
of degree 2 and 3 by Corollary 3.1.8, we have just to show that d(2,3,5) ≤ 3 and
d(2,4,6) ≤ 3. The strategy to prove these inequalities is the same; however from a
computational point of view we must care more attentions to show the second one,
since its verification might require some days. For this reason we will present the
strategy to prove the second inequality:
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(1) Set J := J2(4,6), S := S2(4,6) and, for any d ∈ N, let J≤d ⊆ J denote the ideal
generated by the polynomials of degree less than or equal to d of J. By elimina-
tion (for instance see Eisenbud [34, 15.10.4]) one can compute a set of generators
of J≤3.

(2) Fixed some term order, for instance degrevlex, we compute a Gröbner basis of
J≤3 up to degree 13. So we get B := in(J≤3)≤13.

(3) Let us compute the Hilbert function of S/B. Clearly we have

HFS/J≤3(d)≤ HFS/B(d),

where equality holds true provided that d ≤ 13.
(4) We recall that a decomposition of At(m,n) in irreducible G-representations is

known by Theorem D.3.2. Moreover any irreducible G-module appearing in
it is of the form LλW ⊗LλV ∗ for some partition λ . It turns out that there is a
formula to compute the dimension of such vector spaces, namely the hook length
formula (for instance see the book of Fulton [42, p. 55]). So we can quickly get
the Hilbert function of A2(4,6) = S/J. Let us compute it up to degree 13.

(5) Since J≤3 ⊆ J, we will have that HFS/B(d)≥HFS/J(d). However, comparing the
two Hilbert functions, one can check that HFS/B(d) = HFS/J(d) for any d ≤ 13.
This implies that J≤3 = J≤13.

(6) Corollary 3.2.5 yields that a minimal generator of J has at most degree 13. There-
fore J≤13 = J. So we are done, since J≤3 = J≤13.

We used the computer algebra system Singular, [30]. The employed machine took
about 60 hours to compute the generators of J≤3, and about 15 hours to compute a
Gröbner basis of it up to degree 13. This means that probably is necessary to bound
the degrees, if not the computation might not finish. At the contrary, the computation
of J2(3,5) can be done without any restrictions: It is just a matter of seconds.

3.2.4 The uniqueness of the shape relations
Theorem 3.1.6 implies that some cubics lie in Jt . But are we sure that we cannot find
some other higher degrees minimal relations with similar arguments? We recall that
those cubics correspond to some bi-diagrams, namely the shape relations, which are
irreducible representations of Tt . The crucial properties we needed to prove that these
bi-diagrams actually correspond to minimal generators of Jt have been that they are
asymmetric diagrams of multiplicity one, whose only predecessor is symmetric. In
this subsection we are going to prove that, but the shape relations and those of degree
less than 3, there are no other bi-diagrams of Tt satisfying these properties. In a certain
sense, this implies that the bi-diagrams that are minimal irreducible representations of
Jt for reasons of shape are just in degree 2 and 3. So the question is: Are there any
other minimal irreducible representations of Jt for reasons of multiplicity?

To our purpose we introduce some notation and some easy facts. For the next
lemma let us work just with V . Let λ = (λ1, . . . ,λk) be a partition. Pieri’s formula (The-
orem D.2.11) implies that a diagram LλV is an irreducible GL(V )-subrepresentation
of
⊗d∧t V if and only if |λ | = td and k ≤ d. As in the case of bi-diagrams we

say that a partition λ ′ ` t(d − 1) with at most d − 1 parts is a predecessor of λ if
λ ′ ⊆ λ ⊆ λ ′(d). Moreover we define the difference sequence ∆λ := (∆λ1, . . . ,∆λk)
where ∆λi := λi− λi+1, setting λk+1 = 0. Notice that in order to get a predecessor
of λ we can remove q boxes from its ith row only if ∆λi ≥ q. Moreover notice that
∆λ1 + . . .+∆λk = λ1 ≥ t.
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Lemma 3.2.9. Let λ = (λ1, . . . ,λk) ` td be a partition such that LλV ⊆
⊗d∧t V , with

d > 1. Then λ has a unique predecessor if and only if either λ1 = . . . = λk (λ is a
rectangle) or there exist i such that λ1 = . . . = λi > λi+1 = . . . = λk and k = d (λ is a
fat hook).

Proof. If λ is a rectangle its difference sequence is

∆λ = (0,0, . . . ,0︸ ︷︷ ︸
k−1 times

,λ1).

This means that the only way to remove t boxes from different columns of λ is to do it
from its last row. Therefore λ has a unique predecessor, namely

λ
′ = (λ1,λ1, . . . ,λ1︸ ︷︷ ︸

k−1 times

,λ1− t).

If λ is a fat hook, instead, its difference sequence is

∆λ = (0,0, . . . ,0︸ ︷︷ ︸
i−1 times

,λ1−λk, 0,0, . . . ,0︸ ︷︷ ︸
k− i−1 times

,λk).

Since k = d, to get a predecessor of λ we must remove completely the last row. So the
only nonzero entry which remains is ∆λi. Therefore the only predecessor of λ is

λ
′ = (λ1,λ1, . . . ,λ1︸ ︷︷ ︸

i−1 times

,λ1 +λk− t,λk,λk, . . . ,λk︸ ︷︷ ︸
k− i−1 times

).

For the converse, first suppose that k < d. Then in order to get a predecessor of λ we
have not to care about removing the last row. Moreover, in this case, ∆λ1 + . . .+∆λk =
λ1 > t. This implies that if two of the ∆λi’s were bigger than 0, more than one choice
would be possible: So λ would have more than one predecessor. So there must be just
one i such that ∆λi > 0. In other words, λ has to be a rectangle.

Now suppose k = d. In this case we must remove the kth row. If λk = t, then λ will
be a rectangle. So we can assume that λk < t (consequently λ1 > t). This means that
after removing the last row we can remove freely t−λk boxes from the other. Because
∆λ1 + . . . + ∆λk−1 = λ1− λk > t − λk, the choice of removing some boxes to get a
predecessor will be unique only if just one among the ∆λi is bigger than 0. This means
that λ has to be a fat hook.

Corollary 3.2.10. Given a partition λ = (λ1, . . . ,λk) ` td (with d ≥ 2), the irreducible
GL(V )-representation LλV appears with multiplicity one in

⊗d∧t V if and only if λ

has only one predecessor which either is (t), or, in turn, has only one predecessor.
These facts are equivalent to the fact that λ is a diagram of the following list:

1. a rectangle with one row (k = 1);
2. a rectangle with d−1 rows;
3. a rectangle with d rows;
4. a fat hook of the type λ1 > λ2 = . . . = λk with k = d;
5. a fat hook of the type λ1 = . . . = λk−1 > λk with k = d;

Proof. By Pieri’s formula (Theorem D.2.11), LλV has multiplicity one in
⊗d∧t V

if and only if λ has only a predecessor λ ′ such that Lλ ′V has multiplicity one in
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⊗d−1∧t V . Thus we can argue by induction on d. For d = 2, the only predecessor
of λ is λ ′ = (t), and L(t)V ∼=

∧t V has obviously multiplicity one in
∧t V . For d > 2,

the λ ’s appearing in the list of the statement have just one predecessor by Lemma 3.2.9.
Furthermore, it is easy to check that if λ is a partition in the list, its unique predecessor
λ ′ is in the list as well as λ (of course we mean with d replaced by d− 1). So Lλ ′V
has multiplicity one in

⊗d−1∧t V by induction. To see that there are no other λ but
those in the list, we have to check that: If a partition λ is not in the list and has only
one predecessor λ ′, then λ ′ has more than one predecessor. This is easily checkable
using Lemma 3.2.9.

Now we are ready to prove the announced fact that the only minimal relations for
reasons of shape are in degree 2 and 3.

Proposition 3.2.11. Let (γ|λ ) be an asymmetric bi-diagram such that LγW ⊗ LλV ∗

appears in Td with multiplicity one and such that its only predecessor is symmetric.
Then d = 2 or d = 3 and (γ|λ ) is a shape relation.

Proof. Since (γ|λ ) is an irreducible G-subrepresentation of Td , we have |γ|= |λ |= td.
For the proof we have to reason by cases. Set:

A1 := {α d-admissible : α is a rectangle with 1 row}

A2 := {α d-admissible : α is a rectangle with d−1 rows}

A3 := {α d-admissible : α is a rectangle with d rows}

A4 := {α d-admissible : α is a fat hook of the type λ1 > λ2 = . . . = λk with k = d}

A5 := {α d-admissible : α is a fat hook of the type λ1 = . . . = λk−1 > λk with k = d}

Since (γ|λ ) has multiplicity one, by Corollary 3.2.10 there exist i, j such that γ ∈ Ai
and λ ∈A j. Denote by (γ ′|λ ′) the only predecessor of (γ|λ ). We can assume that d≥ 3.

1. γ ∈ A1.

(a) If λ ∈ A1 then (γ|λ ) would not be asymmetric;
(b) If λ ∈ A2 then (γ ′|λ ′) would not be symmetric;
(c) If λ ∈ A3 then (γ ′|λ ′) would not be symmetric;
(d) If λ ∈ A4 then (γ ′|λ ′) would not be symmetric;
(e) If λ ∈ A5 then (γ ′|λ ′) would not be symmetric;

2. γ ∈ A2.

(a) If λ ∈ A2 then (γ|λ ) would not be asymmetric;
(b) If λ ∈ A3 then (γ ′|λ ′) would not be symmetric;
(c) If λ ∈ A4 and if d ≥ 4 then (γ ′|λ ′) would not be symmetric. If d = 3 then

actually (γ|λ ) is a shape relation;
(d) If λ ∈ A5 then (γ ′|λ ′) would not be symmetric (γ ′1 > λ ′1);

3. γ ∈ A3.

(a) If λ ∈ A3 then (γ|λ ) would not be asymmetric;
(b) If λ ∈ A4 then (γ ′|λ ′) would not be symmetric (γ ′2 = t > λ ′2);
(c) If λ ∈ A5 then (γ ′|λ ′) would not be symmetric (γ ′1 = t < λ ′1);

4. γ ∈ A4.
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(a) If λ ∈ A4 then, since (γ ′|λ ′) has to be symmetric, (γ|λ ) would have to be
symmetric as well;

(b) If λ ∈ A5 and d ≥ 4, then (γ ′|λ ′) would not be symmetric; if d = 3, then
(γ|λ ) is a shape relation.

5. γ ∈ A5.

(a) If λ ∈ A5 then, since (γ ′|λ ′) has to be symmetric, (γ|λ ) would have to be
symmetric as well.

3.3 The initial algebra and the algebra of U-invariants
of At

In this section we will exhibit a system of generators for: (i). The initial algebra of At
with respect to a diagonal term order. (ii). The subalgebra of U-invariants of At . In gen-
eral both the initial algebra and the ring of invariants of a finitely generated k-algebra
might be not finitely generated. We will prove that the two k-algebras considered above
are finitely generated, but especially we will give a finite system of generators of them.

3.3.1 A finite Sagbi basis of At

In [17, Theorem 3.10], Bruns and Conca described a Gröbner basis, with respect to any
diagonal term order, for every powers of the determinantal ideals It . This allows us to
describe when a monomial of R = k[X ] belongs to in(Ad). In fact, we have

in(At) =
⊕
d∈N

in(Id
t ∩Rtd).

Lemma 3.3.1. A monomial M ∈ R belongs to in(At)d if and only if M = M1 · · ·Mk
where the Mq’s are monomials of R such that

1. For any q = 1, . . . ,k the monomial Mq is the initial term of an rq-minor.
2. The partition (r1,r2, . . . ,rk) is d-admissible.

Although in [17, Theorem 3.11] the authors showed that in(At) is a finitely gener-
ated k-algebra, they could not specify a finite Sagbi basis of At (see [19, Remark 7.11
(b)]). Actually they could not even give an upper bound for the degree of a minimal
generator of in(At). We will be able to do it. To this aim, first, we need some notions
about partitions of integers (to delve more into such an argument see the sixth chapter
of the book of Sturmfels [101]).

A partition identity is any identity of the form

a1 +a2 + . . .+ak = b1 +b2 + . . .+bl (3.9)

where ai,b j ≥ 1 are integers. Fixed a positive integer q we will say that (3.9) is a
partition identity with entries in [q] if furthermore ai,b j ≤ q. The partition identity
(3.9) is called primitive if there is no proper subidentity

ai1 +ai2 + . . .+air = b j1 +b j2 + . . .+b js
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with r + s < k + l. We say that the partition identity 3.9 is homogeneous if k = l. It is
homogeneous primitive if there is no proper subidentity

ai1 +ai2 + . . .+air = b j1 +b j2 + . . .+b jr

with r < k.

Theorem 3.3.2. Let d denote the maximum degree of a minimal generator lying in
in(At). Then d ≤ m−1. Furthermore d ≤ m−2 if and only if GCD(m−1, t−1) = 1.

Proof. Let M := M1 · · ·Mk be a product of initial terms of minors, say Mi := in(δi)
where δi is an mi-minor of X . Let td be the degree of M, so that ∑

k
i=1 mi = td.

If k < d the monomial M cannot be a minimal generator of At : In fact, since m1 > t,

M1 = in(δ ′1) · in(δ ′′1 ),

where δ ′1 is an m1− t-minor and δ ′′1 is a t-minor. Since k ≤ d−1, the monomial

M′ := in(δ ′1) ·M2 · · ·Mk

belongs to in(At)d−1 by Lemma 3.3.1. Moreover in(δ ′′1 ) obviously belongs to in(At)1.
Thus, as M = M′ · in(δ ′′1 ), it is not a minimal generator.

So we can assume that k = d. This means that we have a homogeneous partition
identity with entries in [m] of the kind

m1 +m2 + . . .+md = t + t + . . .+ t︸ ︷︷ ︸
d times

.

If d ≥ m then the above is not a homogeneous primitive partition identity by [101,
Theorem 6.4]. Therefore there is a subset S( [d] such that

∑
i∈S

mi = |S| · t,

and as a consequence
∑

i∈[d]\S
mi = (d−|S|) · t.

Therefore by Lemma 3.3.1 M′ := ∏i∈S Mi ∈ in(At)|S| and M′′ := ∏i∈[d]\S Mi ∈ in(At)d−|S|,
so that M = M′ ·M′′ is not a minimal generator of in(A).

For the second part of the statement, arguing as in the proof of [101, Theorem 6.4]
one can deduce that the only possible homogeneous primitive partition identity with
entries in [m] of the kind

λ1 +λ2 + . . .+λm−1 = t + t + . . .+ t︸ ︷︷ ︸
m−1 times

is the following one:

1+1+ . . .+1︸ ︷︷ ︸
m−t times

+m+m+ . . .+m︸ ︷︷ ︸
t−1 times

= t + t + . . .+ t︸ ︷︷ ︸
m−1 times

.

The above is not a homogeneous primitive partition identiy if and only if there exist
two natural numbers, p≤m−t and q≤ t−1, such that q(m−t) = p(t−1) and p+q <
m−1. This is possible if and only if GCD(m− t, t−1) = GCD(m−1, t−1) > 1.
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Corollary 3.3.3. A finite Sagbi basis of At is formed by the product of minors belonging
to it and of degree at most m−1.

Remark 3.3.4. An upper bound for the degree of the minimal generators of Jt might
be gotten by studying the defining ideal of the initial algebra of At . The minimal
generators of such an ideal are binomials, so it could be not impossible to find them.
Although there is no hope that this ideal is generated in degree at most 3, there is a
hope to obtain, in this way, an upper bound linear in m (the one we got in Corollary
3.2.7 is quadratic in m). Furthermore passing through the initial algebra would save
us from using representation theory, so the results would hold in any not exceptional
characteristic (char(k) = 0 or char(k) > min{t,m− t}). In this direction we can prove
that the ideal defining the initial algebra of A2(3,n) is generated in degree 2, 3 and
4. However we will not include this result in the thesis, since its proof is boring and
it would extend too weakly (with respect to the effort we would do proving it) our
knowledge about the relations.

3.3.2 A finite system of generators for AU
t

Techniques similar to those used in the previous subsection can be also used to exhibit
a finite system of generators for an important subalgebra of At . Let U−(W ) be the sub-
group of the lower triangular matrices of GL(W ) with 1’s on the diagonal and U+(V )
be the subgroup of the upper triangular matrices of GL(V ) with 1’s on the diagonal.
Then, set

U := U−(W )×U+(V )⊆ G.

The group U plays an important role: In fact one can show that a polynomial f ∈ R
is U-invariant if and only if it belongs to the k-vector space generated by the highest
bi-weight vectors with respect to B (for the definition of highest bi-weight vector and
of B see D.3, for the proof of the above fact see [15, Proposition 11.22]). Therefore,
we have a description for the ring of U-invariants of At , namely

AU
t = k⊕< [cλ |cλ ] : λ is an admissible partition > .

In this subsection we will find a finite set of “basic invariants” of At , that is a finite
system of k-algebra generators of AU

t . In other words, we will solve what is known as
the first main problem of invariant theory in the case of AU

t .

Theorem 3.3.5. The ring of invariants AU
t is generated by the product of initial minors

[cλ |cλ ] where λ is an admissible partition with at most m− 1 parts. Furthermore is
generated up to degree m.

