F-THRESHOLDS, INTEGRAL CLOSURE AND CONVEXITY

MATTEO VARBARO

To Winfried Bruns on his 70th birthday

ABSTRACT. The purpose of this note is to revisit the results of [HV] from a slightly different perspective, outlining how, if the integral closures of a finite set of prime ideals abide the expected convexity patterns, then the existence of a peculiar polynomial f allows one to compute the F-jumping numbers of all the ideals formed by taking sums of products of the original ones. The note concludes with the suggestion of a possible source of examples falling in such a framework.

1. PROPERTIES A, A+ AND B FOR A FINITE SET OF PRIME IDEALS

Let *S* be a standard graded polynomial ring over a field \Bbbk and let *m* be a positive integer. Fix homogeneous prime ideals of *S*:

$$\mathfrak{p}_1,\mathfrak{p}_2,\ldots,\mathfrak{p}_m.$$

For any $\boldsymbol{\sigma} = (\boldsymbol{\sigma}_1, \dots, \boldsymbol{\sigma}_m) \in \mathbb{N}^m$ and $k = 1, \dots, m$, denote by

$$I^{\sigma} := \mathfrak{p}_1^{\sigma_1} \cdots \mathfrak{p}_m^{\sigma_m} \text{ and } e_k(\sigma) := \max\{\ell : I^{\sigma} \subseteq \mathfrak{p}_k^{(\ell)}\}.$$

Obviously we have $I^{\sigma} \subseteq \bigcap_{k=1}^{m} \mathfrak{p}_{k}^{(e_{k}(\sigma))}$. Since $S_{\mathfrak{p}_{k}}$ is a regular local ring with maximal ideal $(\mathfrak{p}_{k})_{\mathfrak{p}_{k}}$, we have that $(\mathfrak{p}_{k})_{\mathfrak{p}_{k}}^{\ell}$ is integrally closed in $S_{\mathfrak{p}_{k}}$ for any $\ell \in \mathbb{N}$. Therefore $p_{k}^{(\ell)} = (\mathfrak{p}_{k})_{\mathfrak{p}_{k}}^{\ell} \cap S$ is integrally closed in *S* for any $\ell \in \mathbb{N}$. Eventually we conclude that $\bigcap_{k=1}^{m} \mathfrak{p}_{k}^{(e_{k}(\sigma))}$ is integrally closed in *S*, so:

(1)
$$\overline{I^{\sigma}} \subseteq \bigcap_{k=1}^{m} \mathfrak{p}_{k}^{(e_{k}(\sigma))}.$$

Definition 1.1. We say that $\mathfrak{p}_1, \ldots, \mathfrak{p}_m$ satisfy condition **A** if

$$\overline{I^{\sigma}} = \bigcap_{k=1}^{m} \mathfrak{p}_{k}^{(e_{k}(\sigma))} \quad \forall \ \sigma \in \mathbb{N}^{m}.$$

If $\Sigma \subseteq \mathbb{N}^m$, denote by $I(\Sigma) := \sum_{\sigma \in \Sigma} I^{\sigma}$ and by $\overline{\Sigma} \subseteq \mathbb{Q}^m$ the convex hull of $\Sigma \subseteq \mathbb{Q}^m$.

Lemma 1.2. For any $\Sigma \subseteq \mathbb{N}^m$, $\overline{I(\Sigma)} \supseteq \sum_{\mathbf{v} \in \overline{\Sigma}} I^{\lceil \mathbf{v} \rceil}$, where $\lceil \mathbf{v} \rceil := (\lceil v_1 \rceil, \dots, \lceil v_m \rceil)$ for $\mathbf{v} = (v_1, \dots, v_m) \in \mathbb{Q}^m$.

Proof. Since *S* is Noetherian, we can assume that $\Sigma = \{\sigma^1, \dots, \sigma^N\}$ is a finite set. Take $\mathbf{v} \in \overline{\Sigma}$. Then there exist nonnegative rational numbers q_1, \dots, q_N such that

$$\mathbf{v} = \sum_{i=1}^{N} q_i \boldsymbol{\sigma}^i$$
 and $\sum_{i=1}^{N} q_i = 1.$

Let *d* be the product of the denominators of the q_i 's and $\sigma = d \cdot \mathbf{v} \in \mathbb{N}^m$. Clearly:

$$(I^{\lceil \mathbf{v} \rceil})^d = I^{d \cdot \lceil \mathbf{v} \rceil} \subseteq I^{\sigma}$$

Setting $a_i = dq_i$, notice that $\sigma = \sum_{i=1}^N a_i \sigma^i$ and $\sum_{i=1}^N a_i = d$. Therefore $(I^{[\mathbf{v}]})^d \subseteq I^\sigma \subseteq I(\Sigma)^d$.

