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ON THE ARITHMETICAL RANK

OF CERTAIN SEGRE EMBEDDINGS

MATTEO VARBARO

Abstract. We study the number of (set-theoretically) defining equations of
Segre products of projective spaces times certain projective hypersurfaces, ex-
tending results by Singh and Walther. Meanwhile, we prove some results about
the cohomological dimension of certain schemes. In particular, we solve a con-
jecture of Lyubeznik about an inequality involving the cohomological dimen-
sion and the étale cohomological dimension of a scheme, in the characteristic-
zero-case and under a smoothness assumption. Furthermore, we show that a
relationship between depth and cohomological dimension discovered by Pesk-
ine and Szpiro in positive characteristic also holds true in characteristic-zero
up to dimension three.

1. Introduction

The beauty of finding the number of defining equations of a variety is expressed
by Lyubeznik in [Ly2] as follows:

Part of what makes the problem about the number of defining equations so inter-
esting is that it can be very easily stated, yet a solution, in those rare cases when
it is known, usually is highly non trivial and involves a fascinating interplay of
Algebra and Geometry.

In this paper we study the number of defining equations, called arithmetical
rank (see Section 2), of certain Segre products of two projective varieties. Let us
list some works that already exist in this direction.

(1) In their paper [BS], Bruns and Schwänzl studied the number of defining
equations of a determinantal variety. In particular, they proved that the
Segre product Pn × Pm ⊆ PN , where N = nm + n + m, can be defined set-
theoretically by N − 2 homogeneous equations and not less. In particular,
it is a set-theoretic complete intersection if and only if n = m = 1.

(2) In their work [SW], Singh and Walther gave a solution in the case of E ×
P1 ⊆ P5 where E is a smooth elliptic plane curve. The authors proved that
the arithmetical rank of this Segre product is 4. Later, in [So], Song proved
that the arithmetical rank of C × P1, where C ⊆ P2 is a Fermat curve (i.e.
a curve defined by the equation xd

0 + xd
1 + xd

2), is 4. In particular, both
E × P1 and C × P1 are not set-theoretic complete intersections.

In light of these results it is natural to study the following problem.
Let n, m, d be natural numbers such that n ≥ 2 and m, d ≥ 1, and let X ⊆ Pn be

a smooth hypersurface of degree d. Consider the Segre product Z = X × Pm ⊆ PN ,
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where N = nm + n + m. What can we say about the number of defining equations
of Z?

Notice that the arithmetical rank of Z can depend, at least a priori, by invariants
different from n, m, d; in fact we will need other conditions on X. However, for
certain n, m, d we can provide some answers to this question. To this aim we
will use various arguments, from complex analysis to the theory of algebras with
straightening law, passing through local cohomology, étale cohomology and most
of commutative algebra.

In the case n = 2 and m = 1, we introduce, for every d, a locus of special smooth
projective plane curves of degree d that we will denote by Vd. This locus consists
of those smooth projective curves C of degree d which have a d-flex, i.e. a point P
at which the intersection multiplicity of C and the tangent line in P is equal to d.
Using methods coming from “algebras with straightening law’s theory” we prove
that for such a curve C the arithmetical rank of the Segre product C × P1 ⊆ P5 is
4, provided that d ≥ 3 (see Corollary 3.5). It is easy to show that every smooth
elliptic curve belongs to V3 and that every Fermat curve of degree d belongs to
Vd, so we recover the results obtained in [SW] and in [So]. However, the equations
that we will find are different from those found in these papers, and our result is
characteristic free. Note that a result of Casnati and Del Centina [CD] shows that
the codimension of Vd in the locus of all the smooth projective plane curves of
degree d is d − 3, provided that d ≥ 3 (Remark 3.6).

For a general n, we can prove that if X ⊆ Pn is a general smooth hypersurface
of degree not larger than 2n − 1, then the arithmetical rank of X × P1 ⊆ P2n+1 is
at most 2n (Corollary 3.8). To establish this we need a higher-dimensional version
of Vd. This result is somehow in the direction of the open question of whether
any connected projective scheme of positive dimension in PN can be defined set-
theoretically by N − 1 equations.

With some similar tools we can show that, if F = xd
n +

∑n−3
i=0 xiGi(x0, . . . , xn)

and X = V+(F ) is smooth, then the arithmetical rank of X ×P1 ⊆ P2n+1 is 2n− 1
(Theorem 3.9).

Using techniques similar to those of [SW], we are able to show the following: the
arithmetical rank of the Segre product C×Pm ⊆ P3m+2, where C is a smooth conic
of P2, is equal to 3m, provided that char(k) %= 2 (Theorem 3.11). In particular,
C × Pm is a set-theoretic complete intersection if and only if m = 1.

Lower bounds for the arithmetical rank usually come from cohomological con-
siderations. We collect the necessary ingredients in Section 2 using results from
papers of Hartshorne [Har2], of Ogus [Og] and of Lyubeznik [Ly3] regarding the
cohomological dimension of open subschemes of projective schemes. Actually, to
our purpose we could use only étale cohomology. In fact the results obtained in
Subsection 2.2 are sufficient to compute the number of defining equations of the
varieties described above. However, when the characteristic of the base field is 0, it
is possible to get the same lower bound (also in a more general setting) by reducing
to the case when k = C and using singular, local and sheaves cohomology.

The results of Section 2 yield some nice consequences, independent from Section
3:

(1) For any n, m and d, if X is smooth, the arithmetical rank of X ×Pm ⊆ PN

can vary just among N − 2, N − 1 and N .
(2) A conjecture of Lyubeznik in [Ly4] (see Conjecture 2.20) states, roughly

speaking, that “the ètale cohomology provides a better lower bound for the
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arithmetical rank than the local cohomology”. We prove the conjecture
in the characteristic 0 case under a smoothness assumption; see Theorem
2.21.

(3) We extend a result of Speiser obtained in characteristic 0 in [Sp], regarding
the arithmetical rank of the diagonal in Pn × Pn to any characteristic; see
Corollary 2.14.

(4) As a consequence of Theorem 2.18, we get that if a smooth projective
surface X has a Cohen-Macaulay homogeneous coordinate ring, then the
cohomological dimension of its complement in any Pn is the least possible
(codimPn X − 1). In positive characteristic the analog version was proved
in any dimension by Peskine and Szpiro in [PS]. Instead, in characteristic
0 the statement already fails for threefolds. This fact raises a nice question
about a relationship between depth and cohomological dimension (Question
2.19).

2. Preliminaries for the lower bounds

As already said in the introduction, in this section we will get the necessary
lower bounds we need by using results about the cohomological dimension of open
subschemes of projective schemes.

First we describe in a precise way the setting in which we will work. For a
Noetherian ring R and an ideal I ⊆ R we define the arithmetical rank of I with
respect to R as the integer

ara(I) = min{k : ∃ f1, . . . , fk ∈ R such that
√

I =
√

(f1, . . . , fk)}.

Notice that to be more precise we should write araR(I); however, it will always be
clear from the context who is R. A lower bound for the arithmetical rank is given
by Krull’s Hauptidealsatz:

ara(I) ≥ ht(I).

If R is graded and I homogeneous, we can also define the homogeneous arithmetical
rank, that is, the integer

arah(I) = min{k : ∃ f1, . . . , fk ∈ R homogeneous such that
√

I =
√

(f1, . . . , fk)}.

Obviously we have

ara(I) ≤ arah(I).

Assume that R is a polynomial ring of N + 1 variables over a field k and that I is
a homogeneous ideal of R. Then ara(I) gives the least number of hypersurfaces of
the affine space AN+1 to set-theoretically define V(I) = {℘ ∈ Spec(R) : ℘ ⊇ I} ⊆
AN+1 = Spec(R). Similarly, arah(I) gives the least number of hypersurfaces of PN

to intersect set-theoretically to obtain V+(I) = {℘ ∈ Proj(R) : ℘ ⊇ I} ⊆ PN =
Proj(R). It is an open problem whether these two numbers are always equal (see
the survey article of Lyubeznik [Ly1]).