Proof. Let A be the subalgebra of AU
t generated by [cλ |cλ ] where λ is an admissible

partition with at most m−1 parts. We have to prove that actually A = AU
t .

Thus let λ = (λ1, . . . ,λk) be an admissible partition with k≥m such that, by contra-
diction, [cλ |cλ ] does not belong to A. Furthermore assume that among such partitions
λ is minimal with respect to k. First, let us suppose that |λ |= kt. Then, as in the proof
of Theorem 3.3.2, the following

λ1 +λ2 + . . .+λk = t + t + . . .+ t︸ ︷︷ ︸
k times

is not a homogeneous primitive partition identity by [101, Theorem 6.4]. Therefore
there is a subset S ( [k] such that ∑i∈S λi = |S| · t and ∑i∈[k]\S λi = (k−|S|) · t. We set
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λS := (λi : i ∈ S) and λ[k]\S := (λi : i ∈ [k]\S). These are both admissible partitions so
[cλS |cλS ] and [cλ[k]\S]

|cλ[k]\S ] are elements of A. We claim that

[cλS |cλS ] · [cλ[k]\S |cλ[k]\S ] = [cλ |cλ ].

In fact [cλS |cλS ] · [cλ[k]\S |cλ[k]\S ] is obviously U-invariant. Moreover it has bi-weight
((tλ1, . . . ,

tλm)|(−tλn, . . . ,−tλ1)), so it is actually [cλ |cλ ].
It remains the case in which |λ | = dt with d > k. Notice that we can assume

that λi 6= t for all i = 1, . . . ,k: Otherwise, putting λ ′ := (λ j : j 6= i), we would have
[cλ |cλ ] = [cλ ′ |cλ ′ ] · [12|12]. We have the partition identity with entries in [m]

λ1 +λ2 + . . .λk = t + t + . . .+ t︸ ︷︷ ︸
d times

.

Set s := max{i : λi > t}. We can consider the partition identity with entries in [m]

δ1 +δ2 + . . .+δs = δs+1 +δs+2 + . . .+δd (3.10)

where δi := |λi− t| for i≤ k and δi = t for k < i≤ d. We claim that the above partition
identity is primitive. By the contrary, suppose that there exist {i1, . . . , ip} ⊆ [s] and
{ j1, . . . , jq} ⊆ {s+1, . . . ,d} with p+q < d such that

δi1 +δi2 + . . .+δip = δ j1 +δ j2 + . . .+δ jq .

Therefore if {u1, . . . ,us−p} = [s] \ {i1, . . . , ip} and {v1, . . . ,vd−s−q} = {s + 1, . . . ,d} \
{ j1, . . . , jq} we also have

δu1 +δu2 + . . .+δus−p = δv1 +δv2 + . . .+δvd−s−q .

Setting r := max{a : ja ≤ k} and l := max{b : vb ≤ k } we get

λi1 +λi2 + . . .+λip +λ j1 + . . .+λ jr = t + t + . . .+ t︸ ︷︷ ︸
p+q times

and
λu1 +λu2 + . . .+λus−p +λv1 + . . .+λvl = t + t + . . .+ t︸ ︷︷ ︸

d−p−q times

.

Let α := (λi1 , . . . ,λip ,λ j1 , . . . ,λ jr) and β := (λu1 , . . . ,λus−p ,λv1 , . . . ,λvl ) be the respec-
tive two partitions. Since p + r ≤ p + q and s− p + l ≤ d− p− q both α and β are
admissible partitions. So, as above [cλ |cλ ] = [cα |cα ] · [cβ |cβ ] belongs to A, which is a
contradiction. Therefore the partition (3.10) must be primitive. So, using [101, Corol-
lary 6.2] we get, d ≤ m− t + t = m, and therefore k ≤ m−1.

As a consequence of Theorem 3.3.5 we have an upper bound on the maximum
degree of a generator of any prime ideal of At which is a G-subrepresentation, for short
a G-stable prime ideal.

Corollary 3.3.6. A G-stable prime ideal of At(m,n) is generated in degree less than or
equal to m.

Proof. Suppose to have a minimal generator of degree greater than m in a G-stable
prime ideal ℘⊆ At . Since ℘ is a G-subrepresentation of At , than we can suppose that
such an element is of the type [cλ |cλ ] with |λ | > mt. By Theorem 3.3.5 there exist
two admissible partitions γ and δ such that |γ|, |δ |< |λ | and [cγ |cγ ] · [cδ |cδ ] = [cλ |cλ ].
Since [cλ |cλ ] is a minimal generator, this contradicts the primeness of ℘.



Chapter 4

Symbolic powers and Matroids

This chapter is shaped on our paper [105]. It is easy to show that, if S := k[x1, . . . ,xn]
is a polynomial ring in n variables over a field k and I is a complete intersection ideal,
then S/Ik is Cohen-Macaulay for all positive integer k. A result of Cowsik and Nori,
see [27], implies that the converse holds true, provided the ideal is homogeneous and
radical. Therefore, somehow the above result says that there are no ideals with this
property but the trivial ones. On the other hand, if S/Ik is Cohen-Macaulay, then Ik has
not any embedded prime ideals, so by definition it is equal to the kth symbolic power
of I, namely Ik = I(k) (see E.1). So, it is natural to ask:

For which I ⊆ S is the ring S/I(k) Cohen-Macaulay for any positive integer k?

We will give a complete answer to the above question in the case in which I is
a square-free monomial ideal. Notice that when n = 4 this problem was studied by
Francisco in [41]. These kind of ideals, whose basic properties are summarized in E,
supply a bridge between combinatorics and commutative algebra, given by attaching
to any simplicial complex ∆ on n vertices the so-called Stanley-Reisner ideal I∆ and
Stanley-Reisner ring k[∆] = S/I∆. One of the most interesting parts of this theory is
finding relationships between combinatorial or topological properties of ∆ and ring-
theoretic ones of k[∆]. For instance, Reisner gave a topological characterization of
those simplicial compexes ∆ for which k[∆] is Cohen-Macaulay (for example see Miller
and Sturmfels [81, Theorem 5.53]). Such a characterization depends on certain singular
homology groups with coefficients in k of topological spaces related to ∆. In fact,
the Cohen-Macaulayness of ∆ may depend on char(k). At the contrary, a wide open
problem is, once fixed the characteristic, to characterize in a purely graph-theoretic
fashion those graphs G for which k[∆(G)] is Cohen-Macaulay, where ∆(G) denotes the
independence complex of G. For partial results around this problem see, for instance,
Herzog and Hibi [59], Herzog, Hibi and Zheng [62], Kummini [70] and our paper joint
with Constantinescu [25]. Thus, in general, even if a topological characterization of the
“Cohen-Macaulay simplicial complex” is known, a purely combinatorial one is still a
mystery. In this chapter we are going to give a combinatorial characterization of those
simplicial complexes ∆ such that S/I(k)

∆
is Cohen-Macaulay for all positive integer k.

The characterization is quite amazing, in fact the combinatorial counter-party of the
algebraic one “S/I(k)

∆
Cohen-Macaulay” is a well studied class of simplicial complexes,

whose interest comes besides this result. Precisely we will show in Theorem 4.1.1:

The ring S/I(k)
∆

is Cohen-Macaulay for all k > 0 ⇐⇒ ∆ is a matroid.
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Matroids have been introduced as an abstraction of the concept of linear indepen-
dence. We briefly discuss some basic properties of them in Section E.2, however there
are entire books treating this subject, such as that of Oxley [88] or the one of Welsh
[106]. It must be said that Theorem 4.1.1 has been proved independently and with
different methods by Minh and Trung in [84, Theorem 3.5].

Actually, we will show a more general version of Theorem 4.1.1 described above,
namely Theorem 4.1.6, regarding a class of monomial ideals more general than the
square-free ones. Let us say that this generalization appears for the first time, since it
was not present in our original paper [105]. As a first tool for our proof, we need a
duality for matroids (see Theorem E.2.2), which will allow us to switch the problem
from I∆ to the cover ideal J(∆). The if-part of the proof, at this point, is based on the
investigation of the symbolic fiber cone of J(∆), the so-called algebra of basic covers
Ā(∆) (more generally Ā(∆,ω), where ω is a weighted function on the facets of ∆).
Such an algebra was introduced by Herzog during the summer school Pragmatic 2008,
in Catania. Among other things, he asked for its dimension. Since then, even if a
complete answer is not yet known, some progresses have been done: In our paper [25],
a combinatorial characterization of the dimension of Ā(∆) is given for one-dimensional
simplicial complexes ∆. Here we will show that dim(Ā(∆)) is minimal whenever ∆

is a matroid. To this purpose an exchange property for matroids, namely (E.4), is
fundamental. Eventually, Proposition 4.1.7 implies the if-part of Theorem 4.1.1.

In [105], we actually showed that dim(∆) is minimal exactly when ∆ is a matroid,
getting also the only-if part of Theorem 4.1.1. Here, however, we decided to prove this
part in an other way. Namely, we study the associated primes of the polarization of I(k)

∆

(Corollary 4.1.11), showing that if ∆ is not a matroid, then there is a lack of connect-
edness of certain ideals related to ∆, obstructing their Cohen-Macaulayness (Theorem
4.1.12). In particular, this will imply that if S/In−dim(∆)+2

∆
is Cohen-Macaulay, then ∆

has to be a matroid, a stronger statement than the only-if part of Theorem 4.1.1.
It turns out that Theorem 4.1.1 has some interesting consequences. For instance,

in Corollary 4.2.1 we deduce that dim(Ā(∆)) = k[∆] if and only if ∆ is a matroid, and
that, in this situation, the “multiplicity of Ā(∆)” is bounded above from the multiplic-
ity of k[∆] (here the commas are due to the fact that, in general, Ā(∆) is not standard
graded). An other consequence regards the problem of set-theoretic complete inter-
sections (Corollary 4.2.4): After localizing at the maximal irrelevant ideal, I∆ is a
set-theoretic complete intersection whenever ∆ is a matroid.

4.1 Towards the proof of the main result
In this section we prove the main theorem of the chapter. For the notation and the
definitions of the basic objects we remind to Appendix E. In particular, k will denote
a field, S := k[x1, . . . ,xn] will be the polynomial ring in n variables over k, and m :=
(x1, . . . ,xn)⊆ S will denote the maximal irrelevant ideal of S.

Theorem 4.1.1. Let ∆ be a simplicial complex on [n]. The following are equivalent:
(i) S/I(k)

∆
is Cohen-Macaulay for any k ∈ N≥1.

(ii) S/J(∆)(k) is Cohen-Macaulay for any k ∈ N≥1.
(iii) ∆ is a matroid.

Remark 4.1.2. Notice that condition (iii) of Theorem 4.1.1 does not depend on the
characteristic of k. Thus, as a consequence of Theorem 4.1.1, conditions (i) and (ii) do
not depend on char(k) as well as (iii). This fact was not clear a priori.



4.1 Towards the proof of the main result 67

Remark 4.1.3. If ∆ is the m-skeleton of the (n−1)-simplex, −1≤ m≤ n−1, then ∆

is a matroid. So Theorem 4.1.1 implies that all the symbolic powers of I∆ are Cohen-
Macaulay.

Actually, we will prove a slightly more general version of Theorem 4.1.1, since this
does not require much more effort. More precisely, we will show Theorem 4.1.1 for a
larger class of pure monomial ideals than the pure square-free ones. We are going to
introduce them below: For a simplicial complex ∆ on [n], a function

ω : F (∆) → N\{0}
F 7→ ωF

is called weighted function (this concept has been introduced by Herzog, Hibi and
Trung in [61]). Moreover, the pair (∆,ω) is called a weighted simplicial complex. The
authors of [61] studied the properties of the weighted monomial ideal

J(∆,ω) :=
⋃

F∈F (∆)

℘
ωF
F .

If ω is the canonical weighted function, that is ωF = 1 for any F ∈F (∆), it turns out
than J(∆,ω) = J(∆) is nothing but than the cover ideal of ∆. In particular the class
of all the weighted monomial ideals contains the square-free ones. The class we want
to define stays between the pure square-free monomial ideals and the weighted pure
monomial ideals. We say that a weighted function ω is a good-weighted function if it
is induced by a weight on the variables, namely if there exists a function λ : [n]→R>0
such that ω = ωλ , where

ω
λ
F := ∑

i∈F
λ (i) ∀ F ∈F (∆).

In this case the pair (∆,ω) will be called a good-weighted simplicial complex and the
ideal J(∆,ω) a good-weighted monomial ideal.

Remark 4.1.4. If I⊆ S is a pure square-free monomial ideal, then it is a good-weighted
monomial ideal. In fact, we have that I = J(∆) for some pure simplicial complex
∆. Let d− 1 be the dimension of ∆. Then, because ∆ is pure, |F | = d for all facets
F ∈ F (∆). Defining the function λ : [n]→ R>0 as λ (i) := 1/d for any i ∈ N, we
have that the canonical weighted function is induced by λ , and so J(∆) = J(∆,ωλ ) is
a good-weighted monomial ideal.

The assumption that I is pure, in Remark 4.1.4, is necessary, as we are going to
show in the next example.

Example 4.1.5. Let ∆ be the simplicial complex on {1, . . . ,5} such that

F (∆) = {{1,2},{1,3},{1,4},{3,4},{2,3,5}}.

If the canonical weighted function on ∆ were induced by some weight λ on the vari-
ables, then we should have λ (1) = λ (2) = λ (3) = λ (4) = 1/2. This, since {2,3,5} ∈
F (∆), would imply λ (5) = 0, a contradiction.

We will prove the following theorem which, as we are going to show just below,
implies Theorem 4.1.1.

Theorem 4.1.6. Let J = J(∆,ω)⊆ S be a good-weighted monomial ideal. Then S/J(k)

is Cohen-Macaulay for any k ∈ N≥1 if and only if ∆ is a matroid.



68 Symbolic powers and Matroids

Proof. (of Theorem 4.1.1 from Theorem 4.1.6). (ii) =⇒ (iii). Since S/J(∆) is Cohen-
Macaulay, ∆ has to be pure. Therefore J(∆) is good-weighted by Remark 4.1.4, and
Theorem 4.1.6 implies that ∆ is a matroid.

(iii) =⇒ (ii). ∆ is pure because it is a matroid (see E.2). Thus J(∆) is good-
weighted by Remark 4.1.4, and Theorem 4.1.6 yields that S/J(∆)(k) is Cohen-Macaulay
for all k ∈ N≥1.

(i) ⇐⇒ (ii). By Theorem E.2.2 a simplicial complex ∆ is a matroid if and only if
∆c is a matroid. Since I∆ = J(∆c) and I∆c = J(∆), the equivalence between (ii) and (iii)
yields the equivalence between (i) and (ii).

4.1.1 The algebra of basic k-covers and its dimension
In Appendix E we introduced the concept of vertex cover of a simplicial complex,
emphasizing how it lends the name to the cover ideal. The concept of vertex cover
can be extended in the right way to a weighted simplicial complex as follows: For all
natural number k, a nonzero function α : [n]→ N is a k-cover of a weighted simplicial
complex (∆,ω) on [n] if

∑
i∈F

α(i)≥ kωF ∀ F ∈F (∆).

If ω is the canonical weighted function, i.e. if (∆,ω) is an ordinary simplicial com-
plex, then vertex covers are in one-to-one correspondence with 1-covers with entries in
{0,1}. Moreover, it is easy to show

J(∆,ω) = (xα(1)
1 · · ·xα(n)

n : α is a 1-cover).

Actually k-covers come in handy to describe a set of generators of all the kth symbolic
powers of J(∆,ω). In fact, by (E.3), we get

J(∆,ω)(k) =
⋂

F∈F (∆)

℘
kωF
F .

Therefore, as before, one can show

J(∆,ω)(k) = (xα(1)
1 · · ·xα(n)

n : α is a k-cover).

A k-cover α of (∆,ω) is said to be basic if for any k-cover β of (∆,ω) with β (i)≤ α(i)
for any i ∈ [n], we have β = α . Of course to the basic k-covers of (∆,ω) corresponds
a minimal system of generators of J(∆,ω)(k).

Now let us consider the multiplicative filtration S ymb(∆,ω) := {J(∆,ω)(k)}k∈N≥0

(for any ideal I in a ring R, we set I(0) := I0 = R). We can form the Rees algebra of S
with respect to the filtration S ymb(∆,ω), namely

A(∆,ω) :=
⊕
k∈N

J(∆,ω)(k).

Actually A(∆,ω) is nothing but than the symbolic Rees algebra of J(∆,ω). In [61,
Theorem 3.2], Herzog, Hibi and Trung proved that A(∆,ω) is noetherian. In particular,
the associated graded ring of S with respect to S ymb(∆,ω)

G(∆,ω) :=
⊕
k∈N

J(∆,ω)(k)/J(∆,ω)(k+1)
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and the special fiber

Ā(∆,ω) := A(∆,ω)/mA(∆,ω) = G(∆,ω)/mG(∆,ω)

are noetherian too. The algebra A(∆,ω) is known as the vertex cover algebra of (∆,ω),
and its properties have been intensively studied in [61]. The name comes from the fact
that, writing

A(∆,ω) =
⊕
k∈N

J(∆,ω)(k) · tk ⊆ S[t]

and denoting by A(∆,ω)k = J(∆,ω)(k) · tk, it turns out that, for k ≥ 1, a (infinite) basis
for A(∆,ω)k as a k-vector space is

{xα(1)
1 · · ·xα(n)

n · tk : α is a k-cover of (∆,ω)}.