This implies that $I^{\lceil \mathbf{v} \rceil}$ is contained in the integral closure of $I(\Sigma)$.

From the above lemma, $\overline{I(\Sigma)} \supseteq \sum_{\mathbf{v} \in \overline{\Sigma}} \overline{I^{[\mathbf{v}]}}$. In particular:

(2)
$$\mathfrak{p}_1,\ldots,\mathfrak{p}_m$$
 satisfy condition $\mathbf{A} \implies \overline{I(\Sigma)} \supseteq \sum_{\mathbf{v}\in\overline{\Sigma}} \left(\bigcap_{k=1}^m \mathfrak{p}_k^{(e_k(\lceil \mathbf{v}\rceil))} \right).$

Definition 1.3. We say that p_1, \ldots, p_m satisfy condition **A+** if

$$\overline{I(\Sigma)} = \sum_{\mathbf{v}\in\overline{\Sigma}} \left(\bigcap_{k=1}^{m} \mathfrak{p}_{k}^{(e_{k}(\lceil \mathbf{v}\rceil))} \right) \quad \forall \Sigma \subseteq \mathbb{N}^{m}$$

Remark 1.4. If $\mathfrak{p}_1, \ldots, \mathfrak{p}_m$ satisfy condition **A+**, then they satisfy **A** as well (for $\sigma \in \mathbb{N}^m$, just consider the singleton $\Sigma = \{\sigma\}$).

Lemma 1.5. Let $\sigma^1, \ldots, \sigma^N$ be vectors in \mathbb{N}^m , and $a_1, \ldots, a_N \in \mathbb{N}$. Then

$$e_k\left(\sum_{i=1}^N a_i \sigma^i\right) = \sum_{i=1}^N a_i e_k(\sigma^i) \quad \forall \ k = 1, \dots, m.$$

Proof. Set $\sigma = \sum_{i=1}^{N} a_i \sigma^i$, and notice that

$$I^{\sigma} = \prod_{i=1}^{N} \left(I^{\sigma^{i}} \right)^{a_{i}} \subseteq \prod_{i=1}^{N} \left(\mathfrak{p}_{k}^{(e_{k}(\sigma^{i}))} \right)^{a_{i}} \subseteq \prod_{i=1}^{N} \mathfrak{p}_{k}^{(a_{i}e_{k}(\sigma^{i}))} \subseteq \mathfrak{p}_{k}^{(\sum_{i=1}^{N} a_{i}e_{k}(\sigma^{i}))},$$

so the inequality $e_k(\sigma) \ge \sum_{i=1}^N a_i e_k(\sigma^i)$ follows directly from the definition.

For the other inequality, for each i = 1, ..., N choose $f_i \in I^{\sigma^i}$ such that its image in $S_{\mathfrak{p}_k}$ is not in $(\mathfrak{p}_k)_{\mathfrak{p}_k}^{e_k(\sigma^i)+1}$. Then the class $\overline{f_i}$ is a nonzero element of degree $e_k(\sigma^i)$ in the associated graded ring *G* of $S_{\mathfrak{p}_k}$. Since *G* is a polynomial ring (in particular a domain), the element $\prod_{i=1}^N \overline{f_i}^{a_i}$ is a nonzero element of degree $\sum_{i=1}^N a_i e_k(\sigma^i)$ in *G*. Therefore

$$\prod_{i=1}^N f_i^{a_i} \in I_{\mathfrak{p}_k}^{\mathfrak{o}} \setminus \mathfrak{p}_k^{(\sum_{i=1}^N a_i e_k(\sigma^i) + 1)}$$

This means that $e_k(\sigma) \leq \sum_{i=1}^N a_i e_k(\sigma^i)$.

Consider the function $e : \mathbb{N}^m \to \mathbb{N}^m$ defined by

$$\sigma \mapsto e(\sigma) := (e_1(\sigma), \dots, e_m(\sigma))$$

From the above lemma we can extend it to a \mathbb{Q} -linear map $e : \mathbb{Q}^m \to \mathbb{Q}^m$.

