Dual graph of projective curves

Commutative Algebra TOwards Applications

Torino, May 22, 2023

Matteo Varbaro

Università degli Studi di Genova

- \mathbb{k} algebraically closed field;
- $C=C_{1} \cup \ldots \cup C_{s} \subseteq \mathbb{P}^{n}$ projective curve with primary components projective curves $C_{i} \subseteq \mathbb{P}^{n}$;
- $I_{C}=I_{C_{1}} \cap \ldots \cap I_{C_{s}} \subset S=\mathbb{k}\left[X_{0}, \ldots, X_{n}\right]$ irredundant primary decomposition of the ideal of definition of $C \subset \mathbb{P}^{n}$;
- $G(C)$ graph on $\{1, \ldots, s\}$ with edges $\{i, j\}$ iff $C_{i} \cap C_{j} \neq \emptyset$. $G(C)$ is called the dual graph of C (or of $\left.I_{C}\right)$.

Remarks

$G(C)=G\left(C_{\text {red }}\right)$. Also, C is connected $\Leftrightarrow G(C)$ is connected.

Hartshorne

If $C \subseteq \mathbb{P}^{n}$ is a complete intersection (i.e. $I_{C}=\left(f_{1}, \ldots, f_{n-1}\right)$), then $G(C)$ is connected.

We say that $C \subset \mathbb{P}^{n}$ is a set-theoretic complete intersection if $C_{\text {red }}=C_{\text {red }}^{\prime}$ where $C^{\prime} \subset \mathbb{P}^{n}$ is a ci (i.e. $C \subset \mathbb{P}^{n}$ is a set-ci if there are homogeneous $f_{1}, \ldots, f_{n-1} \in S$ s.t. $\left.\sqrt{I_{C}}=\sqrt{\left(f_{1}, \ldots, f_{n-1}\right)}\right)$. If $C \subset \mathbb{P}^{n}$ is a set-ci, then C is connected, and whether the converse holds is an open problem since the seventies:

Problem

Is any connected curve $C \subset \mathbb{P}^{n}$ a set-ci?

The above problem is wide open already if $n=3$, even for "innocent looking" examples such as

$$
C=\left\{\left[x^{4}, x^{3} y, x y^{3}, y^{4}\right]:[x, y] \in \mathbb{P}^{1}\right\} \subset \mathbb{P}^{3}, \quad \mathbb{k}=\mathbb{C}
$$

Mohan Kumar

If $C \subset \mathbb{P}^{3}$ is a connected union of lines (so C_{i} is a line for all i), then C is a set-ci.

Not any connected graph is the dual graph of an union of lines though, for example:

However the second graph G is the dual graph of a projective curve $C \subset \mathbb{P}^{3}$: take $C_{0}=\cup_{i=1}^{5} \ell_{i} \subset \mathbb{P}^{2}$ where the ℓ_{i} 's are generic lines in \mathbb{P}^{2}. Note that $G\left(C_{0}\right)$ is the complete graph on 5 vertices. Consider the set X of points corresponding to the non-edges of G, i.e.:

$$
X=\left\{\ell_{1} \cap \ell_{4}, \ell_{1} \cap \ell_{5}, \ell_{4} \cap \ell_{5}\right\}
$$

Let $S \subset \mathbb{P}^{n}$ be the blow-up of \mathbb{P}^{2} along X, and $C_{1} \subset S$ the strict transform of $C_{0} . G\left(C_{1}\right)=G$ by construction, and since C_{1} has only planar singularities it can be embedded in \mathbb{P}^{3} :

$$
C_{1} \cong C \subset \mathbb{P}^{3}
$$

This reasoning gives:

Benedetti-Bolognese-_

Given a connected graph G there is $C \subset \mathbb{P}^{3}$ such that $G=G(C)$.
Then the following is a sub-problem of the previous one:

Sub-problem

Given a connected graph G, is there a complete intersection $C \subset \mathbb{P}^{3}$ such that $G=G(C)$?

