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ABSTRACT. The purpose of this note is to revisit the results of [HV] from a slightly dif-
ferent perspective, outlining how, if the integral closures of a finite set of prime ideals
abide the expected convexity patterns, then the existence of a peculiar polynomial f al-
lows one to compute the F-jumping numbers of all the ideals formed by taking sums of
products of the original ones. The note concludes with the suggestion of a possible source
of examples falling in such a framework.

1. PROPERTIES A, A+ AND B FOR A FINITE SET OF PRIME IDEALS

Let S be a standard graded polynomial ring over a field k and let m be a positive integer.
Fix homogeneous prime ideals of S:

p1,p2, . . . ,pm.

For any σ = (σ1, . . . ,σm) ∈ Nm and k = 1, . . . ,m, denote by

Iσ := pσ1
1 · · ·p

σm
m and ek(σ) := max{` : Iσ ⊆ p

(`)
k }.

Obviously we have Iσ ⊆
⋂m

k=1 p
(ek(σ))
k . Since Spk is a regular local ring with maximal

ideal (pk)pk , we have that (pk)
`
pk

is integrally closed in Spk for any ` ∈ N. Therefore

p(`)k = (pk)
`
pk
∩ S is integrally closed in S for any ` ∈ N. Eventually we conclude that⋂m

k=1 p
(ek(σ))
k is integrally closed in S, so:

(1) Iσ ⊆
m⋂

k=1

p
(ek(σ))
k .

Definition 1.1. We say that p1, . . . ,pm satisfy condition A if

Iσ =
m⋂

k=1

p
(ek(σ))
k ∀ σ ∈ Nm.

If Σ⊆ Nm, denote by I(Σ) := ∑σ∈Σ Iσ and by Σ⊆Qm the convex hull of Σ⊆Qm.

Lemma 1.2. For any Σ ⊆ Nm, I(Σ) ⊇ ∑v∈Σ
Idve, where dve := (dv1e, . . . ,dvme) for v =

(v1, . . . ,vm) ∈Qm.

Proof. Since S is Noetherian, we can assume that Σ = {σ1, . . . ,σN} is a finite set. Take
v ∈ Σ. Then there exist nonnegative rational numbers q1, . . . ,qN such that

v =
N

∑
i=1

qiσ
i and

N

∑
i=1

qi = 1.

1
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Let d be the product of the denominators of the qi’s and σ = d ·v ∈ Nm. Clearly:

(Idve)d = Id·dve ⊆ Iσ .

Setting ai = dqi, notice that σ = ∑
N
i=1 aiσ

i and ∑
N
i=1 ai = d. Therefore

(Idve)d ⊆ Iσ ⊆ I(Σ)d.

This implies that Idve is contained in the integral closure of I(Σ). �

From the above lemma, I(Σ)⊇ ∑v∈Σ
Idve. In particular:

(2) p1, . . . ,pm satisfy condition A =⇒ I(Σ)⊇ ∑
v∈Σ

(
m⋂

k=1

p
(ek(dve))
k

)
.

Definition 1.3. We say that p1, . . . ,pm satisfy condition A+ if

I(Σ) = ∑
v∈Σ

(
m⋂

k=1

p
(ek(dve))
k

)
∀ Σ⊆ Nm

Remark 1.4. If p1, . . . ,pm satisfy condition A+, then they satisfy A as well (for σ ∈ Nm,
just consider the singleton Σ = {σ}).

Lemma 1.5. Let σ1, . . . ,σN be vectors in Nm, and a1, . . . ,aN ∈ N. Then

ek

(
N

∑
i=1

aiσ
i

)
=

N

∑
i=1

aiek(σ
i) ∀ k = 1, . . . ,m.

Proof. Set σ = ∑
N
i=1 aiσ

i, and notice that

Iσ =
N

∏
i=1

(
Iσ i
)ai
⊆

N

∏
i=1

(
p
(ek(σ

i))
k

)ai
⊆

N

∏
i=1

p
(aiek(σ

i))
k ⊆ p

(∑N
i=1 aiek(σ

i))
k ,

so the inequality ek(σ)≥ ∑
N
i=1 aiek(σ

i) follows directly from the definition.
For the other inequality, for each i = 1, . . . ,N choose fi ∈ Iσ i

such that its image in
Spk is not in (pk)

ek(σ
i)+1

pk
. Then the class fi is a nonzero element of degree ek(σ

i) in the
associated graded ring G of Spk . Since G is a polynomial ring (in particular a domain), the
element ∏

N
i=1 fi

ai is a nonzero element of degree ∑
N
i=1 aiek(σ

i) in G. Therefore
N

∏
i=1

f ai
i ∈ Iσ

pk
\p(∑

N
i=1 aiek(σ

i)+1)
k .

