F-THRESHOLDS, INTEGRAL CLOSURE AND CONVEXITY

MATTEO VARBARO

To Winfried Bruns on his 70th birthday

Abstract

The purpose of this note is to revisit the results of [HV] from a slightly different perspective, outlining how, if the integral closures of a finite set of prime ideals abide the expected convexity patterns, then the existence of a peculiar polynomial f allows one to compute the F-jumping numbers of all the ideals formed by taking sums of products of the original ones. The note concludes with the suggestion of a possible source of examples falling in such a framework.

1. Properties A, A+ and B for a finite set of prime ideals

Let S be a standard graded polynomial ring over a field \mathbb{k} and let m be a positive integer. Fix homogeneous prime ideals of S :

$$
\mathfrak{p}_{1}, \mathfrak{p}_{2}, \ldots, \mathfrak{p}_{m}
$$

For any $\sigma=\left(\sigma_{1}, \ldots, \sigma_{m}\right) \in \mathbb{N}^{m}$ and $k=1, \ldots, m$, denote by

$$
I^{\sigma}:=\mathfrak{p}_{1}^{\sigma_{1}} \cdots \mathfrak{p}_{m}^{\sigma_{m}} \quad \text { and } \quad e_{k}(\sigma):=\max \left\{\ell: I^{\sigma} \subseteq \mathfrak{p}_{k}^{(\ell)}\right\}
$$

Obviously we have $I^{\sigma} \subseteq \bigcap_{k=1}^{m} \mathfrak{p}_{k}^{\left(e_{k}(\sigma)\right)}$. Since $S_{\mathfrak{p}_{k}}$ is a regular local ring with maximal ideal $\left(\mathfrak{p}_{k}\right)_{\mathfrak{p}_{k}}$, we have that $\left(\mathfrak{p}_{k}\right)_{\mathfrak{p}_{k}}^{\ell}$ is integrally closed in $S_{\mathfrak{p}_{k}}$ for any $\ell \in \mathbb{N}$. Therefore $p_{k}^{(\ell)}=\left(\mathfrak{p}_{k}\right)_{\mathfrak{p}_{k}}^{\ell} \cap S$ is integrally closed in S for any $\ell \in \mathbb{N}$. Eventually we conclude that $\bigcap_{k=1}^{m} \mathfrak{p}_{k}^{\left(e_{k}(\sigma)\right)}$ is integrally closed in S, so:

$$
\begin{equation*}
\overline{I^{\sigma}} \subseteq \bigcap_{k=1}^{m} \mathfrak{p}_{k}^{\left(e_{k}(\sigma)\right)} \tag{1}
\end{equation*}
$$

Definition 1.1. We say that $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{m}$ satisfy condition \mathbf{A} if

$$
\overline{I^{\sigma}}=\bigcap_{k=1}^{m} \mathfrak{p}_{k}^{\left(e_{k}(\sigma)\right)} \quad \forall \sigma \in \mathbb{N}^{m}
$$

If $\Sigma \subseteq \mathbb{N}^{m}$, denote by $I(\Sigma):=\sum_{\sigma \in \Sigma} I^{\sigma}$ and by $\bar{\Sigma} \subseteq \mathbb{Q}^{m}$ the convex hull of $\Sigma \subseteq \mathbb{Q}^{m}$.
Lemma 1.2. For any $\Sigma \subseteq \mathbb{N}^{m}, \overline{I(\Sigma)} \supseteq \Sigma_{\mathbf{v} \in \bar{\Sigma}} I^{\lceil\mathbf{v}\rceil}$, where $\lceil\mathbf{v}\rceil:=\left(\left\lceil v_{1}\right\rceil, \ldots,\left\lceil v_{m}\right\rceil\right)$ for $\mathbf{v}=$ $\left(v_{1}, \ldots, v_{m}\right) \in \mathbb{Q}^{m}$.
Proof. Since S is Noetherian, we can assume that $\Sigma=\left\{\sigma^{1}, \ldots, \sigma^{N}\right\}$ is a finite set. Take $\mathbf{v} \in \bar{\Sigma}$. Then there exist nonnegative rational numbers q_{1}, \ldots, q_{N} such that

$$
\mathbf{v}=\sum_{i=1}^{N} q_{i} \sigma^{i} \quad \text { and } \quad \sum_{i=1}^{N} q_{i}=1
$$

