Regularity of line arrangements

UMI-SIMAI-PTM joint meeting 2018, Wroclaw, Poland Session "Projective Varieties and their Arrangements"

Matteo Varbaro
Università degli Studi di Genova

Let X be a (possibly reducible) projective scheme over an algebraically closed field \mathbb{k}. We say that an embedding $X \subseteq \mathbb{P}^{n}$ is arithmetically Gorenstein if, denoting by \mathcal{I}_{X} its sheaf of ideals:

- $X \subseteq \mathbb{P}^{n}$ is projectively normal, i. e. $H^{1}\left(X, \mathcal{I}_{X}(k)\right)=0 \forall k \in \mathbb{Z}$;
- $H^{i}\left(X, \mathcal{O}_{X}(k)\right)=0 \forall 0<i<\operatorname{dim} X, k \in \mathbb{Z}$;
- $\omega_{X} \cong \mathcal{O}_{X}(a)$ for some $a \in \mathbb{Z}$.

In this setting the Castelnuovo-Mumford regularity of $X \subseteq \mathbb{P}^{n}$ is:

$$
\operatorname{reg} X=\operatorname{dim} X+a+2
$$

Examples

(a) If $X \subseteq \mathbb{P}^{n}$ is a complete intersection of hypersurfaces of degrees d_{1}, \ldots, d_{c}, where c is the codimension of X in \mathbb{P}^{n}, then the embedding is aGorenstein of regularity $d_{1}+\ldots+d_{c}-c+1$.
(b) If $X \subseteq \mathbb{P}^{n}$ is a projectively normal embedding of a Calabi-Yau manifold over \mathbb{C}, then it is aGorenstein of regularity $\operatorname{dim} X+2$.

Given a simple graph G on s vertices and an integer r less than s, we say that G is r-connected if the removal of less than r vertices of G does not disconnect it. The valency of a vertex v of G is:

$$
\delta(v)=\mid\{w:\{v, w\} \text { is an edge of } G\} \mid .
$$

- 2-connected, not 3-connected.
- $\delta(\bullet)=5$.
- $\delta($ inner $)=\delta($ inner $)=6$.
- $\delta($ boundary $)=\delta($ boundary $)=3$.

Remark

(i) G is 1 -connected $\Leftrightarrow G$ is connected.
(ii) G is r-connected $\Rightarrow G$ is r^{\prime}-connected for all $r^{\prime} \leq r$.
(iii) G is r-connected $\Rightarrow \delta(v) \geq r$ for all vertices v of G.
G is said to be r-regular if each vertex has valency r.

3-regular, connected, not 2-connected.

Let $X=\bigcup_{i=1}^{s} X_{i} \subseteq \mathbb{P}^{n}$ be a line arrangement (reduced union of lines). The dual graph of X is the simple graph $G(X)$ on s vertices where, for vertices $i \neq j$ in $\{1, \ldots, s\}$:

$$
\{i, j\} \text { is an edge of } G(X) \Leftrightarrow X_{i} \cap X_{j} \neq \emptyset
$$

Example

If $X \subseteq \mathbb{P}^{2}$ then $G(X)$ is the complete graph on s vertices, K_{s}.

Figure: K_{5}

In this case X is a hypersurface:

- $\operatorname{reg} X-1=s-1$.
- $G(X)$ is $(s-1)$-connected.
- $G(X)$ is $(s-1)$-regular.

Example

If $Q \subseteq \mathbb{P}^{3}$ is a smooth quadric, and X is the union of p lines of a ruling of Q, and q of the other ruling, then $G(X)$ is the complete bipartite graph $K_{p, q}$.

Figure: $K_{3,3}$
One can check that $X \subseteq \mathbb{P}^{3}$ is a complete intersection (of Q and an union of p planes) if and only if $p=q$: in this case

- reg $X-1=p$.
- $G(X)$ is p-connected.
- $G(X)$ is p-regular.

Let $Z \subseteq \mathbb{P}^{3}$ be a smooth cubic, and $X=\bigcup_{i=1}^{27} X_{i}$ be the union of all the lines on Z. Below is a representation of the Clebsch's cubic:

$$
x_{0}^{3}+x_{1}^{3}+x_{2}^{3}+x_{3}^{3}=\left(x_{0}+x_{1}+x_{2}+x_{3}\right)^{3} .
$$

One can realize that $X \subseteq \mathbb{P}^{3}$ is a complete intersection of the cubic Z and a union of 9 planes. One can check that:

- $\operatorname{reg} X-1=10$.
- $G(X)$ is 10-connected.
- $G(X)$ is 10 -regular.

If, among the 27 lines on a smooth cubic, we take only the 6 corresponding to the exceptional divisors and the 6 corresponding to the strict transforms of the conics, we get a line arrangement $X \subseteq \mathbb{P}^{3}$ known as Schläfli double six. One can check that it is a complete intersection of the cubic and of a quartic; $G(X)$ is:

- $\operatorname{reg} X-1=5$.
- $G(X)$ is 5 -connected.
- $G(X)$ is 5-regular.

Theorem

Let $X \subseteq \mathbb{P}^{n}$ be an arithmetically Gorenstein line arrangement of Castelnuovo-Mumford regularity $r+1$. Then:
(i) (Benedetti-_, 2014) $G(X)$ is r-connected.
(ii) (Benedetti-Di Marca-_, 2016) If furthermore X has only planar singularities, then $G(X)$ is also r-regular.