Remark 2.1. The reader should be careful of the following: the number ara(I),
where I is an ideal of a polynomial ring, in general, does not give the minimal
number of polynomials whose zero-locus is the same zero-locus of I, namely Z(I).
For instance, if I = (f1, . . . , fm) ⊆ R[x0, . . . , xN ], then clearly

Z(I) = Z(f2
1 + . . . + f2

m).



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

5094 MATTEO VARBARO

However, ara(I) can be larger than 1. The reader should keep in mind that, unless
the base field is algebraically closed, there is no relation between V(I) and Z(I).

We will say that I (or X = V+(I)) is a set-theoretic complete intersection if
arah(I) = ht(I) = codimPN X.

For a Noetherian ring R and an ideal I ⊆ R the cohomological dimension cd(R, I)
of I (with respect to R) is the supremum of the integers i such that there exists an
R-module M for which Hi

I(M) %= 0. It is well known that

ara(I) ≥ cd(R, I) ≥ ht(I).

In the same way, the cohomological dimension cd(X) of a scheme X is the supremum
integer i such that there exists a quasi-coherent sheaf F such that Hi(X, F) %= 0.

If R is a finitely generated positively graded k-algebra and I ⊆ R is a homoge-
neous ideal non-nilpotent, then

(1) cd(R, I) − 1 = cd(Spec(R) \ V(I)) = cd(Proj(R) \ V+(I))

(see Hartshorne [Har1]). So to bound the arithmetical rank of I, and hence the
homogeneous arithmetical rank, we will give bounds on cd(Proj(R) \ V+(I)).

2.1. Bounds in characteristic 0. Throughout this subsection k (or K) will de-
note a field of characteristic 0. The following remark allows us to assume, in many
cases, that the base field is C.

Remark 2.2. Let R be an A-algebra, a ⊆ R an ideal, B a flat A-algebra, RB =
R ⊗A B, M an R-module and MB = M ⊗A B. Using the C̆ech complex it is not
difficult to prove that for every j ∈ N,

(2) Hj
a(M) ⊗A B ∼= Hj

aRB
(MB).

Now let S = K[x0, . . . , xn] and I ⊆ S be an ideal. Since I is finitely generated
we can find a field k such that, setting Sk = k[x0, . . . , xn], the following properties
hold:

k ⊆ K, Q ⊆ k ⊆ C, (I ∩ Sk)S = I

(to this aim we only have to add to Q the coefficients of a set of generators of I).
Since K and C are faithfully flat k-algebras, equation (2) implies that

(3) cd(S, I) = cd(Sk, I ∩ Sk) = cd(SC, (I ∩ Sk)SC),

where SC = C[x1, . . . , xn].
In the above situation assume that I is homogeneous and that X = Proj S/I is

smooth over K. Then set Xk = Proj(Sk/(I ∩Sk)) and XC = Proj(SC/((I ∩Sk)C)).
Notice that X ∼= Xk ×k SpecK, XC ∼= Xk ×k Spec C, and that Xk (respectively
XC) is smooth over k (respectively over C). By base change (see Liu [Li, Chapter
6, Proposition 1.24 (a)]) and by the fact that K and C are both flat k-algebras, we
get, for all natural numbers i, j,

Hi(X,Ωj
X/K) ∼= Hi(Xk,Ωj

Xk/k) ⊗k K

and
Hi(XC,Ωj

XC/C) ∼= Hi(Xk,Ωj
Xk/k) ⊗k C

(see [Li, Chapter 5, Proposition 2.27]). Particularly, we have

(4) dimK(Hi(X,Ωj
X/K)) = dimC(Hi(XC,Ωj

XC/C)).
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In the rest of this subsection k will denote a field of characteristic 0. Moreover, if
X is a projective variety smooth over k, we will write hij(X) for dimk(Hi(X,Ωj

X/k)).
In the next remark, for the convenience of the reader, we collect some well-known

facts which we will use throughout the paper.

Remark 2.3. Let X be a projective scheme over C. We will denote by βi(X) the
topological Betti number

βi(X) = rankZ(HSing
i (Xan, Z)) = rankZ(Hi

Sing(Xan, Z))

= dimC(Hi
Sing(Xan, C)) = dimC(Hi(Xan, C))

(Xan means X regarded as an analytic space in the sense of Serre [Se], and C
denotes the locally constant sheaf associated to C). Pick another projective scheme
over C, say Y , and denote by Z the Segre product X × Y . The Künneth formula
for singular cohomology (for instance see Hatcher [Hat, Theorem 3.16]) yields

Hi
Sing(Zan, C) ∼=

⊕

p+q=i

Hp
Sing(Xan, C) ⊗C Hq

Sing(Yan, C);

thus

(5) βi(Z) =
∑

p+q=i

βp(X)βq(Y ).

Now assume that X is a projective variety smooth over C. It is well known that
Xan is a Kähler manifold, so the Hodge decomposition (see the notes of Arapura
[Ar, Theorem 10.2.4]) is available. Therefore, together with a theorem of Serre (see
[Se, Theoreme 1, pag. 19]) we have

Hi
Sing(Xan, C) ∼=

⊕

p+q=i

Hp(Xan, (ΩX/C)q
an) ∼=

⊕

p+q=i

Hp(X,Ωq
X/C),

where Fan is the analyticization of a sheaf F (see [Se]). Thus

(6) βi(X) =
∑

p+q=i

hpq(X).

Finally, note that the restriction map on singular cohomology,

(7) Hi
Sing(Pn

an, C) −→ Hi
Sing(Xan, C),

is injective provided that i = 0, . . . , 2 dimX (see Shafarevich [Sh, pp. 121-122]). In
particular, since β2i(Pn) = 1 if i ≤ n, it follows that

(8) β2i(X) ≥ 1 provided that i ≤ dim X.

The following theorem is a quite simple consequence of the results of [Og]. It
provides some necessary and sufficient conditions for the cohomological dimension
of the complement of a smooth variety in a projective space to be smaller than a
given integer.

Theorem 2.4. Let X ⊆ Pn be a projective variety smooth over k, r an integer
greater than or equal to codimPn X and U = Pn \X. Then cd(U) < r if and only if

hpq(X) =

{
0 if p %= q, p + q < n − r,
1 if p = q, p + q < n − r.
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Moreover, if k = C, the above conditions are equivalent to

βi(X) =

{
1 if i < n − r and i is even,
0 if i < n − r and i is odd.

Proof. By equations (3) and (4) of Remark 2.2 we can reduce the problem in the
case in which k = C. So the “only if” part follows by a result of Hartshorne [Har2,
Corollary 7.5, p. 148].

So it remains to prove the “if” part. By a theorem of Grothendieck in [Gr1]
algebraic De Rham cohomology agrees with singular cohomology. Therefore, by
the last part of Remark 2.3 the restriction maps

(9) Hi
DR(Pn) −→ Hi

DR(X)

(where HDR denotes the algebraic De Rham cohomology) are injective for all i ≤
2 dim X. By the assumptions, equation (6) yields βi(X) = 1 if i is even and i < n−r,
0 otherwise. Moreover, βi(Pn) = 1 if i is even and i ≤ 2n, 0 otherwise. So again
using the result of Grothendieck the maps in (9) are isomorphisms for all i < n− r.

Now we would use a result of Ogus ([Og, Theorem 4.4]), and to this aim we
will show that the De Rham depth of X is greater than or equal to n − r. By the
proof of [Og, Theorem 4.1] this is equivalent to the fact that Supp(Hi

a(S)) ⊆ m
for all i > r, where S = C[x0, . . . , xn], a ⊆ S is the ideal defining X and m is the
maximal irrelevant ideal of S. But this is easy to see, because if ℘ is a graded prime
ideal containing a and different from m, X being non-singular, aS℘ is a complete
intersection in S℘. So (Hi

a(S))℘ ∼= Hi
aS℘

(S℘) = 0 for all i > r (≥ ht(aS℘)). Hence
[Og, Theorem 4.4] yields the conclusion.