Let d be the product of the denominators of the q_{i} 's and $\sigma=d \cdot \mathbf{v} \in \mathbb{N}^{m}$. Clearly:

$$
\left(I^{[\mathbf{v}]}\right)^{d}=I^{d \cdot\lceil\mathbf{v}]} \subseteq I^{\sigma} .
$$

Setting $a_{i}=d q_{i}$, notice that $\sigma=\sum_{i=1}^{N} a_{i} \sigma^{i}$ and $\sum_{i=1}^{N} a_{i}=d$. Therefore

$$
\left(I^{[\mathbf{v}]}\right)^{d} \subseteq I^{\sigma} \subseteq I(\Sigma)^{d}
$$

This implies that $I^{[\mathrm{v}]}$ is contained in the integral closure of $I(\Sigma)$.
From the above lemma, $\overline{I(\Sigma)} \supseteq \sum_{\mathbf{v} \in \bar{\Sigma}} \overline{I^{[\mathbf{v}]}}$. In particular:

$$
\begin{equation*}
\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{m} \text { satisfy condition } \mathbf{A} \Longrightarrow \overline{I(\Sigma)} \supseteq \sum_{\mathbf{v} \in \bar{\Sigma}}\left(\bigcap_{k=1}^{m} \mathfrak{p}_{k}^{\left(e_{k}([\mathbf{v}])\right)}\right) . \tag{2}
\end{equation*}
$$

Definition 1.3. We say that $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{m}$ satisfy condition $\mathbf{A}+$ if

$$
\overline{I(\Sigma)}=\sum_{\mathbf{v} \in \bar{\Sigma}}\left(\bigcap_{k=1}^{m} \mathfrak{p}_{k}^{\left(e_{k}([\mathbf{v}])\right)}\right) \quad \forall \Sigma \subseteq \mathbb{N}^{m}
$$

Remark 1.4. If $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{m}$ satisfy condition $\mathbf{A +}$, then they satisfy \mathbf{A} as well (for $\sigma \in \mathbb{N}^{m}$, just consider the singleton $\Sigma=\{\sigma\}$).
Lemma 1.5. Let $\sigma^{1}, \ldots, \sigma^{N}$ be vectors in \mathbb{N}^{m}, and $a_{1}, \ldots, a_{N} \in \mathbb{N}$. Then

$$
e_{k}\left(\sum_{i=1}^{N} a_{i} \sigma^{i}\right)=\sum_{i=1}^{N} a_{i} e_{k}\left(\sigma^{i}\right) \quad \forall k=1, \ldots, m .
$$

Proof. Set $\sigma=\sum_{i=1}^{N} a_{i} \sigma^{i}$, and notice that

$$
I^{\sigma}=\prod_{i=1}^{N}\left(I^{\sigma^{i}}\right)^{a_{i}} \subseteq \prod_{i=1}^{N}\left(\mathfrak{p}_{k}^{\left(e_{k}\left(\sigma^{i}\right)\right)}\right)^{a_{i}} \subseteq \prod_{i=1}^{N} \mathfrak{p}_{k}^{\left(a_{i} e_{k}\left(\sigma^{i}\right)\right)} \subseteq \mathfrak{p}_{k}^{\left(\sum_{i=1}^{N} a_{i} e_{k}\left(\sigma^{i}\right)\right)}
$$