This means that ek(σ)≤ ∑
N
i=1 aiek(σ

i). �

Consider the function e : Nm→ Nm defined by

σ 7→ e(σ) := (e1(σ), . . . ,em(σ)).

From the above lemma we can extend it to a Q-linear map e : Qm→Qm.
Given Σ ⊆ Nm, the above map sends Σ to the convex hull PΣ ⊆ Qm of the set {e(σ) :

σ ∈ Σ} ⊆Qm. In particular we have the following:
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Proposition 1.6. The prime ideals p1, . . . ,pm satisfy condition A+ if and only if

I(Σ) = ∑
(v1,...,vm)∈PΣ

(
m⋂

k=1

p
(dvke)
k

)
∀ Σ⊆ Nm

If Σ⊆ Nm and s ∈ N, define Σs := {σ i1 + . . .+σ is : σ ik ∈ Σ}. Then

I(Σ)s = I(Σs).

Furthermore Σs = s ·Σ, i.e. PΣs = s ·PΣ. So:

Proposition 1.7. If p1, . . . ,pm satisfy condition A+, then

I(Σ)s = ∑
(v1,...,vm)∈PΣ

(
m⋂

k=1

p
(dsvke)
k

)
∀ Σ⊆ Nm, s ∈ N.

We conclude this section by stating the following definition:

Definition 1.8. We say that p1, . . . ,pm satisfy condition B if there exists a polynomial
f ∈

⋂m
k=1 p

ht(pk)
k such that in≺( f ) is a square-free monomial for some term order ≺ on S.

Example 1.9. Let S = k[x,y], m = 2 and p1 = (x) and p2 = (y). Of course these ideals
satisfy condition B by considering f = xy.

If σ = (σ1,σ2), then Iσ = (xσ1yσ2) and ek(σ) = σk, therefore they trivially satisfy
condition A so.

Though less trivial, it is a well-known fact that (x) and (y) satisfy condition A+ as well:
for example, (x3,y3) = (x3,x2y,xy2,y3).

2. GENERALIZED TEST IDEALS AND F -THRESHOLDS

Let p > 0 be the characteristic of k, I be an ideal of S and m be the homogeneous
maximal ideal of S. For all e ∈ N, denoting by m[pe] = (xpe

1 , . . . ,xpe

n ), define

νe(I) := max{r ∈ N : Ir 6⊆m[pe]}.
The F-pure threshold of I is then

fpt(I) := lim
e→∞

νe(I)
pe .

The pe-th root of I, denoted by I[1/pe], is the smallest ideal J ⊆ S such that I ⊆ J[p
e]. By

the flatness of the Frobenius over S the q-th root is well defined. If λ is a positive real
number, then it is easy to see that(

Idλ pee
)[1/pe]

⊆
(

Idλ pe+1e
)[1/pe+1]

.

The generalized test ideal of I with coefficient λ is defined as:

τ(λ · I) :=
e�0

(
Idλ pee

)[1/pe]

.
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Note that τ(λ · I) ⊇ τ(µ · I) whenever λ ≤ µ . By [BMS, Corollary 2.16], ∀ λ ∈ R>0,
∃ ε ∈ R>0 such that τ(λ · I) = τ(µ · I) ∀ µ ∈ [λ ,λ + ε). A λ ∈ R>0 is called an F-
jumping number for I if τ((λ − ε) · I)) τ(λ · I) ∀ ε ∈ R>0.

[ )[ )[ )[ I λ -axis
τ = (1) τ 6= (1)

λ1 λ2 λn

. . . . . .

(1)) τ(λ1 · I)) τ(λ2 · I)) . . .) τ(λn · I)) . . .

The λi above are the F-jumping numbers. Notice that λ1 = fpt(I).

