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Cohomological and projective dimensions

Matteo Varbaro

Abstract

Let a be a homogeneous ideal of a polynomial ring R in n variables over a field k.
Assume that depth(R/a) > t, where t is some number in {0, . . . , n}. A result of Peskine
and Szpiro says that if char(k)> 0, then the local cohomology modules H i

a(M) vanish
for all i > n− t and all R-modules M . In characteristic 0, there are counterexamples
to this for all t> 4. On the other hand, when t6 2, by exploiting classical results
of Grothendieck, Lichtenbaum, Hartshorne and Ogus it is not difficult to extend the
result to any characteristic. In this paper we settle the remaining case; specifically, we
show that if depth(R/a) > 3, then the local cohomology modules H i

a(M) vanish for all
i > n− 3 and all R-modules M , whatever the characteristic of k is.

1. Introduction

In his seminar on local cohomology [Gro67, p. 79], Grothendieck posed the problem of finding
conditions under which, for a fixed positive integer c, the local cohomology modules H i

a(R) vanish
for every i > c, where a is an ideal in a ring R. In other words, one seeks conditions under which
the cohomological dimension cd(R, a) 6 c. Since then, many mathematicians have worked on this
problem (for instance, see [Har68, Ogu73, HS77, Fal80, HL90, Lyu06]). In the same spirit, we
will study the relationships between cohomological and projective dimensions. Before explaining
the results of the paper, let us summarize some essential known facts about this subject.

The two earliest results are both due to Grothendieck (see [Gro67]): they are essential, as
they fix the range in which we must look for the natural number cd(R, a):

ht(a) 6 cd(R, a) 6 dimR.

Afterwards, first Lichtenbaum and then Hartshorne [Har68], in more generality, settled the
problem of characterizing when cd(R, a) 6 dimR− 1. Roughly speaking, they showed that
a necessary and sufficient condition for this to happen is that dimR/a> 0. Then, the next
step should have been to describe when cd(R, a) 6 dimR− 2. In general, this case is still not
understood. However, if R is a complete regular local ring containing a field, a necessary and
sufficient condition is that the punctured spectrum of R/a is connected. This has been shown
in [HS77] in positive characteristic and in [Ogu73] in characteristic 0. In [HL90], a characteristic-
free proof is given. Actually, if the ambient ring R is regular, cd(R, a) can always be characterized
in terms of the ring R/a (see [HS77, Lyu06, Ogu73]). However, in all of these papers, the
conditions described are quite difficult to verify.

A classical result of Peskine and Szpiro, given in [PS73], says that if a is a perfect ideal
of a regular local ring of characteristic p > 0, then cd(R, a) = ht(a). The proof is based on the
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flatness of the Frobenius map R→R, which, by the work of Kunz [Kun69], is equivalent to
R being regular. We observe that Peskine and Szpiro’s idea works for all Noetherian rings of
positive characteristic (see Corollary 2.2), exploiting the acyclicity criterion that Buchsbaum and
Eisenbud obtained in [BE73] instead of the result of Kunz. (Indeed, this idea also works in some
situations in characteristic 0; see Lemma 2.1.)

In characteristic 0 the situation is completely different. There are several instances of perfect
ideals with high cohomological dimension; see Example 2.6. Such examples appear even in a
regular ambient; thus we stick to the situation in which R is an n-dimensional regular local
ring containing a field. In this case, if a is a perfect ideal of height n− 2, then cd(R, a) = n− 2.
More generally, if depth(R/a) > 2, then cd(R, a) 6 n− 2; see Proposition 3.1. We know examples
of perfect ideals of height n− 4 and cohomological dimension n− 3, but we do not know any
example of an ideal a⊆R of projective dimension less than or equal to n− 3 such that cd(R, a)>
n− 3. Therefore we consider the case where depth(R/a) > 3. We show in Proposition 3.2 that
H i

a(R) = 0 for all i> n− 1 and Hn−2
a (R)p = 0 for any prime ideal of R different from the maximal

