Singularities, Serre conditions and *h*-vectors

Matteo Varbaro (University of Genoa, Italy)

Joint with Hai Long Dao and Linquan Ma Warwick Algebraic Geometry seminar 12/3/19

Notation

Let $R = \bigoplus_{i \in \mathbb{N}} R_i$ be a standard graded algebra over a field $R_0 = K$. The *Hilbert series* of R is

$$H_R(t) = \sum_{i \in \mathbb{N}} (\dim_K R_i) t^i \in \mathbb{N}[[t]].$$

If $d = \dim R$, Hilbert proved that

$$H_R(t) = \frac{h(t)}{(1-t)^d}$$

where $h(t) = h_0 + h_1 t + h_2 t^2 + \ldots + h_s t^s \in \mathbb{Z}[t]$ is the *h*-polynomial of *R*. We will name the coefficients vector $(h_0, h_1, h_2, \ldots, h_s)$ the *h*-vector of *R*.

Let $X = \operatorname{Proj} R$. If $\dim_K R_1 = n + 1$, R is the coordinate ring of the embedding $X \subset \mathbb{P}^n$, whose *degree* is $h(1) = \sum_{i \ge 0} h_i$. So the sum of the h_i is positive, but it can happen that some of the h_i is negative.

If R is Cohen-Macaulay, then it is easy to see that $h_i \ge 0$ for all $i \ge 0$, however without the CM assumption things get complicated. In this talk I want to discuss conditions on R and/or on X which ensure at least the nonnegativity of the first h_i 's and that the degree of $X \subset \mathbb{P}^n$ is bounded below by their sum.

For $r \in \mathbb{N}$, we say that *R* satisfies the Serre condition (S_r) if:

depth $R_{\mathfrak{p}} \geq \min\{\dim R_{\mathfrak{p}}, r\} \quad \forall \ \mathfrak{p} \in \operatorname{Spec} R.$

It turns out that this is equivalent to depth $R \ge \min\{\dim R, r\}$ and

depth
$$\mathcal{O}_{X,x} \ge \min\{\dim \mathcal{O}_{X,x}, r\} \quad \forall x \in X.$$

In particular, if X is nonsingular, R satisfies the Serre condition (S_r) if and only if depth $R \ge \min\{\dim R, r\}$.

Notice that R is Cohen-Macaulay if and only if R satisfies condition (S_i) for all $i \in \mathbb{N}$. Since if R is CM $h_i \ge 0$ for all $i \in \mathbb{N}$, it is natural to ask:

Question

If R satisfies (S_r) , is it true that $h_i \ge 0$ for all i = 0, ..., r?

The above question is known to have a positive answer for Stanley-Reisner rings R (i.e. if R is defined by squarefree monomial ideals) by a result of Murai and Terai ...

It is too optimistic to expect a positive answer to the previous question in general though: it is not very difficult to construct, for all $r \ge 2$, an (r + 1)-dimensional R satisfying (S_r) with h-vector

$$(1, r+1, -1).$$

Such an R can be even chosen to be Buchsbaum of Castelnuovo-Mumford regularity reg R = 1. So the question must be adjusted:

Question

If *R* satisfies (S_r) and *X* has nice singularities, is it true that $h_i \ge 0$ for all i = 0, ..., r?

Theorem (Dao-Ma-_)

Let R satisfy Serre condition (S_r) . Suppose either

- K has characteristic 0 and X is Du Bois, or
- K has positive characteristic and X is globally F-split.

Then $h_i \ge 0$ for all i = 0, ..., r and the degree of $X \subset \mathbb{P}^n$ is at least $h_0 + h_1 + ... + h_{r-1}$. Furthermore, if reg R < r, or if $h_i = 0$ for some $1 \le i \le r$, then R is Cohen-Macaulay.

The characteristic 0 version of the previous result is much stronger than the positive characteristic one: in fact, we have the following:

- If char(K) = 0, R Stanley-Reisner ring $\Rightarrow X$ Du Bois.
- If char(K) = 0, X nonsingular \Rightarrow X Du Bois.
- If char(K) > 0, R S-R ring $\Rightarrow X$ globally F-split.
- If char(K) > 0, X nonsingular $\Rightarrow X$ globally F-split.

The definition of Du Bois variety (over a field of characteristic 0) is quite involved, it is worth, however, to notice the following:

We say that X is *locally Stanley-Reisner* if $\widehat{\mathcal{O}_{X,x}} \cong K[[\Delta_x]]$ for all $x \in X$ (for some simplicial complex Δ_x). We have:

- X locally Stanley-Reisner \Rightarrow X Du Bois.
- R Stanley-Reisner ring $\Rightarrow X$ locally Stanley-Reisner.
- X nonsingular \Rightarrow X locally Stanley-Reisner.