Finally, if k = C, the last condition is a consequence of the first one by equation
(6). Moreover, it implies the first one because the restriction maps of singular
cohomology

Hi
Sing(Pn

an, C) −→ Hi
Sing(Xan, C)

(that are injective if i < n− r by the last part of Remark 2.3) are compatible with
the Hodge decomposition (see [Ar, Corollary 11.2.5]). !

Remark 2.5. Theorem 2.4 does not hold in positive characteristic: for instance,
pick an elliptic curve E over a field of positive characteristic whose Hasse invariant
is 0. Then set X = E × P1 ⊆ P5 and U = P5 \ X. The Frobenius acts as 0 on
H1(X, OX), so cd(U) = 2 (see Hartshorne and Speiser [HS] or Lyubeznik [Ly5]).
However, notice that H1(X, OX) %= 0.

The two propositions below provide the necessary lower bound we need to com-
pute the arithmetical rank of certain Segre products in characteristic 0.

Proposition 2.6. Let X and Y be two positive-dimensional projective schemes
smooth over k, and set Z = X × Y ⊆ PN (any embedding) and U = PN \ Z. Then
cd(U) ≥ N − 3. In particular, if dim Z ≥ 3, Z is not a set-theoretic complete
intersection.

Proof. By equation (3) we can assume k = C. Using equation (8) we have β0(X) ≥
1, β2(X) ≥ 1, β0(Y ) ≥ 1 and β2(Y ) ≥ 1, so equation (5) implies β2(Z) ≥ 2. Now
equation (6) and Theorem 2.4 yield the conclusion. !

Remark 2.7. The proof of Proposition 2.6 yields the following nice fact.
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Let X and Y be two positive-dimensional projective varieties smooth over C and
Z = X × Y ⊆ PN . Then the dimension of the secant variety of Z in PN is at least
2 dim Z − 1.

To prove this, note, as in the proof of Proposition 2.6, that β2(Z) ≥ 2. By a
theorem of Barth (see Lazarsfeld [La, Theorem 3.2.1]), it follows that Z cannot be
embedded in any PM with M < 2 dim X − 1. If the dimension of the secant variety
were less than 2 dim X − 1, it would be possible to project down in a biregular way
X from PN in P2 dim X−2, and this would be a contradiction.

Note that the above lower bound is the best possible; in fact, Pr × Ps can be
embedded in P2(r+s)−1 (see Hartshorne [Har3, p. 1026]).

Remark 2.8. The statement of Proposition 2.6 is false in positive characteristic.
To see this, consider two Cohen-Macaulay graded k-algebras A and B of negative
a-invariant. Set R = A#B their Segre product (with the notation of the paper
of Goto and Watanabe [GW]). By [GW, Theorem 4.2.3] R is Cohen-Macaulay
as well. So, presenting R as a quotient of a polynomial ring of N + 1 variables,
say R ∼= P/I, a theorem of Peskine and Szpiro in [PS] implies that cd(P, I) =
N + 1 − dim R (because char(k) > 0). Translating in the language of Proposition
2.6 we have X = Proj(A), Y = Proj(B), Z = Proj(R) ⊆ PN = Proj(P ) and
cd(PN \ Z) = cd(P, I) − 1 = N − dim Z − 1.

Proposition 2.9. Assume that X is a projective variety smooth over k such that
H1(X, OX) %= 0 and let Y be any projective scheme over k. As above set Z =
X × Y ⊆ PN (any embedding) and U = PN \ Z. Then cd(U) ≥ N − 2.

Proof. By virtue of Remark 2.2 we may assume k = C. The assumptions imply
that β1(X) %= 0 by equation (6), and so β1(Z) %= 0 by equation (5). Clearly U is
smooth, so [Har2, Theorem 7.4, p. 148] implies the conclusion. !

Remark 2.10. If in the situation of Proposition 2.9 dim Z ≥ 2, then it follows that
Z cannot be a set–theoretical complete intersection. This is a consequence of a
more general result of Hartshorne obtained in [Har1], which states that an irregular
projective variety X over a field of characteristic 0 (i.e. q(X) = h10(X) %= 0), of
dimension greater than 1, cannot be a set-theoretical complete intersection in any
Pn.

2.2. Bounds in arbitrary characteristic. If the characteristic of the base field is
0, we have seen in the previous subsection that we can, usually, reduce the problem
to k = C. In this context is available the complex topology, so we can use methods
from algebraic topology and from complex analysis.

Unfortunately, when the characteristic of k is positive, the above techniques are
not available. Moreover, some of the results obtained in Subsection 2.1 are not
true in positive characteristic, as we have shown in Remarks 2.5 and 2.8. To avoid
these difficulties we have to use étale cohomology, which gives a lower bound for the
number of equations defining a variety as well as local cohomology (see equation
(10) of Remark 2.11). This subject was introduced by Grothendieck in [Gr3]. Other
references are the book [Mi1] and the lectures [Mi2] of Milne.

For a scheme X we denote by Xét the étale site of X and, with a slight abuse of
notation, by Z/lZ the constant sheaf associated to Z/lZ (for any l ∈ Z). Moreover,
we denote by écd(X) the étale cohomological dimension of X; that is, the largest
integer i such that there exists a torsion sheaf F on Xét with étale cohomology
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group Hi(Xét, F) %= 0 (Hi denotes the usual cohomology of sheaves). Below we
collect some basic results about the étale cohomological dimension.

Remark 2.11. If X is an n-dimensional scheme of finite type over a separably closed
field, then écd(X) ≤ 2n ([Mi1, Chapter VI, Theorem 1.1]). If moreover X is affine,
then écd(X) ≤ n ([Mi1, Chapter VI, Theorem 7.2]).

Assume that X = Proj(R) is projective and pick a closed subscheme Y =
V+(I) ⊆ X. Then U = X \ Y can be covered by arah(I) affine subsets of X.
Moreover, the étale cohomological dimension of these affine subsets is less than or
equal to n by what is said above. So, using repetitively the Mayer-Vietoris sequence
([Mi1, Chapter III, Exercise 2.24]), it is easy to prove that

(10) écd(U) ≤ n + arah(I) − 1.

The above inequality was remarked, for instance, by Newstead in [Ne].

We recall the following result of [Ly3, Proposition 9.1, (iii)], which can be seen
as an étale version of [Har2, Theorem 8.6, p. 160].

Theorem 2.12 (Lyubeznik). Let k be a separably closed field of arbitrary char-
acteristic, and let Y ⊆ X be two projective varieties such that U = X \ Y is
non-singular. Set N = dim X, and l ∈ Z coprime with the characteristic of k. If
écd(U) < 2N − r, then the restriction maps

Hi(Xét, Z/lZ) −→ Hi(Yét, Z/lZ)

are isomorphisms for i < r and injective for i = r.

Remark 2.13. The étale version of Theorem 2.4 does not hold. In fact, the integer
écd(PN \ Y ) is not an invariant of only Y and N (as instead is for the integer
cd(PN \Y )). For instance, we can consider P2 ⊆ P5 (embedded as a linear subspace)
and v2(P2) ⊆ P5 (where v2(P2) is the 2nd Veronese embedding): the first one is
defined (also scheme-theoretically) by 3 linear equations, so écd(P5 \ P2) ≤ 7 by
equation (10); instead, écd(P5 \ v2(P2)) = 8 by [Bar].

Notice that the above argument shows that the number of defining equations of
a projective scheme X ⊆ Pn depends on the embedding, and not only on X and
on n. This suggests the limits of the use of local cohomology on certain problems
regarding the arithmetical rank.