Given a simple graph G on s vertices and an integer r, we say that G is r-connected if the removal of less than $\min \{r, s-1\}$ vertices of G does not disconnect it. The valency of a vertex v of G is:

$$
\delta(v)=\mid\{w:\{v, w\} \text { is an edge of } G\} \mid .
$$

- 2-connected, not 3-connected.
- $\delta(\bullet)=5$.
- $\delta($ inner $)=\delta($ inner $)=6$.
- $\delta($ boundary $)=\delta($ boundary $)=3$.

Remark

The usual definition requires $r<s$. According to our definition the complete graph on s vertices is r-connected for all $r \in \mathbb{Z}$.

Remark

(i) G is 1 -connected $\Leftrightarrow G$ is connected.
(ii) G is r-connected $\Rightarrow G$ is r^{\prime}-connected for all $r^{\prime}<r$.
(iii) G is r-connected on s vertices $\Rightarrow \delta(v) \geq \min \{r, s-1\}$ for all vertices v of G.
G is said to be r-regular if $\delta(v)=r$ for any vertex v.

3-regular, connected, not 2-connected.

Given a homogeneous $I \subseteq S=\mathbb{k}\left[X_{0}, \ldots, X_{n}\right]$, if $\mathfrak{m}=\left(X_{0}, \ldots, X_{n}\right)$:

$$
\operatorname{reg}(S / I)=\max \left\{i+j: H_{\mathfrak{m}}^{i}(S / I)_{j} \neq 0\right\}
$$

For $C \subset \mathbb{P}^{n}$, we let $\operatorname{reg}(C)=\operatorname{reg}\left(S / I_{C}\right)+1$.

Definition

We say that $C \subset \mathbb{P}^{3}$ is a complete intersection of type (d, e) if $I_{C}=(f, g)$ with $\operatorname{deg}(f)=d$ and $\operatorname{deg}(g)=e$.

Remark

If $C \subset \mathbb{P}^{3}$ is a complete intersection of type (d, e), then $\operatorname{reg}(C)=d+e-1$.

Let $Z \subseteq \mathbb{P}^{3}$ be a smooth cubic, and $C=\bigcup_{i=1}^{27} C_{i}$ be the union of all the lines on Z. Below is a representation of the Clebsch's cubic:

$$
x_{0}^{3}+x_{1}^{3}+x_{2}^{3}+x_{3}^{3}=\left(x_{0}+x_{1}+x_{2}+x_{3}\right)^{3}
$$

The cubic Z is the blow-up of \mathbb{P}^{2} along $\bigcup_{i=1}^{6} P_{i}$; let E_{i} denote the exceptional divisor corresponding to P_{i}. Let us describe $G(C)$:

- let i be the vertex corresponding to E_{i};
- let $i j$ be the vertex corresponding to the strict transform of the line passing through P_{i} and P_{j};
- let i be the vertex corresponding to the strict transform of the conic avoiding P_{i};
One easily checks that:
- $\{i, j k\}$ is an edge of $G(C) \Leftrightarrow i \in\{j, k\}$;
- $\{i, j\}$ is an edge of $G(C) \Leftrightarrow i \neq j$;
- $\{i j, k\}$ is an edge of $G(C) \Leftrightarrow k \in\{i, j\}$;
- $\{i j, h k\}$ is an edge of $G(C) \Leftrightarrow\{i, j\} \cap\{h, k\}=\emptyset$;
- $\{i, j\}$ and $\{i, j\}$ are never edges of $G(C)$.

As it turns out $C \subseteq \mathbb{P}^{3}$ is a complete intersection of the cubic Z and a union of 9 planes, hence of type (3,9). One can check that:

- reg $C-1=10$.
- $G(C)$ is 10-connected.
- $G(C)$ is 10 -regular.

To check that $G(C)$ is 10 -connected is convenient to use a theorem of Menger: A simple graph G on s-vertices is r-regular for a given $r<s$ if and only if for all pair of distinct vertices v and w there are at least r vertex-disjoint paths connecting them.