The algebra Ā(∆,ω) is more subtle to study with respect to the vertex cover algebra:
For instance it is not evan clear which is its dimension. It is called the algebra of basic
covers of (∆,ω), and its properties have been studied for the first time by the author
with Benedetti and Constantinescu in [6] when ∆ is a bipartite graph. More generally,
in [25], we studied it for any 1-dimensional simplicial complex ∆. Clearly, the grading
defined above on A(∆,ω) induces a grading on Ā(∆,ω), and it turns out that a basis for
Ā(∆,ω)k, for k ≥ 1, as a k-vector space is

{xα(1)
1 · · ·xα(n)

n · tk : α is a basic k-cover of (∆,ω)}.

Notice that if α is a basic k-cover of (∆,ω), then α(i) ≤ λk for any i ∈ [n], where
λ := max{ωF : F ∈F (∆)}. This implies that Ā(∆,ω)k is a finite k-vector space for
any k∈N. So we can speak about the Hilbert function of Ā(∆,ω), denoted by HFĀ(∆,ω),
and from what said above we have, for k ≥ 1,

HFĀ(∆,ω)(k) = |{basic k-covers of (∆,ω)}|.

The key to prove Theorem 4.1.1 is to compute the dimension of Ā(∆,ω). So we need a
combinatorial description of dim(Ā(∆,ω)). Being in general non-standard graded, the
algebra Ā(∆,ω) could not have a Hilbert polynomial. However, by [61, Corollary 2.2]
we know that there exists h ∈ N such that (J(∆,ω)(h))k = J(∆,ω)(hk) for all k ≥ 1. It
follows that the hth Veronese of the algebra of basic covers, namely

Ā(∆,ω)(h) :=
⊕
k∈N

Ā(∆,ω)hk,

is a standard graded k-algebra. Notice that if a set { f1, . . . , fq} generates Ā(∆,ω) as
a k-algebra, then the set { f i1

1 · · · f
iq
q : 0 ≤ i1, . . . , iq ≤ h− 1} generates Ā(∆,ω) as

a Ā(∆,ω)(h)-module. Thus dim(Ā(∆,ω)) = dim(Ā(∆,ω)(h)). Since Ā(∆,ω)(h) has a
Hilbert polynomial, we get a useful criterion to compute the dimension of Ā(∆,ω).
First let us remind that, for two functions f ,g : N→ R, the writing f (k) = O(g(k))
means that there exists a positive real number λ such that f (k) ≤ λ · g(k) for k� 0.
Similarly, f (k) = Ω(g(k)) if there is a positive real number λ such that f (k)≥ λ ·g(k)
for k� 0

Criterion for detecting the dimension of Ā(∆,ω). If HFĀ(∆,ω)(k) = O(kd−1), then
dim(Ā(∆,ω))≤ d. If HFĀ(∆,ω)(k) = Ω(kd−1), then dim(Ā(∆,ω))≥ d.

The following proposition justifies the introduction of Ā(∆). It is an alternative
version of a result got by Eisenbud and Huneke in [38].
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Proposition 4.1.7. For any simplicial complex ∆ on [n] we have

dim(Ā(∆,ω)) = n−min{depth(S/J(∆,ω)(k)) : k ∈ N≥1}

Proof. Consider G(∆,ω), the associated graded ring of S with respect to S ymb(∆,ω).
Since G(∆,ω) is noetherian, it follows by Bruns and Vetter [15, Proposition 9.23] that

min{depth(S/J(∆,ω)(k)) : k ∈ N≥1}= grade(mG(∆,ω)).

We claim that G(∆,ω) is Cohen-Macaulay. In fact the Rees ring of S with respect to
the filtration S ymb(∆,ω), namely A(∆,ω), is Cohen-Macaulay by [61, Theorem 4.2].
Let us denote by M := m⊕A(∆,ω)+ the unique bi-graded maximal ideal of A(∆,ω).
The following short exact sequence

0−→ A(∆,ω)+ −→ A(∆,ω)−→ S−→ 0

yields the long exact sequence on local cohomology

. . .−→ H i−1
M (S)−→ H i

M(A(∆,ω)+)−→ H i
M(A(∆,ω))−→ . . . .

By the independence of the base in computing local cohomology modules (see Lemma
0.2.2 (ii)) we have H i

M(S) = H i
m(S) = 0 for any i < n by (0.8). Furthermore, using once

again (0.8), H i
M(A(∆,ω)) = 0 for any i≤ n since A(∆,ω) is a Cohen-Macaulay (n+1)-

dimensional (see Bruns and Herzog [13, Theorem 4.5.6]) ring. Thus H i
M(A(∆,ω)+) =

0 for any i ≤ n by the above long exact sequence. Now let us look at the other short
exact sequence

0−→ A(∆,ω)+(1)−→ A(∆,ω)−→ G(∆,ω)−→ 0,

where A(∆,ω)+(1) means A(∆,ω)+ with the degrees shifted by 1, and the correspond-
ing long exact sequence on local cohomology

. . .−→ H i
M(A(∆,ω))−→ H i

M(G(∆,ω))−→ H i+1
M (A(∆,ω)+(1))−→ . . . .

Because A(∆,ω)+ and A(∆,ω)+(1) are isomorphic A(∆,ω)-module, we have that
H i

M(A(∆,ω)+(1)) = 0 for any i ≤ n. Thus H i
M(G(∆,ω)) = 0 for any i < n. Since

G(∆,ω) is an n-dimensional ring (see [13, Theorem 4.5.6]) this implies, using once
again Lemma 0.2.2 (ii) and (0.8), that G(∆,ω) is Cohen-Macaulay.

Since G(∆,ω) is Cohen-Macaulay, grade(mG(∆,ω)) = ht(mG(∆,ω)) (for instance
see Matsumura [80, Theorem 17.4]). So, because Ā(∆,ω) = G(∆,ω)/mG(∆,ω), we
get

dim(Ā(∆,ω)) = dim(G(∆,ω))−ht(mG(∆,ω)) = n−grade(mG(∆,ω)),

and the statement follows at once.

4.1.2 If-part of Theorem 4.1.6
In this subsection we show the if-part of Theorem 4.1.6, namely: If ∆ is a matroid, then
S/J(∆,ω)(k) is Cohen-Macaulay for each good-weighted function ω on ∆. To this aim
we need the following lemma, which can be interpreted as a sort of rigidity property of
the basic covers of a good-weighted matroid.
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Lemma 4.1.8. Let ∆ be a matroid on [n], ω a good-weighted function on it and k a
positive integer. Let us fix a facet F ∈F (∆), and let α : F→N be a function such that
∑i∈F α(i) = kωF . Then there exists an unique way to extend α to a basic k-cover of
(∆,ω).

Proof. That such an extension exists is easy to prove, and to get it we do not even need
that ∆ is a matroid nor that ω is a good-weighted function. Set α ′ : [n]→N the nonzero
function such that α ′ |F= α and α ′(i) := Mk if i ∈ [n]\F , where M := max{ωF : F ∈
F (∆)}. Certainly α ′ will be a k-cover of (∆,ω). If it is not basic, then there exists a
vertex i ∈ [n] such that ∑ j∈G α ′( j) > kωG for any G containing i. Thus we can lower
the value α ′(i) of one, getting a new k-cover. Such a new k-cover is still an extension
of α , since obviously i /∈ F . Going on in such a way we will eventually find a basic
k-cover extending α .

The uniqueness, instead, is a peculiarity of matroids. Let i0 ∈ [n] be a vertex which
does not belong to F , and let us denote by α ′ a basic k-cover of (∆,ω) extending α .
Since α ′ is basic, there must exist a facet G of ∆ such that i0 ∈G and ∑i∈G α ′(i) = kωG.
By the exchange property for matroids (E.4), there exists a vertex j0 ∈ F such that

G′ := (G\{i0})∪{ j0} ∈F (∆) and F ′ := (F \{ j0})∪{i0} ∈F (∆).

So, denoting by λ the weight on the variables inducing α ′, we have

∑
i∈G′

α
′(i)≥ kωG′ = ∑

i∈G′
kλ (i),

which yields α ′( j0)− kλ ( j0)≥ α(i0)− kλ (i0), and

∑
j∈F ′

α
′( j)≥ kωF ′ = ∑

j∈F ′
kλ ( j),

which yields α ′( j0)− kλ ( j0) ≤ α(i0)− kλ (i0). Therefore there is only one possible
value to assign to j0, namely:

α
′( j0) = α(i0)− kλ (i0)+ kλ ( j0).

Now we are ready to prove the if-part of Theorem 4.1.6.

Proof. If-part of Theorem 4.1.6. Let us consider a basic k-cover α of our good-
weighted matroid (∆,ω). Since α is basic there is a facet F of ∆ such that ∑ j∈F α( j) =
kωF . Set d := |F |. By Lemma 4.1.8 we deduce that the values assumed by α on [n]
are completely determined by those on F . Furthermore, the ways to give values on the
vertices of F in such a manner that ∑i∈F α(i) = kωF , are exactly:(

kωF +d−1
d−1

)
,

which is a polynomial in k of degree d−1. This implies that, for k ≥ 1,

HFĀ(∆,ω)(k) = |{basic k-covers of (∆,ω)}| ≤ |F (∆)| ·
(

kM +d−1
d−1

)
,

where M := max{ωF : F ∈F (∆)}. Since |F (∆)| does not depend on h, we get

HFĀ(∆,ω)(k) = O(kd−1).
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So dim(Ā(∆,ω)) ≤ d = dim(∆) + 1 (the last equality is because ∆ is pure, see E.2).
Since dim(S/J(∆)) = n−d, by Proposition 4.1.7 we get

d ≥ dim(Ā(∆,ω)) = n−min{depth(S/J(∆,ω)(k)) : k ∈ N≥1} ≥ d,

from which S/J(∆,ω)(k) is Cohen-Macaulay for any k ∈ N≥1.

Remark 4.1.9. If ∆ is a matroid on [n], may exist a weighted function ω of ∆ such that
S/J(∆,ω)(k) is Cohen-Macaulay for all k ∈ N≥1 and ω is not good. For instance, con-
sider the complete graph ∆ = K4 on 4 vertices, which clearly is a matroid. Furthermore
consider the following ideal:

J(K4,ω) := (x1,x2)2∩ (x1,x3)∩ (x1,x4)∩ (x2,x3)∩ (x2,x4)∩ (x3,x4).

The corresponding weighted function is clearly not good, however one can show that
S/J(K4,ω)(k) is Cohen-Macaulay for all k ∈ N≥1 using the result of Francisco [41,
Theorem 5.3 (iii)].

4.1.3 Only if-part of Theorem 4.1.6
To this aim we need to describe the associated prime ideals of the polarization (see E.3)
of a weighted monomial ideal J(∆,ω), namely

J̃(∆,ω)⊆ S̃.

Since polarization commutes with intersections (see (E.6)), we get:

J̃(∆,ω) =
⋂

F∈F (∆)

℘̃
ωF
F .

Thus, to understand the associated prime ideals of J̃(∆,ω) we can focus on the de-

scription of Ass(℘̃ωF
F ). So let us fix a subset F ⊆ [n] and a positive integer k. We

have:
℘̃k

F ⊆ S̃ = k[xi, j : i = 1, . . . ,n, j = 1, . . . ,k].

Being a monomial ideal, the associated prime ideals of ℘̃k
F are ideals of variables.

For this reason is convenient to introduce the following notation: For a subset G :=
{i1, . . . , id}⊆ [n] and a vector a := (a1, . . . ,ad)⊆Nd with 1≤ ai≤ k for any i = 1, . . . ,d,
we set

℘G,a := (xi1,a1 ,xi2,a2 , . . . ,xid ,ad ).

Lemma 4.1.10. Let F := {i1, . . . , id} ⊆ [n] and k be a positive integer. Then, a prime

ideal ℘⊆ S̃ is associated to ℘̃k
F if and only if ℘ = ℘F,a with |a| := a1 + . . . + ad ≤

k +d−1.

Proof. A minimal generator of ℘̃k
F is of the form

xF,b :=
b1

∏
p=1

xi1,p ·
b2

∏
p=1

xi2,p · · ·
bd

∏
p=1

xid ,p,

where b := (b1, . . . ,bd) ∈ Nd is such that |b| = k. Let us call Bk ⊆ Nd the set of such
vectors. An associated prime of ℘̃F is forced to be generated by d variables: In fact,
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℘̃k
F is Cohen-Macaulay of height d like ℘k

F from Theorem E.3.4. Moreover, it is easy
to check that a prime ideal of variables

℘ := (x j1,c1 , x j2,c2 , . . . , x jd ,cd )⊆ S̃,

where c := (c1, . . . ,cd) ∈ [k]d , is associated to ℘̃k
F if and only if

∀ b ∈ Bk ∃ p ∈ [d] such that x jp,cp |xF,b. (4.1)

So, if we choose b := (0,0, . . . ,0,k,0, . . . ,0), where the nonzero entry is at the place p,
we get that ip is in { j1, . . . , jd}. Letting vary p∈ [d], we eventually get { j1, . . . , jd}= F ,
i.e. ℘=℘F,c. Moreover notice that

xip,cp |xF,b ⇐⇒ cp ≤ bp. (4.2)

Suppose by contradiction that |c| ≥ k + d and set p0 := min{p : ∑
p
i=1 ci ≥ k + p} ≤ d.

Then choose b := (b1, . . . ,bd) ∈ Bk in this way:

bp :=


cp−1 if p < p0

k−∑
p0−1
i=1 (ci−1) if p = p0

0 if p > p0

Notice that the property of p0 implies that bp0 < cp0 . Moreover its minimality implies
bp0 > 0. Since bp < cp for all p = 1, . . . ,d, it cannot exist any p∈ [d] such that xip,cp |xF,b

by (4.2). Therefore ℘F,c /∈ Ass(℘̃k
F) by (4.1).

On the other hand, if c ∈ [k]d is such that |c| ≤ k + d−1, then for all b ∈ Bk there
exists p ∈ [d] such that cp ≤ bp, otherwise |b| ≤ |c|− d ≤ k− 1. Therefore xip,cp |xF,b

by (4.2) and ℘F,c ∈ Ass(℘̃k
F) by (4.1).

Corollary 4.1.11. Let ∆ be a simplicial complex on [n] and ω a weighted function on

it. A prime ideal ℘⊆ S̃ is associated to J̃(∆,ω) if and only if ℘=℘F,a with F ∈F (∆)
and |a| ≤ ωF + |F |−1.

Proof. Recall that J(∆,ω) =
⋂

F∈F (∆)℘
ωF . By (E.6), we have

J̃(∆,ω) =
⋂

F∈F (∆)

℘̃
ωF
F .

Therefore, by Lemma 4.1.10, we get

J̃(∆,ω) =
⋂

F∈F (∆)

 ⋂
|a|≤ωF +|F |−1

℘F,a

 .

Thus we conclude.

Theorem 4.1.12. Let ∆ be a simplicial complex on [n] and ω a weighted function on
it. Furthermore assume that ωF ≥ dim(∆)+ 2 for all facet F of ∆. If S/J(∆,ω) is
Cohen-Macaulay, then ∆ is a matroid.
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Proof. Suppose, by contradiction, that ∆ is not a matroid. Then there exist two facets
F,G ∈F (∆) and a vertex i ∈ F such that

(F \{i})∪{ j} /∈F (∆) ∀ j ∈ G. (4.3)

Being S/J(∆,ω) Cohen-Macaulay, then ∆ has to be pure. So, setting dim(∆) := d−1,
we can assume:

F = {i1, . . . , id}, G = { j1, . . . , jd} and i = i1.

Let us define:

a := (d +1,1,1, . . . ,1) ∈ Nd and b := (2,2, . . . ,2) ∈ Nd .

Notice that |a| = |b| = 2d. So, since by assumption ωF and ωG are at least d + 1,
Corollary 4.1.11 implies:

℘F,a, ℘G,b ∈ Ass(J̃(∆,ω)).

Since S/J(∆,ω) is Cohen-Macaulay, S̃/J̃(∆,ω) has to be Cohen-Macaulay as well by
Theorem E.3.4. So, the localization

(S̃/J̃(∆,ω))℘F,a+℘G,b

is Cohen-Macaulay. Particularly it is connected in codimension 1 (see Proposition
B.1.2). This translates into the existence of a sequence of prime ideals

℘F,a =℘0, ℘1, . . . , ℘s =℘G,b

such that ℘i ∈ Ass(J̃(∆,ω)), ℘i ⊆℘F,a +℘G,b and ht(℘i +℘i−1) ≤ d + 1 for each
index i making sense (see Lemma B.0.7). In particular, ht(℘F,a +℘1) ≤ d + 1. Since

℘1 ∈ Ass(J̃(∆,ω)) and it is contained in ℘F,a +℘G,b, there must exist p,q ∈ [d] such
that c = (a1,a2, . . . ,ap−1,bq,ap+1, . . . ,ad) ∈ Nd and

℘1 = (xi1,a1 , . . . , xip−1,ap−1 , x jq,bq , xip+1,ap+1 , . . . , xid ,ad ) =℘(F\{ip})∪{ jq},c.

