Singularities and Hilbert functions

Matteo Varbaro (University of Genoa, Italy) Joint with Hai Long Dao and Linquan Ma

Workshop on Commutative Algebra and Algebraic Geometry in Prime Characteristic, ICTP Trieste 2023

Basic definitions and results

Let $R=\bigoplus_{i \in \mathbb{N}} R_{i}$ be a standard graded algebra over a field $R_{0}=K$. The Hilbert Function and Hilbert Series of R are

$$
\operatorname{HF}_{R}(i)=\operatorname{dim}_{K} R_{i} \forall i \in \mathbb{N}, \quad \mathrm{HS}_{R}(t)=\sum_{i \in \mathbb{N}} \mathrm{HF}_{R}(i) t^{i} \in \mathbb{Z}[[t]]
$$

If $d=\operatorname{dim} R$, Hilbert proved that

$$
\mathrm{HS}_{R}(t)=\frac{h_{R}(t)}{(1-t)^{d}}
$$

where $h_{R}(t)=h_{0}+h_{1} t+h_{2} t^{2}+\ldots+h_{s} t^{s} \in \mathbb{Z}[t]$ is the h-polynomial of $R .\left(h_{0}=1, h_{1}, h_{2}, \ldots, h_{s}\right)$ the h-vector of R.

Remark

While $\mathrm{HS}_{R}(t) \in \mathbb{N}[[t]], h_{R}(t)$ may not belong to $\mathbb{N}[t]$. If $d=\operatorname{dim} R=0$, then $h_{R}(t)=\mathrm{HS}(t) \in \mathbb{N}[t]$.

Basic definitions and results

If $\ell \in R_{1}$ is an R-regular element, then $h_{R /(\ell)}(t)=h_{R}(t)$, so if R is Cohen-Macaulay we have $h_{i} \geq 0$ for all i. Without the CM assumption things change:

Example

Let $S=K\left[x_{i}, y_{i}: i=1, \ldots, r+1\right]$ and $I \subset S$ the ideal

$$
I=\left(x_{1}, \ldots, x_{r+1}\right)^{2}+\left(x_{1} y_{1}+\ldots+x_{r+1} y_{r+1}\right)
$$

$R=S / I$ has dimension $(r+1)$, depth $R=r$ and has h-vector

$$
(1, r+1,-1) \quad\left(h_{2}<0\right)
$$

Such an R is even Buchsbaum (in particular R is generalized CM).

Basic definitions and results

Remark

The integer $e(R)=h_{R}(1)=h_{0}+h_{1}+h_{2}+\ldots$, being the multiplicity of R, is always positive.

Let $S=K\left[X_{1}, \ldots, X_{n}\right]$, where $n=\operatorname{dim}_{K} R_{1}$. Hence $R \cong S / I$ for some homogeneous ideal $I \subset S$ which contains no linear forms. Let c denote the height of I.

Remark

Since $I_{1}=\{0\}$ we have:

- $h_{1}=c$.
- $h_{2} \geq 0 \Longleftrightarrow \operatorname{dim}_{K} I_{2} \leq\binom{ c+1}{2}$.

If $I_{j}=\{0\}$ for all $j<k$, then $h_{k} \geq 0 \Longleftrightarrow \operatorname{dim}_{K} I_{k} \leq\binom{ c+k-1}{k}$.

Motivations

Theorem (Murai-Terai)

Let R be a Stanley-Reisner ring (i.e. I is generated by squarefree monomials of S) satisfying Serre condition $\left(S_{r}\right)$. Then $h_{i} \geq 0$ for all $i \leq r$ and $e(R) \geq h_{0}+h_{1}+\ldots+h_{r-1}$. Furthermore, if $h_{i}=0$ for some $i \leq r$, then R is Cohen-Macaulay.

For $r \in \mathbb{N}$, we recall that R satisfies the Serre condition $\left(S_{r}\right)$ if:

$$
\text { depth } R_{\mathfrak{p}} \geq \min \left\{\operatorname{dim} R_{\mathfrak{p}}, r\right\} \quad \forall \mathfrak{p} \in \operatorname{Spec} R .
$$

Remark

If R is generalized Cohen-Macaulay then R satisfies $\left(S_{r}\right)$ if and only if depth $R \geq r$. Hence, by the previous example, $\left(S_{r}\right)$ alone is not enough to infer $h_{i} \geq 0$ for all $i \leq r$, not even assuming Buchsbaum.