Let *M* be a finitely generated graded *S*-module, where $S = K[X_0, ..., X_n]$. We say that *M* satisfies the condition MT_r if

$$\mathsf{reg}\,\mathsf{Ext}^{n+1-i}_{\mathcal{S}}(M,\omega_{\mathcal{S}})\leq i-r\quad orall\,\,i=0,\ldots,\mathsf{dim}\,M-1.$$

This notion is good for several reasons:

- The condition MT_r does not depend on S.
- The condition MT_r is preserved by taking general hyperplane sections.
- The condition MT_r is preserved by saturating.

Lemma (Murai-Terai, Dao-Ma-_)

Let *M* be a finitely generated graded *S*-module generated in degree ≥ 0 with *h*-vector (h_0, \ldots, h_s) satisfying MT_r. Then

- $h_i \ge 0$ for all $i \le r$.
- $h_r + h_{r+1} + \ldots + h_s \ge 0$, or equivalently the multiplicity of M is at least $h_0 + h_1 + \ldots + h_{r-1}$.

Furthermore, if reg M < r or M is generated in degree 0 and $h_i = 0$ for some $i \le r$, then M is Cohen-Macaulay.

Let dim_K $R_1 = n + 1$ and $S = K[X_0, ..., X_n]$. We want to show that, if R satisfies Serre condition (S_r) , then it also satisfies MT_r, namely

$$\operatorname{reg}\operatorname{Ext}_{\mathcal{S}}^{n+1-i}(R,\omega_{\mathcal{S}}) \leq i-r \quad \forall \ i=0,\ldots,\dim R-1,$$

provided X is Du Bois (in characteristic 0) or globally F-split (in positive characteristic). By the previous lemma this would imply the desired result.

It is simple to show that

$$\dim \operatorname{Ext}_{\mathcal{S}}^{n+1-i}(R,\omega_{\mathcal{S}}) \leq i \quad \forall \ i=0,\ldots,\dim R-1,$$

with equality holding iff dim $R/\mathfrak{p} = i$ for some associated prime \mathfrak{p} of R. A similar argument, plus the fact that R is unmixed as soon as it satisfies (S_2), shows that the following are equivalent for any natural number $r \ge 2$:

- *R* satisfies Serre condition (S_r) . • dim Ext^{*n*+1-*i*}(*R* $(s_r) \leq i r$, $\forall i \in I$
- $e dim \operatorname{Ext}_{S}^{n+1-i}(R,\omega_{S}) \leq i-r \quad \forall \ i \in \mathbb{N}.$

So, under our assumptions on X, in order to prove that R satisfies MT_r provided it satisfies (S_r) , it is enough to show that

 $\operatorname{reg}\operatorname{Ext}^{n+1-i}_{\mathcal{S}}(R,\omega_{\mathcal{S}})\leq \dim\operatorname{Ext}^{n+1-i}_{\mathcal{S}}(R,\omega_{\mathcal{S}})\quad\forall\,i=0,\ldots,\dim R-1.$

We show more:

Dao-Ma-_

Let \mathfrak{m} be the homogeneous maximal ideal of S and assume either

- K has characteristic 0 and X is Du Bois, or
- K has positive characteristic and X is globally F-split.

Then $H^{j}_{\mathfrak{m}}(\operatorname{Ext}^{i}_{S}(R, \omega_{S}))_{>0} = 0$ for all $i, j \in \mathbb{N}$. In particular, reg $\operatorname{Ext}^{i}_{S}(R, \omega_{S}) \leq \dim \operatorname{Ext}^{i}_{S}(R, \omega_{S})$ for all $i \in \mathbb{N}$.

Corollary

Let R = S/I satisfies (S_r) and assume I has height c and does not contain elements of degree < r. Suppose either

- K has characteristic 0 and X is Du Bois, or
- K has positive characteristic and X is globally F-split.

Then, the minimal generators of *I* of degree *r* are $\leq \binom{c+r-1}{r}$; if equality holds, then *R* is Cohen-Macaulay.

If r = 2, the above corollary is true just assuming that X is reduced...

Questions:

Is it true that $h_i \ge 0$ for all $i \le r$ provided R satisfies (S_r) and either

- K has positive characteristic and X has F-injective singularities ???

Some references:

- H. Dao, L. Ma, M. Varbaro *Regularity, singularities and h-vector of graded algebras*, arXiv:1901.01116.
- S. Murai, N. Terai, *h-vectors of simplicial complexes with Serre's conditions*, Math. Res. Lett. 16 (2009), no. 6, 1015-1028.