But this is eventually a contradiction: In fact, if p = 1, then (F \{i})∪{ jq} would be a
facet of ∆, a contradiction to (4.3). If p 6= 1, then |c|= 2d +1. This contradicts Lemma

4.1.10, since ℘1 =℘(F\{ip})∪{ jq},c is associated to J̃(∆,ω).

Eventually, Theorem 4.1.12 implies the only-if part of Theorem 4.1.6.

Proof. Only if-part of Theorem 4.1.6. Since ωF is a positive integer for any facet
F ∈ F (∆), then (dim(∆) + 2)ωF ≥ dim(∆) + 2 for all facets F ∈ F (∆). So, since
S/J(∆,ω)(dim(∆)+2) is Cohen-Macaulay, ∆ has to be a matroid by Theorem 4.1.12.

Remark 4.1.13. Actually Theorem 4.1.12 is much stronger than the only-if part of
Theorem 4.1.6: In fact there are not any assumptions on the weighted function ω .
Moreover, Theorem 4.1.12 implies that it is enough that an opportune symbolic power
of J(∆,ω) is Cohen-Macaulay to force ∆ to be a matroid!
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4.2 Two consequences
We end the the chapter stating some applications of Theorem 4.1.6. We recall that
we already introduced in Chapter 2 the concept of multiplicity of a standard graded
k-algebra R, namely e(R), in terms of the Hilbert series of R. It is well known that
e(R) can be also defined as the leading coefficient of the Hilbert polynomial times
(dim(R)− 1)!, see [13, Proposition 4.1.9]. Geometrically, let ProjR ⊆ PN , i.e. R =
K[X0, . . . ,XN ]/J for a homogeneous ideal J. The multiplicity e(R) counts the number
of distinct points of ProjR∩H, where H is a generic linear subspace of PN of dimension
N−dim(ProjR). Before stating the next result, let us say that for a simplicial complex
∆, if ω is the canonical weighted function, then we denote Ā(∆,ω) simply by Ā(∆).

Corollary 4.2.1. Let ∆ be a simplicial complex and ω a good-weighted function on it.
Then ∆ is a (d−1)-dimensional matroid if and only if:

dim(Ā(∆,ω)) = dim(k[∆]) = d.

Moreover, if ∆ is a matroid, then

HFĀ(∆)(k)≤
e(k[∆])

(dim(Ā(∆))−1)!
kdim(Ā(∆))−1 +O(kdim(Ā(∆))−2).

Proof. The first fact follows putting together Theorem 4.1.6 and Proposition 4.1.7. For
the second fact, we have to recall that, during the proof of the if-part of Theorem 4.1.6,
we showed that for a (d−1)-dimensional matroid ∆ we have the inequality

HFĀ(∆)(k)≤ |F (∆)| ·
(

k +d−1
d−1

)
.

It is well known that if ∆ is a pure simplicial complex then |F (∆)| = e(K[∆]) (for
instance see [13, Corollary 5.1.9]), so we get the conclusion.

Example 4.2.2. If ∆ is not a matroid the inequality of Corollary 4.2.1 may not be true.
For instance, take ∆ :=C10 the decagon (thus it is a 1-dimensional simplicial complex).
Since C10 is a bipartite graph Ā(C10) is a standard graded k-algebra by [61, Theorem
5.1]. In particular it admits a Hilbert polynomial, and for k� 0 we have

HFĀ(C10)(k) =
e(Ā(C10))

(dim(Ā(C10))−1)!
kdim(Ā(C10))−1 +O(kdim(Ā(C10))−2).

In [25] it is proved that for any bipartite graph G the algebra Ā(G) is a homogeneous
ASL on a poset described in terms of the minimal vertex covers of G. So the multiplicity
of Ā(G) can be easily read from the above poset. In our case it is easy to check that
e(Ā(C10)) = 20, whereas e(k[C10]) = 10.

For the next result we need the concepts of “arithmetical rank” of an ideal and “set-
thoeretic complete intersections”, introduced in 0.4.2. By 0.10, if an ideal a of a ring
R is a set-theoretical complete intersection, then cd(R,a) = ht(a). In the case in which
R = S and a = I∆ where ∆ is some simplicial complex on [n], by a result of Lyubeznik
got in [73] (see Theorem 0.3.4), it turns out that cd(S, I∆) = n−depth(k[∆]). So, if I∆

is a set-theoretic complete intersection, then k[∆] will be Cohen-Macaulay.



76 Symbolic powers and Matroids

Remark 4.2.3. In general, even if k[∆] is Cohen-Maculay, then I∆ might not be a
set-theoretic complete intersection. For instance, if ∆ is the triangulation of the real
projective plane with 6 vertices described in [13, p. 236], then k[∆] is Cohen-Macaulay
whenever char(k) 6= 2. However, for any characteristic of k, I∆ need at least (actually
exactly) 4 polynomials of k[x1, . . . ,x6] to be defined up to radical (see the paper of
Yan [108, p. 317, Example 2]). Since ht(I∆) = 3, this means that I∆ is not a complete
intersection for any field.

Corollary 4.2.4. Let k be an infinite field. For any matroid ∆, the ideal I∆Sm is a
set-theoretic complete intersection in Sm.

Proof. By the duality on matroids it is enough to prove that J(∆)Sm is a set-theoretic
complete intersection. For h� 0 it follows by [61, Corollary 2.2] that the hth Veronese
of Ā(∆),

Ā(∆)(h) =
⊕
m≥0

Ā(∆)hm,

is standard graded. Therefore Ā(∆)(h) is the ordinary fiber cone of J(∆)(h). Moreover
Ā(∆) is finite as a Ā(∆)(h)-module. So the dimensions of Ā(∆) and of Ā(∆)(h) are the
same. Therefore, using Corollary 4.2.1, we get

ht(J(∆)Sm) = ht(J(∆)) = dim Ā(∆)(h) = `(J(∆)(h)) = `((J(∆)Sm)(h)),

where `(·) is the analytic spread of an ideal, i.e. the Krull dimension of its ordinary fiber
cone. From a result by Northcott and Rees in [86, p. 151], since k is infinite, it follows
that the analytic spread of (J(∆)Sm)(h) is the cardinality of a set of minimal generators
of a minimal reduction of (J(∆)Sm)(h). Clearly the radical of such a reduction is the
same as the radical of (J(∆)Sm)(h), i.e. J(∆)Sm, so we get the statement.

Remark 4.2.5. Notice that a reduction of ISm, where I is a homogeneous ideal of S,
might not provide a reduction of I. So localizing at the maximal irrelevant ideal is a
crucial assumption of Corollary 4.2.4. It would be interesting to know whether I∆ is a
set-theoretic complete intersection in S whenever ∆ is a matroid.

4.3 Comments
One of the keys to get our proof of Theorem 4.1.1 is to characterize the simplicial com-
plexes ∆ on [n] for which the Krull dimension of Ā(∆) is the least possible. We suc-
ceeded in this task showing that this is the case if and only if ∆ is a matroid (Corollary
4.2.1). In view of this, it would be interesting to characterize in general the dimen-
sion of Ā(∆) in terms of the combinatorics of ∆. In [6, Theorem 3.7], we located the
following range for the dimension of the algebra of basic covers:

dim∆+1≤ dim Ā(∆)≤ n−
⌊

n−1
dim∆+1

⌋
.

In [25], we characterized in a combinatorial fashion the dimension of Ā(G) for a graph
G, that is a 1-dimensional simplicial complex. However, already in that case, matters
have been not easy at all. We will not say here which is the graph-theoretical invariant
allowing to read off the dimension of Ā(G), since it is a bit technical. It suffices to
say that, for reasonable graphs, one can immediately compute such an invariant, and
therefore the dimension of the algebra of basic covers. The following is an interesting
example.
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Example 4.3.1. Let G = C6 the hexagon, namely:

C6 : s
s

s

s

s
s

T
T
T

�
�
�

�
�
�

T
T
T6

2

4

1

5

3

By [25, Theorem 3.8], it follows that dim Ā(C6) = 3. So, Proposition 4.1.7 yields:

min{depth(S/J(C6)(k)) : k ∈ N≥1}= 6−3 = 3,

where J(C6) is the cover ideal:

J(C6) = (x1,x2)∩ (x2,x3)∩ (x3,x4)∩ (x4,x5)∩ (x5,x6)∩ (x6,x1).

Notice that S/J(C6) is a 4-dimensional k-algebra which is not Cohen-Macaulay. To see
this it suffices to consider the localization of S/J(C6) at the residue class of the prime
ideal (x1,x2,x4,x5) ⊆ S = k[x1, . . . ,x6]. The resulting k-algebra is a 2-dimensional
local ring not 1-connected. Therefore, Proposition B.1.2 implies that it is not Cohen-
Macaulay. A fortiori, the original ring S/J(C6) is not Cohen-Macaulay too. So we get
depth(S/J(C6)) < dimS/J(C6) = 4, which implies depth(S/J(C6)) = 3 (from what said
just below the picture). Moreover, it follows from a general fact (see Herzog, Takayama
and Terai [60, Theorem 2.6]) that depth(S/J(C6))≥ depth(S/J(C6)(k)) for all integers
k ≥ 1. Thus, eventually, we have:

depth(S/J(C6)(k)) = 3 < dim(S/J(C6)) ∀ k ∈ N≥1

Example 4.3.1 suggests us the following question: Which are the simplicial com-
plexes ∆ on [n] such that depth(S/I(k)

∆
) is constant with k varying among the positive in-

tegers? Equivalently, which are the simplicial complexes ∆ such that depth(S/J(∆)) =
dim Ā(∆)? Theorem 4.1.1 shows that matroids are among these simplicial complexes,
however Example 4.3.1 guarantees that there are others.
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Appendix A

Other cohomology theories

Besides local cohomology, in mathematics many other cohomologies are available. In
this section we want to introduce some cohomology theories we will use in Chapter 1,
underlying the relationships between them.

A.1 Sheaf cohomology

In algebraic geometry the most used cohomology is sheaf cohomology. It can be de-
fined once given a topological space X and a sheaf F of abelian groups on X . When X
is an open subset of an affine or of a projective scheme and F is a quasi-coherent sheaf,
then sheaf cohomology and local cohomology are strictly related, as we are going to
show.

Actually to define sheaf cohomology it is not necessary to have a topological space,
but just to have a special category C: For a topological space X such a category is
simply Op(X) (see Example A.1.1 below). The definition in this more general context
does not involve much more effort and is useful since this thesis makes use of étale
cohomology, so we decided to present sheaf cohomology in such a generality. Étale
cohomology was introduced by Grothendieck in [49].

Let C be a category. For each object U of C suppose to have a distinguished set
of family of morphisms (Ui →U)i∈I , called coverings of U , satisfying the following
conditions:

(i) For any covering (Ui→U)i∈I and any morphism V →U the fiber products Ui×U
V exist, and (Ui×U V )i∈I is a covering of V .

(ii) If (Ui →U)i∈I is a covering of U and (Ui j →Ui) j∈Ji is a covering of Ui, then
(Ui j→U)(i, j)∈I×Ji is a covering of U .

(iii) For each object U of C the family (U
idU−−→U) consisting of one morphism is a

covering of U .
The system of coverings is called Grothendieck topology , and the category C together
with it is called site.

Example A.1.1. Given a topological space X, we can consider the category Op(X)
in which the objects are the open subsets of X and whose morphisms are the inclusion
maps: So Hom(V,U) is non-empty if and only if V ⊆ U. Moreover, in such a case
it consists in only one element. There is a natural Grothendieck topology on Op(X),
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namely the coverings of an object U are its open coverings. Clearly, if V and W are
open subsets of an open subset U, we have V ×U W = V ∩W.

A presheaf (of Abelian groups) on a cite C is a contravariant functor F : C→ Ab,
where Ab denotes the category of the Abelian groups. If F is a presheaf of Abelian

groups and V
φ−→U is a morphism in C, for any s ∈F (U) the element F (φ)(s) ∈ V

is denoted by s|V , although this can be confusing because there may be more than one
morphism from V to U . A presheaf F of Abelian groups is a sheaf if for any object U
of C and any covering (Ui→U)i∈I , we have:

(i) For any s ∈F (U), if s|Ui = 0 for any i ∈ I, then s = 0.
(ii) If si ∈F (Ui) for any i∈ I are such that si|Ui×UU j = s j|Ui×UU j for all (i, j)∈ I× I,

then there exists s ∈F (U) such that s|Ui = si for every i ∈ I.
A morphism of presheaves is a natural transformation between functors. A morphism
of sheaves is a morphism of presheaves.

The definition of Grothendieck topology gives rise to the study of various cohomol-
ogy theories: (Zariski) cohomology, étale cohomology, flat cohomology etc. Actually
all of these cohomologies are constructed in the same way: What changes is the site.

Example A.1.2. In this thesis we are interested just in two sites, both related to a
scheme X.

(i) The Zariski site on X, denoted by XZar, is the site on X regarded as a topological
space as in Example A.1.1. Since this is the most natural structure of site on X,
we will not denote it by XZar, but simply by X.

(ii) The étale site on X, denoted by Xét , is constructed as follows: The objects are
the étale morphisms U → X. The arrows are the X-morphisms U → V , and

the coverings are the families of étale X-morphisms (Ui
φi−→U)i∈I such that U =

∪φi(Ui).

The functor from the category of sheaves on a site C to Ab, defined by Γ(U, ·) :
F 7→ Γ(U,F ) := F (U), is left exact for every object U of C, and the category of
sheaves on C has enough injective objects (see Artin [1, p. 33]). Therefore it is possible
to define the right derived functors of Γ(U, ·), which are denoted by H i(U, ·). For a
scheme X and a sheaf F on X , the ith cohomology of F is H i(X ,F ). If F is a
sheaf on Xét , the ith étale cohomology of F is H i(X → X ,F ), and it is denoted by
H i(Xét ,F ).

As we already anticipated, the cohomology of a quasi-coherent sheaf on an open
subset of a noetherian affine scheme X is related to local cohomology: Let X :=
Spec(R), a ⊆ R an ideal and U := X \ V (a). Recall that if F is a quasi-coherent
sheaf on X then F is the sheafication of the R-module M := Γ(X ,F ). By combining
[10, Theorem 20.3.11] and [10, Theorem 2.2.4], shown in the book of Brodmann and
Sharp, we have that there is an exact sequence

0→ Γa(M)→M→ H0(U,F )→ H1
a(M)→ 0, (A.1)

and, for all i ∈ N≥1, isomorphisms

H i(U,F )∼= H i+1
a (M). (A.2)

There is also a similar correspondence in the graded case: Let R be a graded ring and a
be a graded ideal of R. Set X := Proj(R) and U := X \V+(a). Let M be a Z-graded R-
module. In this case the homomorphism appearing in [10, Theorem 2.2.4] are graded.
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So by [10, Theorem 20.3.15] we have an exact sequence of graded R-modules

0→ Γa(M)→M→
⊕
d∈Z

H0(U,M̃(d))→ H1
a(M)→ 0, (A.3)

and, for all i ∈ N≥1, graded isomorphisms⊕
d∈Z

H i(U,M̃(d))∼= H i+1
a (M). (A.4)

(The notation ·̃ above means the graded sheafication, see Hartshorne’s book [56, p.
116]. We used the same notation also for the “ordinary” sheafication, however it should
always be clear from the context which sheafication is meant). In particular, if m := R+,⊕

d∈Z
H i(X ,M̃(d))∼= H i+1

m (M) ∀ i ∈ N≥1.

Given a scheme X , the cohomological dimension of X is

cd(X) := min{i : H j(X ,F ) = 0 for all quasi-coherent sheaves F and j > i}.

Suppose that a is an ideal of a ring R which is not nilpotent. Then (A.1) and (A.2)
imply

cd(R,a)−1 = cd(Spec(R)\V (a)). (A.5)

Moreover, if R is standard graded over a field k and a is a homogeneous ideal which is
not nilpotent, using (A.3) and (A.4) we also have

cd(R,a)−1 = cd(Spec(R)\V (a)) = cd(Proj(R)\V+(a)). (A.6)

For a scheme X it is also available the étale cohomological dimension . To give its
definition we recall that a sheaf F on Xét is torsion if for any étale morphism U → X
such that U is quasi-compact, F (U → X) is a torsion Abelian group.

Example A.1.3. We can associate to any abelian group G the constant sheaf on a
topological space X . It is denoted by G, and for any open subset U ⊆ X it is defined
as

G(U) := Gπ0(U),

where π0(U) is the number of connected components of U. If X is a scheme, we can
associate to G the constant sheaf on Xét in the same way:

G(U → X) := Gπ0(U).

Clearly, if G is a finite group, then G is a torsion sheaf on Xét .

We can define the étale cohomological dimension of a scheme X as:

écd(X) := min{i : H j(Xét ,F ) = 0 for all torsion sheaves F and j > i}.

If X is a n-dimensional scheme of finite type over a separably closed field, then écd(X)
is bounded above by 2n (see Milne’s book [82, Chapter VI, Theorem 1.1]). If moreover
X is affine, then écd(X)≤ n ([82, Chapter VI, Theorem 7.2]).

