Regularity of line arrangements

UMI-SIMAI-PTM joint meeting 2018, Wroclaw, Poland

Session "Projective Varieties and their Arrangements"

Matteo Varbaro

Università degli Studi di Genova

Notions from algebraic geometry

Let X be a (possibly reducible) projective scheme over an algebraically closed field k. We say that an embedding $X \subseteq \mathbb{P}^n$ is **arithmetically Gorenstein** if, denoting by \mathcal{I}_X its sheaf of ideals:

• $X \subseteq \mathbb{P}^n$ is projectively normal, i. e. $H^1(X, \mathcal{I}_X(k)) = 0 \, \forall \, k \in \mathbb{Z};$

•
$$H^i(X, \mathcal{O}_X(k)) = 0 \ \forall \ 0 < i < \dim X, \ k \in \mathbb{Z};$$

•
$$\omega_X \cong \mathcal{O}_X(a)$$
 for some $a \in \mathbb{Z}$.

In this setting the **Castelnuovo-Mumford regularity** of $X \subseteq \mathbb{P}^n$ is:

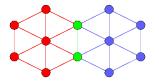
$$\operatorname{\mathsf{reg}} X = \dim X + a + 2.$$

Examples

(a) If X ⊆ Pⁿ is a complete intersection of hypersurfaces of degrees d₁,..., d_c, where c is the codimension of X in Pⁿ, then the embedding is a Gorenstein of regularity d₁ + ... + d_c - c + 1.
(b) If X ⊆ Pⁿ is a projectively normal embedding of a Calabi-Yau manifold over C, then it is a Gorenstein of regularity dim X + 2.

Given a simple graph G on s vertices and an integer r less than s, we say that G is r-connected if the removal of less than r vertices of G does not disconnect it. The valency of a vertex v of G is:

 $\delta(v) = |\{w : \{v, w\} \text{ is an edge of } G\}|.$



• 2-connected, not 3-connected.

•
$$\delta(\bullet) = 5.$$

- $\delta(\text{inner}) = \delta(\text{inner}) = 6.$
- $\delta(\text{boundary}) = \delta(\text{boundary}) = 3.$

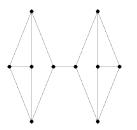
Remark

(i) G is 1-connected
$$\Leftrightarrow$$
 G is connected.

(ii) G is r-connected
$$\Rightarrow$$
 G is r'-connected for all $r' \leq r$.

(iii) G is r-connected
$$\Rightarrow \delta(v) \ge r$$
 for all vertices v of G.

G is said to be *r*-**regular** if each vertex has valency *r*.



3-regular, connected, not 2-connected.

Dual graphs

Let $X = \bigcup_{i=1}^{s} X_i \subseteq \mathbb{P}^n$ be a line arrangement (reduced union of lines). The **dual graph** of X is the simple graph G(X) on s vertices where, for vertices $i \neq j$ in $\{1, \ldots, s\}$:

$$\{i,j\}$$
 is an edge of $G(X) \Leftrightarrow X_i \cap X_j \neq \emptyset$

Example

If $X \subseteq \mathbb{P}^2$ then G(X) is the complete graph on s vertices, K_s .

Figure : K_5

In this case X is a hypersurface:

- $\operatorname{reg} X 1 = s 1$.
- G(X) is (s 1)-connected.
- G(X) is (s 1)-regular.

Dual graphs

Example

If $Q \subseteq \mathbb{P}^3$ is a smooth quadric, and X is the union of p lines of a ruling of Q, and q of the other ruling, then G(X) is the complete bipartite graph $K_{p,q}$.

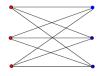


Figure : $K_{3,3}$

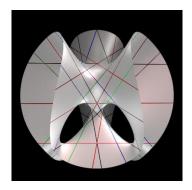
One can check that $X \subseteq \mathbb{P}^3$ is a complete intersection (of Q and an union of p planes) if and only if p = q: in this case

- $\operatorname{reg} X 1 = p$.
- G(X) is *p*-connected.
- G(X) is p-regular.

27 lines

Let $Z \subseteq \mathbb{P}^3$ be a smooth cubic, and $X = \bigcup_{i=1}^{27} X_i$ be the union of all the lines on Z. Below is a representation of the Clebsch's cubic:

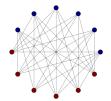
$$x_0^3 + x_1^3 + x_2^3 + x_3^3 = (x_0 + x_1 + x_2 + x_3)^3.$$



One can realize that $X \subseteq \mathbb{P}^3$ is a complete intersection of the cubic Z and a union of 9 planes. One can check that:

- $\operatorname{reg} X 1 = 10$.
- G(X) is 10-connected.
- G(X) is 10-regular.

If, among the 27 lines on a smooth cubic, we take only the 6 corresponding to the exceptional divisors and the 6 corresponding to the strict transforms of the conics, we get a line arrangement $X \subseteq \mathbb{P}^3$ known as **Schläfli double six**. One can check that it is a complete intersection of the cubic and of a quartic; G(X) is:



- $\operatorname{reg} X 1 = 5$.
- G(X) is 5-connected.
- G(X) is 5-regular.

