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To Winfried Bruns on his 70th birthday

ABSTRACT. The purpose of this note is to revisit the results of [HV] from a slightly dif-
ferent perspective, outlining how, if the integral closures of a finite set of prime ideals
abide the expected convexity patterns, then the existence of a peculiar polynomial f al-
lows one to compute the F-jumping numbers of all the ideals formed by taking sums of
products of the original ones. The note concludes with the suggestion of a possible source
of examples falling in such a framework.

1. PROPERTIES A, A+ AND B FOR A FINITE SET OF PRIME IDEALS

Let S be a standard graded polynomial ring over a field k and let m be a positive integer.
Fix homogeneous prime ideals of S:

Pr,p2,- s Pme

For any 0 = (01,...,0,4) € N"and k = 1,...,m, denote by
m

IO' e pfl .. .40m and €k(6) = maX{g . IG g p](f)}

Obviously we have 1° C (L, p,(ce"(c)). Since Sy, is a regular local ring with maximal

ideal (px)p,, we have that (pk)f;k is integrally closed in Sy, for any ¢ € N. Therefore

p,(f) = (pk)f;k N S is integrally closed in S for any ¢/ € N. Eventually we conclude that

N, p,((e"(c)) is integrally closed in S, so:

g ﬂ p](cek(a)) .
k=1

Definition 1.1. We say that py,...,p,, satisfy condition A if

Q

o)) 1

7~ (p) v e
k=1

If £ C N™, denote by I(X) := ¥ 5c5I° and by £ C Q™ the convex hull of £ C Q™.
Lemma 1.2. Forany LCN", I(£) D ¥ 5 VI where [v] == ([vi],...,[vm]) for v=

(Viyeooyvm) € Q™
Proof. Since S is Noetherian, we can assume that £ = {c',..., 6"V} is a finite set. Take
v € X. Then there exist nonnegative rational numbers ¢y, ...,gy such that

N N
v=Y gic' and Y gi=1.
i=1 i=1
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Let d be the product of the denominators of the g;’s and 6 = d - v € N™. Clearly:
(I[v] )d _ Id-(v] C I°.

Setting a; = dg;, notice that ¢ = ):fy: | a;o' and Zé\': 1a; = d. Therefore
(I"hd cr1° cr1(x)?.

This implies that /1] is contained in the integral closure of I(X). O

From the above lemma, I(Z) D ¥, s I1V1. In particular:

2 P1,...,Ppm satisfy condition A — [ Z (ﬂ pkek (Iv1)) )

veX \k=1

Definition 1.3. We say that py,...,p,, satisfy condition A+ if

=Y (ﬁplgekwvm) YN

ver \k=1
Remark 1.4. If py,...,p, satisfy condition A+, then they satisfy A as well (for o € N,
just consider the singleton X = {c'}).

Lemma 1.5. Let 6',..., 6" be vectors in N™, and ay,...,ay € N. Then

N N
ex (Zaicl> = Zaiek(cl) Vk=1,....m
i=1 i=1

Proof. Set 6 = Zl 1 Gi0 o', and notice that
N

=11 ()" CI—I(pkek ”)* lljwk pE a0

i=1
so the inequality e;(0) > YV | a;er(o”) follows directly from the definition.
For the other inequality, for each i = 1,...,N choose f; € I° such that its image in

r(o))+1

Sp, is not in (pg)yt . Then the class f; is a nonzero element of degree e;(c") in the
associated graded ring G of Sy, . Since G is a polynomial ring (in particular a domain), the
element H - £* is a nonzero element of degree Zl Laiex(0") in G. Therefore

i k :
i=1

This means that e;(c) < Y'Y | aer(0?). O
Consider the function e : N — N defined by
oc—e(o):=(e(0),...,en(0)).

From the above lemma we can extend it to a Q-linear map e : Q" — Q™.
Given £ C N, the above map sends X to the convex hull B C Q™ of the set {e(0) :
6 € X} C Q™. In particular we have the following:
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Proposition 1.6. The prime ideals py,...,pn, satisfy condition A+ if and only if

M= Y (ﬁpﬂ”‘“) VECN

(Vi,-,vm)EPE \k=1
If 2 C N and s € N, define £ := {6"! +...+ 0% : 6% € £}. Then
[(X)" =I1(X%).
Furthermore X5 = 5-X, i.e. Pos = s - Pr. So:

Proposition 1.7. If py,...,py satisfy condition A+, then

izr= Y (ﬂp,(j”“)> VECN" seN.