one. As a consequence, we get that the Lyubeznik numbers of a local ring A (defined in [Lyu93]),
λi,j(A), vanish for all 0 6 j < depth(A) and i> j − 1; see Corollary 3.3. At this point, we focus
on the special case where R is a polynomial ring in n variables over a field of characteristic 0
and a is a homogeneous ideal such that depth(R/a) > 3. The main result of the paper is that,
under the above assumptions, cd(R, a) 6 n− 3 (see Theorem 3.5). In particular, if a is perfect of
height n− 3, then cd(R, a) = n− 3. As a consequence, in Remark 3.7 we are able to give several
examples of prime ideals a⊆R such that R/a is not set-theoretically Cohen–Macaulay, thereby
generalizing a result of Singh and Walther in [SW05]. More such examples can be produced using
Proposition 3.8.

2. Ideals with small cohomological dimension

Given an ideal a of a Noetherian ring R, its cohomological dimension, denoted by cd(R, a), is
the smallest natural number c such that the local cohomology modules H i

a(M) vanish for all
R-modules M and all i > c. As is well known, it suffices to check the condition for M =R. We
have

cd(R, a) > ht(a),

and in this section we will find some ideals for which the above inequality is an equality. It is
convenient to recall a definition: an ideal a⊆R is perfect if the maximal length of an R-regular
sequence in a, namely grade(a), is equal to the projective dimension of R/a (in particular, a
perfect ideal has finite projective dimension). If R is a regular local ring, then a is perfect if and
only if R/a is Cohen–Macaulay. The following fact has many interesting corollaries.

Lemma 2.1. Let R be a Noetherian ring and a⊆R a perfect ideal. Assume that for all integers
k ∈ N there is a ring-homomorphism φk :R→R such that:

(1) φ0 = 1R;

(2) φi(a)⊆ φj(a) whenever i> j;

(3) the inverse system of ideals {φk(a)R}k∈N is cofinal with {ak}k∈N.

Then cd(R, a) = ht(a).

Proof. Set grade(a) = g. Since for every i there exists j such that aj ⊆ φi(a)R⊆ a, we have
grade(φk(a)R) = g for all k ∈ N. So φk(a)R is a perfect ideal for all k ∈ N by [BV80, Theorem 3.5].
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Therefore

ExtiR(R/φk(a)R, R) = 0 for all i > g, k ∈ N.
We infer that cd(R, a) 6 g by the identity

H i
a(R)∼= lim−→ Exti(R/φk(a), R).

The proof is then complete because cd(R, a) > ht(a) > grade(a). 2

The first consequence of Lemma 2.1 is the promised extension of [PS73, Proposition 4.1].

Corollary 2.2. Let R be a Noetherian ring of positive characteristic. If a⊆R is a perfect
ideal, then cd(R, a) = ht(a).

Proof. This follows from Lemma 2.1, by considering the kth iteration of the Frobenius map
as φk. 2

Of course, the converse of the above corollary does not hold, since the cohomological
dimension of a is an invariant of the radical of a.

Example 2.3. Notice that Corollary 2.2 does not hold if we just assume that R/a
is Cohen–Macaulay: for instance, let R= k[x, y]/(xy) and a = (x)⊆R. Note that R/a∼= k[y] is
Cohen–Macaulay, ht(a) = 0, and

· · · ·y−→R
·x−→R

·y−→R
·x−→ a→ 0

is an infinite minimal free resolution of a. Considering the homomorphism R→ k[x] mapping x
to itself and y to zero and viewing M = k[x] as an R-module, one has H1

a (M)∼=H1
(x)k[x](k[x]) 6= 0.

In particular, cd(R, a) = 1> 0 = ht(a).

We note two further consequences of Lemma 2.1.

Corollary 2.4. Let A be a Noetherian ring and Γ a finitely generated commutative monoid.
If a⊆R=A[Γ] is a perfect ideal generated by a subset of Γ, then cd(R, a) = ht(a).