Theorem

Let $X \subseteq \mathbb{P}^n$ be an arithmetically Gorenstein line arrangement of Castelnuovo-Mumford regularity r + 1. Then:

(i) (Benedetti-_, 2014) G(X) is *r*-connected.

(ii) (Benedetti-Di Marca-_, 2016) If furthermore X has only planar singularities, then G(X) is also r-regular.

Let X_1, \ldots, X_s be the irreducible components (lines) of X.

•
$$S = \Bbbk[x_0, \ldots, x_n];$$

- for $j = 1, \ldots, s$, $I_j \subseteq S$ the saturated ideal defining $X_j \subseteq \mathbb{P}^n$;
- $I_X = \bigcap_{j=1}^s I_j \subseteq S$ the (saturated) ideal defining $X \subseteq \mathbb{P}^n$;
- for any subset $A \subseteq \{1, \ldots, s\}$, $X_A = \bigcup_{j \in A} X_j \subseteq \mathbb{P}^n$.

Sketch of the proof

(i): Given a subset $A \subseteq \{1, ..., s\}$, set $B = \{1, ..., s\} \setminus A$. Because X_A and X_B are linked by $X \subseteq \mathbb{P}^n$, which is aGorenstein:

$$H^1(X_A, \mathcal{I}_{X_A}(k)) \cong H^1(X_B, \mathcal{I}_{X_B}(r-2-k)) \ \forall \ k \in \mathbb{Z}.$$

Derksen-Sidman: $H^1(X_A, \mathcal{I}_{X_A}(k)) = 0$ for all $k \ge |A| - 1$. So, whenever |A| < r, $H^1(X_B, \mathcal{I}_{X_B}) = 0$ i.e. $H^0(X_B, \mathcal{O}_{X_B}) \cong \Bbbk$. So X_B is connected whenever |A| < r; i.e. G(X) is *r*-connected.

(ii): Let *d* be the valency of the vertex *s* of G(X); set $J = \bigcap_{j=1}^{s-1} I_j$ and $K = I_s + J$. Since X has only planar singularities, one sees that

$$K=I_s+(f)$$

where $f \in S$ is a homogeneous polynomial of degree d. So $\operatorname{Tor}_n^S(S/K, \Bbbk)$ is not zero in degree n + d - 1.

Sketch of the proof

By the short exact sequence $0 \rightarrow S/I_X \rightarrow S/I_s \oplus S/J \rightarrow S/K \rightarrow 0$, we get the long exact sequence of graded S-modules

$$\ldots \to \operatorname{Tor}^{S}_{n}(S/I_{s},\Bbbk) \oplus \operatorname{Tor}^{S}_{n}(S/J,\Bbbk) \to \operatorname{Tor}^{S}_{n}(S/K,\Bbbk) \to \operatorname{Tor}^{S}_{n-1}(S/I_{X},\Bbbk) \to \ldots$$

Since $X_{\{1,2,\ldots,s-1\}}$ is linked to X_s by X, we have

$$\operatorname{Tor}_n^{\mathcal{S}}(\mathcal{S}/\mathcal{J},\mathbb{k}) = \operatorname{Tor}_n^{\mathcal{S}}(\mathcal{S}/\mathcal{I}_s,\mathbb{k}) = 0.$$

Therefore the map $\operatorname{Tor}_n^S(S/K, \Bbbk) \to \operatorname{Tor}_{n-1}^S(S/I_X, \Bbbk)$ is injective, so that $\operatorname{Tor}_{n-1}^S(S/I_X, \Bbbk)$ is not zero in degree n-1+d as well. So

$$r+1 = \operatorname{reg} X \ge d+1.$$

On the other hand we proved in (i) that G(X) is *r*-connected, so

 $d \geq r$.

Corollary

Let $\iota_{|H|}: Z \hookrightarrow \mathbb{P}^n$ be a smooth surface, and let L_1, \ldots, L_s be lines on it such that $L_1 + L_2 + \ldots + L_s \sim dH$.

- (i) If n = 3, then each L_i intersects exactly deg X + d 2 among the other L_j 's.
- (ii) If Z is a K_3 surface, then each L_i intersects exactly d + 2 among the other L_j 's.

Let $\iota_{|H|}: Z \hookrightarrow \mathbb{P}^3_{\mathbb{C}}$ be a smooth surface of degree d. We already discussed the cases $d \leq 3$. When d = 4, if Z contains the maximum possible number of lines (which is 64 by Rams and Schütt), the sum of these lines is a divisor of Z linearly equivalent to 16H. Is there something more general behind this?

Let $X \subseteq \mathbb{P}^3$ be a line arrangement. If X is the complete intersection of two surfaces of degree d and e then, as a consequence of Theorem (i), G(X) has diameter at most min $\{d, e\}$. On the other hand, the larger diameter I know for the dual graph of a c.i. line arrangement in \mathbb{P}^3 is 3, attained by Schläfli double six. Is the diameter of a c.i. line arrangement in \mathbb{P}^3 bounded?

THANKS FOR YOUR ATTENTION !!!