Given $\Sigma \subseteq \mathbb{N}^m$, the above map sends $\overline{\Sigma}$ to the convex hull $P_{\Sigma} \subseteq \mathbb{Q}^m$ of the set $\{e(\sigma) : \sigma \in \Sigma\} \subseteq \mathbb{Q}^m$. In particular we have the following:

Proposition 1.6. *The prime ideals* $\mathfrak{p}_1, \ldots, \mathfrak{p}_m$ *satisfy condition* \mathbf{A} + *if and only if*

$$\overline{I(\Sigma)} = \sum_{(v_1, \dots, v_m) \in P_{\Sigma}} \left(\bigcap_{k=1}^m \mathfrak{p}_k^{(\lceil v_k \rceil)} \right) \quad \forall \Sigma \subseteq \mathbb{N}^m$$

If $\Sigma \subseteq \mathbb{N}^m$ and $s \in \mathbb{N}$, define $\Sigma^s := \{\sigma^{i_1} + \ldots + \sigma^{i_s} : \sigma^{i_k} \in \Sigma\}$. Then

$$I(\Sigma)^s = I(\Sigma^s).$$

Furthermore $\overline{\Sigma^s} = s \cdot \overline{\Sigma}$, i.e. $P_{\Sigma^s} = s \cdot P_{\Sigma}$. So:

Proposition 1.7. If $\mathfrak{p}_1, \ldots, \mathfrak{p}_m$ satisfy condition A+, then

$$\overline{I(\Sigma)^s} = \sum_{(v_1,...,v_m)\in P_{\Sigma}} \left(\bigcap_{k=1}^m \mathfrak{p}_k^{(\lceil sv_k \rceil)} \right) \quad \forall \Sigma \subseteq \mathbb{N}^m, \ s \in \mathbb{N}.$$

We conclude this section by stating the following definition:

Definition 1.8. We say that $\mathfrak{p}_1, \ldots, \mathfrak{p}_m$ satisfy condition **B** if there exists a polynomial $f \in \bigcap_{k=1}^m \mathfrak{p}_k^{\operatorname{ht}(\mathfrak{p}_k)}$ such that $\operatorname{in}_{\prec}(f)$ is a square-free monomial for some term order \prec on *S*.

Example 1.9. Let $S = \Bbbk[x, y]$, m = 2 and $\mathfrak{p}_1 = (x)$ and $\mathfrak{p}_2 = (y)$. Of course these ideals satisfy condition **B** by considering f = xy.

If $\sigma = (\sigma_1, \sigma_2)$, then $I^{\sigma} = (x^{\sigma_1} y^{\sigma_2})$ and $e_k(\sigma) = \sigma_k$, therefore they trivially satisfy condition **A** so.

Though less trivial, it is a well-known fact that (x) and (y) satisfy condition **A+** as well: for example, $\overline{(x^3, y^3)} = (x^3, x^2y, xy^2, y^3)$.

2. GENERALIZED TEST IDEALS AND F-THRESHOLDS

Let p > 0 be the characteristic of \mathbb{k} , I be an ideal of S and \mathfrak{m} be the homogeneous maximal ideal of S. For all $e \in \mathbb{N}$, denoting by $\mathfrak{m}^{[p^e]} = (x_1^{p^e}, \dots, x_n^{p^e})$, define

$$\mathbf{v}_e(I) := \max\{r \in \mathbb{N} : I^r \not\subseteq \mathfrak{m}^{\lfloor p^e \rfloor}\}.$$

The *F*-pure threshold of *I* is then

$$\operatorname{fpt}(I) := \lim_{e \to \infty} \frac{v_e(I)}{p^e}.$$

The p^e -th root of I, denoted by $I^{[1/p^e]}$, is the smallest ideal $J \subseteq S$ such that $I \subseteq J^{[p^e]}$. By the flatness of the Frobenius over S the q-th root is well defined. If λ is a positive real number, then it is easy to see that

$$\left(I^{\lceil \lambda p^e \rceil}\right)^{[1/p^e]} \subseteq \left(I^{\lceil \lambda p^{e+1} \rceil}\right)^{[1/p^{e+1}]}$$

The generalized test ideal of I with coefficient λ is defined as:

$$au(\lambda \cdot I) := \left(I^{\lceil \lambda p^e \rceil}
ight)^{\lfloor 1/p^e
ceil}.$$