Theorem 2.1. If p1, . . . ,pm satisfy conditions A and B, then ∀ λ ∈ R>0 we have

τ(λ · Iσ ) =
m⋂

k=1

p
(bλek(σ)c+1−ht(pk))
k ∀ σ ∈ Nm.

If p1, . . . ,pm satisfy conditions A+ and B, then ∀ λ ∈ R>0 we have

τ(λ · I(Σ)) = ∑
(v1,...,vm)∈PΣ

(
m⋂

k=1

p
(bλvkc+1−ht(pk))
k

)
∀ Σ⊆ Nm.

Proof. The first part immediately follows from [HV, Theorem 3.14], for if p1, . . . ,pm
satisfy conditions A and B, then Iσ obviously enjoys condition (�+) of [HV] ∀ σ ∈ Nm.

Concerning the second part, Proposition 1.7 implies that I(Σ) enjoys condition (∗) of
[HV] ∀ Σ ⊆ Nm whenever p1, . . . ,pm satisfy conditions A+ and B. Therefore the conclu-
sion follows once again by [HV, Theorem 4.3]. �

3. WHERE TO FISH?

Let k be of characteristic p > 0. So far we have seen that, if we have graded primes
p1, . . . ,pm of S enjoying A and B, then we can compute lots of generalized test ideals. If
they enjoy A+ and B, we get even more.

That looks nice, but how can we produce p1, . . . ,pm like these? Before trying to answer
this question, let us notice that, as explained in [HV], the ideals p1, . . . ,pm of the following
examples satisfy conditions A+ and B:

(i) S = k[x1, . . . ,xm] and pk = (xk) for all k = 1, . . . ,m.
(ii) S = k[X ], where X is an m×n generic matrix (with m≤ n) and pk = Ik(X) is the

ideal generated by the k-minors of X for all k = 1, . . . ,m.
(iii) S = k[Y ], where Y is an m×m generic symmetric matrix and pk = Ik(Y ) is the

ideal generated by the k-minors of Y for all k = 1, . . . ,m.
(iv) S = k[Z], where Z is a (2m+ 1)× (2m+ 1) generic skew-symmetric matrix and

pk = P2k(Z) is the ideal generated by the 2k-Pfaffians of Z for all k = 1, . . . ,m.
Even for a simple example like (i), Theorem 2.1 is interesting: it gives a description of

the generalized test ideals of any monomial ideal.
In my opinion, a class to look at to find new examples might be the following: fix

f ∈ S a homogeneous polynomial such that in≺( f ) is a square-free monomial for
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some term order ≺ (better if lexicographical) on S, and let C f be the set of ideals of S
defined, recursively, like follows:

(a) ( f ) ∈ C f ;
(b) If I ∈ C f , then I : J ∈ C f for all J ⊆ S;
(c) If I,J ∈ C f , then both I + J and I∩ J belong to C f .

If f is an irreducible polynomial, C f consists of only the principal ideal generated by
f , but otherwise things can get interesting. Let us give two guiding examples:

(i) If u := x1 · · ·xm, then the associated primes of (u) are (x1), . . . ,(xm). Furthermore
all the ideals of S = k[x1, . . . ,xm] generated by variables are sums of the principal
ideals above, and all square-free monomial ideals can be obtained by intersecting
ideals generated by variables. Therefore, any square-free monomial ideal belongs
to Cu, and one can check that indeed:

Cu = {square-free monomial ideals of S}.

(ii) Let X = (xi j) be an m× n matrix of variables, with m ≤ n. For positive integers
a1 < .. . < ak ≤ m and b1 < .. . < bk ≤ n, recall the standard notation for the
corresponding k-minor:

[a1, . . . ,ak|b1, . . . ,bk] := det

 xa1b1 xa1b2 · · · xa1bk
...

... . . . ...
xakb1 xakb2 · · · xakbk

 .

For i = 0, . . . ,n−m, let δi := [1, . . . ,m|i+1, . . . ,m+ i]. Also, for j = 1, . . . ,m−1
set g j := [ j+1, . . . ,m|1, . . . ,m− j] and h j := [1, . . . ,m− j|n−m+ j+1, . . . ,n].

Let ∆ be the product of the δi’s, the g j’s and the h j’s:

∆ :=
n−m

∏
i=0

δi ·
m−1

∏
j=1

g jh j.