We have seen in (0.10) that the cohomological dimension provides a lower bound
for the arithmetical rank. An analog fact holds true also for the étale cohomological
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dimension. Assume that X is a scheme and pick a closed subscheme Y ⊆ X . Suppose
that U := X \Y can be cover by k affine subsets of X . The étale cohomological dimen-
sion of these affine subsets is less than or equal to n for what said above. So, using
repetitively the Mayer-Vietoris sequence ([82, Chapter III, Exercise 2.24]), it is easy to
prove that

écd(U)≤ n+ k−1 (A.7)

Notice that if X := Spec(R) and Y := V (a), where a is an ideal of the ring R, then X \Y
can be covered by ara(a) affine subsets of R. The same thing happens in the graded
setting, with ara(a) replaced by arah(a). Therefore (0.10) actually provides a lower
bound for the arithmetical rank!

We want to finish the section noticing the formula for étale cohomoligical dimen-
sion analog to (A.6). Let R be standard graded over a separably closed field k and a a
homogeneous ideal of R. Then, using a result of Lyubeznik [76, Proposition 10.1], one
can prove that:

écd(Spec(R)\V (a)) = écd(Proj(R)\V+(a))+1. (A.8)

A.2 GAGA
To compare the cohomology theories we are going to define we need to introduce
some notions from a foundamental paper by Serre [95]. When we consider a quasi-
projective scheme over the field of complex numbers C, two topologies are available:
The euclideian one and the Zariski one. Serre’s work allows us to use results from
complex analysis for the algebraic study of such varieties. The name GAGA comes
from the title of the paper, “Geometrie Algebrique et Geometrie Analytique”.

If X is a quasi-projective scheme over C, we can associate to it an analytic space
Xh. Roughly speaking, we have to consider an affine covering {Ui}i∈I of X . Let us
embed every Ui as a closed subspace of a suitable AN

C. The ideal defining each Ui is
generated by a set of polynomials of C[x1, . . . ,xN ]. Because a polynomial is a holomor-
phic function, such a set defines a closed analytic subspace of CN , which we denote by
Uh

i . We obtain Xh gluing the Uh
i ’s together. Below follow some expected properties of

this construction we will use during the thesis:
(i) (Pn)h ∼= P(Cn+1).

(ii) If Y is another quasi-projective scheme over C, then Xh×Y h ∼= (X×Y )h.
Furthermore, to any sheaf F of OX -modules we can associate functorially a sheaf F h

of OXh -modules ([95, Definition 2]). The sheaf F h is, in many cases, the one we
expect: For instance, denoting by ΩX/C the sheaf of Kähler differentials of X over C,
the sheaf Ωh

X/C is nothing but than the sheaf of holomorphic 1-forms on Xh, namely

ΩXh . More generally, setting Ω
p
X/C := ΛpΩX/C, the sheaf (Ωp

X/C)h is Ω
p
Xh , the sheaf of

holomorphic p-forms on Xh. Another nice property is that F h is coherent whenever
F is coherent ([95, Proposition 10 c)]). One of the main results of [95] is the following
([95, Théoremè 1]):

Theorem A.2.1. Let X be a projective scheme over C and F be a coherent sheaf on
X. For any i ∈ N there are functorial isomorphisms

H i(X ,F )∼= H i(Xh,F h).
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Thanks to GAGA, we can borrow techniques from complex analysis when we study
algebraic varieties over a field of characteristic 0. Often this is useful because eu-
clideian topology is much finer than the Zariski one: For instance, if X is irreducible
over C, the cohomology groups H i(X ,C) vanish for any i > 0. Instead, H i(Xh,C) ∼=
H i

Sing(X
h,C) (see Subsection A.3), which in general are nonzero. When the character-

istic of the base field is positive these methods are not available. However, a valuable
analog of euclideian topology is the étale site. The following comparison theorem of
Grothendieck (see Milne’s notes [83, Theorem 21.1]) confirms the effectiveness of the
étale site.

Theorem A.2.2. Let X be an affine or a projective scheme smooth over C and let G be
a finite abelian group. For any i ∈ N there are isomorphisms

H i(Xét ,G)∼= H i(Xh,G).

A.3 Singular homology and cohomology

If X is a topological space and G an abelian group we will denote by HSing
i (X ,G)

the i-th singular homology group of X with coefficients in G (for instance see Hatcher’s
book [58, p. 153]). When G =Z, we just write HSing

i (X) for HSing
i (X ,Z). We recall that

HSing
i (X ,G) and HSing

i (X) are related by the universal coefficient theorem for homology
([58, Theorem 3A.3]):

Theorem A.3.1. If X is a topological space and G an abelian group, for any i ∈ N
there is a split exact sequence

0−→ HSing
i (X)⊗G−→ HSing

i (X ,G)−→ Tor1(H
Sing
i−1 (X),G)−→ 0

The i-th singular cohomology group of X with coefficients in G will be denoted
by H i

Sing(X ,G) (see [58, p. 197]). Singular cohomology and singular homology are
related by the universal coefficient theorem for cohomology ([58, Theorem 3.2]):

Theorem A.3.2. If X is a topological space and G an abelian group, for any i ∈ N
there is a split exact sequence

0−→ Ext1(HSing
i−1 (X),G)−→ H i

Sing(X ,G)−→ Hom(HSing
i (X),G)−→ 0

Example A.3.3. Let us consider the n-dimensional projective space over the complex
numbers, P(Cn+1), supplied with the euclideian topology. Then it is possible to com-
pute its singular homology groups:

HSing
i (P(Cn+1))∼=

{
Z if i = 0,2,4, . . . ,2n
0 otherwise

Using Theorems A.3.1 and A.3.2, since C is a free abelian group, we get

HSing
i (P(Cn+1),C)∼= HSing

i (P(Cn+1))⊗C∼=

{
C if i = 0,2,4, . . . ,2n
0 otherwise

and

H i
Sing(P(Cn+1),C)∼= Hom(H i

Sing(P(Cn+1)),C)∼=

{
C if i = 0,2,4, . . . ,2n
0 otherwise
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Suppose that X is an analytic space and that G = C. Then, for any i ∈ N, we have
a functorial isomorphism

H i
Sing(X ,C)∼= H i(X ,C), (A.9)

for instance see the notes of Deligne [31, Proposition 1.1].

A.4 Algebraic De Rham cohomology
For any regular projective scheme X over a field k of characteristic 0, and actually
for much more generals schemes, it is possible to define its algebraic De Rham coho-
mology groups, which we will denote by H i

DR(X) as shown by Grothendieck in [48].
Consider the complex of sheaves

Ω
•
X/k : OX −→ΩX/k −→Ω

2
X/k −→ . . . .

The De Rham cohomology is defined to be the hypercohomology of the complex Ω•X/k.
In symbols H i

DR(X) := Hi(X ,Ω•X/k). The De Rham cohomology theory can also be
developed in the singular case, see Hartshorne [55], but we do not need it in this thesis.

If k= C, we can consider the complex

Ω
•
Xh : OXh −→ΩXh −→Ω

2
Xh −→ . . . .

A theorem of Grothendieck [48, Theorem 1’] tells us that, under the above hypothesis,

H i
DR(X)∼=Hi(Xh,ΩXh). (A.10)

The complex form of Poincaré’s lemma shows that Ω•Xh is a resolution of the constant
sheaf C. Therefore Hi(Xh,ΩXh) is nothing but than H i(Xh,C). So (A.10) and (A.9)
yield functorial isomorphisms

H i
DR(X)∼= H i

Sing(X
h,C) (A.11)

for all i ∈ N.
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Connectedness in noetherian
topological spaces

In this appendix, we discuss a notion which generalizes that of connectedness on
Noetherian topological spaces. As example of Noetherian topological spaces, we sug-
gest to keep in mind schemes.

Remark B.0.1. Let X be an affine or a projective scheme smooth over the complex
numbers. Then Xh is endowed with a finer topology than the Zariski one. Therefore,
if Xh is connected, then X is connected as well. What about the converse implication?
Quite surprisingly, Xh is connected if and only if X is connected. This can be shown
using Theorem A.2.2. In fact, if G is a finite abelian group, then

Gπ0(X) ∼= H0(Xét ,G)∼= H0(Xh,G)∼= Gπ0(Xh),

where π0 counts the connected components of a topological space. Therefore, to figure
a connected projective scheme, one can trust the Euclideian perception. However, we
recommend carefulness about the fact that this occurrence fails as soon as X is not an
affine or a projective scheme. For instance, if X is the affine line without a point, then
it is connected, but Xh is obviously not.

For simplicity, from now on it will always be implied that our noetherian topologi-
cal spaces have finite dimension.

Definition B.0.2. A noetherian topological space T is said to be r-connected if the
following holds: if Z is a closed subset of T such that T \ Z is disconnected, then
dimZ ≥ r. (We use the convention that the emptyset is disconnected of dimension−1.)

Remark B.0.3. Let us list some easy facts about Definition B.0.2:
(i) If T is r-connected, then r ≤ dimT . Moreover T is always (−1)-connected.

(ii) If T is r-connected, then it is s-connected for any s≤ r.
(iii) T is connected if and only if it is 0-connected.
(iv) T is irreducible if and only if it is (dimT )-connected.

If, for a positive integer d, T is (dim(T )−d)-connected we say that T is connected
in codimension d. If R is a ring, we say that R is r-connected if Spec(R) is.

Example B.0.4. Besides Spec(R) we will consider other two noetherian topological
spaces related to special noetherian rings R.
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(i) If (R,m) is a local ring the punctured spectrum of R is Spec(R) \ {m}, where
the topology is induced by the Zariski topology on Spec(R). Notice that the
punctured spectrum of R is r-connected if and only if R is (r + 1)-connected (a
local ring is obviously always 0-connected).

(ii) If R is graded, we can consider the noetherian topological space Proj(R). One
can easily show that if R+ is a prime ideal, then Proj(R) is r-connected if and
only if the punctured spectrum of RR+ is r-connected if and only if R is (r + 1)-
connected.

We list three useful lemmas which allow us to interpret in different ways the con-
cept introduced in Definition B.0.2.

Lemma B.0.5. Let T be a nonempty noetherian r-connected topological space. Let
T1, . . . ,Tm be the irreducible components of T :

(i) If A and B are disjoint nonempty subsets of {1, . . . ,m} such that A∪B = {1, . . . ,m},
then

dim((
⋃
i∈A

Ti)∩ (
⋃
j∈B

Tj))≥ r. (B.1)

Moreover, if T is not (r + 1)-connected, then it is possible to choose A and B in
such a way that equality holds in (B.1).

(ii) If T is not (r + 1)-connected, then the dimension of each Ti is at least r. More-
over, if T has is reducible, then dimTi > r for any i = 1, . . . ,m (we recall our
assumption dim(T ) < ∞).

Proof. For (i) see Brodmann and Sharp [10, Lemma 19.1.15], for (ii) look at [10,
Lemma 19.2.2]).

Lemma B.0.6. A connected ring R with more than one minimal prime ideals is not
r-connected if and only if there exist two ideals a and b such that:

(i)
√

a and
√

b are incomparable.
(ii) a∩b is nilpotent.

(iii) dimR/(a+b) < r.

Proof. Set T := Spec(R).
If a and b are ideals of R satisfying (i), (ii) and (iii), then consider Z := V (a+b).

It is clear that V (a)∩ (T \ Z) and V (b)∩ (T \ Z) provide a disconnection for T \ Z.
Since dimZ < r we have that R is not r-connected.

If R is not r-connected, then there exists a closed subset Z ⊆ T such that T \Z is
disconnected and dimZ = s < r. We can assume that R is s-connected. Because T \Z
is disconnected, there are two closed subsets A and B of T \Z such that:

(i) A and B are nonempty.
(ii) A∪B = T \Z.

(iii) A∩B = /0.
Let us choose two ideals a and b of R such that A = V (a)\Z and B = V (b)\Z. The
fact that A∩B = /0 implies V (a+b)⊆ Z. Therefore dimR/(a+b)≤ s < r. Moreover,
since A∪B = T \Z, we have that V (a∩b) ⊇ T \Z. If ℘ is a minimal prime ideal of
R, by Lemma B.0.5 (ii) dimR/℘ > s. Then ℘ /∈ Z, so it belongs to V (a∩ b). This
implies that a∩ b is nilpotent. Finally, since A and B are nonempty, the radicals of a
and b cannot be comparable: For instance, if

√
a were contained in

√
b, we would get

V (a)⊇ V (b). Since A∩B = /0, we would deduce V (b)⊆ Z, but this would contradict
the fact that B is non-empty.



87

Lemma B.0.7. For a noetherian topological space T , the following are equivalent:
(i) T is r-connected;

(ii) For each T ′ and T ′′ irreducible components of T , there exists a sequence T ′ =
Ti0 ,Ti1 , . . . ,Tis = T ′′ such that Ti is an irreducible component of T for all i =
0, . . . ,s and dim(Ti j ∩Ti j−1)≥ r for all j = 1, . . . ,s.

A sequence like in (ii) will be referred as an r-connected sequence.

Proof. Let T1, . . . ,Tm be the irreducible components of T .
(ii) =⇒ (i). Suppose that T is not r-connected. Pick two disjoint nonempty subsets

A,B ⊆ {1, . . . ,m} such that A∪ B = {1, . . . ,m}, and choose p ∈ A and q ∈ B. Set
T ′ := Tp and T ′′ := Tq. By the hypothesis there is an r-connected sequence between T ′

and T ′′, namely:
T ′ = Ti0 ,Ti1 , . . . ,Tis = T ′′.

Of course there exists k ∈ {1, . . . ,s} such that Tik−1 ∈ A and Tik ∈ B. Therefore,

dim((
⋃
i∈A

Ti)∩ (
⋃
j∈B

Tj))≥ dim(Tik−1 ∩Tik)≥ r.

This contradicts Lemma B.0.5 (i).
(i) =⇒ (ii). Set T ′ = Tp for some p ∈ {1, . . . ,m}. By Lemma B.0.5 (i),

dim(T ′∩ (
⋃
i6=p

Ti))≥ r.

Therefore there exists an irreducible closed subset S1 ⊆ T ′ ∩ (
⋃

i6=p Ti) of dimension
bigger than or equal to r. Being S1 irreducible, there exists j1 6= p such that S1 ⊆
T ′∩Tj1 . So

dim(T ′∩Tj1)≥ r.

Set A1 := {p, j1} and B1 := {1, . . . ,m} \ {p, j1}. Arguing as above, Lemma B.0.5
implies that there is j2 ∈ B1 such that:

dim(T ′∩Tj2)≥ r or dim(Tj1 ∩Tj2)≥ r.

Going on this way, we can show that the graph whose vertices are the Ti’s and such that
{Ti,Tj} is an edge if and only if dim(Ti∩Tj) ≥ r is a connected graph. This is in turn
equivalent to (ii).

As we saw in Equation (0.4), the cohomological dimension does not change under
completion. This is not the case for the connectedness. Since in Chapter 1 we compared
the cohomological dimension cd(R,a) with the connectedness of R/a, the following
lemma is necessary.

Lemma B.0.8. Let R be a local ring. The following hold:
(i) If R̂ is r-connected, then R is r-connected as well.

(ii) if ℘R̂ ∈ Spec(R̂) for all minimal prime ideals ℘ of R, then R̂ is r-connected if
and only if R is r-connected.

Proof. The reader can find the proof in [10, Lemma 19.3.1].

Because Lemma B.0.8 (ii), it is interesting to know local rings whose minimal
prime ideals extend to prime ideals of the completion. The following Lemma provides
a good class of such rings. Even if the proof is standard, we include it here for the
convenience of the reader.
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Lemma B.0.9. Let R be a graded ring and m := R+ denote the irrelevant ideal of R.
If ℘ is a graded prime of R, then ℘R̂m ∈ Spec(R̂m). In particular, if R is a domain, R̂m

is a domain as well.

Proof. We prove first that if R is a domain then R̂m is a domain as well. Consider
the multiplicative filtration F := (Im)m∈N of ideals of R, where Im are defined as Im =
({ f ∈ R j : j≥m}). Let us consider the associated graded ring associated to F , namely
grF (R) = ⊕∞

m=0Im/Im+1. Obviously there is a graded isomorphism of R0-algebras

between R and grF (R). Now, let R̂F denote the completion of R with respect to the
filtration F , and let G be the filtration (ImR̂F )m∈N. It is well known that

grF (R)∼= grG (R̂F ).

By these considerations we can assert that grG (R̂F ) is a domain; since ∩m∈NImR̂F = 0,
R̂F is a domain as well. Since the inverse families of ideals (I j) j∈N and (m j) j∈N are
cofinal, R̂m is a domain. For the more general claim of the lemma we have only to note
that, if ℘ is a graded prime of R, then R/℘ is an graded domain and use the previous
part of the proof.

Remark B.0.10. Thanks to Lemma B.0.9, we can apply Lemma B.0.8 (ii) to (localiza-
tions of) graded rings R. In fact, every minimal prime ideals of R is graded (see Bruns
and Herzog [13, Lemma 1.5.6]).

B.1 Depth and connectedness
A result of Hartshorne in [50] (see also Eisenbud’s book [34, Theorem 18.12]), asserts
that a Cohen-Macaulay ring is connected in codimension 1. In fact there is a relation-
ship between depth and connectedness. To explain it we need the following lemma.