Proof. Once again, we want to use Lemma 2.1. For this purpose, we look at φk induced by the
monoid homomorphisms Γ ·k−→ Γ, which satisfy the assumptions of Lemma 2.1. 2

Corollary 2.5. Let R be a Noetherian ring of positive characteristic and (rij) an m× n
matrix with entries in R. Let a be the ideal generated by the min{m, n}-minors of (rij). If
ht(a) = |n−m|+ 1, then cd(a) = ht(a).

Proof. Such an ideal a is resolved by the Eagon–Northcott complex, so it is perfect. Therefore
the conclusion follows from Corollary 2.2. 2

Corollary 2.5 (and therefore also Corollary 2.2) does not hold in characteristic 0, as shown
by the following example.

Example 2.6. Let k be a field of characteristic 0, (xij) an m× n matrix of indeterminates over k,
and R= k[xij ]. If a⊆R is the ideal generated by the t-minors of (xij), for t6 min{m, n}, then
a is a perfect ideal of ht(a) = (m− t+ 1)(n− t+ 1). However, by [BS90], we have cd(R, a) =
mn− t2 + 1. Therefore

cd(R, a)− ht(a) = (m+ n− 2t)(t− 1),

which, unless m= n= t or t= 1, is a positive integer.
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3. Characteristic 0

Notice that in Example 2.6 we have dimR/a = (t− 1)(m+ n− t+ 1). As one can check,
d= dimR/a can be any natural number different from 1 and 2. Furthermore, if d ∈ {0, 3}, then
we are forced to be in the special cases where cd(R, a) = ht(a). However, if d> 4, numbers for
which cd(R, a)> ht(a) can always be chosen (for example, t=m= 2 and n= d− 1, the case
where a defines the Segre product P1 × Pd−2 inside P2d−3). In this section, we try to understand
what happens in the remaining cases. Slightly more generally, we wonder whether we can deduce
cd(R, a) 6 n− t, knowing that depth(R/a) > t where t6 3. If t= 0, then the vanishing theorem
of Grothendieck implies cd(R/a) 6 n. If t= 1, then one can show that cd(R, a) 6 n− 1 using the
theorem of Hartshorne and Lichtembaum [Har68, Theorem 3.1]. When t= 2, one can show that
cd(R, a) 6 n− 2 provided that R is a regular local ring containing a field, by exploiting a result
of Ogus [Ogu73, Corollary 2.11] and one of Hartshorne [Har62, Proposition 2.1]. We will present
the proof of this last case.

Proposition 3.1. Let (R,m) be an n-dimensional regular local ring containing a field, and let
a⊆R be an ideal. If depth(R/a) > 2, then cd(R, a) 6 n− 2.

Proof. Suppose k =R/m where m is the maximal ideal of R. If char(k)> 0, we already know
the result, so we can assume that char(k) = 0. Take a faithfully flat homomorphism from (R,m)
to a regular local ring (S, n) such that S/n is the algebraic closure of k (such a thing exists: it is
a suitable gonflement of R; see [Bou08, ch. IX, Appendice 2]). Faithful flatness guarantees that
S still contains a field, depth(R/a) = depth(S/aS), and cd(R, a) = cd(S, aS). Therefore we can
assume that k is algebraically closed. Again, since R̂ is faithfully flat over R, we have cd(R̂, aR̂) =
cd(R, a) and depth(R̂/aR̂) = depth(R/a). Thus it is harmless to assume that R is complete,
so that R∼= k[[x1, . . . , xn]] by the Cohen structure theorem. By [Har62, Proposition 2.1],
Spec(R/a)\{m/a} is connected. So [Ogu73, Corollary 2.11] yields the conclusion. 2

It now remains to understand the case where t= 3: if a is an ideal of a regular local ring such
that depth(R/a) > 3, is it true that cd(R, a) 6 n− 3?

Proposition 3.2. Let (R,m) be an n-dimensional regular local ring containing a field, and let
a⊆R be an ideal. If depth(R/a) = k, then dim(Supp(Hn−i

a (R)) 6 i− 2 for all 0 6 i < k.