so the inequality $e_{k}(\sigma) \geq \sum_{i=1}^{N} a_{i} e_{k}\left(\sigma^{i}\right)$ follows directly from the definition.
For the other inequality, for each $i=1, \ldots, N$ choose $f_{i} \in I^{\sigma^{i}}$ such that its image in $S_{\mathfrak{p}_{k}}$ is not in $\left(\mathfrak{p}_{k}\right)_{\mathfrak{p}_{k}}^{e_{k}\left(\sigma^{i}\right)+1}$. Then the class \bar{f}_{i} is a nonzero element of degree $e_{k}\left(\sigma^{i}\right)$ in the associated graded ring G of $S_{\mathfrak{p}_{k}}$. Since G is a polynomial ring (in particular a domain), the element $\prod_{i=1}^{N} \bar{f}_{i}^{a_{i}}$ is a nonzero element of degree $\sum_{i=1}^{N} a_{i} e_{k}\left(\sigma^{i}\right)$ in G. Therefore

$$
\prod_{i=1}^{N} f_{i}^{a_{i}} \in I_{\mathfrak{p}_{k}}^{\sigma} \backslash \mathfrak{p}_{k}^{\left(\sum_{i=1}^{N} a_{i} e_{k}\left(\sigma^{i}\right)+1\right)}
$$

This means that $e_{k}(\sigma) \leq \sum_{i=1}^{N} a_{i} e_{k}\left(\sigma^{i}\right)$.
Consider the function $e: \mathbb{N}^{m} \rightarrow \mathbb{N}^{m}$ defined by

$$
\sigma \mapsto e(\sigma):=\left(e_{1}(\sigma), \ldots, e_{m}(\sigma)\right) .
$$

From the above lemma we can extend it to a \mathbb{Q}-linear map $e: \mathbb{Q}^{m} \rightarrow \mathbb{Q}^{m}$.
Given $\Sigma \subseteq \mathbb{N}^{m}$, the above map sends $\bar{\Sigma}$ to the convex hull $P_{\Sigma} \subseteq \mathbb{Q}^{m}$ of the set $\{e(\sigma)$: $\sigma \in \Sigma\} \subseteq \mathbb{Q}^{m}$. In particular we have the following:

Proposition 1.6. The prime ideals $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{m}$ satisfy condition $\mathbf{A +}$ if and only if

$$
\overline{I(\Sigma)}=\sum_{\left(v_{1}, \ldots, v_{m}\right) \in P_{\Sigma}}\left(\bigcap_{k=1}^{m} \mathfrak{p}_{k}^{\left(\left\lceil v_{k}\right\rceil\right)}\right) \quad \forall \Sigma \subseteq \mathbb{N}^{m}
$$

If $\Sigma \subseteq \mathbb{N}^{m}$ and $s \in \mathbb{N}$, define $\Sigma^{s}:=\left\{\sigma^{i_{1}}+\ldots+\sigma^{i_{s}}: \sigma^{i_{k}} \in \Sigma\right\}$. Then

$$
I(\Sigma)^{s}=I\left(\Sigma^{s}\right)
$$

Furthermore $\overline{\Sigma^{s}}=s \cdot \bar{\Sigma}$, i.e. $P_{\Sigma^{s}}=s \cdot P_{\Sigma}$. So:
Proposition 1.7. If $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{m}$ satisfy condition $\mathbf{A +}$, then

$$
\overline{I(\Sigma)^{s}}=\sum_{\left(v_{1}, \ldots, v_{m}\right) \in P_{\Sigma}}\left(\bigcap_{k=1}^{m} \mathfrak{p}_{k}^{\left(\left[\left\ulcorner v_{k}\right\rceil\right)\right.}\right) \forall \Sigma \subseteq \mathbb{N}^{m}, s \in \mathbb{N} .
$$

We conclude this section by stating the following definition:
Definition 1.8. We say that $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{m}$ satisfy condition \mathbf{B} if there exists a polynomial $f \in \bigcap_{k=1}^{m} \mathfrak{p}_{k}^{\mathrm{ht}\left(\mathfrak{p}_{k}\right)}$ such that in $\boldsymbol{h}_{\prec}(f)$ is a square-free monomial for some term order \prec on S.

Example 1.9. Let $S=\mathbb{k}[x, y], m=2$ and $\mathfrak{p}_{1}=(x)$ and $\mathfrak{p}_{2}=(y)$. Of course these ideals satisfy condition \mathbf{B} by considering $f=x y$.