In [Sp] Speiser, among other things, computed the arithmetical rank of the diag-
onal ∆ = ∆(Pn) ⊆ Pn × Pn, provided that the characteristic of the base field is 0.
In characteristic p > 0 he proved that the cohomological dimension of Pn × Pn \∆
is the least possible, i.e. n − 1, therefore in positive characteristic the arithmetical
rank of ∆ is not known. Actually Theorem 2.12 easily implies that the result of
Speiser holds in arbitrary characteristic, since the upper bound found in [Sp] is
valid in arbitrary characteristic. However, since in that paper the author did not
describe the equations needed to define ∆ set-theoretically, we provide the upper
bound with a different method, that yields an explicit set of equations for ∆.

To this aim, we recall that the coordinate ring of Pn × Pn is A = k[xiyj : i, j =
0, . . . , n] and the ideal I ⊆ A defining ∆ is I = (xiyj − xjyi : 0 ≤ i < j ≤ n).

Corollary 2.14. In the situation described above (with k a separably closed field
of arbitrary characteristic) arah(I) = 2n − 1.
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Proof. As has been previously said, by [Sp, Proposition 2.1.1] we already know that
arah(I) ≤ 2n− 1. However, we can observe that if we consider IR ⊆ R = k[xi, yj :
i, j = 0, . . . , n], then IR is the ideal generated by the 2-minors of the 2 × (n + 1)
matrix of indeterminates whose rows are, respectively, x0, . . . , xn and y0, . . . , yn.
So, by [BrVe, (5.9) Lemma], a set of generators of IR ⊆ R up to radical is

gk =
∑

0≤i<j≤n
i+j=k

(xiyj − xjyi), k = 1, . . . , 2n − 1.

Since these polynomials belong to A and since A is a direct summand of R, we get
√

(g1, . . . , g2n−1)A = I.

Therefore arah(I) ≤ 2n − 1.
For the lower bound choose l coprime with char(k). The Künneth formula for

étale cohomology ([Mi1, Chapter VI, Corollary 8.13]) implies that

H2(Pn
ét × Pn

ét, Z/lZ) ∼= (Z/lZ)2,

while H2(∆ét, Z/lZ) ∼= H2(Pn
ét, Z/lZ) ∼= Z/lZ. So Theorem 2.12 yields écd(U) ≥

4n− 2, where U = Pn × Pn \∆. Therefore equation (10) yields the conclusion. !
The next two propositions are the analogue of Propositions 2.6 and 2.9. We need

them to compute the homogeneous arithmetical rank of certain Segre products in
arbitrary characteristic. First we need a remark:

Remark 2.15. Let X be a projective variety smooth over a field k and l an integer
coprime to char(k). The kernel of the cycle map is contained in the kernel of the
projection from the Chow ring to itself modulo numerical equivalence. But this last
group is non-zero because X is projective, so we have

(11) H2i(Xét, Zl) %= 0 ∀ i = 0, . . . , dim X.

Therefore there exists an integer n such that H2i(Xét, Z/lnZ) is non-zero for any
i = 0, . . . , dim X. See the proof of [Mi1, Chapter VI, Theorem 11.7].

Proposition 2.16. Let k be an algebraic closed field of arbitrary characteristic.
Let X and Y be two projective varieties smooth over k of dimension at least 1. Set
Z = X × Y ⊆ PN (any embedding) and U = PN \ Z. Then écd(U) ≥ 2N − 3. In
particular, if dim Z ≥ 3, Z is not a set-theoretic complete intersection.

Proof. By the above remark there is an integer l coprime with char(k) such that
the modules Hi(Xét, Z/lZ) and Hi(Yét, Z/lZ) are non-zero Z/lZ-modules. But
H2(PN

ét, Z/lZ) ∼= Z/lZ, therefore by the Künneth formula for étale cohomology
([Mi1, Chapter VI, Corollary 8.13]) it follows that H2(Zét, Z/lZ) cannot be isomor-
phic to H2(PN

ét, Z/lZ). Now Theorem 2.12 implies the conclusion. !
Proposition 2.17. Let k be an algebraically closed field, C a smooth projective
curve of positive genus, X a projective scheme and Y = C × X ⊆ PN (any embed-
ding). Then écd(PN \ Y ) ≥ 2N − 2. In particular, if dim X ≥ 1, then Y is not a
set-theoretic complete intersection.

Proof. Set g the genus of C. By [Mi2, Proposition 14.2 and Remark 14.4] it follows
that H1(Cét, Z/lZ) ∼= (Z/lZ)2g. Moreover, H0(Xét, Z/lZ) %= 0 and H1(PN

ét, Z/lZ) =
0. But by the Künneth formula for étale cohomology H1(Yét, Z/lZ) %= 0, therefore
we conclude by Theorem 2.12. !
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2.3. Consequences on the cohomological dimension. In this subsection we
draw two nice consequences of the investigations we made in the first part of the
work. They are in the direction of a problem stated by Grothendieck, who asked in
[Gr2, p. 79] to find conditions, fixed a positive integer c, under which cd(R, I) ≤ c,
where I is an ideal in a ring R.

The first fact we want to present is a consequence of Theorem 2.4, and it regards
a relationship between cohomological dimension of an ideal in a polynomial ring
and the depth of the relative quotient ring. It was proved by Peskine and Szpiro in
[PS] that if I ⊆ S = k[x1, . . . , xn] is a homogeneous ideal of a polynomial ring over
a field of positive characteristic such that depth(S/I) ≥ t, then cd(S, I) ≤ n − t.
The same assertion does not hold in characteristic 0; in fact, examples are already
known for t = 4 (for instance if I defines the Segre product of two projective spaces).
When t = 2 the statement is also true in characteristic 0 by a result of Hartshorne
and Speiser (for instance see [Har2]). We can settle the case t = 3 in the smooth
case.

Theorem 2.18. Let S = k[x1, . . . , xn] be a polynomial ring over a field of char-
acteristic 0. If I ⊆ S is a homogeneous prime ideal such that (S/I)℘ is a regular
local ring for any homogeneous prime ideal ℘ %= m = (x1, . . . , xn) and such that
depth(S/I) ≥ 3, then cd(S, I) ≤ n − 3.

Proof. Suppose by contradiction that cd(S, I) ≥ n − 2. Set X = Proj(S/I) ⊆
Pn−1 = Proj(S). So we are supposing that cd(Pn−1 \ X) ≥ n − 3 by equation (1).
By the assumptions X is a projective variety smooth over k. Therefore Theorem 2.4
implies that h10(X) %= 0 or that h01(X) %= 0. But with the notation of Remark 2.2,
h10(X) = h10(XC) and h01(X) = h01(XC). So, since h10(XC) = h01(XC) (using
[Ar, Theorem 10.2.4] and [Se] together), we have h10(X) %= 0. But H1(X, ØX) =
[H2

m(S/I)]0 ⊆ H2
m(S/I) ([ ]0 denotes the 0-degree part), so depth(S/I) ≤ 2, which

is a contradiction. !
Actually, the cited result of Peskine and Szpiro holds true whenever the ambient

is a regular local ring of positive characteristic. Moreover, one can easily deduce
by the result of Huneke and Lyubeznik [HL, Theorem 2.9] the following: If R is
an n-dimensional regular local ring containing its residue field and a ⊆ R is an
ideal such that depth(R/a) ≥ 2, then cd(R, a) ≤ n − 2. Together with these facts,
Theorem 2.18 raises the following question:

Question 2.19. Suppose that R is a regular local ring and that I ⊆ R is an ideal
such that depth(R/I) ≥ 3. Is it true that cd(R, I) ≤ dim R − 3?