Proof. Given i < k, we have to show that (Hn−i
a (R))p =Hn−i

aRp
(Rp) = 0 for all p ∈ SpecR such that

ht(p) 6 n− i+ 1. Let us denote by h the height of p. We can suppose that h> n− i, because
otherwise Hn−i

aRp
(Rp) would automatically be 0 (since dimRp = h < n− i).

First, let us assume that h= n− i. Since i < k = depth(R/a), p is not a minimal prime of
R/a. This implies that dimRp/aRp > 0, which, using the Hartshorne–Lichtenbaum theorem,
yields Hn−i

aRp
(Rp) = 0.

So we can suppose h= n− i+ 1. A theorem of Ischebeck [Mat80, Theorem 17.1] yields

Ext0R(R/p, R/a) = Ext1R(R/p, R/a) = 0.

This means that grade(p, R/a)> 1 and hence that H0
p (R/a) =H1

p (R/a) = 0. In particular,

H0
pRp

(Rp/aRp) =H1
pRp

(Rp/aRp) = 0,

that is, depth(Rp/aRp) > 2. Since Rp is an (n− i+ 1)-dimensional regular local ring,
Proposition 3.1 yields

Hn−i
aRp

(Rp) = 0.
This concludes the proof. 2
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A first consequence of Proposition 3.2 concerns a fact about the Lyubeznik numbers of a local
ring. We recall the definition as follows. Let A be a local ring which admits a surjection from an
n-dimensional regular local ring containing a field. Let a be the kernel of the surjection, and let
k =R/m. In [Lyu93], Lyubeznik proved that the Bass numbers λi,j(A) = dimk ExtiR(k, Hn−j

a (R))
depend only on A, i and j, but neither on R nor on the surjection R→A. For this reason, they
are usually called the Lyubeznik numbers of A. Furthermore, they can be defined for any local
ring containing a field, upon passing to the completion if needed. In [Lyu93] it was also shown
that λi,j(A) = 0 whenever j > d= dimA or i > j and that λd,d(A) 6= 0.

Corollary 3.3. Let A be a local ring containing a field. If depth(A) = k, then λi−1,i(A) =
λi,i(A) = 0 for all 0 6 i < k.

Proof. By [Lyu93, Corollary 3.6], the injective dimension of H i
a(R) is bounded above by the

dimension of the support of H i
a(R), so the statement follows from Proposition 3.2. 2

We do not know whether local rings as in Corollary 3.3 satisfy λi−2,i(A) = 0 for all i < k.
Actually, this is related to the question we are investigating. However, we can provide an example
for which k > 3 and λ0,3(A) 6= 0.

Example 3.4. Let I be the homogeneous ideal of S = k[xpq : p= 0, . . . , r; q = 0, . . . , s] defining
the Segre product Pr × Ps ⊆ Prs+r+s, where k is a field of characteristic 0 and r > s> 1. Let m

be the maximal irrelevant of S, R= Sm, a = IR and A=R/a. We know from Example 2.6
that if n= rs+ r + s+ 1, then Hn−3

a (R) 6= 0. Moreover, if p ∈ SpecR is not maximal, then
Hn−3

a (R)p = 0; in fact, since Pr × Ps is smooth, aRp ⊆R is generated by a regular sequence
of length n− r − s− 1< n− 3. Therefore dim(Supp(Hn−3

a (R)) = 0, so Hn−3
a (R) is an injective

R-module by [Lyu93]. Because it is supported at m, we have Hn−3
a (R)∼= Es for some s > 0,

where E is the injective hull of k (as an R-module). Eventually, we have HomR(k, Es)∼= ks,
which implies λ0,3(A) 6= 0.

Before stating the main result of the paper, let us introduce some notation. Let X be a
projective scheme over a field k of characteristic 0. By H i

DR(X) we mean algebraic de Rham
cohomology, as defined in [Har75]. If k = C, we denote by Xh the analytic space associated
to X. By [Har75, ch. IV, Theorem 1.1], we have H i(Xh, C)∼=H i

DR(X), where H i(Xh, C) means
singular cohomology with coefficients in C.