Lemma B.1.1. Let (R,m) be local. Then

dimR/a≥ depth(R)−grade(a,R).

Proof. Set k := depth(R) and g := grade(a,R). Let f1, . . . , fg ∈ a be an R-sequence. If
J := ( f1, . . . , fg) we must have

a⊆
⋃

℘∈Ass(R/J)

℘,

so there exists ℘∈ Ass(R/J) such that a ⊆℘. Since depth(R/J) = k− g, moreover,
we have dimR/℘≥ k−g (for instance see Matsumura [80, Theorem 17.2]).

The relation between connectedness and depth is expressed by the following two
results.

Proposition B.1.2. If R is a local ring such that depth(R) = r+1, then it is r-connected.

Proof. If R has only one minimal prime, then the proposition is obvious, therefore we
can suppose that R has at least two minimal prime ideals. If R were not r-connected,
by Lemma B.0.6 there would exist two ideals a and b whose radicals are incomparable,
such that a∩ b is nilpotent and such that dimR/(a+ b) < r. The first two conditions
together with ([34, Theorem 18.12]) imply grade(a + b,R) ≤ 1. Then, from Lemma
B.1.1, we would have dimR/(a+b)≥ r, which is a contradiction.
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Corollary B.1.3. Let R be a catenary local ring satisfying S2 Serre’s condition. Then
R is connected in codimension 1.

Proof. If R has only one minimal prime, then it is clearly connected in codimension 1,
therefore we can assume that R has at least two minimal prime ideals. If R were not
connected in codimension 1, by Lemma B.0.6 there would exist ideals a and b whose
radicals are incomparable, such that a∩ b is nilpotent and such that dimR/(a+ b) <
dimR−1. Let us localize at a minimal prime℘of a+b: Since R is catenary ht(℘)≥ 2.
It follows by the assumption that depth(R℘)≥ 2. But V (aR℘) and V (bR℘) provide a
disconnection for the punctured spectrum of R℘. Therefore R℘ is not 1-connected, and
this contradicts Proposition B.1.2.
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Appendix C

Gröbner deformations

There are a lot of references concerning Gröbner deformations. We decided to follow,
for our treatment, especially the lecture notes by Bruns and Conca [20].

C.1 Initial objects with respect to monomial orders
Let S := k[x1, . . . ,xn] be the polynomial ring in n variables over a field k. A monomial
of S is an element of S of the form xα := xα1

1 · · ·xαn
n with α ∈ Nn. We will denote by

M (S) the set of all monomials of S. A total order ≺ on M (S) is called a monomial
order if:

(i) For all m ∈M (S)\{1}, 1≺ m.
(ii) For all m1,m2,n ∈M (S), if m1 ≺ m2, then m1n≺ m2n.

Given a monomial order ≺, a nonzero polynomial f ∈ S has a unique representation:

f = λ1m1 + . . .+λkmk,

where λi ∈ k \ {0} for all i = 1, . . . ,k and m1 � m2 � . . . � mk. The initial monomial
with respect to ≺ of f , denoted by in≺( f ), is, by definition, m1. Furthermore, if V ⊆ S
is a nonzero k-vector space, then we will call the space of initial monomials of V the
following k-vector space:

in≺(V ) :=< in≺( f ) : f ∈V \{0}>⊆ S.

Remark C.1.1. Actually, we will usually deal with initial objects of more sophisticated
structures than vector spaces, namely algebras and ideals. The justifications of the
following statements can be found in [20, Remark/Definition 1.5].

(i) If A is a k-subalgebra of S, then in≺(A) is a k-subalgebra of S as well, and it is
called the initial algebra of A with respect to ≺. However, even if A is finitely
generated, in≺(A) might be not (see [20, Example 1.7]).

(ii) If A is a k-subalgebra of S and I is an ideal of A, then in≺(I) is an ideal of
in≺(A), and it is called the initial ideal of I with respect to ≺. In particular, since
in≺(S) = S, we have that in≺(I) is an ideal of S whenever I is an ideal of S.

A subset G of a k-subalgebra A⊆ S is called Sagbi bases with respect to ≺ if

in≺(A) = k[in≺(g) : g ∈ G ]⊆ S.
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As it is easy to see, a Sagbi basis of A must generate A as a k-algebra. Of course, a
Sagbi basis of A always exists, but, unfortunately, it might do not exist finite: This is
the case if and only if in≺(A) is not finitely generated. Analogously, a subset G of an
ideal I of a k-subalgebra A⊆ S is said a Gröbner basis with respect to ≺ of I if

in≺(I) = (in≺(g) : g ∈ G )⊆ in≺(A).

Also in this case, one can show that a Gröbner basis of I must generate I as an ideal
of A. Moreover, one can show that if in≺(A) is finitely generated, then Noetherianity
implies the existence of a finite Gröbner basis of any ideal I ⊆ A. In particular, any
ideal of the polynomial ring S admits a finite Gröbner basis. From now on, we will
omit the subindex ≺ when it is clear which is the monomial order, writing in(·) in
place of in≺(·).

C.2 Initial objects with respect to weights
In this section we introduce the notion of initial objects with respect to weights. A
vector ω := (ω1, . . . ,ωn) ∈ Nn

≥1 supplies an alternative graded structure on S, namely
the one induced by putting degω(xi) := ωi. Therefore, the degree with respect to ω of a
monomial xα = xα1

1 · · ·xαn
n ∈M (S)\{1} will be ω1α1 + . . .+ωnαn ≥ 1. For a nonzero

polynomial f ∈ S, we call the initial form with respect to ω of f the part of maximum
degree of f . I.e., if f = λ1m1 + . . .+ λkmk with λi ∈ k \ {0} and mi ∈M (S) for all
i = 1, . . . ,k, then

inω( f ) = λ j1m j1 + . . .+λ jhm jh ,

where degω(m j1) = . . . = degω(m jh) = degω( f ) := max{degω(mi) : i = 1, . . . ,k}. The
ω-homogenization of f is the polynomial homω( f ) of the polynomial ring S[t] with
one more variable, defined as

homω( f ) :=
k

∑
i=1

λimitdegω ( f )−degω (mi) ∈ S[t].

Notice that homω( f ) is homogeneous with respect to the ω-graduation on S[t], given
by setting degω(xi) := ωi and deg(t) := 1. Moreover, note that we have that

inω( f )(x1, . . . ,xn) = homω( f )(x1, . . . ,xn,0).

Analogously to Section C.1, for a nonzero k-vector space V ⊆ S, we define the k-vector
space

inω(V ) :=< inω( f ) : f ∈V \{0}>⊆ S

and the k[t]-module

homω(V ) := k[t] < homω( f ) : f ∈V \{0}>⊆ S[t].

Remark C.2.1. The present remark is parallel to C.1.1.
(i) If A is a k-subalgebra of S, then inω(A) is a k-subalgebra of S, called the initial

algebra of A with respect to ω , and homω(A) is a k-subalgebra of S[t]. However,
even if A is finitely generated, both inω(A) and homω(A) might be not.

(ii) If A is a k-subalgebra of S and I is an ideal of A, then inω(I) is an ideal of
inω(A), called the initial ideal of I with respect to ω , and homω(I) is an ideal
of homω(A). In particular, since inω(S) = S and homω(S) = S[t], we have that
inω(I) is an ideal of S and homω(I) is an ideal of S[t] whenever I is an ideal of S.
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The two application inω and homω are related, roughly speaking, by the fact that
homω supplies a flat family whose fiber at 0 is inω . More precisely:

Proposition C.2.2. Let I⊆ S be an ideal and ω a vector inNn
≥1. The ring S[t]/homω(I)

is a free k[t]-module. In particular, t−λ is a nonzero divisor of S[t]/homω(I) for any
λ ∈ k. Furthermore, we have:

S[t]/(homω(I)+(t−λ ))∼=

{
S/I if λ 6= 0
S/ inω(I) if λ = 0

.

Proposition C.2.2, whose proof can be found in [20, Proposition 2.4], is the main
tool to pass to the initial ideal retaining properties from the original ideal, or viceversa.
Moreover, the next result says that initial objects with respect to monomial orders are
a particular case of those with respect to weights. Thus, Proposition C.2.2 is available
also in the context of Section C.1.

Theorem C.2.3. Let A be a k-subalgebra of S and Ii ideals of A for i = 1, . . . ,k. If ≺
is a monomial order such that in≺(A) is finitely generated, then there exists a vector
ω ∈ Nn

≥1 such that in≺(A) = inω(A) and in≺(Ii) = inω(Ii) for all i = 1, . . . ,k.

Proof. See [20, Proposition 3.8].

If≺ and ω are like in Theorem C.2.3, then we say that ω represents≺ for A and Ii.

C.3 Some properties of the homogenization
In this section we discuss some properties which will be useful in Chapter 2. First of
all we need to introduce the following operation of dehomogenization:

π : S[t] −→ S
F(x1, . . . ,xn, t) 7→ F(x1, . . . ,xn,1)

Remark C.3.1. Let ω ∈ Nn
≥1. Then the following properties are easy to verify:

(i) For all f ∈ S we have π(homω( f )) = f .
(ii) Let F ∈ S[t] be an homogeneous polynomial (with respect to the ω-graduation)

such that F /∈ (t). Then homω(π(F)) = F ; moreover, for all k ∈ N, if G = tkF
we have homω(π(G))tk = G.

(iii) If F ∈ homω(I), then π(F) ∈ I.

In the next lemma we collect some easy and well known facts:

Lemma C.3.2. Let ω ∈ Nn
≥1 and I and J two ideals of S. Then:

(i) homω(I∩ J) = homω(I)∩homω(J).
(ii) I is prime if and only if homω(I) is prime.

(iii) homω(
√

I) =
√

homω(I).
(iv) I ⊆ J if and only if homω(I)⊆ homω(J).
(v) ℘1, . . . ,℘s are the minimal primes of I if and only if homω(℘1), . . . ,homω(℘s)

are the minimal primes of homω(I);
(vi) dimS/I +1 = dimS[t]/homω(I).

Proof. For (i), (ii) and (iii) see the book of Kreuzer and Robbiano [69, Proposition
4.3.10] (for (ii) see also the lecture notes of Huneke and Taylor [65, Lemma 7.3, (1)]).

(iv). This follows easily from Remark C.3.1.
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(v). If ℘1, . . . ,℘s are the minimal primes of I, then
⋂s

i=1℘i =
√

I. So (i), (iii) and
(iv) imply

s⋂
i=1

homω(℘i) =
√

homω(I).

Then (ii) implies that all minimal primes of homω(I) are contained in the set

{homω(℘1), . . . ,homω(℘s)}.

Moreover, by (iv), all the primes in this set are minimal for homω(I). Conversely, if
homω(℘1), . . . ,homω(℘s) are the minimal primes of homω(I), then

⋂s
i=1 homω(℘i) =√

homω(I). So, from (i), (iii) and (iv), it follows that
⋂s

i=1℘i =
√

I. Therefore, (ii)
yields that all the minimal primes of I are contained in the set {℘1, . . . ,℘s}. Again
using (iv), the primes in this set are actually all minimal for I.

(vi). If ℘0  ℘1  . . .  ℘d is a strictly increasing chain of prime ideals such
that I ⊆℘0, then (ii) and (iv) get that homω(℘0)  homω(℘1)  . . .  homω(℘d)  
(x1, . . . ,xn, t) is a strictly increasing chain of prime ideals containing homω(I). The last
inclusion holds true because (x1, . . . ,xn, t) is the unique maximal ideal of S[t] which is
ω-homogeneous. Furthermore it is a strict inclusion because obviously t /∈ homω(H)
for any ideal H ⊆ S. So, dimS[t]/homω(I) ≥ dimS/I + 1. Similarly, ht(homω(I)) ≥
ht(I), thus we conclude.



Appendix D

Some facts of representation
theory

In this appendix we want to recall some facts of Representation Theory we used in
Chapter 3.

D.1 General facts on representations of group
Let k be a field, E a k-vector space (possibly not finite dimensional) and G a group.
By GL(E) we denote the group of all k-automorphisms of E where the multiplication
is φ ·ψ = ψ ◦φ . A representation of G on V is a homomorphism of groups

ρ : G−→ GL(E).

We will say that (E,ρ) is a G-representation of dimension dimkE. When it is clear
what is ρ we will omit it, writing just “E is a G-representation”. If it is clear also what
is G, we will call E simply a representation. Moreover, we will often write just gv for
ρ(g)(v) (g ∈ G and v ∈ E). A map between two G-representations (E,ρ) and (E ′,ρ ′)
is a homomorphism of k-vector spaces, say φ : E→ E ′, such that

φ ◦ρ(g) = ρ
′(g)◦φ ∀ g ∈ G.

We will often call φ a G-equivariant map. It is straightforward to check that if φ is
bijective than φ−1 is G-equivariant. In such a case, therefore, we will say that V and
W are isomorphic G-representations. A subrepresentation of a representation V is a k-
subspace W ⊆V which is invariant under the action of G. A representation V is called
irreducible if its subrepresentations are just itself and < 0 >. Equivariant maps and
irreducible representations are the ingredients of the, so easy to prove as fundamental,
Schur’s Lemma.

Lemma D.1.1. (Schur’s Lemma) Let V be an irreducible G-representation and V ′ be
a G-representation. If

φ : V −→V ′

is a G-equivariant map, then it is either zero or injective. If also V ′ is irreducible, and
φ is not the zero map, then V and V ′ are isomorphic G-representations.
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Proof. We get the statement because both Ker(φ) and Im(φ) are G-representations.

Given two G-representations V and W , starting from them we can construct many
other G-representations:

(i) The k-vector space V ⊕W inherits a natural structure of G-representation setting

g(v+w) := gv+gw ∀ g ∈ G, ∀ v ∈V and ∀ w ∈W.

(ii) The tensor product V ⊗W (⊗ stands for ⊗k) becomes a G-representation via

g(v⊗w) := gv⊗gw ∀ g ∈ G, ∀ v ∈V and ∀ w ∈W.

In particular, the dth tensor product

d⊗
V := V ⊗V ⊗ . . .⊗V︸ ︷︷ ︸

d times

becomes a G-representation in a natural way.
(iv) If char(k) = 0, the exterior power

∧d V and the symmetric power SymdV can
both be realized as k-subspaces of

⊗d V . As it is easy to check, it turns out
that actually they are G-subrepresentations of

⊗d V . Particularly
⊗d V is not

irreducible provided that d ≥ 2.
(iv) The dual space V ∗ = Hom(V,k) has a privileged structure of G-representation

too:

(gv∗)(v) := v∗(g−1v) ∀ g ∈ G, ∀ v ∈V and ∀ v∗ ∈V ∗.

This definition comes from the fact that, this way, we have (gv∗)(gv) = v∗(v).
A representation V is said decomposable if there exist two nonzero subrepresentations
W and U of V such that W ⊕U = V . It is indecomposable if it is not decomposable.
Obviously, an irreducible representation is indecomposable. Mashcke showed that the
reverse implication holds true, provided that the group G is finite and that char(k)
does not divide the order of G (for instance see the book of Fulton and Harris [43,
Proposition 1.5]). Actually, it is true the following more general fact:

Theorem D.1.2. The following are equivalent:
(i) Every indecomposable G-representations is irreducible.

(ii) G is finite and char(k) does not divide |G|.

Proof. See the notes of Del Padrone [32, Theorem 3.1].

Thus, if G is a finite group whose order is not a multiple of char(k), then any finite
dimensional G-representation V admits a decomposition

V = V a1
1 ⊕ . . .⊕V ak

k ,

where the Vi’s are distinct irreducible subrepresentations of V . Moreover Schur’s
lemma [43, Lemma 1.7] ensures us that such a decomposition is unique.
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D.2 Representation theory of the general linear group
From now on, in this appendix we assume char(k) = 0. Let V be an n-dimensional k-
vector space. We want to investigate on the representations of the general linear group
G = GL(V ).

Remark D.2.1. After choosing a k-basis of V , we can identify GL(V ) with the group
of invertible n×n invertible matrices with coefficient in k. We will often speak of these
two groups without distinctions. However, we will punctually remark those situations
which depend on the choice of a basis.

Since GL(V ) is infinite, Theorem D.1.2 implies that there are indecomposable
GL(V )-representations which are not irreducible. Below is an example of such a rep-
resentation.

Example D.2.2. Let k = R be the field of real numbers, G := GL(R) and E be a 2-
dimensional R-vector space. So, to supply E with a structure of G-representation we
need to give a homomorphismR∗→GL(E), whereR∗ denotes the multiplicative group
of nonzero real numbers. Set

ρ : R∗ → GL(E)

a 7→
(

1 log |a|
0 1

)
.

Since ρ(a)(x,y) = (x+ log |a|y,y), it is clear that the subspace

F = {(x,0) : x ∈ R} ⊆ E

is a subrepresentation of E. So E is not irreducible. However, one can easily check
that F is the only G-invariant 1-dimensional subspace of E, so E is indecomposable.

To avoid an inconvenient like that in Example D.2.2, we introduce a particular
kind of GL(V )-representations. An N-dimensional GL(V )-representation E is called
rational if in the homomorphism

kn2 ⊇ GL(V )→ GL(E)⊆ kN2

each of the N2 coordinate function is a rational function in the n2 variables. Analo-
gously we define a polynomial representation. Notice that the representation of Exam-
ple D.2.2 was not rational. In fact it turns out that the analog of Mashcke’s theorem
holds true for rational representations of GL(V ) (for instance see Weyman [107, Theo-
rem 2.2.10]).