Note that $\tau(\lambda \cdot I) \supseteq \tau(\mu \cdot I)$ whenever $\lambda \leq \mu$. By [BMS, Corollary 2.16], $\forall \lambda \in \mathbb{R}_{>0}$, $\exists \varepsilon \in \mathbb{R}_{>0}$ such that $\tau(\lambda \cdot I) = \tau(\mu \cdot I) \quad \forall \mu \in [\lambda, \lambda + \varepsilon)$. A $\lambda \in \mathbb{R}_{>0}$ is called an *F*-*jumping number* for *I* if $\tau((\lambda - \varepsilon) \cdot I) \supseteq \tau(\lambda \cdot I) \quad \forall \varepsilon \in \mathbb{R}_{>0}$.

$$\begin{bmatrix} \tau = (1) & \tau \neq (1) \\ \hline \lambda_1 & \lambda_2 & \cdots & \hline \lambda_n \\ (1) \supseteq \tau(\lambda_1 \cdot I) \supseteq \tau(\lambda_2 \cdot I) \supseteq \dots \supseteq \tau(\lambda_n \cdot I) \supseteq \dots \end{bmatrix} \lambda \text{-axis}$$

The λ_i above are the *F*-jumping numbers. Notice that $\lambda_1 = \operatorname{fpt}(I)$.

Theorem 2.1. If $\mathfrak{p}_1, \ldots, \mathfrak{p}_m$ satisfy conditions **A** and **B**, then $\forall \lambda \in \mathbb{R}_{>0}$ we have

$$\tau(\lambda \cdot I^{\sigma}) = \bigcap_{k=1}^{m} \mathfrak{p}_{k}^{(\lfloor \lambda e_{k}(\sigma) \rfloor + 1 - \operatorname{ht}(\mathfrak{p}_{k}))} \quad \forall \ \sigma \in \mathbb{N}^{m}$$

If $\mathfrak{p}_1, \ldots, \mathfrak{p}_m$ satisfy conditions \mathbf{A} + and \mathbf{B} , then $\forall \lambda \in \mathbb{R}_{>0}$ we have

$$\tau(\lambda \cdot I(\Sigma)) = \sum_{(v_1, \dots, v_m) \in P_{\Sigma}} \left(\bigcap_{k=1}^m \mathfrak{p}_k^{(\lfloor \lambda v_k \rfloor + 1 - \operatorname{ht}(\mathfrak{p}_k))} \right) \quad \forall \Sigma \subseteq \mathbb{N}^m.$$

Proof. The first part immediately follows from [HV, Theorem 3.14], for if $\mathfrak{p}_1, \ldots, \mathfrak{p}_m$ satisfy conditions **A** and **B**, then I^{σ} obviously enjoys condition (\diamond +) of [HV] $\forall \sigma \in \mathbb{N}^m$.

Concerning the second part, Proposition 1.7 implies that $I(\Sigma)$ enjoys condition (*) of [HV] $\forall \Sigma \subseteq \mathbb{N}^m$ whenever $\mathfrak{p}_1, \ldots, \mathfrak{p}_m$ satisfy conditions **A+** and **B**. Therefore the conclusion follows once again by [HV, Theorem 4.3].

3. WHERE TO FISH?

Let \Bbbk be of characteristic p > 0. So far we have seen that, if we have graded primes $\mathfrak{p}_1, \ldots, \mathfrak{p}_m$ of S enjoying **A** and **B**, then we can compute lots of generalized test ideals. If they enjoy **A+** and **B**, we get even more.

That looks nice, but how can we produce p_1, \ldots, p_m like these? Before trying to answer this question, let us notice that, as explained in [HV], the ideals p_1, \ldots, p_m of the following examples satisfy conditions **A+** and **B**:

- (i) $S = k[x_1, ..., x_m]$ and $p_k = (x_k)$ for all k = 1, ..., m.
- (ii) $S = \Bbbk[X]$, where X is an $m \times n$ generic matrix (with $m \le n$) and $\mathfrak{p}_k = I_k(X)$ is the ideal generated by the *k*-minors of X for all k = 1, ..., m.
- (iii) $S = \Bbbk[Y]$, where Y is an $m \times m$ generic symmetric matrix and $\mathfrak{p}_k = I_k(Y)$ is the ideal generated by the *k*-minors of Y for all k = 1, ..., m.
- (iv) $S = \Bbbk[Z]$, where Z is a $(2m+1) \times (2m+1)$ generic skew-symmetric matrix and $\mathfrak{p}_k = P_{2k}(Z)$ is the ideal generated by the 2k-Pfaffians of Z for all $k = 1, \dots, m$.

