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Basic definitions and results

Let R =
⊕

i∈N Ri be a standard graded algebra over a field
R0 = K . The Hilbert Function and Hilbert Series of R are

HFR(i) = dimK Ri ∀ i ∈ N, HSR(t) =
∑
i∈N

HFR(i)t i ∈ Z[[t]].

If d = dimR, Hilbert proved that

HSR(t) =
hR(t)

(1− t)d

where hR(t) = h0 + h1t + h2t
2 + . . .+ hst

s ∈ Z[t] is the
h-polynomial of R. (h0 = 1, h1, h2, . . . , hs) the h-vector of R.

Remark

While HSR(t) ∈ N[[t]], hR(t) may not belong to N[t]. If
d = dimR = 0, then hR(t) = HS(t) ∈ N[t].
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Basic definitions and results

If ` ∈ R1 is an R-regular element, then hR/(`)(t) = hR(t), so if R is
Cohen-Macaulay we have hi ≥ 0 for all i . Without the CM
assumption things change:

Example

Let S = K [xi , yi : i = 1, . . . , r + 1] and I ⊂ S the ideal

I = (x1, . . . , xr+1)2 + (x1y1 + . . .+ xr+1yr+1).

R = S/I has dimension (r + 1), depthR = r and has h-vector

(1, r + 1,−1) (h2 < 0).

Such an R is even Buchsbaum (in particular R is generalized CM).
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Basic definitions and results

Remark

The integer e(R) = hR(1) = h0 + h1 + h2 + . . ., being the
multiplicity of R, is always positive.

Let S = K [X1, . . . ,Xn], where n = dimK R1. Hence R ∼= S/I for
some homogeneous ideal I ⊂ S which contains no linear forms. Let
c denote the height of I .

Remark

Since I1 = {0} we have:

h1 = c .

h2 ≥ 0 ⇐⇒ dimK I2 ≤
(c+1

2

)
.

If Ij = {0} for all j < k , then hk ≥ 0 ⇐⇒ dimK Ik ≤
(c+k−1

k

)
.
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Motivations

Theorem (Murai-Terai)

Let R be a Stanley-Reisner ring (i.e. I is generated by squarefree
monomials of S) satisfying Serre condition (Sr ). Then hi ≥ 0 for
all i ≤ r and e(R) ≥ h0 + h1 + . . .+ hr−1. Furthermore, if hi = 0
for some i ≤ r , then R is Cohen-Macaulay.

For r ∈ N, we recall that R satisfies the Serre condition (Sr ) if:

depthRp ≥ min{dimRp, r} ∀ p ∈ SpecR.

Remark

If R is generalized Cohen-Macaulay then R satisfies (Sr ) if and only
if depthR ≥ r . Hence, by the previous example, (Sr ) alone is not
enough to infer hi ≥ 0 for all i ≤ r , not even assuming Buchsbaum.
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The condition MTr

We say that R = S/I satisfies the condition MTr if

reg Extn−iS (R,S(−n)) ≤ i − r ∀ i = 0, . . . , dimR − 1.

This notion is good for several reasons:

MTr does not depend on S .

MTr is preserved by taking general hyperplane sections.

MTr is preserved by saturating.
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The condition MTr

Lemma (Murai-Terai, Dao-Ma- )

If R satisfies MTr , then

hi ≥ 0 for all i ≤ r .

hr + . . .+ hs ≥ 0, or equivalently e(R) ≥ h0 + . . .+ hr−1.

Furthermore, if regR < r or hi = 0 for some i ≤ r , then R is CM.
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The main result

Theorem (Dao-Ma- )

Assume that R = S/I has dimension d and satisfies Serre
condition (Sr ), and suppose either

K has characteristic 0 and R is Du Bois in codimension d − 1
(e.g. (Rd−1)), or

K has characteristic 0, R is Du Bois in codimension d − 2
(e.g. (Rd−2)) and d = r + 1, or

K has positive characteristic and R is F -pure.

Then R satisfies condition MTr . In particular, hi ≥ 0 for all i ≤ r
and e(R) ≥ h0 + h1 + . . .+ hr−1. Furthermore, if regR < r , or if
hi = 0 for some i ≤ r , then R is Cohen-Macaulay.
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Problems

Stanley-Reisner rings are Du Bois in characteristic 0 and F -pure in
positive characteristic, so we recover Murai-Terai result. However
by results of Kummini-Murai MTr holds whenever I is a monomial
ideal and S/I satisfies (Sr ) condition.

Questions:

Is it true that R satisfies MTr if R satisfies (Sr ) and either

1 K has characteristic 0 and Rred is Du Bois in codimension
r − 1,

2 K has characteristic 0 and R is Du Bois in codimension r − 2,
(in particular, if R is normal and satisfies (S3), is h3 ≥ 0?),

3 K has positive characteristic and Rred is F -pure, or

4 K has positive characteristic and R is F -injective???
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A new F -singularity

Suppose that K has positive characteristic:

Definition

We say that R is deformation equivalent to an F -pure ring
(deF-pure) if there exist a domain A, essentially of finite type over
K , and a flat finitely generated A-algebra RA such that all fibres
are standard graded, one fibre is R and one is F -pure. In other
words, there exist prime ideals p, q ∈ A such that RA ⊗A κ(p) ∼= R
and RA ⊗A κ(q) is F -pure.

Remark

If R is F -pure, then it is deF -pure (A = K , RA = R, p = q = {0}).

Proposition (Dao, Ma, )

If R is deF -pure and satisfies (Sr ), then it satisfies MTr .
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A new F -singularity

Recall that R = S/I where S = K [X1, . . . ,Xn] and I ⊂ S is a
homogeneous ideal. Suppose that in(I ) is a squarefree monomial
ideal for some term order. One can check that R is deF -pure.

Example

If n = 3 and I = (X 3
1 + X 3

2 + X 3
3 − X1X2X3) ⊂ S , then R = S/I is

deF -pure: taking A = K [t], J = (tX 3
1 + tX 3

2 + tX 3
3 − X1X2X3) and

RA = S [t]/J, one has RA ⊗A κ((t − 1)) ∼= RA/(t − 1) ∼= S/I = R.
RA ⊗A κ((t)) ∼= RA/(t) ∼= S/(X1X2X3) (that is F -pure). Note
that, if char(K ) = 5, R is not even F -injective.

Question

Is an F -injective standard graded K -algebra deF -pure?
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THANK YOU !
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