Theorem 3.5. Let k be a field of any characteristic and R= k[x1, . . . , xn]. If a⊆R is a
homogeneous ideal such that depth(R/a) > 3, then cd(R, a) 6 n− 3. In particular, if R/a is
a 3-dimensional Cohen–Macaulay ring, then cd(R, a) = n− 3.

Proof. Of course, we need to show this only when the characteristic of k is 0, since in positive
characteristic it is true by the result of Peskine and Szpiro. The properties in the hypothesis and in
the conclusion are preserved under flat extensions. So, since a is finitely generated, we can assume
that Q⊆ k⊆ C and, eventually, that k = C. That cd(R, a) 6 n− 3 is equivalent to saying that
H i(Pn−1\X, F) = 0 for any coherent sheaf F on X = V+(a) and for all i> n− 3. This, by [Ogu73,
Theorem 4.4], is equivalent to saying that H0

DR(X)∼=H0
DR(Pn−1), H1

DR(X)∼=H1
DR(Pn−1) and the

de Rham depth of X is at least 2. The last condition is, in turn, equivalent to Supp(H i
a(R))⊆ {m}

for all i> n− 2, where m is the maximal irrelevant ideal (see the proof of [Ogu73, Theorem 4.1]),
and this is true by Proposition 3.2. The condition H0

DR(X)∼=H0
DR(Pn−1) means that X is

connected, which is the case because depth(R/a) > 3; see [Har62, Proposition 2.1]. So we have to
show that H1

DR(X)∼=H1
DR(Pn−1) = 0. Since H1

DR(X)∼=H1(Xh, C), by the universal coefficient
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theorem it is enough to show that H1(Xh, Z) is zero. Let us consider the morphisms of sheaves
ZXh
→OXh

→ (OXh
)red (here ZXh

denotes the locally constant sheaf on Xh associated to Z). By
the exponential sequence, we know that the composition

H1(Xh, ZXh
)→H1(Xh,OXh

)→H1(Xh, (OXh
)red)

is injective, so H1(Xh, ZXh
)→H1(Xh,OXh

) has to be injective too. (Actually, the exponential
sequence makes sense also for non-reduced schemes; however, we prefer to follow a different
route because of the lack of references.) By [Ser56], H1(Xh,OXh

)∼=H1(X,OX). Furthermore,
H1(X,OX)∼=H2

m(R/a)0, and the last vector space is zero because depth(R/a) > 3. So
H1(Xh, Z)∼=H1(Xh, ZXh

) has to be zero. 2

Remark 3.6. Under the assumption that X is smooth, where the situation is considerably
simpler, we obtained the conclusion of Theorem 3.5 in [Var12]. Even in the smooth case, however,
the above proof cannot be repeated to show that depth(R/a) > 4 implies cd(R, a) 6 n− 4. The
point is that

H2(Xh, CXh
)∼=H2(Xh,OXh

)⊕H1(Xh, Ω1
Xh

)⊕H0(Xh, Ω2
Xh

);

so, owing to the presence of the middle term H1(Xh, Ω1
Xh

), H3
m(R/a) = 0 does not imply

H2(Xh, CXh
) = 0.

Remark 3.7. In [SW05, Theorem 3.3], Singh and Walther used characteristic p methods to prove
the following. If E ⊆ P2 is an elliptic curve defined over Z, k is a field of characteristic 0 and
a⊆R= k[x0, . . . , x5] is the defining ideal of E × P1, then R/b is not Cohen–Macaulay for all
homogeneous ideals b with the same radical of a. Theorem 3.5 immediately yields a much
more general fact: let C be a smooth curve of genus at least 1 and let Y be any projective
scheme, both over a field k of characteristic 0. Let a⊆R= k[x1, . . . , xN ] be the defining ideal of
X = C × Y ⊆ PN−1. For all homogeneous b⊆R such that

√
b =
√

a, depth(R/b) 6 2. To show
this, we claim that cd(R, a) >N − 2, so that, since the cohomological dimension is independent
of the radical, Theorem 3.5 would give the conclusion. For this purpose, we can assume k = C.
GAGA and Hodge decomposition imply that H1(Ch, C) 6= 0; so H1(Xh, C) 6= 0 by the Kunneth
formula, and thus cd(R, a) >N − 2 by a result of Hartshorne (see [Har70, Theorem 7.4, p. 148]).