Even for a simple example like (i), Theorem 2.1 is interesting: it gives a description of the generalized test ideals of any monomial ideal.

In my opinion, a class to look at to find new examples might be the following: fix $f \in S$ a homogeneous polynomial such that $in_{\prec}(f)$ is a square-free monomial for

some term order \prec (better if lexicographical) **on** *S*, and let \mathscr{C}_f be the set of ideals of *S* defined, recursively, like follows:

- (a) $(f) \in \mathscr{C}_f$;
- (b) If $I \in \mathscr{C}_f$, then $I : J \in \mathscr{C}_f$ for all $J \subseteq S$;
- (c) If $I, J \in \mathscr{C}_f$, then both I + J and $I \cap J$ belong to \mathscr{C}_f .

If f is an irreducible polynomial, C_f consists of only the principal ideal generated by f, but otherwise things can get interesting. Let us give two guiding examples:

(i) If $u := x_1 \cdots x_m$, then the associated primes of (u) are $(x_1), \ldots, (x_m)$. Furthermore all the ideals of $S = \Bbbk[x_1, \ldots, x_m]$ generated by variables are sums of the principal ideals above, and all square-free monomial ideals can be obtained by intersecting ideals generated by variables. Therefore, any square-free monomial ideal belongs to \mathscr{C}_u , and one can check that indeed:

 $\mathscr{C}_u = \{$ square-free monomial ideals of $S \}.$

(ii) Let $X = (x_{ij})$ be an $m \times n$ matrix of variables, with $m \le n$. For positive integers $a_1 < \ldots < a_k \le m$ and $b_1 < \ldots < b_k \le n$, recall the standard notation for the corresponding *k*-minor:

$$[a_1, \dots, a_k | b_1, \dots, b_k] := \det \begin{pmatrix} x_{a_1b_1} & x_{a_1b_2} & \cdots & x_{a_1b_k} \\ \vdots & \vdots & \ddots & \vdots \\ x_{a_kb_1} & x_{a_kb_2} & \cdots & x_{a_kb_k} \end{pmatrix}.$$

For i = 0, ..., n - m, let $\delta_i := [1, ..., m | i + 1, ..., m + i]$. Also, for j = 1, ..., m - 1set $g_j := [j + 1, ..., m | 1, ..., m - j]$ and $h_j := [1, ..., m - j | n - m + j + 1, ..., n]$. Let Δ be the product of the δ_i 's, the g_j 's and the h_j 's:

$$\Delta := \prod_{i=0}^{n-m} \delta_i \cdot \prod_{j=1}^{m-1} g_j h_j.$$

By considering the lexicographical term order \prec extending the linear order

$$x_{11} > x_{12} > \cdots > x_{1n} > x_{21} > \cdots > x_{2n} > \cdots > x_{m1} > \cdots > x_{mn}$$

we have that

$$\operatorname{in}(\Delta) = \prod_{i=0}^{n-m} \operatorname{in}(\delta_i) \cdot \prod_{j=1}^{m-1} \operatorname{in}(g_j) \operatorname{in}(h_j) = \prod_{\substack{i \in \{1, \dots, m\}\\j \in \{1, \dots, n\}}} x_{ij}$$

is a square-free monomial. Since each (δ_i) belongs to \mathscr{C}_{Δ} , the height-(n - m + 1) complete intersection

$$I:=(\delta_0,\ldots,\delta_{n-m})$$

is an ideal of \mathscr{C}_{Δ} too. Notice that the ideal $I_m(X)$ generated by all the maximal minors of X is a height-(n - m + 1) prime ideal containing J. So $I_m(X)$ is an associated prime of J, and thus an ideal of \mathscr{C}_{Δ} by definition. With more effort, one should be able to show that the ideals of minors $I_k(X)$ stay in \mathscr{C}_{Δ} for any size k.

The ideals of \mathscr{C}_f have quite strong properties. First of all, \mathscr{C}_f is a finite set by [Sc]. Then, all the ideals in \mathscr{C}_f are radical. Even more, Knutson proved in [Kn] that they have a square-free initial ideal!