We say that $R=S / I$ satisfies the condition MT_{r} if

$$
\operatorname{reg} \operatorname{Ext}_{S}^{n-i}(R, S(-n)) \leq i-r \quad \forall i=0, \ldots, \operatorname{dim} R-1
$$

This notion is good for several reasons:

- $M T_{r}$ does not depend on S.
- MT_{r} is preserved by taking general hyperplane sections.
- MT_{r} is preserved by saturating.

Lemma (Murai-Terai, Dao-Ma-_)

If R satisfies MT_{r}, then

- $h_{i} \geq 0$ for all $i \leq r$.
- $h_{r}+\ldots+h_{s} \geq 0$, or equivalently $e(R) \geq h_{0}+\ldots+h_{r-1}$.

Furthermore, if reg $R<r$ or $h_{i}=0$ for some $i \leq r$, then R is CM.

The main result

Theorem (Dao-Ma-_)

Assume that $R=S / I$ has dimension d and satisfies Serre condition (S_{r}), and suppose either

- K has characteristic 0 and R is Du Bois in codimension $d-1$ (e.g. $\left(R_{d-1}\right)$), or
- K has characteristic $0, R$ is Du Bois in codimension $d-2$
(e.g. $\left.\left(R_{d-2}\right)\right)$ and $d=r+1$, or
- K has positive characteristic and R is F-pure.

Then R satisfies condition MT_{r}. In particular, $h_{i} \geq 0$ for all $i \leq r$ and $e(R) \geq h_{0}+h_{1}+\ldots+h_{r-1}$. Furthermore, if reg $R<r$, or if $h_{i}=0$ for some $i \leq r$, then R is Cohen-Macaulay.

Problems

Stanley-Reisner rings are Du Bois in characteristic 0 and F-pure in positive characteristic, so we recover Murai-Terai result. However by results of Kummini-Murai MT_{r} holds whenever I is a monomial ideal and S / I satisfies $\left(S_{r}\right)$ condition.

Questions:

Is it true that R satisfies MT_{r} if R satisfies $\left(S_{r}\right)$ and either
(1) K has characteristic 0 and $R_{\text {red }}$ is Du Bois in codimension $r-1$,
(2) K has characteristic 0 and R is Du Bois in codimension $r-2$, (in particular, if R is normal and satisfies $\left(S_{3}\right)$, is $h_{3} \geq 0$?),
(3) K has positive characteristic and $R_{\text {red }}$ is F-pure, or
(1) K has positive characteristic and R is F-injective???

A new F-singularity

Suppose that K has positive characteristic:

Definition

We say that R is deformation equivalent to an F-pure ring (deF-pure) if there exist a domain A, essentially of finite type over K, and a flat finitely generated A-algebra R_{A} such that all fibres are standard graded, one fibre is R and one is F-pure. In other words, there exist prime ideals $\mathfrak{p}, \mathfrak{q} \in A$ such that $R_{A} \otimes_{A} \kappa(\mathfrak{p}) \cong R$ and $R_{A} \otimes_{A} \kappa(\mathfrak{q})$ is F-pure.

Remark

If R is F-pure, then it is de F-pure $\left(A=K, R_{A}=R, \mathfrak{p}=\mathfrak{q}=\{0\}\right)$.

Proposition (Dao, Ma, _)

If R is de F-pure and satisfies $\left(S_{r}\right)$, then it satisfies MT_{r}.

A new F-singularity

Recall that $R=S / I$ where $S=K\left[X_{1}, \ldots, X_{n}\right]$ and $I \subset S$ is a homogeneous ideal. Suppose that in (I) is a squarefree monomial ideal for some term order. One can check that R is de F-pure.

Example

If $n=3$ and $I=\left(X_{1}^{3}+X_{2}^{3}+X_{3}^{3}-X_{1} X_{2} X_{3}\right) \subset S$, then $R=S / I$ is de F-pure: taking $A=K[t], J=\left(t X_{1}^{3}+t X_{2}^{3}+t X_{3}^{3}-X_{1} X_{2} X_{3}\right)$ and $R_{A}=S[t] / J$, one has $R_{A} \otimes_{A} \kappa((t-1)) \cong R_{A} /(t-1) \cong S / I=R$. $R_{A} \otimes_{A} \kappa((t)) \cong R_{A} /(t) \cong S /\left(X_{1} X_{2} X_{3}\right)$ (that is F-pure). Note that, if $\operatorname{char}(K)=5, R$ is not even F-injective.

Question

Is an F-injective standard graded K-algebra de F-pure?