(V1yeervm)EP: \k=1
We conclude this section by stating the following definition:

Definition 1.8. We say that py,...,p,, satisfy condition B if there exists a polynomial
feniy pzt(p") such that in (f) is a square-free monomial for some term order < on S.

Example 1.9. Let S = k[x,y], m =2 and p; = (x) and pp = (y). Of course these ideals
satisfy condition B by considering f = xy.

If 6 = (01,072), then I° = (x%1y%2) and e;(0) = O, therefore they trivially satisfy
condition A so.

Though less trivial, it is a well-known fact that (x) and (y) satisfy condition A+ as well:

for example, (x3,y3) = (x*,x%y,xy%,y?).
2. GENERALIZED TEST IDEALS AND F-THRESHOLDS

Let p > 0 be the characteristic of k, / be an ideal of S and m be the homogeneous
maximal ideal of S. For all e € N, denoting by mlPl = (xf', ..., xh ), define

Ve(I) := max{re N:I" ¢ mlPl},
The F-pure threshold of I is then

fpt(7) := lim ve(l).

e—roo pe

The p°-th root of I, denoted by 1 [/ pe}, is the smallest ideal J C S such that / C J (], By
the flatness of the Frobenius over S the g-th root is well defined. If A is a positive real
number, then it is easy to see that

1/p¢ 1 e+1
(ﬂllﬂ)[ /P c (IW’HW)[ /p ].

The generalized test ideal of I with coefficient A is defined as:

[1/p°]
t(A-1) = (1”1’61) .
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Note that T(A-7) 2 7(u -I) whenever A < u. By [BMS, Corollary 2.16], V A € R+,
JeeRogsuchthat t(A-I)=7t(u-I) Vue[A,A+e). ALe€R.is called an F-
Jumping number for [ if t((A —¢€)-1) 2 t(A-I) V€ € Ryyp.

1
b %T#() /le %ﬂ > A-axis

W 2tA-D 2t 1) D ... 2Tt(A-1) D ...

=

The A; above are the F-jumping numbers. Notice that A; = fpt(I).
Theorem 2.1. If py,..., P, satisfy conditions A and B, then ¥ A € R~ we have

m
T(}, _IG) _ m p]((\_lek(c)J"‘l_ht(Pk)) Vo e N
k=1
If p1,...,pm satisfy conditions A+ and B, then ¥V A € R~ we have

A1) =Y (ﬂp,glm“h‘(pk”> ¥EC N

(Viseresvm)EP: \k=1

Proof. The first part immediately follows from [HV, Theorem 3.14], for if py,...,pm
satisfy conditions A and B, then /° obviously enjoys condition (0+) of [HV] V o € N™,
Concerning the second part, Proposition implies that /(X) enjoys condition (x) of
[HV] V £ C N™ whenever py,...,p, satisfy conditions A+ and B. Therefore the conclu-
sion follows once again by [HV, Theorem 4.3]. O

3. WHERE TO FISH?

Let k be of characteristic p > 0. So far we have seen that, if we have graded primes
P1,...,pm of S enjoying A and B, then we can compute lots of generalized test ideals. If
they enjoy A+ and B, we get even more.

That looks nice, but how can we produce py,...,p,, like these? Before trying to answer
this question, let us notice that, as explained in [HV]], the ideals p1, ..., p,, of the following
examples satisfy conditions A+ and B:

(i) S=Kkxy,...,xy] and p; = (x;) forall k =1,...,m.
(ii) S =k[X], where X is an m x n generic matrix (with m < n) and py = [;(X) is the
ideal generated by the k-minors of X forallk =1,...,m.

(iii) S =Kk[Y], where Y is an m x m generic symmetric matrix and p; = [;(Y) is the

ideal generated by the k-minors of Y forall k =1,... ,m.
(iv) S =k[Z], where Z is a (2m+ 1) X (2m+ 1) generic skew-symmetric matrix and
px = Py (Z) is the ideal generated by the 2k-Pfaffians of Z forall k = 1,...,m.

Even for a simple example like (i), Theorem [2.1]is interesting: it gives a description of
the generalized test ideals of any monomial ideal.