Let X_{1}, \ldots, X_{s} be the irreducible components (lines) of X.

- $S=\mathbb{k}\left[x_{0}, \ldots, x_{n}\right] ;$
- for $j=1, \ldots, s, l_{j} \subseteq S$ the saturated ideal defining $X_{j} \subseteq \mathbb{P}^{n}$;
- $I_{X}=\bigcap_{j=1}^{s} I_{j} \subseteq S$ the (saturated) ideal defining $X \subseteq \mathbb{P}^{n}$;
- for any subset $A \subseteq\{1, \ldots, s\}, X_{A}=\bigcup_{j \in A} X_{j} \subseteq \mathbb{P}^{n}$.
(i): Given a subset $A \subseteq\{1, \ldots, s\}$, set $B=\{1, \ldots, s\} \backslash A$. Because X_{A} and X_{B} are linked by $X \subseteq \mathbb{P}^{n}$, which is aGorenstein:

$$
H^{1}\left(X_{A}, \mathcal{I}_{X_{A}}(k)\right) \cong H^{1}\left(X_{B}, \mathcal{I}_{X_{B}}(r-2-k)\right) \quad \forall k \in \mathbb{Z}
$$

Derksen-Sidman: $H^{1}\left(X_{A}, \mathcal{I}_{X_{A}}(k)\right)=0$ for all $k \geq|A|-1$.
So, whenever $|A|<r, H^{1}\left(X_{B}, \mathcal{I}_{X_{B}}\right)=0$ i.e. $H^{0}\left(X_{B}, \mathcal{O}_{X_{B}}\right) \cong \mathbb{k}$. So X_{B} is connected whenever $|A|<r$; i.e. $G(X)$ is r-connected.
(ii): Let d be the valency of the vertex s of $G(X)$; set $J=\bigcap_{j=1}^{s-1} I_{j}$ and $K=I_{s}+J$. Since X has only planar singularities, one sees that

$$
K=I_{s}+(f)
$$

where $f \in S$ is a homogeneous polynomial of degree d. So $\operatorname{Tor}_{n}^{S}(S / K, \mathbb{k})$ is not zero in degree $n+d-1$.

By the short exact sequence $0 \rightarrow S / I_{X} \rightarrow S / I_{s} \oplus S / J \rightarrow S / K \rightarrow 0$, we get the long exact sequence of graded S-modules
$\ldots \rightarrow \operatorname{Tor}_{n}^{S}\left(S / I_{s}, \mathbb{k}\right) \oplus \operatorname{Tor}_{n}^{S}(S / J, \mathbb{k}) \rightarrow \operatorname{Tor}_{n}^{S}(S / K, \mathbb{k}) \rightarrow \operatorname{Tor}_{n-1}^{S}\left(S / I_{x}, \mathbb{k}\right) \rightarrow \ldots$
Since $X_{\{1,2, \ldots, s-1\}}$ is linked to X_{s} by X, we have

$$
\operatorname{Tor}_{n}^{S}(S / J, \mathbb{k})=\operatorname{Tor}_{n}^{S}\left(S / I_{s}, \mathbb{k}\right)=0
$$

Therefore the map $\operatorname{Tor}_{n}^{S}(S / K, \mathbb{k}) \rightarrow \operatorname{Tor}_{n-1}^{S}\left(S / I_{X}, \mathbb{k}\right)$ is injective, so that $\operatorname{Tor}_{n-1}^{S}\left(S / I_{X}, \mathbb{k}\right)$ is not zero in degree $n-1+d$ as well. So

$$
r+1=\operatorname{reg} X \geq d+1
$$

On the other hand we proved in (i) that $G(X)$ is r-connected, so

$$
d \geq r .
$$

Corollary

Let $\iota_{|H|}: Z \hookrightarrow \mathbb{P}^{n}$ be a smooth surface, and let L_{1}, \ldots, L_{s} be lines on it such that $L_{1}+L_{2}+\ldots+L_{s} \sim d H$.
(i) If $n=3$, then each L_{i} intersects exactly $\operatorname{deg} X+d-2$ among the other L_{j} 's.
(ii) If Z is a K_{3} surface, then each L_{i} intersects exactly $d+2$ among the other L_{j} 's.

Let $\iota_{|H|}: Z \hookrightarrow \mathbb{P}_{\mathbb{C}}^{3}$ be a smooth surface of degree d. We already discussed the cases $d \leq 3$. When $d=4$, if Z contains the maximum possible number of lines (which is 64 by Rams and Schütt), the sum of these lines is a divisor of Z linearly equivalent to 16 H . Is there something more general behind this?

Let $X \subseteq \mathbb{P}^{3}$ be a line arrangement. If X is the complete intersection of two surfaces of degree d and e then, as a consequence of Theorem (i), $G(X)$ has diameter at most $\min \{d, e\}$. On the other hand, the larger diameter I know for the dual graph of a c.i. line arrangement in \mathbb{P}^{3} is 3 , attained by Schläfli double six. Is the diameter of a c.i. line arrangement in \mathbb{P}^{3} bounded?

THANKS FOR YOUR ATTENTION !!!