The second fact we want to show is a consequence of Theorem 2.4 and Theorem
2.12. It provides a solution of a special case of a conjecture stated by Lyubeznik in
[Ly4, Conjecture, p. 147]:

Conjecture 2.20 (Lyubeznik). If U is an n-dimensional scheme of finite type over
a separably closed field, then écd(U) ≥ n + cd(U).

Theorem 2.21. Let X ⊆ Pn be a projective variety smooth over C and let U =
Pn \ X. Then

écd(U) ≥ n + cd(U).

Proof. Set cd(U) = s and define an integer ρs to be 0 (resp. 1) if n − s − 1 is
odd (resp. if n − s − 1 is even). By Theorem 2.4 and equation (8), it follows
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that βn−s−1(X) > ρs. Consider, for a prime number p, the Z/pZ-vector space
HomZ(HSing

i (Xan, Z), Z/pZ). Since HSing
i (Xan, Z) is of rank larger than ρs, the

above Z/pZ-vector space has dimension greater than ρs. Therefore by the surjection
given by the universal coefficient theorem,

Hn−s−1
Sing (Xan, Z/pZ) −→ HomZ(HSing

n−s−1(Xan, Z), Z/pZ)

(see [Hat, Theorem 3.2, p. 195]), we infer that dimZ/pZ Hn−s−1
Sing (Xan, Z/pZ) > ρs.

Now a comparison theorem due to Grothendieck (see [Mi1, Chapter III, Theorem
3.12]) yields

dimZ/pZ Hn−s−1(Xét, Z/pZ) > ρs.

Since dimZ/pZ(Hn−s−1(Pn
ét, Z/pZ)) = ρs, Theorem 2.12 implies that écd(U) ≥ 2n−

(n − s) = n + s. !

Theorem 2.21 might look like a very special case of Conjecture 2.20. However,
the case when U is the complement of a projective variety in a projective space is
a very important case. In fact, the truth of Conjecture 2.20 would ensure that to
bound the homogeneous arithmetical rank from below it would be enough to work
with just ètale cohomology and not with sheaf cohomology. Since usually one is
interested in computing the number of (set-theoretically) defining equations of a
projective variety in the projective space, in some sense the most interesting case
of Conjecture 2.20 occurs when U = Pn \ X for some projective variety X. From
this point of view, one can look at Theorem 2.21 in the following way: In order to
give a lower bound for the minimal number of hypersurfaces of Pn

C set-theoretically
cutting out a smooth projective variety X ⊆ Pn

C, it is better to compute écd(Pn
C \X)

than cd(Pn
C \ X).

Unfortunately, Lyubeznik informed the author of this paper by a personal com-
munication that he found a counterexample, yet unpublished, to Conjecture 2.20
when the characteristic of the base field is positive. His counterexample consists of
a scheme U which is the complement in Pn of a reducible projective scheme.

3. Upper bounds

In this section we finally present the defining equations of the varieties described
in the introduction. The main tools we use come from ASL theory.

3.1. Notation. We want to fix some notation that we will use throughout this
section. Let k be a field of arbitrary characteristic.

We recall that the Segre product of two finitely generated N-graded k-algebras
A and B is defined as

A$B =
⊕

n∈N
An ⊗k Bn.

This is an N-graded k-algebra, and it is a direct summand of the tensor product
A ⊗k B.

Fix n, m integers greater than or equal to 1. Then X ⊆ Pn and Y ⊆ Pm will
always denote two projective schemes defined respectively by the standard graded
ideals a ⊆ R = k[x0, . . . , xn] and b ⊆ S = k[y0, . . . , ym].

Consider the Segre product Z = X×Y and set A = R/a and B = S/b. Then we
have that Z ∼= Proj(A$B). Moreover, if W := k[xiyj : i = 0, . . . , n; j = 0, . . . , m] ⊆
k[x0, . . . , xn, y0, . . . , ym] = R ⊗k S, then A$B = W/I with I ⊆ W a homogeneous
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ideal. Assuming that a = (f1, . . . , fr) and b = (g1, . . . , gs) with deg fi = di and
deg gj = ej , it is easy to see that I is generated by the following polynomials:

(1) M · fi, where M varies among the monomials in Sdi for every i = 1, . . . , r;
(2) gj · N , where N varies among the monomials in Rej for every j = 1, . . . , s.

Now we present A$B as a quotient of a polynomial ring. So consider P = k[zij :
i = 0, . . . , n : j = 0, . . . , m] and the k-algebra homomorphism φ : P −→ A$B
defined as φ = φ′ ◦ π, where φ′ : P −→ W maps zij to xiyj and π : W −→ A$B ∼=
W/I is the projection. Therefore set I = Kerφ. With this notation, then, we have

V ∼= Proj(P/I) ⊆ PN , N = nm + n + m.

Now we describe a system of generators which we will use in this section. For
all monomials M ∈ Sdi (where i = 1, . . . , r), choose a polynomial (fi)M ∈ P such
that φ′((fi)M ) = M · fi. In the same way choose a polynomial (gj)N ∈ P for all
monomials N ∈ Rej and j = 1, . . . , s. Then it is easy to show that

I = I2(Z) + J,

where:

(1) I2(Z) denotes the ideal generated by the 2-minors of the matrix Z = (zij);
(2) J = ((fi)M , (gj)N : for all i = 1, . . . , r and for all monomials M ∈ Sdi , for

all j = 1, . . . , s and for all monomials N ∈ Rej ).

3.2. The defining equations of certain Segre products. Our purpose is to
exhibit a minimal set of defining equations (up to radical) for I in P , and so to
compute the arithmetical rank of I. We are able to solve this problem for certain
ideals a and b.

We need the following remark to work with algebraically closed fields and to use
the Nullstellensatz:

Remark 3.1. Let H be a k-algebra and h ⊆ H an ideal. Set Hk̄ = H ⊗k k̄ and
hk̄ = hHk̄ ⊆ Hk̄, where k̄ denotes the algebraic closure of k. Because k̄ is faithfully
flat over k, if h1, . . . , ht ∈ h are such that

√
hk̄ =

√
(h1, . . . , ht)Hk̄, then

√
h =√

(h1, . . . , ht).

In the following remark we make use of an argument that will be used several
times later on.

Remark 3.2. Actually the described generators of I are too much. For instance, for
a polynomial fi of the starting ideal we have to consider all the polynomials (fi)M

with M varying in Sdi . These are
(m+di

m

)
polynomials! Anyway, up to radical, it is

enough to choose m + 1 monomials for every fi and n + 1 monomials for every gj .
For every i = 1, . . . , r and l = 0, . . . , m, set M = ydi

l . A possible choice for (fi)M

is (fi)l := fi(z0l, . . . , znl) ∈ P . In the same manner, for every j = 1, . . . , s and
k = 0, . . . , n we define (gj)k = gj(zk0, . . . , zkm) ∈ P . We claim that

√
I =

√
I2(Z) + J ′,

where J ′ is the ideal generated by the (fi)l’s and the (gj)k’s.
We can assume that k is algebraically closed by Remark 3.1. So, denoting by

Z(L) the zeroes locus of an ideal L, it is enough to prove that Z(I) = Z(I2(Z)+J ′)
by Nullstellensatz. So pick P = [P00, P10, . . . , Pn0, P01, . . . , Pn1, . . . , P0m, . . . , Pnm]
∈ Z(I2(Z) + J). We can write P = [P0, . . . , Pm], where Ph = [P0h, . . . , Pnh] is
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[0, 0, . . . , 0] or a point of Pn. Since P ∈ Z(I2(Z)) it follows that the non-zero points
among the Ph’s are equal as points of Pn. Moreover, if Pl is a non-zero point,
(fi)l(P ) = 0 for all i = 1, . . . , r means that Pl ∈ X. Then from the discussion
above, trivially (fi)M (P ) = 0 for every i, M and any choice of (fi)M . By symmetry
one can prove that all the (gj)N ’s also vanish on P , so we conclude.