If $\sigma=\left(\sigma_{1}, \sigma_{2}\right)$, then $I^{\sigma}=\left(x^{\sigma_{1}} y^{\sigma_{2}}\right)$ and $e_{k}(\sigma)=\sigma_{k}$, therefore they trivially satisfy condition \mathbf{A} so.

Though less trivial, it is a well-known fact that (x) and (y) satisfy condition A+ as well: for example, $\overline{\left(x^{3}, y^{3}\right)}=\left(x^{3}, x^{2} y, x y^{2}, y^{3}\right)$.

2. Generalized test ideals and F-Thresholds

Let $p>0$ be the characteristic of \mathbb{k}, I be an ideal of S and \mathfrak{m} be the homogeneous maximal ideal of S. For all $e \in \mathbb{N}$, denoting by $\mathfrak{m}^{\left[p^{e}\right]}=\left(x_{1}^{p^{e}}, \ldots, x_{n}^{p^{e}}\right)$, define

$$
v_{e}(I):=\max \left\{r \in \mathbb{N}: I^{r} \nsubseteq \mathfrak{m}^{\left[p^{e}\right]}\right\}
$$

The F-pure threshold of I is then

$$
\operatorname{fpt}(I):=\lim _{e \rightarrow \infty} \frac{v_{e}(I)}{p^{e}}
$$

The p^{e}-th root of I, denoted by $I^{\left[1 / p^{e}\right]}$, is the smallest ideal $J \subseteq S$ such that $I \subseteq J^{\left[p^{e}\right]}$. By the flatness of the Frobenius over S the q-th root is well defined. If λ is a positive real number, then it is easy to see that

$$
\left(I^{\left[\lambda p^{e}\right\rceil}\right)^{\left[1 / p^{e}\right]} \subseteq\left(I^{\left[\lambda p^{e+1}\right\rceil}\right)^{\left[1 / p^{e+1}\right]}
$$

The generalized test ideal of I with coefficient λ is defined as:

$$
\tau(\lambda \cdot I): \underset{e \gg 0}{=}\left(I^{\left\lceil\lambda p^{e}\right\rceil}\right)^{\left[1 / p^{e}\right]} .
$$

Note that $\tau(\lambda \cdot I) \supseteq \tau(\mu \cdot I)$ whenever $\lambda \leq \mu$. By [BMS, Corollary 2.16], $\forall \lambda \in \mathbb{R}_{>0}$, $\exists \varepsilon \in \mathbb{R}_{>0}$ such that $\tau(\lambda \cdot I)=\tau(\mu \cdot I) \quad \forall \mu \in[\lambda, \lambda+\varepsilon)$. A $\lambda \in \mathbb{R}_{>0}$ is called an F jumping number for I if $\tau((\lambda-\varepsilon) \cdot I) \supsetneq \tau(\lambda \cdot I) \forall \varepsilon \in \mathbb{R}_{>0}$.

$$
\begin{gathered}
\frac{\tau=(1) \chi_{\lambda_{1}} \tau \neq(1)}{\lambda_{2}} \cdots \xrightarrow[\lambda_{n}]{l} \cdots \longrightarrow \lambda \text {-axis } \\
(1) \supsetneq \tau\left(\lambda_{1} \cdot I\right) \supsetneq \tau\left(\lambda_{2} \cdot I\right) \supsetneq \cdots \supsetneq \tau\left(\lambda_{n} \cdot I\right) \supsetneq \cdots
\end{gathered}
$$

The λ_{i} above are the F-jumping numbers. Notice that $\lambda_{1}=\mathrm{fpt}(I)$.
Theorem 2.1. If $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{m}$ satisfy conditions \mathbf{A} and \mathbf{B}, then $\forall \lambda \in \mathbb{R}_{>0}$ we have

$$
\tau\left(\lambda \cdot I^{\sigma}\right)=\bigcap_{k=1}^{m} \mathfrak{p}_{k}^{\left(\left\lfloor\lambda e_{k}(\sigma)\right\rfloor+1-\mathrm{ht}\left(\mathfrak{p}_{k}\right)\right)} \quad \forall \sigma \in \mathbb{N}^{m}
$$