In my opinion, a class to look at to find new examples might be the following: fix
f € S a homogeneous polynomial such that in_(f) is a square-free monomial for
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some term order < (better if lexicographical) on S, and let ¢ be the set of ideals of S
defined, recursively, like follows:

(@ (f) €€y

(b) If 1€ €y, thenl:J € €yforallJCS;

(c) If I,J € €, then both I +J and I NJ belong to €.

If f is an irreducible polynomial, ¢ consists of only the principal ideal generated by
f, but otherwise things can get interesting. Let us give two guiding examples:

(i) If u := x; - - - xp, then the associated primes of (u) are (xy), ..., (x;). Furthermore
all the ideals of S = k|xy,...,x,] generated by variables are sums of the principal
ideals above, and all square-free monomial ideals can be obtained by intersecting
ideals generated by variables. Therefore, any square-free monomial ideal belongs
to %,, and one can check that indeed:

%u = {square-free monomial ideals of S}.

(i) Let X = (x; J-) be an m x n matrix of variables, with m < n. For positive integers
ar <...<a,<m and b; < ... < b <n, recall the standard notation for the
corresponding k-minor:

xalbl xalbz e xalbk
[al,...,ak|b1,...,bk] = det : : :
Xayby  Xagby 7 Xapby

Fori=0,....n—m,let §;:=[1,...,mli+1,...,m+i]. Also, for j=1,...,m—1
setgi:=[j+1,....m|l,....om—jland hj:=[1,....m— jln—m+j+1,...,n].
Let A be the product of the 9;’s, the g;’s and the 4;’s:

n—m m—1
A= H 6,'- gjhj-
i=0 j=1

By considering the lexicographical term order < extending the linear order
X11 > X122 > X[p>X21 > >X > > Xl > > X

we have that

n—m m—1
in(A) = []in(&)- [Tin(gj)in(h;) = ] xij
i=0 =1 ic{l,..m}
Je{1,...,n}
is a square-free monomial. Since each (6;) belongs to %x, the height-(n —m+ 1)
complete intersection

J:=(80,---,01—m)

is an ideal of %) too. Notice that the ideal 7,,(X) generated by all the maximal
minors of X is a height-(n — m + 1) prime ideal containing J. So I,(X) is an
associated prime of J, and thus an ideal of %, by definition. With more effort, one
should be able to show that the ideals of minors I;(X) stay in €, for any size k.
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The ideals of € have quite strong properties. First of all, € is a finite set by [Scl.
Then, all the ideals in ¢ are radical. Even more, Knutson proved in [Knl that they have
a square-free initial ideal!

In order to produce graded prime ideals py, ..., p,, satisfying conditions A (or even A+)
and B, it seems natural to seek for them among the prime ideals in €. This is because, at
least, f is a good candidate for the polynomial needed for condition B: if f = f;--- f, is
the factorization of f in irreducible polynomials, then for each A C {1,...,r} the ideal

Ja:=(fi:iecA)CS

is a complete intersection of height |A|. If p is an associated prime ideal of Jy4, then f
obviously belongs to p|A| C p(|A|). So such a p satisfies B.

Question 3.1. Does the ideal p above satisfy condition A? Even more, is it true that for
prime ideals p as above p* = p'®) for all s € N?

If the above question admitted a positive answer, Theorem [2.1| would provide the gen-
eralized test ideals of p. A typical example, is when J4 = (Jy,...,0h—n) and p = L, (X)
(see (ii) above), in which case it is well-known that 7,,(X)* = I,,(X )(S) for all s € N (e.g.
see [BV, Corollary 9.18].

Remark 3.2. Unfortunately, it is not true that p satisfies B for all prime ideal p € €7:
for example, consider f = A in the case m = n = 2, that is A = xp; (x11x20 — X12X21 )X21.
Notice that (x21,x11x22 — X12%21) = (X21,X11%22) = (X21,%11) N (¥21,X22), O

p = (x21,x11) + (x21,X22) = (x21,%11,%22) € Ga.
However A ¢ p©).

Problem 3.3. Find a large class of prime ideals in € (or even characterize them) satis-
fying condition B.

If py,...,p, are prime ideals satisfying A+, then (by definition)

Zpi - Zpl VAC {17 am}'

i€A i€A
If p1,...,pn are in €, then the above equality holds true because Y ;c4 p;, belonging to
%, is aradical ideal.

Problem 3.4. Let ¢ be the set of prime ideals in 6. Is it true that & satisfies condition
A+? If not, find a large subset of & satisfying condition A+.
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