Remark 3.3. Assume that X = V+(F ) ⊆ Pn
k is a projective hypersurface (F = f1),

m = 1 and Y = P1. We already know from a general theorem of Eisenbud and
Evans (see [EE, Theorem 2]) that

ara(I) ≤ arah(I) ≤ N = 2n + 1.

In this case we can find an explicit set of polynomials which generates I up to
radical. In fact, from a theorem of Bruns and Schwánzl (see [BS, Theorem 2]), we
know that

ara(I2(Z)) = arah(I2(Z)) = 2n − 1.

Moreover, a set of homogeneous generators of I2(Z) up to radical is known. Using
the notation of [BrVe], set [i, j] = zi0zj1 − zj0zi1 for 0 ≤ i < j ≤ n. Then

I2(Z) =

√
(
∑

i+j=k

[i, j] : k = 1, . . . , 2n − 1)

(see [BrVe, Lemma 5.9]).
By Remark 3.2 we only have to add to these generators F0 = (f1)0 and F1 = (f1)1

(with the notation of Remark 3.2), and so we find 2n+1 homogeneous polynomials
which generate I up to radical.

Theorem 3.4. Let X = V+(F ) ⊆ Pn be a hypersurface such that there exists a line
L ⊆ Pn that meets X only at a point P , and let I be the ideal defining the Segre
product X × P1 ⊆ P2n+1. Then

arah(I) ≤ 2n.

Proof. By a change of coordinates we can assume that L = V+((x0, . . . , xn−2)).
The set Ω = {[i, j] : i < j, i + j ≤ 2n − 2} is an ideal of the poset of the minors of
the matrix Z = (zij) (i.e. if [i, j] ∈ Ω, h ≤ i and h < k ≤ j, then [h, k] ∈ Ω), so by
[BrVe, Lemma 5.9],

ara(ΩR) ≤ rank(Ω) = 2n − 2.

We want to prove that I =
√

J , where J = ΩR + (F0, F1) (with the notation of
Remarks 3.2, 3.3). To this purpose we may assume that k is algebraically closed
by Remark 3.1, and we will prove the equivalent condition, by Nullstellensatz and
Remark 3.2, that Z(I2(Z) + (F0, F1)) = Z(J).

Let Q = [Q0, Q1] = [Q01, . . . , Q0n, Q10, . . . , Q1n] ∈ Z(J). If Q0 = 0 or Q1 = 0,
then trivially Q ∈ Z(I2(Z)), so we assume that Q0, Q1 are points of Pn. First
suppose Qij %= 0 for some j ≤ n − 2 and i = 0, 1: for any h %= k different from
j, [h, j] (or [j, h]) and [k, j] (or [j, k]) are elements of Ω, so since Q ∈ Z(J) we
easily obtain the relations Q0hQ1k = Q1hQ0k, from which Q ∈ Z(I2(Z)). We can
therefore assume that Qij = 0 for all j < n − 1, i = 0, 1. But then Q0 and Q1

belong to L ∩ X, so Q0 = Q1 = P , so Q ∈ Z(I2(Z)). !
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Corollary 3.5. Let X ⊆ P2 be a smooth curve of degree d ≥ 3 such that there
exists a line L ⊆ P2 that meets X only at a point P , and let I be the ideal defining
the Segre product X × P1 ⊆ P5. Then

arah(I) = 4.

Moreover, if k has characteristic 0, then ara(I) = arah(I) = 4.

Proof. Theorem 3.4 implies that arah(I) ≤ 4. For the lower bound first assume that
k is algebraically closed. Since X has positive genus, Proposition 2.17 implies that
écd(P5\(X×P1)) ≥ 8. Thus equation (10) of Remark 2.11 implies that arah(I) ≥ 4.
If k is not algebraically closed, it is obvious that arah(I) ≥ arah(I(P ⊗k k̄)), so we
have proved the first statement.

If char(k) = 0, Proposition 2.9 implies that cd(P, I) ≥ 4, so ara(I) ≥ 4. !

Remark 3.6. In light of Theorem 3.4 and Corollary 3.5, it is natural to define the
following set. For every natural number n, d ≥ 1 we define

Vn−1
d = {X ⊆ Pn : X smooth, dimX = n − 1, deg X = d,

∃ P ∈ X as in 3.4}/ PGLn(k).

Notice that all hypersurfaces in Vn−1
d can be represented, by a change of coordinate,

by V+(F ) with F = xd
n−1+

∑n−2
i=0 xiGi(x0, . . . , xn), where the Gi’s are homogeneous

polynomials of degree d − 1.
We start to analyze the case n = 2, and for simplicity we will write Vd instead

of V1
d . So our question is: How many smooth projective plane curves of degree d do

belong to Vd?
First we list some plane projective curves belonging to Vd:

(1) Every smooth elliptic curve belongs to V3. In fact every smooth curve of
degree greater than or equal to 3 has an ordinary flex, and an elliptic curve
meets a line at most to 3 points. So we recovered [SW, Theorem 1.1] as a
consequence of Corollary 3.5 (the generators up to radical are different).

(2) Obviously, every smooth conic belongs to V2, too.
(3) Every Fermat curve of degree d, i.e. a projective curve C = V+(F ) ⊆ P2

where F = xd
o + xd

1 + xd
2, belongs to Vd. In fact, one has only to consider

the line V+(x0 +αx1) where αd = −1 and the point [α, 1, 0] ∈ C, so we also
recovered [So, Theorem 2.8] (the generators are again different).

In their paper [CD, Theorem A], Casnati and Del Centina compute the dimension
of the loci Vd,α, α = 1, 2, of all the smooth plane curves of degree d with exactly α
points as in Theorem 3.4 (if these points are non-singular, as in this case, they are
called d-flexes), and they showed that Vd,α are irreducible rational locally closed
subvarieties of the moduli space Mg of curve of genus g =

(d−1
2

)
. The dimension

of Vd,α is

dim(Vd,α) =

(
d + 2 − α

2

)
− 8 + 3α.

Moreover, it is not difficult to show that Vd,1 is an open Zariski subset of Vd (see
[CD, Lemma 2.1.2]), and so

dim(Vd) =

(
d + 1

2

)
− 5.
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The locus Hd of all smooth plane curves of degree d up to isomorphism is an open

Zariski subset of P(d+2
2 )

C modulo the group PGL2(C), so its dimension is
(d+2

2

)
− 9.

Then the codimension of Vd in Hd, provided d ≥ 3, is d − 3.
So, for example, if we pick a quartic C in the hypersurface V4 of H4, Corollary

3.5 implies that C ×P1 ⊆ P5 can be defined by exactly four equations. However, it
remains an open problem to compute the arithmetical rank of Y ×P1 ⊆ P5 for any
quartic Y ⊆ P2.

In the general case (n ≥ 2 arbitrary) we can state the following lemma.

Lemma 3.7. Let X ⊆ Pn be a smooth hypersurface of degree d. If d ≤ 2n − 3 or
if d ≤ 2n − 1 and X is generic, then X ∈ Vn−1

d .

Proof. First we prove the following claim:
a) If X ⊆ Pn is a smooth hypersurface of degree d ≤ 2n− 1 not containing lines,

then X ∈ Vn−1
d .

We denote by Grass(1, n) the Grassmannian of lines of Pn. Consider the projec-
tive variety Wn = {(P, L) ∈ Pn × Grass(1, n) : P ∈ L}. It turns out that this is an
irreducible variety of dimension 2n − 1. Now set

Tn,d = {((P, L), F ) ∈ Wn × Ln,d : i(L, V+(F ), P ) ≥ d},

where by Ln,d we denote the projective space of all the homogeneous polynomials
of degree d of K[x0, . . . , xn], and by i(L, V+(F ); P ) the multiplicity intersection of
L and V+(F ) at P (if L ⊆ V+(F ), then i(L, V+(F ); P ) = +∞).