Paths from 1 to 2.

Theorem (Benedetti-Bolognese,_)

Let $C=C_{1} \cup \ldots \cup C_{s} \subseteq \mathbb{P}^{3}$ a complete intersection of type (d, e) with primary components C_{i}. Let $r=\max \left\{\operatorname{reg}\left(C_{i}\right): i=1, \ldots, s\right\}$. Then $G(C)$ is $\left\lfloor\frac{d+e+r-3}{r}\right\rfloor$-connected. If C is furthermore reduced, we can replace r with $r^{\prime}=\max \left\{\operatorname{deg}\left(C_{i}\right): i=1, \ldots, s\right\}$.

Corollary

Let $C=C_{1} \cup \ldots \cup C_{s} \subseteq \mathbb{P}^{3}$ a complete intersection of type (d, e) with primary components C_{i}. Suppose that $\operatorname{reg}\left(C_{i}\right) \leq d+e-3$ for all $i=1 \ldots$, s. Then $G(C)$ is 2-connected.

Corollary on line arrangements (Benedetti,_)

Let $C=C_{1} \cup \ldots \cup C_{s} \subseteq \mathbb{P}^{3}$ a complete intersection of type (d, e) with as primary components lines $C_{i} \subset \mathbb{P}^{3}$ (in particular C is reduced). Then $G(C)$ is $(d+e-2)$-connected.

The proof uses:

- Liaison theory.
- $H_{\mathfrak{m}}^{1}\left(S / I_{C}\right)_{0}$ implies C is connected.
- $\operatorname{reg}(C) \leq \operatorname{reg}\left(C_{1}\right)+\ldots+\operatorname{reg}\left(C_{s}\right)$ (Caviglia).

Indeed, we prove a similar result for $X \subset \mathbb{P}^{n}$ with S / I_{X} Gorenstein.
With Hongmiao Yu we extended liaison theory via Gorenstein varieties to liaison theory via quasi-Gorenstein varieties, so similar connectedness results can also be proved if S / I_{X} quasi-Gorenstein.

To give an idea, the Stanley-Reisner ring of an orientable manifold Δ is quasi-Gorenstein, while it is Gorenstein $\Leftrightarrow \Delta$ is a sphere.

Going back to the 27 lines $C \subseteq \mathbb{P}^{3}$ on a smooth cubic, we had that $C \subseteq \mathbb{P}^{3}$ was a complete intersection line arrangement of type $(3,9)$: as predicted by our results, we already noticed that $G(C)$ is 10 -connected ($10=3+9-2$). In this case $G(C)$ is also 10 -regular, and therefore not 11 -connected, but this is not true for any complete intersection line arrangement:

Consider f and g homogeneous polynomials of degrees d and e in $\mathbb{k}\left[X_{1}, X_{2}, X_{3}\right]$. If f and g are general enough, they will form a complete intersection consisting in de distinct points in \mathbb{P}^{2}. Their cone will be a complete intersection line arrangement $C \subseteq \mathbb{P}^{3}$ of type (d, e) consisting of $d e$ lines passing through a point. In this case $G(C)$ is the complete graph on de vertices, so it is not $(d+e-2)$-regular and it is $(d e-1)$-connected.

Definition

A projective curve $C \subseteq \mathbb{P}^{n}$ has a planar singularity at a point $P \in C$ if $\operatorname{dim}_{\mathbb{k}} T_{P} C \leq 2$.

Remark

If a projective curve lies on a smooth surface, it has only planar singularities.

Theorem (Benedetti, Di Marca, _)

Let $C \subseteq \mathbb{P}^{3}$ be a complete intersection line arrangement of type (d, e). If C has only planar singularities, then the dual graph $G(C)$ is $(d+e-2)$-regular. In particular, it is not $(d+e-1)$-connected (while it is $(d+e-2)$-connected by the previous results).