If $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{m}$ satisfy conditions $\mathbf{A +}$ and \mathbf{B}, then $\forall \lambda \in \mathbb{R}_{>0}$ we have

$$
\tau(\lambda \cdot I(\Sigma))=\sum_{\left(v_{1}, \ldots, v_{m}\right) \in P_{\Sigma}}\left(\bigcap_{k=1}^{m} \mathfrak{p}_{k}^{\left(\left\lfloor\lambda v_{k}\right\rfloor+1-\operatorname{ht}\left(\mathfrak{p}_{k}\right)\right)}\right) \quad \forall \Sigma \subseteq \mathbb{N}^{m} .
$$

Proof. The first part immediately follows from [HV], Theorem 3.14], for if $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{m}$ satisfy conditions A and \mathbf{B}, then I^{σ} obviously enjoys condition $(\diamond+)$ of [HV] $\forall \sigma \in \mathbb{N}^{m}$.

Concerning the second part, Proposition 1.7 implies that $I(\Sigma)$ enjoys condition (*) of [HV] $\forall \Sigma \subseteq \mathbb{N}^{m}$ whenever $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{m}$ satisfy conditions A+ and \mathbf{B}. Therefore the conclusion follows once again by [HV, Theorem 4.3].

3. Where to fish?

Let \mathbb{k} be of characteristic $p>0$. So far we have seen that, if we have graded primes $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{m}$ of S enjoying \mathbf{A} and \mathbf{B}, then we can compute lots of generalized test ideals. If they enjoy $\mathbf{A +}$ and \mathbf{B}, we get even more.

That looks nice, but how can we produce $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{m}$ like these? Before trying to answer this question, let us notice that, as explained in [HV], the ideals $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{m}$ of the following examples satisfy conditions $\mathbf{A}+$ and \mathbf{B} :
(i) $S=\mathbb{k}\left[x_{1}, \ldots, x_{m}\right]$ and $\mathfrak{p}_{k}=\left(x_{k}\right)$ for all $k=1, \ldots, m$.
(ii) $S=\mathbb{k}[X]$, where X is an $m \times n$ generic matrix (with $m \leq n$) and $\mathfrak{p}_{k}=I_{k}(X)$ is the ideal generated by the k-minors of X for all $k=1, \ldots, m$.
(iii) $S=\mathbb{k}[Y]$, where Y is an $m \times m$ generic symmetric matrix and $\mathfrak{p}_{k}=I_{k}(Y)$ is the ideal generated by the k-minors of Y for all $k=1, \ldots, m$.
(iv) $S=\mathbb{k}[Z]$, where Z is a $(2 m+1) \times(2 m+1)$ generic skew-symmetric matrix and $\mathfrak{p}_{k}=P_{2 k}(Z)$ is the ideal generated by the $2 k$-Pfaffians of Z for all $k=1, \ldots, m$.
Even for a simple example like (i), Theorem 2.1 is interesting: it gives a description of the generalized test ideals of any monomial ideal.

In my opinion, a class to look at to find new examples might be the following: fix $f \in S$ a homogeneous polynomial such that $\mathrm{in}_{\prec}(f)$ is a square-free monomial for
some term order \prec (better if lexicographical) on S, and let \mathscr{C}_{f} be the set of ideals of S defined, recursively, like follows:
(a) $(f) \in \mathscr{C}_{f}$;
(b) If $I \in \mathscr{C}_{f}$, then $I: J \in \mathscr{C}_{f}$ for all $J \subseteq S$;
(c) If $I, J \in \mathscr{C}_{f}$, then both $I+J$ and $I \cap J$ belong to \mathscr{C}_{f}.