Assume that P = [1, 0, . . . , 0] and that L is given by the equation x1 = x2 =
. . . = xn = 0. Then it is easy to see that for a polynomial F ∈ Ln,d the condition
(P, L, F ) ∈ Tn,d is equivalent to the fact that the coefficients of xd

0, xd−1
0 x1, . . . ,

x0x
d−1
1 in F are 0. This implies that Tn,d is a closed subset of Pn×Grass(1, n)×Ln,d;

thus Tn,d is a projective scheme over k.
Consider the restriction of the first projection π1 : Tn,d −→ Wn. Clearly π1

is surjective; moreover, it follows by the above discussion that all the fibers of π1

are projective subspaces of Ln,d of dimension dim(Ln,d) − d. Therefore Tn,d is an
irreducible projective variety of dimension 2n − 1 + dim(Ln,d) − d.

Now consider the restriction of the second projection π2 : Tn,d −→ Ln,d. Clearly
V+(F ) ∈ Vn−1

d provided it is smooth, it does not contain any line and it belongs
to π2(Tn,d). So to conclude it is enough to check the surjectivity of π2 whenever
d ≤ 2n − 1. To this aim, since both Tn,d and Ln,d are projective, it is enough to
show that for a general F ∈ π2(Tn,d) the dimension of the fiber π−1

2 (F ) is exactly
2n − 1 − d. On the other hand, it is clear that the codimension of π2(Tn,d) in Tn,d

is at least d − 2n + 1 when d ≥ 2n. We proceed by induction on n (for n = 2 we
already know this).

First consider the case in which d ≤ 2n−3. Let F be a general form of π2(Tn,d),
and set r = dim(π−1

2 (F )). By contradiction assume that r > 2n − 1 − d. Con-
sider a general hyperplane section of V+(F ), and set F ′ the polynomial defining it.
Obviously any element of π2(Tn−1,d) comes from π2(Tn,d) in this way, so F ′ is a
generic form of π2(Tn,d). The condition for a line to belong to a hyperplane is of
codimension 2, so the dimension of the fiber of F ′ is at least r − 2. Since F ′ is a
polynomial of K[x0, . . . , xn−1] of degree d ≤ 2(n−1)−1, we can apply an induction
getting r − 2 ≤ 2n − 3 − d so that r ≤ 2n − 1 − d, which is a contradiction.
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We end with the case in which d = 2n − 1 (the case d = 2n − 2 is easier). Let
F and r be as before, and suppose by contradiction that r ≥ 1. This implies that
there exists a hypersurface H ⊆ Grass(n − 1, n) such that for any general H ∈ H
the polynomial defining V+(F ) ∩ H belongs to π2(Tn−1,d). This implies that the
codimension of π2(Tn−1,d) in Tn−1,d is less than or equal to 1, whereas we know
that this is at least 2.

So a) holds true. Now we prove the lemma by induction on n (if n = 2 it is
true).

If d ≤ 2n − 3, then we cut X by a generic hyperplane H. It turns out (using
Bertini’s theorem) that X ∩H ⊆ Pn−1 is the generic smooth hypersurface of degree
d ≤ 2(n− 1)− 1, so by induction there exist a line L ⊆ H and a point P ∈ Pn such
that (X ∩ H) ∩ L = {P}. So we conclude that X ∈ Vn−1

d .
It is known that the generic hypersurface of degree d ≥ 2n − 2 does not contain

lines. So if d = 2n − 2 or d = 2n − 1, the statement follows by a). !

Corollary 3.8. Let X ⊆ Pn be a smooth hypersurface of degree d, and let I be the
ideal defining the Segre product X × P1 ⊆ P2n+1. If d ≤ 2n − 3 or if d ≤ 2n − 1
and X is generic, then

arah(I) ≤ 2n.

Proof. Just combine the above lemma with Theorem 3.4. !

Putting some stronger assumptions on the hypersurfaces we can even compute
the arithmetical rank of the ideal defining their Segre product with P1 (and not
just give an upper bound as in Theorem 3.4).

Theorem 3.9. Let X = V+(F ) ⊆ Pn be such that F = xd
n+

∑n−3
i=0 xiGi(x0, . . . , xn)

(Gi homogeneous polynomials of degree d − 1), and let I be the ideal defining the
Segre product X × P1 ⊆ P2n+1. Then

arah(I) ≤ 2n − 1.

Moreover, if X is smooth, then

arah(I) = 2n − 1.

Furthermore, if k has characteristic 0, then ara(I) = arah(I) = 2n − 1.

Proof. We can assume that k is algebraically closed. If X is smooth, by Proposition
2.16 écd(P2n+1\X) ≥ 4n−1, and equation 10 yields arah(I) ≥ 2n−1. If char(k) = 0
Proposition 2.6 implies that ara(I) ≥ 2n − 1.

Now we prove that the upper bound holds. Consider the set Ω = {[i, j] : i <
j, i + j ≤ 2n − 3}. As in the proof of Theorem 3.4, we have

ara(ΩR) ≤ rank(Ω) = 2n − 3.

Now the proof is completely analogous to that of Theorem 3.4. !

Remark 3.10. Notice that if n ≥ 4, the generic hypersurface of Pn defined by the
form F = xd

n +
∑n−3

i=0 xiGi(x0, . . . , xn) is smooth (whereas if n ≤ 3 and d ≥ 2 such
a hypersurface is always singular).

The below argument uses ideas from [SW]. Unfortunately, to use these kinds of
tools we have to make some restrictions to char(k).
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Theorem 3.11. Assume char(k) %= 2. Let C = V+(F ) be a conic of P2, and let I
be the ideal defining the Segre product X = C × Pm ⊆ P3m+2. Then

arah(I) = 3m.

In particular, X is a set-theoretic complete intersection if and only if m = 1.
Moreover, if char(k) = 0, then ara(I) = arah(I) = 3m.

Proof. First we want to give 3m homogeneous polynomials of S = k[zij : i =
0, 1, 2, j = 0, . . . , m] which define I up to radical.

For i = 0, . . . , m choose Fi as in Remark 3.3. Then, for all 0 ≤ j < i ≤ m, set

Fij =
2∑

k=0

∂F

∂xk
(z0i, z1i, z2i)zjk.

Finally we set Gh =
∑

i+j=h Fij for all h = 1, . . . , 2m − 1. We claim that

I =
√

J, where J = (Fi, Gj : i = 0, . . . , m, j = 1, . . . , 2m − 1).

The inclusion J ⊆ I follows from Euler’s formula, since char(k) %= 2.
We can assume k algebraically closed by Remark 3.1, so we have to prove that

I ⊆
√

J , i.e., by the Nullstellensatz, that Z(J) ⊆ Z(I). Pick P ∈ Z(J), and write
P as P = [P0, P1, . . . , Pm], where Pj = [P0j , P1j , P2j ]. Since Fi(P ) = 0, for every
i = 0, . . . , m Pi = 0 or Pi ∈ C. So we have to prove that the Pi’s that are non-zero
are equal as points of P2.

By contradiction, let i be the minimum integer such that Pi %= 0 and there exists
k such that Pk %= 0 and Pi %= Pk as points of P2, and set j the least among these k
(so i < j). Set h = i + j. We claim that Pk = Pl provided that k + l = h, k < l,
k %= i, Pk %= 0 and Pl %= 0.

In fact, if l < j, then Pi = Pl by the choice of j. But for the same reason also
Pk = Pi, so Pk = Pl. If l > j, then k < i, so it follows that Pk = Pl by the choice
of i. So Flk(P ) = 0, because Pk belongs to the tangent of C in Pl (being Pl = Pk).
Then Gh(P ) = Fji(P ), and so, since P ∈ Z(J), Fji(P ) = 0. This means that Pi

belongs to the tangent line of C in Pj , which is possible, C being a conic, only if
Pi = Pj , a contradiction.