The above remark shows how Theorem 3.5 can be used to produce ideals which are not
set-theoretically Cohen–Macaulay. The following proposition gives further such examples.

Proposition 3.8. Let k be a field of characteristic 0, a⊆R= k[x1, . . . , xn] a graded ideal and
m = (x1, . . . , xn) the maximal irrelevant. Assume that b =

√
a is such that X = Proj(R/b) is

smooth. Then

dimk H
i
m(R/a)0 > dimk H

i
m(R/b)0 for all i> 0.

Proof. For i= 0 this is trivial. By the exact sequences of graded R-modules

0→H0
m(R/a)→R/a→

⊕
i∈N

H0(X,OX(i))→H1
m(R/a)→ 0,

0→H0
m(R/b)→R/b→

⊕
i∈N

H0(X, (OX)red(i))→H1
m(R/b)→ 0,

the dimension of the k-vector spaces H1
m(R/a)0 and H1

m(R/b)0 are, respectively, dimk H
0(X,

OX)− 1 and dimk H
0(X, (OX)red)− 1, and obviously dimk H

0(X,OX) > dimk H
0(X, (OX)red).

Note that so far we have not used the smoothness of Xred. For i> 2 we have to. As usual, it
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is harmless to assume k = C. Let us recall the isomorphisms of C-vector spaces H i
m(R/a)0 ∼=

H i−1(X,OX) and H i
m(R/b)0 ∼=H i−1(X, (OX)red). Consider the natural maps of sheaves

CXh
→OXh

→ (OXh
)red.

These yield maps of C-vector spaces

H i(Xh, CXh
) α−→H i(Xh,OXh

)
β−→H i(Xh, (OXh

)red).

The composition of these homomorphisms is surjective; indeed, by Hodge theory,
H i(Xh, (OXh

)red) is the space of harmonic (i, 0)-forms, and Hodge decomposition tells us that βα
maps a harmonic i-form to its (i, 0) component (see the book of Arapura [Ara12] for terminology
not explained here). Therefore H i(Xh,OXh

)→H i(Xh, (OXh
)red) is surjective. By [Ser56],

there are isomorphisms of C-vector spaces H i(X,OX)∼=H i(Xh,OXh
) and H i(X, (OX)red)∼=

H i(Xh, (OXh
)red), and thus we can conclude the proof. 2

The smoothness assumption in Proposition 3.8 is necessary, as demonstrated by the following
example due to Aldo Conca.

Example 3.9. Let R= Q[x1, . . . , x6] and

a = (x2x4 + x3x6, x
2
3 − x2

4, x
2
1 + x4x5).

It turns out that a is a complete intersection. In particular, H2
m(R/a)0 = 0 because R/a is a

3-dimensional Cohen–Macaulay ring. However, using the software Macaulay2 [GS], one sees that
H2

m(R/b)0 ∼= Ext4S(R/b, R)−6 is a 1-dimensional Q-vector space, where

b =
√

a = (x2x4 + x3x6, x
2
3 − x2

4, x
2
1 + x4x5, x2x3 + x4x6, x1(x2

2 − x2
6)).

Notice that Proj(R/b) is not smooth. Indeed, it is not even irreducible, although it is connected;
one can check that the minimal prime ideals of b are

p1 = (x3 + x4, x2 − x6, x
2
1 + x4x5), p2 = (x1, x3, x4), p3 = (x3 − x4, x2 + x6, x

2
1 + x4x5).

Notice that the same example works in every field k of characteristic 0. Indeed, upon setting
Rk =R⊗Q k, the piRk keep on being prime ideals,

√
aRk = bRk,H2

mRk
(Rk/aRk)0 =H2

m(R/a)0 ⊗Q
k = 0, and

dimk H
2
mRk(Rk/

√
aRk)0 = dimk H

2
m(R/b)0 ⊗Q k = 1.
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