If f is an irreducible polynomial, \mathscr{C}_{f} consists of only the principal ideal generated by f, but otherwise things can get interesting. Let us give two guiding examples:
(i) If $u:=x_{1} \cdots x_{m}$, then the associated primes of (u) are $\left(x_{1}\right), \ldots,\left(x_{m}\right)$. Furthermore all the ideals of $S=\mathbb{k}\left[x_{1}, \ldots, x_{m}\right]$ generated by variables are sums of the principal ideals above, and all square-free monomial ideals can be obtained by intersecting ideals generated by variables. Therefore, any square-free monomial ideal belongs to \mathscr{C}_{u}, and one can check that indeed:

$$
\mathscr{C}_{u}=\{\text { square-free monomial ideals of } S\} .
$$

(ii) Let $X=\left(x_{i j}\right)$ be an $m \times n$ matrix of variables, with $m \leq n$. For positive integers $a_{1}<\ldots<a_{k} \leq m$ and $b_{1}<\ldots<b_{k} \leq n$, recall the standard notation for the corresponding k-minor:

$$
\left[a_{1}, \ldots, a_{k} \mid b_{1}, \ldots, b_{k}\right]:=\operatorname{det}\left(\begin{array}{cccc}
x_{a_{1} b_{1}} & x_{a_{1} b_{2}} & \cdots & x_{a_{1} b_{k}} \\
\vdots & \vdots & \ddots & \vdots \\
x_{a_{k} b_{1}} & x_{a_{k} b_{2}} & \cdots & x_{a_{k} b_{k}}
\end{array}\right) .
$$

For $i=0, \ldots, n-m$, let $\delta_{i}:=[1, \ldots, m \mid i+1, \ldots, m+i]$. Also, for $j=1, \ldots, m-1$ set $g_{j}:=[j+1, \ldots, m \mid 1, \ldots, m-j]$ and $h_{j}:=[1, \ldots, m-j \mid n-m+j+1, \ldots, n]$.

Let Δ be the product of the δ_{i} 's, the g_{j} 's and the h_{j} 's:

$$
\Delta:=\prod_{i=0}^{n-m} \delta_{i} \cdot \prod_{j=1}^{m-1} g_{j} h_{j} .
$$

By considering the lexicographical term order \prec extending the linear order

$$
x_{11}>x_{12}>\cdots>x_{1 n}>x_{21}>\cdots>x_{2 n}>\cdots>x_{m 1}>\cdots>x_{m n}
$$

we have that

$$
\operatorname{in}(\Delta)=\prod_{i=0}^{n-m} \operatorname{in}\left(\delta_{i}\right) \cdot \prod_{j=1}^{m-1} \operatorname{in}\left(g_{j}\right) \operatorname{in}\left(h_{j}\right)=\prod_{\substack{i \in\{1, \ldots, m\} \\ j \in\{1, \ldots, n\}}} x_{i j}
$$

is a square-free monomial. Since each $\left(\delta_{i}\right)$ belongs to \mathscr{C}_{Δ}, the height- $(n-m+1)$ complete intersection

$$
J:=\left(\delta_{0}, \ldots, \delta_{n-m}\right)
$$

is an ideal of \mathscr{C}_{Δ} too. Notice that the ideal $I_{m}(X)$ generated by all the maximal minors of X is a height- $(n-m+1)$ prime ideal containing J. So $I_{m}(X)$ is an associated prime of J, and thus an ideal of \mathscr{C}_{Δ} by definition. With more effort, one should be able to show that the ideals of minors $I_{k}(X)$ stay in \mathscr{C}_{Δ} for any size k.

The ideals of \mathscr{C}_{f} have quite strong properties. First of all, \mathscr{C}_{f} is a finite set by [Sc]. Then, all the ideals in \mathscr{C}_{f} are radical. Even more, Knutson proved in [Kn] that they have a square-free initial ideal!