Theorem D.2.3. Any indecomposable rational representation of GL(V ) is irreducible
(recall that char(k) = 0).

Remark D.2.4. Theorem D.2.3 does not hold in positive characteristic. For instance,
let k be a field of characteristic 2, V a 2-dimensional vector space and E = Sym2(V )
with the natural action. Let {x,y} a basis of V . With respect to the basis {x2,xy,y2} of
E, the action is

ρ : GL(V ) → GL(E)(
a b
c d

)
7→

 a2 0 b2

ac ad +bc bd
c2 0 d2

 .
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So ρ is a polynomial representation. Particularly it is rational. Moreover, since the
subspace F =< x2,y2 >⊆ E is invariant, E is not irreducible. However, it is easy to
check that there are no invariant subspaces of E but {0}, F and E. Therefore E is
indecomposable.

A crucial concept in representation theory is that of weight vectors. Let us call
H ⊆GL(V ) the subgroup of diagonal matrix, and, for elements x = x1, . . . ,xn ∈ k\{0},
let us denote by diag(x) ∈ H the diagonal matrix

diag(x) :=


x1 0 · · · 0
0 x2 · · · 0
...

...
. . .

...
0 0 · · · xn

 .

If E is a rational GL(V )-representation, a nonzero element v ∈ E is called a weight
vector of weight α = (α1, . . . ,αn) ∈ Zn if

diag(x)v = xα v, xα := xα1
1 · · ·x

αn
n

for all diagonal matrices diag(x) ∈ H.

Remark D.2.5. Let E be a rational GL(V )-representation, B = e1, . . . ,en a k-basis of
V , σ a permutation of the symmetric group Sn and Bσ the k-basis eσ(1), . . . ,eσ(n). We
can think to E as a representation with respect to B or to Bσ . However a weight vector
v∈ E of weight (α1, . . . ,αn) with respect to B will have weight (ασ(1), . . . ,ασ(n)) with
respect to Bσ . This is not a big deal, but it is better to be aware that such situations can
happen. Sometimes it will also happen that we consider weights β with β ∈ Zp and
p < n. In such cases we always mean β with zeroe-entries added up to n. For instance,
if β = (4,1,−1,−2,−3) and n = 7, for weight β we mean (4,1,0,0,−1,−2,−3).

As one can show, it turns out that E is the direct sum of its weight spaces :

E =
⊕

α∈Zn

Eα , Eα := {v ∈ E : diag(x)v = xα v ∀ diag(x) ∈ H}.

Let B−(V ) ⊆ GL(V ) be the subgroup of the lower triangular matrices. A nonzero
element v∈ E is called a highest weight vector if B−(V )v⊆< v >. It is straightforward
to check that a highest weight vector actually is a weight vector. (One can also define
the highest weight vector with respect to the subgroup B+(V )⊆GL(V ) of all the upper
triangular matrices: the theory does not change). Highest weight vectors supply the key
to classify the irreducible rational representations of GL(V ). In fact:

(i) A rational representation is irreducible ⇐⇒ it has only one highest weight
vector (up to multiplication by scalars).
By what said in Remark D.2.5, we can, and from now on we do, suppose that the
only highest weight of an irreducible rational representation is α = (α1, . . . ,αn) with
α1 ≥ . . .≥ αn. After this observation, we can state a second crucial property of highest
weight:

(ii) Two rational irreducible representations are isomorphic ⇐⇒ their highest
weight vectors have the same weight.
The third and last fact we want to let the reader know is:

(iii) Given α = (α1, . . . ,αn) ∈ Zn with α1 ≥ . . . ≥ αn, there exists an irreducible
rational representation whose highest weight vector has weight α .
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D.2.1 Schur modules

In this subsection we are going to give an explicit way to construct all the irreducible
rational representations of GL(V ). The plan is first to describe such representations
when α ∈ Nn. In this case the corresponding representation is actually polynomial.
To get the general case it will be enough to tensorize the polynomial representations
by a suitable negative power of the determinant representation. We will soon be more
precise. Let us start introducing the notion of partition: A vector λ = (λ1, . . . ,λk) ∈Nk

is a partition of a natural number m, written λ ` m, if λ1 ≥ λ2 ≥ . . . ≥ λk ≥ 1 and
λ1 +λ2 + . . .+λk = m. We will say that the partition λ has k parts and height ht(λ ) =
λ1. Sometimes will be convenient to group together the equal terms of a partition:
For instance we will write (kd) for the partition (k,k, . . . ,k) ∈ Nd , or (33,22,14) for
(3,3,3,2,2,1,1,1,1). From a representation E, we can build new representations for
any partition λ , namely Lλ E. If E = V is the representation with the obvious action of
GL(V ) the obtained representations LλV , called Schur module, will be polynomial and
irreducible. The k-vector space LλV is obtained as a suitable quotient of

λ1∧
V ⊗

λ2∧
V ⊗ . . .⊗

λk∧
V,

and the action of GL(V ) is the one induced by the natural action on V . To see the
precise definition look at [107, Chapter 2]. We can immediately notice that LλV = 0
if ht(λ ) > n = dimkV . However in characteristic 0, that is our case, the above Schur
module can be defined as a subrepresentation of

⊗m V : Since we think that for this
thesis is more useful the last interpretation, we decided to give the details for it.

We can feature a partition λ as a (Young) diagram , that we will still denote by λ ,
namely:

λ := {(i, j) ∈ N\{0}×N\{0} : i≤ k and j ≤ λi}.

It is convenient to think at a diagram as a sequence of rows of boxes, for instance the
diagram associated to the partition λ = (6,5,5,3,1) features as

λ =

Obviously we can also recover the partition λ from its diagram, that is why we will
speak indifferently about diagrams or partitions. Sometimes will be useful to use
the partial order on diagram given by inclusion. That is, given two partitions γ =
(γ1, . . . ,γh) and λ = (λ1, . . . ,λk), by γ ⊆ λ we mean h≤ k and γi≤ λi for all i = 1, . . . ,h.
We will denote by |λ | the number of boxes of a diagram λ , that is |λ | := λ1 + . . .+λk.
So λ ` |λ |. Given a diagram λ , a (Young) tableu Λ of shape λ on [r] := {1, . . . ,r} is
a filling of the boxes of λ by letters in the alphabet [r]. For instance the following is a
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tableu of shape (6,5,5,3,1) on {1, . . . ,r}, provided r ≥ 7 .

Λ =

3 5 4 3 2 7

2 1 7 6 4

2 2 3 1 2

5 6 7

1

Formally, a tableu Λ of shape λ on [r] is a map Λ : λ → [r]. The content of Λ is the
vector c(Λ) = (c(Λ)1, . . . ,c(Λ)r) ∈ Nr such that c(Λ)p := |{(i, j) : Λ(i, j) = p}|. In
order to define the Schur modules we need to introduce the Young symmetrizers: Let
λ be a partition of m, and Λ be a tableu of shape λ such that c(Λ) = (1,1, . . . ,1) ∈Nm.
Let Sm be the symmetric group on m elements, and let us define the following subsets
of it:

CΛ := {σ ∈ Sm : σ preserves each column of Λ},
RΛ := {τ ∈ Sm : τ preserves each row of Λ}.

The symmetric group Sm acts on ⊗mV extending by k-linearity the rule

σ(v1⊗ . . .⊗ vm) := vσ(1)⊗ . . .⊗ vσ(m), σ ∈ Sm, vi ∈V.

With these notation, the Young symmetrizer is the following map:

e(Λ) :
m⊗

V →
m⊗

V
v = v1⊗ . . .⊗ vm 7→ ∑σ∈CΛ

∑τ∈RΛ
sgn(τ)στ(v)

.

One can check that the image of e(Λ) is a GL(V )-subrepresenation of
⊗m V . More-

over, up to GL(V )-isomorphism, it just depends from the partition λ , and not from the
particular chosen tableu. Thus we define the Schur module LλV as

LλV := e(Λ)(
m⊗

V ).

To see that this definition coincides with the one given at the beginning of this sub-
section see [107, Lemma 2.2.13 (b)]. (Actually in [107] the definition of the Young
symmetrizers is different from the one given here, and the statement of [107, Lemma
2.2.13 (b)] is wrong: However, the argument of its proof is the correct one).

Example D.2.6. The Schur modules somehow fill the gap between exterior and sym-
metric powers. This example should clarify what we mean.

(i) Let λ := (m) and Λ(1, j) := j for any j = 1, . . . ,m. In this case CΛ = {id[m]} and
RΛ = Sm. Therefore, if v = v1⊗ . . .⊗ vm ∈

⊗m V , then

e(Λ)(v) = ∑
τ∈Sm

sgn(τ)τ(v).

The image of such a map is exactly
∧m V ⊆

⊗m V . So L(m)V ∼=
∧m V .

(ii) Let λ := (1m) ∈ Nm and Λ( j,1) := j for any j = 1, . . . ,m. This is the opposite
case of the above one, in fact we have CΛ = Sm and RΛ = {id[m]}. Therefore, if
v = v1⊗ . . .⊗ vm ∈

⊗m V , then

e(Λ)(v) = ∑
σ∈Sm

σ(v).

The image of such a map is exactly SymmV ⊆
⊗m V . So L(1m)V ∼= SymmV .
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Before stating the following crucial theorem, let us recall that the transpose parti-
tion of a partition λ = (λ1, . . . ,λk) is the partition

t
λ = (t

λ1, . . . ,
t
λλ1) where t

λi := |{ j : λ j ≥ i}|.

Notice that |λ |= |tλ |, tλ has ht(λ ) parts, λ has ht(tλ ) parts and t(tλ ) = λ .

Theorem D.2.7. The Schur module LλV is an irreducible polynomial representation
with highest weight tλ . So all the irreducible polynomial representations are of this
kind.

From Theorem D.2.7 it is quite simple to get all the irreducible rational GL(V )-
representations. For k ∈Z, let us define the kth determinant representation Dk to be the
1-dimensional representation GL(V )→ k∗ which to a matrix g ∈GL(V ) associates the
kth power of its determinant, namely det(g)k. It urns out that D := D1 is the determinant
representation

∧n V .

Remark D.2.8. In this remark we list some basic properties of the determinant repre-
sentations.

(i) Clearly Dk is a rational representation for all k ∈ Z. Moreover it is polynomial
precisely when k ∈ N.

(ii) Being 1-dimensional, Dk is obviously irreducible. Furthermore it is straightfor-
ward to check that its highest weight is (k,k, . . . ,k) ∈ Zn. Therefore, if k ≥ 0
Theorem D.2.7 implies that Dk ∼= LλV where λ = (n,n, . . . ,n) ∈ Zk.

(iii) If E is a irreducible rational representation with highest weight (α1, . . . ,αn), one
can easily verify that E⊗Dk is a rational irreducible representation with highest
weight (α1 + k, . . . ,αn + k).

Eventually we are able to state the result which underlies the representation theory
of the general linear group.

Theorem D.2.9. A rational representation E is irreducible if and only if there exists a
partition λ and k ∈ Z such that E ∼= LλV ⊗Dk. In particular:

(i) For each vector α = (α1, . . . ,αn)∈Zn with α1 ≥ . . .≥ αn the unique irreducible
rational representation of weight α is given by L t λV ⊗Dk where λi = αi−k≥ 0
for i = 1, . . . ,n.

(ii) Two irreducible rational representations LλV⊗Dk and LγV⊗Dh are isomorphic
if and only if tλi + k = tγi +h for all i = 1, . . . ,n.

Remark D.2.10. If E is an irreducible rational representation with highest weight
α = (α1, . . . ,αn), then it easy to check that its dual representation E∗ is an irre-
ducible rational representation with highest weight (−αn, . . . ,−α1). In particular, if
λ = (λ1, . . . ,λk) is a partition, we denote by λ ∗ = (λ ∗1 , . . . ,λ ∗k ) the partition such that
λ ∗i = n−λk−i+1. By Theorem D.2.9 we have a GL(V )-isomorphism

(LλV )∗ ∼= Lλ ∗ ⊗D−k,

Moreover one can show that (LλV )∗ ∼= Lλ (V ∗) (see the book of Procesi [90, Chapter
9, Section 7.1]). For this reason, from now on we will write LλV ∗ for (LλV )∗: Each
interpretation of such a notation is correct!

We want to end this subsection describing a k-basis of the Schur modules LλV
in terms of the tableux of shape λ . A tableu Λ is said to be standard if its rows are
increasing (Λ(i, j) < Λ(i, j + 1)) and its columns are not decreasing (Λ(i, j) ≤ Λ(i +
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1, j)). Among the standard tableux of fixed shape λ one plays a crucial role: The
canonical tableu cλ . For any i, j such that j ≤ λi, we have cλ (i, j) := j. For instance
the canonical tableu of shape λ = (6,5,5,3,1) is:

Λ =

1 2 3 4 5 6

1 2 3 4 5

1 2 3 4 5

1 2 3

1

Notice that the content of the canonical tableu cλ is the transpose partition tλ of λ . If
not already guessed, the reason of the importance of the canonical tableux will soon be
clear. Fixed a k-basis {e1, . . . ,en} of V , it turns out that there is a 1-1 correspondence
between standard tableux of shape λ on [n] and a k-basis of LλV . The correspondence
associates to Λ the equivalence class of the element

(eΛ(1,1)∧ . . .∧ eΛ(1,λ1))⊗ . . .⊗ (eΛ(k,1)∧ . . .∧ eΛ(k,λk)).

By meaning of the Young symmetrizers, once fixed a tableu Γ of shape λ on [|λ |] of
content (1,1, . . . ,1) ∈ Z|λ |, the correspondence is given by

Λ 7→ e(Γ)(eΛ(1,1)⊗ . . .⊗ eΛ(1,λ1)⊗ . . .⊗ eΛ(k,1)⊗ . . .⊗ eΛ(k,λk)).

With respect to both the correspondences above, any tableu Λ is a weight vector of
weight c(Λ). Moreover the canonical tableu cλ corresponds to the highest weight vec-
tor of LλV .

D.2.2 Plethysms

What said up to now implies that, given a finite dimensional rational GL(V )-representation
E, there is a unique decomposition of it in irreducible representations, namely

E ∼=
⊕

ht(λ )<n
k∈Z

(LλV ⊗Dk)m(λ ,k). (D.1)

The numbers m(λ ,k) are the multiplicities of the irreducible representation LλV ⊗Dk

appears in E with. To find these numbers is a fascinating problem, still open even
for some very natural representations. When the representation E is polynomial, the
decomposition, rather than as in (D.1), is usually written as

E ∼=
⊕

ht(λ )≤n

LλV m(λ ) (D.2)

For instance, the decomposition of Symp(
∧q V ) is unknown in general, and to find

it falls in the so-called plethysm’s problems. Unfortunately, this fact caused some
obstructions to our investigations in Chapter 3. At the contrary, an help from represen-
tation theory came from Pieri’s formula, a special case of the Littlewood-Richardson
rule.
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Theorem D.2.11. (Pieri’s formula) Let λ =(λ1, . . . ,λk)` r and λ ( j)= (λ1 + j,λ1,λ2,λ3, . . . ,λk).
Then

LλV ⊗
j∧

V ∼=
⊕

µ`r+ j, ht(µ)≤n
λ⊆µ⊆λ ( j)

LµV

and

LλV ∗⊗
j∧

V ∗ ∼=
⊕

µ`r+ j, ht(µ)≤n
λ⊆µ⊆λ ( j)

LµV ∗

Proof. For the proof of the first formula see [90, Chapter 9, Section 10.2]. The dual
formula is straightforward to get from the first one.

D.3 Minors of a matrix and representations
Let k be a field of characteristic 0, m and n two positive integers such that m≤ n and

X :=


x11 x12 · · · · · · x1n
x21 x22 · · · · · · x2n
...

...
. . . . . .

...
xm1 xm2 · · · · · · xmn


a m×n matrix of indeterminates over k. Moreover let

R := k[xi j : i = 1, . . . ,m, j = 1, . . . ,n]

be the polynomial ring in m · n variables over k. Let W and V be k-vector spaces of
dimension m and n, and set G := GL(W )×GL(V ). The rule

(A,B)∗X := A ·X ·B−1

induces an action of the group G on R1: Namely (A,B) ∗ xi j = x′i j where x′i j de-
notes the (i j)th entry of the matrix (A,B) ∗ X . Extending this action R becomes a
G-representation. Actually, each graded component Rd of R is a (finite dimensional)
rational G-representation.

In Chapter 3 we dealt with the above action of G = GL(W )×GL(V ): Therefore
we need to introduce some notation about G-representations of this kind. Let F be a
GL(W )-representation, and E be a GL(V )-representation. Then T := F ⊗E becomes
a G-representation. Furthermore, if F and E are irreducible, T is irreducible as well.
More generally, two potential decompositions in irreducible representations

F =
⊕

i

Fi and E =
⊕

j

E j,

yield a decomposition in irreducible G-representation of F⊗E, namely

T =
⊕
i, j

Fi⊗E j.