In order to produce graded prime ideals $\mathfrak{p}_1, \ldots, \mathfrak{p}_m$ satisfying conditions **A** (or even **A+**) and **B**, it seems natural to seek for them among the prime ideals in \mathscr{C}_f . This is because, at least, *f* is a good candidate for the polynomial needed for condition **B**: if $f = f_1 \cdots f_r$ is the factorization of *f* in irreducible polynomials, then for each $A \subseteq \{1, \ldots, r\}$ the ideal

$$J_A := (f_i : i \in A) \subseteq S$$

is a complete intersection of height |A|. If \mathfrak{p} is an associated prime ideal of J_A , then f obviously belongs to $\mathfrak{p}^{|A|} \subseteq \mathfrak{p}^{(|A|)}$. So such a \mathfrak{p} satisfies **B**.

Question 3.1. Does the ideal \mathfrak{p} above satisfy condition **A**? Even more, is it true that for prime ideals \mathfrak{p} as above $\mathfrak{p}^s = \mathfrak{p}^{(s)}$ for all $s \in \mathbb{N}$?

If the above question admitted a positive answer, Theorem 2.1 would provide the generalized test ideals of \mathfrak{p} . A typical example, is when $J_A = (\delta_0, \dots, \delta_{n-m})$ and $\mathfrak{p} = I_m(X)$ (see (ii) above), in which case it is well-known that $I_m(X)^s = I_m(X)^{(s)}$ for all $s \in \mathbb{N}$ (e.g. see [BV, Corollary 9.18].

Remark 3.2. Unfortunately, it is not true that \mathfrak{p} satisfies **B** for all prime ideal $\mathfrak{p} \in \mathscr{C}_f$: for example, consider $f = \Delta$ in the case m = n = 2, that is $\Delta = x_{21}(x_{11}x_{22} - x_{12}x_{21})x_{21}$. Notice that $(x_{21}, x_{11}x_{22} - x_{12}x_{21}) = (x_{21}, x_{11}x_{22}) = (x_{21}, x_{11}) \cap (x_{21}, x_{22})$, so

$$\mathfrak{p} = (x_{21}, x_{11}) + (x_{21}, x_{22}) = (x_{21}, x_{11}, x_{22}) \in \mathscr{C}_{\Delta}.$$

However $\Delta \notin \mathfrak{p}^{(3)}$.

Problem 3.3. Find a large class of prime ideals in C_f (or even characterize them) satisfying condition **B**.

If p_1, \ldots, p_m are prime ideals satisfying **A+**, then (by definition)

$$\sum_{i\in A}\mathfrak{p}_i=\sum_{i\in A}\mathfrak{p}_i \quad \forall A\subseteq \{1,\ldots,m\}.$$

If $\mathfrak{p}_1, \ldots, \mathfrak{p}_m$ are in \mathscr{C}_f , then the above equality holds true because $\sum_{i \in A} \mathfrak{p}_i$, belonging to \mathscr{C}_f , is a radical ideal.

Problem 3.4. Let \mathscr{P}_f be the set of prime ideals in \mathscr{C}_f . Is it true that \mathscr{P}_f satisfies condition **A+**? If not, find a large subset of \mathscr{P}_f satisfying condition **A+**.

REFERENCES

- [BMS] M. Blickle, M. Mustață, K.E. Smith, *Discreteness and rationality of F-thresholds*, Michigan Math. J. **57** (2008), 43–61.
- [BV] W. Bruns, U. Vetter, *Determinantal rings*, Lecture Notes in Mathematics **1327**, Springer-Verlag, Berlin, 1988.
- [HV] I.B. Henriques, M. Varbaro, Test, multiplier and invariant ideals, Adv. Math. 287 (2016), 704-732.
- [Kn] A. Knutson, Frobenius splitting, point-counting, and degeneration, available at http://arxiv.org/ abs/0911.4941 (2009).
- [Sc] K. Schwede, F-adjunction, Algebra & Number Theory 3 (2009), 907–950.

F-THRESHOLDS, INTEGRAL CLOSURE AND CONVEXITY

DIPARTIMENTO DI MATEMATICA, UNIVERSITÀ DEGLI STUDI DI GENOVA, ITALY *E-mail address*: varbaro@dima.unige.it