In order to produce graded prime ideals $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{m}$ satisfying conditions \mathbf{A} (or even $\mathbf{A +}$) and \mathbf{B}, it seems natural to seek for them among the prime ideals in \mathscr{C}_{f}. This is because, at least, f is a good candidate for the polynomial needed for condition \mathbf{B} : if $f=f_{1} \cdots f_{r}$ is the factorization of f in irreducible polynomials, then for each $A \subseteq\{1, \ldots, r\}$ the ideal

$$
J_{A}:=\left(f_{i}: i \in A\right) \subseteq S
$$

is a complete intersection of height $|A|$. If \mathfrak{p} is an associated prime ideal of J_{A}, then f obviously belongs to $\mathfrak{p}^{|A|} \subseteq \mathfrak{p}^{(|A|)}$. So such a \mathfrak{p} satisfies \mathbf{B}.

Question 3.1. Does the ideal \mathfrak{p} above satisfy condition A? Even more, is it true that for prime ideals \mathfrak{p} as above $\mathfrak{p}^{s}=\mathfrak{p}^{(s)}$ for all $s \in \mathbb{N}$?

If the above question admitted a positive answer, Theorem 2.1 would provide the generalized test ideals of \mathfrak{p}. A typical example, is when $J_{A}=\left(\delta_{0}, \ldots, \delta_{n-m}\right)$ and $\mathfrak{p}=I_{m}(X)$ (see (ii) above), in which case it is well-known that $I_{m}(X)^{s}=I_{m}(X)^{(s)}$ for all $s \in \mathbb{N}$ (e.g. see [BV, Corollary 9.18].

Remark 3.2. Unfortunately, it is not true that \mathfrak{p} satisfies \mathbf{B} for all prime ideal $\mathfrak{p} \in \mathscr{C}_{f}$: for example, consider $f=\Delta$ in the case $m=n=2$, that is $\Delta=x_{21}\left(x_{11} x_{22}-x_{12} x_{21}\right) x_{21}$. Notice that $\left(x_{21}, x_{11} x_{22}-x_{12} x_{21}\right)=\left(x_{21}, x_{11} x_{22}\right)=\left(x_{21}, x_{11}\right) \cap\left(x_{21}, x_{22}\right)$, so

$$
\mathfrak{p}=\left(x_{21}, x_{11}\right)+\left(x_{21}, x_{22}\right)=\left(x_{21}, x_{11}, x_{22}\right) \in \mathscr{C}_{\Delta} .
$$

However $\Delta \notin \mathfrak{p}^{(3)}$.
Problem 3.3. Find a large class of prime ideals in \mathscr{C}_{f} (or even characterize them) satisfying condition \mathbf{B}.

If $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{m}$ are prime ideals satisfying $\mathbf{A +}$, then (by definition)

$$
\overline{\sum_{i \in A} \mathfrak{p}_{i}}=\sum_{i \in A} \mathfrak{p}_{i} \quad \forall A \subseteq\{1, \ldots, m\}
$$

If $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{m}$ are in \mathscr{C}_{f}, then the above equality holds true because $\sum_{i \in A} \mathfrak{p}_{i}$, belonging to \mathscr{C}_{f}, is a radical ideal.
Problem 3.4. Let \mathscr{P}_{f} be the set of prime ideals in \mathscr{C}_{f}. Is it true that \mathscr{P}_{f} satisfies condition $\mathbf{A +}$? If not, find a large subset of \mathscr{P}_{f} satisfying condition $\mathbf{A +}$.

References

[BMS] M. Blickle, M. Mustaţă, K.E. Smith, Discreteness and rationality of F-thresholds, Michigan Math. J. 57 (2008), 43-61.
[BV] W. Bruns, U. Vetter, Determinantal rings, Lecture Notes in Mathematics 1327, Springer-Verlag, Berlin, 1988.
[HV] I.B. Henriques, M. Varbaro, Test, multiplier and invariant ideals, Adv. Math. 287 (2016), 704-732.
[Kn] A. Knutson, Frobenius splitting, point-counting, and degeneration, available at http://arxiv.org/ abs/0911.4941(2009).
[Sc] K. Schwede, F-adjunction, Algebra \& Number Theory 3 (2009), 907-950.

Dipartimento di Matematica, Università degli Studi di Genova, Italy
E-mail address: varbaro@dima.unige.it