By considering the lexicographical term order ≺ extending the linear order

x11 > x12 > · · ·> x1n > x21 > · · ·> x2n > · · ·> xm1 > · · ·> xmn,

we have that

in(∆) =
n−m

∏
i=0

in(δi) ·
m−1

∏
j=1

in(g j) in(h j) = ∏
i∈{1,...,m}
j∈{1,...,n}

xi j

is a square-free monomial. Since each (δi) belongs to C∆, the height-(n−m+1)
complete intersection

J := (δ0, . . . ,δn−m)

is an ideal of C∆ too. Notice that the ideal Im(X) generated by all the maximal
minors of X is a height-(n−m+ 1) prime ideal containing J. So Im(X) is an
associated prime of J, and thus an ideal of C∆ by definition. With more effort, one
should be able to show that the ideals of minors Ik(X) stay in C∆ for any size k.
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The ideals of C f have quite strong properties. First of all, C f is a finite set by [Sc].
Then, all the ideals in C f are radical. Even more, Knutson proved in [Kn] that they have
a square-free initial ideal!

In order to produce graded prime ideals p1, . . . ,pm satisfying conditions A (or even A+)
and B, it seems natural to seek for them among the prime ideals in C f . This is because, at
least, f is a good candidate for the polynomial needed for condition B: if f = f1 · · · fr is
the factorization of f in irreducible polynomials, then for each A⊆ {1, . . . ,r} the ideal

JA := ( fi : i ∈ A)⊆ S

is a complete intersection of height |A|. If p is an associated prime ideal of JA, then f
obviously belongs to p|A| ⊆ p(|A|). So such a p satisfies B.

Question 3.1. Does the ideal p above satisfy condition A? Even more, is it true that for
prime ideals p as above ps = p(s) for all s ∈ N?

If the above question admitted a positive answer, Theorem 2.1 would provide the gen-
eralized test ideals of p. A typical example, is when JA = (δ0, . . . ,δn−m) and p = Im(X)

(see (ii) above), in which case it is well-known that Im(X)s = Im(X)(s) for all s ∈ N (e.g.
see [BV, Corollary 9.18].

Remark 3.2. Unfortunately, it is not true that p satisfies B for all prime ideal p ∈ C f :
for example, consider f = ∆ in the case m = n = 2, that is ∆ = x21(x11x22− x12x21)x21.
Notice that (x21,x11x22− x12x21) = (x21,x11x22) = (x21,x11)∩ (x21,x22), so

p= (x21,x11)+(x21,x22) = (x21,x11,x22) ∈ C∆.

However ∆ /∈ p(3).

Problem 3.3. Find a large class of prime ideals in C f (or even characterize them) satis-
fying condition B.

If p1, . . . ,pm are prime ideals satisfying A+, then (by definition)

∑
i∈A

pi = ∑
i∈A

pi ∀ A⊆ {1, . . . ,m}.

If p1, . . . ,pm are in C f , then the above equality holds true because ∑i∈A pi, belonging to
C f , is a radical ideal.

Problem 3.4. Let P f be the set of prime ideals in C f . Is it true that P f satisfies condition
A+? If not, find a large subset of P f satisfying condition A+.
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[BMS] M. Blickle, M. Mustaţă, K.E. Smith, Discreteness and rationality of F-thresholds, Michigan Math.
J. 57 (2008), 43–61.

[BV] W. Bruns, U. Vetter, Determinantal rings, Lecture Notes in Mathematics 1327, Springer-Verlag,
Berlin, 1988.

[HV] I.B. Henriques, M. Varbaro, Test, multiplier and invariant ideals, Adv. Math. 287 (2016), 704–732.
[Kn] A. Knutson, Frobenius splitting, point-counting, and degeneration, available at http://arxiv.org/

abs/0911.4941 (2009).
[Sc] K. Schwede, F-adjunction, Algebra & Number Theory 3 (2009), 907–950.

http://arxiv.org/abs/0911.4941
http://arxiv.org/abs/0911.4941


F-THRESHOLDS, INTEGRAL CLOSURE AND CONVEXITY 7

DIPARTIMENTO DI MATEMATICA, UNIVERSITÀ DEGLI STUDI DI GENOVA, ITALY
E-mail address: varbaro@dima.unige.it


	1. Properties A, A+ and B for a finite set of prime ideals
	2. Generalized test ideals and F-thresholds
	3. Where to fish?
	References
	Bibliography