For the lower bound, we can assume that k is algebraically closed as in the proof
of Corollary 3.5. By Proposition 2.16 écd(P2n+1 \ X) ≥ 4n − 1, and equation (10)
yields arah(I) ≥ 2n − 1. If char(k) = 0, Proposition 2.6 implies that ara(I) ≥
2n − 1. !

Remark 3.12. Bădescu and Valla recently computed in [BaVa], independently from
this work, the arithmetical rank of the ideal defining any rational normal scroll.
Since the Segre product of a conic with Pm is a rational normal scroll, Theorem
3.11 is a particular case of their result.

We end the paper with a proposition that yields a natural question.

Proposition 3.13. Let X = V+(F ) ⊆ Pn be a hypersurface smooth over a field of
characteristic 0 and let I ⊆ P = k[z0, . . . , zN ] be the ideal defining Z = X × Pm ⊆
PN (any embedding), with m ≥ 1. Then

cd(P, I) =

{
N − 1 if n = 2 and deg(F ) ≥ 3,
N − 2 otherwise.
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Proof. By Remark 2.2 we can assume k = C. Using equation (5) we have

β0(Z) = 1, β1(Z) = β1(X) and β2(Z) = β2(X) + 1 ≥ 2.

If n = 2, notice that β1(X) %= 0 if and only if deg(F ) ≥ 3. In fact, by equation (6),

β1(X) = h01(X) + h10(X) = 2h01(X)

(the last equality comes from Serre’s duality). But h01(X) is the geometric genus
of X, therefore it is different from 0 if and only if deg(F ) ≥ 3. So if n = 2 we
conclude by Theorem 2.4.

If n > 2 we have β1(X) = 0 by the Lefschetz hyperplane theorem [La, Theorem
3.1.17]; therefore we conclude by Theorem 2.4. !

In light of the above proposition, the following question is natural.

Question 3.14. With the notation of Proposition 3.13, if we consider the Segre
embedding of Z (and so N = nm + n + m), do the integers ara(I) and arah(I)
depend only on n, m and deg(F )?
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Notes in Mathematics 270, Springer-Verlag, 1973. MR0463174 (57:3132)

[Har1] R. Hartshorne, Cohomological Dimension of Algebraic Varieties, Ann. of Math. 88, pp.
403-450, 1968. MR0232780 (38:1103)

[Har2] R. Hartshorne, Ample Subvarieties of Algebraic Varieties, Lecture Notes in Mathematics
156, Springer-Verlag, 1970. MR0282977 (44:211)

http://www.ams.org/mathscinet-getitem?mr=2673755
http://www.ams.org/mathscinet-getitem?mr=2673755
http://www.ams.org/mathscinet-getitem?mr=1345294
http://www.ams.org/mathscinet-getitem?mr=1345294
http://www.ams.org/mathscinet-getitem?mr=1082012
http://www.ams.org/mathscinet-getitem?mr=1082012
http://www.ams.org/mathscinet-getitem?mr=953963
http://www.ams.org/mathscinet-getitem?mr=953963
http://www.ams.org/mathscinet-getitem?mr=1897038
http://www.ams.org/mathscinet-getitem?mr=1897038
http://www.ams.org/mathscinet-getitem?mr=0327783
http://www.ams.org/mathscinet-getitem?mr=0327783
http://www.ams.org/mathscinet-getitem?mr=494707
http://www.ams.org/mathscinet-getitem?mr=494707
http://www.ams.org/mathscinet-getitem?mr=0199194
http://www.ams.org/mathscinet-getitem?mr=0199194
http://www.ams.org/mathscinet-getitem?mr=0224620
http://www.ams.org/mathscinet-getitem?mr=0224620
http://www.ams.org/mathscinet-getitem?mr=0463174
http://www.ams.org/mathscinet-getitem?mr=0463174
http://www.ams.org/mathscinet-getitem?mr=0232780
http://www.ams.org/mathscinet-getitem?mr=0232780
http://www.ams.org/mathscinet-getitem?mr=0282977
http://www.ams.org/mathscinet-getitem?mr=0282977


This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

ON THE ARITHMETICAL RANK OF CERTAIN SEGRE EMBEDDINGS 5109

[Har3] R. Hartshorne, Varieties of small codimension in projective space, Bull. of the Amer.
Math. Soc. 80, no. 6, 1974. MR0384816 (52:5688)

[HS] R. Hartshorne, R. Speiser, Local cohomological dimension in characteristic p, Ann. of
Math. 105, no. 1, pp. 45-79, 1977. MR0441962 (56:353)

[Hat] A. Hatcher, Algebraic Topology, Cambridge University Press, 2002. MR1867354
(2002k:55001)

[HL] C. Huneke, G. Lyubeznik, On the Vanishing of Local Cohomology Modules, Invent. Math.
102, pp. 73-93, 1990. MR1069240 (91i:13020)

[La] R. Lazarsfeld, Positivity in Algebraic Geometry I, A Series of Modern Surveys in Mathe-
matics, Springer, 2004. MR2095471 (2005k:14001a)

[Ly1] G. Lyubeznik, A survey on problems and results on the number of defining equations,
Commutative algebra (Berkeley, CA, 1987), pp. 375-390, Math. Sci. Res. Inst. Publ., 15,
Springer, New York, 1989. MR1015529 (90i:14057)

[Ly2] G. Lyubeznik, The number of defining equations of affine sets, Amer. J. Math. 114, no. 2,
pp. 413-463, 1992. MR1156572 (93b:13018)

[Ly3] G. Lyubeznik, Étale cohomological dimension and the topology of algebraic varieties, Ann.
of Math. 137, no. 1, pp. 71-128, 1993. MR1200077 (93m:14016)

[Ly4] G. Lyubeznik, A Partial Survey of Local Cohomology, Lecture Notes in Pure and Applied
Math. 226, Dekker, New York, pp. 121-154, 2002. MR1888197 (2003b:14006)

[Ly5] G. Lyubeznik, On the vanishing of local cohomology in characteristic p > 0, Compositio
Math. 142, pp. 207-221, 2006. MR2197409 (2007b:13029)

[Li] Q. Liu, Algebraic Geometry and Arithmetic Curves, Oxford Graduate Texts in Mathe-
matics 6, Oxford University Press, 2006. MR1917232 (2003g:14001)

[Mi1] J.S. Milne, Étale Cohomology, Princeton University Press, 1980. MR559531 (81j:14002)
[Mi2] J.S. Milne, Lectures on étale cohomology, available on the web, 1998.
[Ne] P.E. Newstead, Some subvarieties of Grassmannian of codimension 3, Bull. London Math.

Soc. 12, pp. 176-182, 1980. MR572096 (81i:32020a)
[Og] A. Ogus, Local cohomological dimension, Annals of Mathematics, 98, no .2, pp. 327-365,

1973. MR0506248 (58:22059)
[PS] C. Peskine and L. Szpiro, Dimension projective finie et cohomologie local e, Publ. Math.

Inst. Hautes Études Sci. 42, pp. 47-119, 1973. MR0374130 (51:10330)
[Sh] I.R. Shafarevich, Basic algebraic geometry 2, second edition, Springer-Verlag, 1997.

MR1328834 (95m:14002)
[Se] J.P. Serre, Geometrie algebrique et geometrie analytique, Ann. Inst. Fourier, 6, pp. 1-42,

1956. MR0082175 (18:511a)
[SW] A.K. Singh, U. Walther, On the arithmetic rank of certain Segre products, Contemp.

Math., 390, pp. 147-155, 2005. MR2187332 (2006h:14059)
[So] Q. Song, Questions in local cohomology and tight closure, thesis, ProQuest LLC, Ann

Arbor, MI, 2007. MR2710986
[Sp] R. Speiser, Varieties of Low Codimension in Characteristic p > 0, Trans. of the Amer.

Math. Soc. 240, pp. 329-343, 1978. MR0491703 (58:10906)
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