Let us assume that F and E are both rational. If f ∈ F is a weight vector of weight
β ∈ Zm and e ∈ E is a weight vector of weight α ∈ Zn, then we say that t := f ⊗ e is
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a bi-weight vector of bi-weight (β |α). This is equivalent to say that, for any diag(y) ∈
GL(W ) and diag(x) ∈ GL(V ), we have

(diag(y),diag(x)) · t = yβ xα t.

Let f and e be highest weight vectors of, respectively, F and E. For questions of
notation we suppose that they are invariant, respectively, with respect to B−(W ) and to
B+(V ). Setting B = B−(W )×B+(V ), we have that

B · t ⊆< t > .

We call t an highest bi-weight vector of T .
Let us consider the symmetric algebra

Sym(W ⊗V ∗) =
⊕
d∈N

Symd(W ⊗V ∗).

Let {e1, . . . ,em} be a basis of W and { f1, . . . , fn} be a basis of V . Denoting the dual
basis of { f1, . . . , fn} by { f ∗1 , . . . , f ∗n }, consider the isomorphism of graded k-algebras

φ : R → Sym(W ⊗V ∗)
xi j 7→ ei⊗ f ∗j

.

As one can check, φ is G-equivariant. Thus, it is an isomorphism of G-representations.
Furthermore the G-representation Symd(W ⊗V ∗) can be decomposed in irreducible
representations: There is an explicit formula for such a decomposition, known as the
Cauchy formula [90, Chapter 9, Section 7.1]:

Symd(W ⊗V ∗)∼=
⊕
λ`d

ht(λ )≤m

LλW ⊗LλV ∗. (D.3)

Since Rd and Symd(W⊗V ∗) are isomorphic G-representations, we will describe which
polynomials belong to the isomorphic copy of LλW ⊗LλV ∗ in R, underlining which
one is U-invariant. We need a notation do denote the minors of the matrix X . Given
two sequences 1≤ i1 < .. . < is ≤ m and 1≤ j1 < .. . < js ≤ n, we write

[i1, . . . , is| j1, . . . , js]

for the s-minor which insists on the rows i1, . . . , is and the columns j1, . . . , js of X .
Since an element of G takes an s-minor in a linear combination of s-minors, the k-
vector space spanned by the s-minors is a finite dimensional G-representation. So it
is plausible to expect a description of the irreducible representations LλW ⊗LλV ∗ in
terms of minors. For any pair of standard tableu Λ and Γ of shape λ = (λ1, . . . ,λk),
respectively on [m] and on [n], we define the following polynomial of R:

[Λ|Γ] := δ1 · · ·δk

where
δi := [Λ(i,1), . . . ,Λ(i,λi)|Γ(i,1), . . . ,Γ(i,λi)] ∀ i = 1, . . . ,k

We say that the product of minors [Λ|Γ] has shape λ . One can show that the product of
minors [cλ |cλ ] is a highest bi-weight vector of bi-weight ((tλ1, . . . ,

tλm)|(−tλn, . . . ,−tλ1)),
so there is an isomorphism of G-representations

Mλ := G∗ [cλ |cλ ]∼= LλW ⊗LλV ∗.
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Actually, it turns out that the set

{[Λ|Γ] : Λ and Γ are tableu of shape λ , respectively on [m] and on [n]}

is a k-basis of Mλ (see the paper of DeConcini, Eisenbud and Procesi [28] or the book
of Bruns and Vetter [15, Section 11]).

In Chapter 3 we were especially interested in the study of the k-subalgebra of R

At = At(m,n)

generated by the t-minors of X , where t is a positive integer smaller than or equal to m.
These algebras are known as algebras of minors. It turns out that the algebra of minors
At is a G-subrepresentation of R. Therefore it is natural to ask about its decomposition
in irreducibles. Equivalently, which Mλ are in At? The answer to this question is
known. Before describing it, we fix a definition.

Definition D.3.1. Given a partition λ = (λ1, . . . ,λk) we say that it is admissible if t
divides |λ | and tk ≤ |λ |. Furthermore we say that λ is d-admissible if |λ |= td.

Let us denote by [At ]d the k-vector space consisting in the elements of At of de-
gree td in R. This way we are defining a new grading over At such that the t-minors
have degree 1. The below result follows at once by the description of the powers of
determinantal ideals got in [28].

Theorem D.3.2. For each natural number d and for each 1≤ t ≤ m we have

[At ]d =
⊕

λ is d-admissible
ht(λ )≤ m

Mλ
∼=

⊕
λ is d-admissible

ht(λ )≤ m

LλW ⊗LλV ∗.



106 Some facts of representation theory



Appendix E

Combinatorial commutative
algebra

Below we recall some basic facts concerning Stanley-Reisner rings. Standard refer-
ences for this topic are Bruns and Herzog [13, Chapter 5], Stanley [100] or Miller and
Sturmfels [81]

Let k be a field, n a positive integer and S := k[x1, . . . ,xn] the polynomial ring on n
variables over k. Moreover, let us denote by m := (x1, . . . ,xn) the maximal irrelevant
ideal of S. We write [n] for {1, . . . ,n}. By a simplicial complex ∆ on [n] we mean a
collection of subsets of [n] such that for any F ∈ ∆, if G ⊆ F then G ∈ ∆. An element
F ∈ ∆ is called a face of ∆. The dimension of a face F is dimF := |F | − 1 and the
dimension of ∆ is dim∆ := max{dimF : F ∈ ∆}. The faces of ∆ which are maximal
under inclusion are called facets. We denote the set of the facets of ∆ by F (∆). Ob-
viously a simplicial complex on [n] is univocally determined by its set of facets. A
simplicial complex ∆ is pure if all its facets have the same dimension. It is strongly
connected if for any two facets F and G there exists a sequence F = F0,F1, . . . ,Fs = G
such that Fi ∈F (∆) and |Fi \ (Fi∩Fi−1)|= |Fi−1 \ (Fi∩Fi−1)|= 1 for any i = 1, . . . ,s.
For a simplicial complex ∆ we can consider a square-free monomial ideal, known as
the Stanley-Reisner ideal of ∆,

I∆ := (xi1 · · ·xis : {i1, . . . , is} /∈ ∆). (E.1)

Such a correspondence turns out to be one-to-one between simplicial complexes and
square-free monomial ideals, its inverse being

I 7→ ∆(I) := {F ∈ [n] : ∏
i/∈F

xi ∈ I}

for any square-free monomial ideal I ⊆ S. The k-algebra k[∆] := S/I∆ is called the
Stanley-Reisner ring of ∆, and it turns out that

dim(k[∆]) = dim∆+1.

More precisely, with the convention of denoting by ℘A := (xi : i ∈ A) the prime ideal
of S generated by the variables correspondent to a given subset A⊆ [n], we have

I∆ =
⋂

F∈F (∆)

℘[n]\F .
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Remark E.0.3. Thanks to the above interpretation and to Lemma B.0.7, we have that
a simplicial complex ∆ on [n] is strongly connected if and only if k[∆] is connected in
codimension 1.

We will use another correspondence between simplicial complexes and square-free
monomial ideals, namely

∆ 7→ J(∆) :=
⋂

F∈F (∆)

℘F . (E.2)

The ideal J(∆) is called the cover ideal of ∆. The name “cover ideal” comes from
the following fact: A subset A ⊆ [n] is called a vertex cover of ∆ if A∩F 6= /0 for any
F ∈F (∆). Then it is easy to see that

J(∆) = (xi1 · · ·xis : {i1, . . . , is} is a vertex cover of ∆).

Let ∆c be the simplicial complex on [n] whose facets are [n] \F such that F ∈F (∆).
Clearly we have I∆c = J(∆) and I∆ = J(∆c). Furthermore (∆c)c = ∆, therefore also
the correspondence (E.2) is one-to-one between simplicial complexes and square-free
monomial ideals.

E.1 Symbolic powers
If R is a ring, and a⊆ R is an ideal, then the mth symbolic power of a is the ideal of R

a(m) := (amRW )∩R⊆ R,

where the multiplicative system W is the complement in R of the union of the associated
prime ideals of a. If a =℘ is a prime ideal, then ℘(m) = (℘mR℘)∩R. One can show
that ℘(m) is the ℘-primary component of ℘m, so that ℘(m) =℘m if and only if ℘m is
primary. Furthermore, one can show the following:

Proposition E.1.1. Let a be an ideal of R with no embedded primes, that is Ass(a) =
Min(a). If a =

⋂k
i=1 qi is a minimal primary decomposition of a, then

a(m) =
k⋂

i=1

q
(m)
i .

In the case in which a is a power of a prime monomial ideal of the polynomial ring
S, i.e. there exists F ⊆ [n] and k ∈ N such that a =℘k

F , then it is easy to show that

am = a(m) ∀ m ∈ N.

Therefore if ∆ is a simplicial complex on [n] and I =
⋂

F∈F (∆)℘
ωF
F , where ωF are some

positive integers, then Proposition E.1.1 yields

I(m) =
⋂

F∈F (∆)

℘
mωF . (E.3)

In particular
I(m)
∆

=
⋂

F∈F (∆)

℘
m
[n]\F and J(∆)(m) =

⋂
F∈F (∆)

℘
m
F .
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E.2 Matroids
A simplicial complex ∆ on [n] is a matroid if, for any two facets F and G of ∆ and any
i ∈ F , there exists a j ∈ G such that (F \{i})∪{ j} is a facet of ∆.

Example E.2.1. The following is the most classical example of matroid. Let V be a
k-vector space and let A := {v1, . . . ,vn} a set of distinct vectors of V . We define a
simplicial complex on [n] as follows: A subset F ⊆ [n] is a face of ∆ if and only if
dimk(< vi : i ∈ F >) = |F |. This way the facets of ∆ are the subsets of [n] correspond-
ing to the bases in A of the k-vector subspace < v1, . . . ,vm >⊆V . Actually, the concept
of matroid was born as an “abstraction of the bases of a k-vector space”.

A matroid ∆ has very good properties. For an exhaustive account the reader can see
the book of Welsh [106] or the one of Oxley [88]. We use matroids in Chapter 4 and,
essentially, we need three results about them. The first one, the easier to show, is that a
matroid is a pure simplicial complex ([88, Lemma 1.2.1]). The second one, known as
the exchange property of matroids, states that for any matroid ∆, we have

∀ F,G ∈F (∆), ∀ i ∈ F, ∃ j ∈ G : (F \{i})∪{ j}, (G\{ j})∪{i} ∈F (∆), (E.4)

(this result is of Brualdi [11], see also [88, p. 22, Exercise 11]). The last fact is a basic
result of matroid theory, which is a kind of duality. For the proof see [88, Theorem
2.1.1].

Theorem E.2.2. A simplicial complex ∆ on [n] is a matroid if and only if ∆c is a
matroid.

If ∆ is a matroid, ∆c is called its dual matroid.

E.3 Polarization and distractions
Sometimes, problems regarding (not necessarily square-free) monomial ideals I ⊆ S
can be faced passing to a square-free monomial ideal associated to I, namely its polar-
ization Ĩ, which preserves many invariants of I, such as its minimal free resolution.

More precisely, the polarization of a monomial t = xa1
1 · · ·xan

n is

t̃ :=
a1

∏
j=1

x1, j ·
a2

∏
j=1

x2, j · · ·
an

∏
j=1

xn, j ⊆ S̃,

where the xi, j’s are new variables over k and S̃ := k[xi, j : i = 1, . . . ,n j = 1, . . . ,ai].
Actually it is not so important that S̃ is generated by variables xi, j with j ≤ ai. The
significant thing is that it contains all such variables, in such a way that t̃ ∈ S̃. For
example, it is often convenient to consider S̃ = k[xi, j : i = 1, . . . ,n j = 1, . . . ,d] where
d is the degree of t.

The concept of polarization fits in a more general context, that of distractions (see
Bigatti, Conca and Robbiano [8]), which is useful to introduce. Let P := k[y1, . . . ,yN ]
be a polynomial ring in N variables over k. An infinite matrix L = (Li, j)i∈[N], j∈N with
entries Li, j ∈ P1 is called a distraction matrix if < L1, j1 , . . . ,LN, jN >= P1 for all ji ∈ N
and there exists k ∈N such that Li, j = Li,k for any j > k. If t = ya1

1 · · ·y
aN
N is a monomial

of P, the L -distraction of t is the monomial

DL (t) :=
a1

∏
j=1

L1, j ·
a2

∏
j=1

L2, j · · ·
aN

∏
j=1

LN, j ⊆ P.
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Remark E.3.1. In this remark we want to let the reader noticing how the polarization
is a particular distraction. Let t = xa1

1 · · ·xan
n be a monomial of S and t̃ is polarization

in the polynomial ring S̃ = k[xi, j : i ∈ [n], j ∈ [d]], where d is the degree of t. Let us
think at S̃ as the polynomial ring P given for the definition of distractions. So N = nd.
Moreover, we can look at t as an element of P, namely

t = xa1
1,1 · · ·x

an
n,1.

Let us consider the following matrix L :

Li, j :=


xi, j if i≤ n and j ≤ d
xr,q + xr,q+1 if n < i≤ N, j ≤ d and i = qn+ r with 0 < r ≤ n
Li,d if j > d

One can easily check that L is a distraction matrix, and that

DL (t) = t̃.

By Remark E.3.1, we can state the results we need during the thesis in the more
general context of distractions, even if we will actually use them just for the case of the
polarization.

Fixed a distraction matrix L , we can extend k-linearly DL , getting a k-linear map:

DL : P−→ P.

Of course DL is not a ring homomorphism, however we have that DL (I) is an ideal of
P for any monomial ideal I ⊆ P ([8, Corollary 2.10 (a)]). Moreover, if I = (t1, . . . , tm),
then DL (I) = (DL (t1), . . . ,DL (tm)) ([8, Corollary 2.10 (b)]) and ht(DL (I)) = ht(I)
([8, Corollary 2.10 (c)]). Furthermore, [8, Proposition 2.9 (d)] implies that, if I =
∩p

i=1Ii, where the Ii’s are monomial ideals of P, then:

DL (I) =
p⋂

i=1

DL (Ii). (E.5)

Remark E.3.2. If I = (t1, . . . , tm)⊆ S, the polarization of I is defined to be:

Ĩ = (t̃1, . . . , t̃m)⊆ S̃ = k[xi, j : i ∈ [n], j ∈ [d]],

where d is the maximum of the degrees of the ti’s. By the discussion previous to the
remark we deduce that Ĩ and DL (I) are basically the same object. The equality (E.5)
can be interpreted as

Ĩ =
p⋂

i=1

Ĩi ⊆ S̃. (E.6)

where all the ideal involved are polarized in the same polynomial ring S̃.

Remark E.3.3. As it already got out by Remark E.3.2, among the things which distin-
guish polarization and distractions, is that the ambient ring, contrary to what happens
for the former, does not change under the latter operation. Of course, this is just a super-
ficial problem, since we can add variables before polarizing, as we did in Remark E.3.1.
However the reader should play attention to this fact: If J is a monomial ideal of P and
L is a distraction matrix, then we have the equality HFP/J = HFP/DL (J) ([8, Corollary
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2.10 (c)]). Of course, it is not true the same fact for polarization: Namely, in general, if
I is a monomial ideal of S, it might happen that HFS/I 6= HFS̃/Ĩ . Actually, even dimS/I

is in general different from dim S̃/Ĩ. However, in view of Remark E.3.1, one should
expect that the properties of distractions hold true also for polarization. This is actually
the case, but the right way to think is “for codimension”: In fact, we have ht(I) = ht(Ĩ);
moreover, suppose that the Hilbert series of S/I is HSS/I(z) = h(z)/(1− z)d , where
h(z) ∈ Z[z] is such that h(1) 6= 0 and d is the dimension of S/I (for instance see the
book of Bruns and Herzog [13, Corollary 4.1.8]). Then, HSS̃/Ĩ(z) = h(z)/(1− z)e,

where e = dim(S̃/Ĩ).

In [8, Theorem 2.19], the authors showed that the minimal free resolution of a
monomial ideal I ⊆ P can be carried to a minimal free resolution of DL (I). In partic-
ular, we get the following:

Theorem E.3.4. Given a distraction matrix L , the graded Betti numbers of P/I and
those of P/DL (I) are the same. Particularly, P/I is Cohen-Macaulay if and only if
P/DL (I) is Cohen-Macaulay.
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punctured spectrum, 86
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decomposable, 96
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theory, 95–105
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Sagbi bases, 44, 61–63, 91
Schur module, 99
Segre product, 24, 25, 32–42
set-theoretic complete intersection, xvii, 24,

25, 32–42, 75–76
sheaf, 80
sheaf cohomology, 79–82
simplicial complex, 23–32, 107

k-cover, 68
basic, 68

faces of, 107
facets of, 107
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pure, 107
strongly connected, 23–32, 107
vertex cover, 108
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k-cover, 68
Singular cohomology, 83
Singular homology, 83
site, 79
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Zariski, 80

space of initial monomials, 91–94
Stanley-Reisner ideal, 107
Stanley-Reisner ring, 107
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symbolic power, 65–77, 108
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torsion functor, xi

U-invariant, 45, 50, 63–64
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ogy, 83
universal coefficient theorem for homol-

ogy, 83

vertex cover, see simplicial complex
vertex cover algebra, 69

weight, 98
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weighted function, 67
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Young symmetrizer, 100
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canonical, 102
content of, 100
standard, 101
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