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Abstract

Let R be a one-dimensional, local, Noetherian domain. We assume R anali-
tycally irreducible and residually rational. Let ω be a canonical module of R
such that R ⊆ ω ⊆ R and let θD := R : ω be the Dedekind different of R.

Our purpose is to study how θD is involved in the type sequence of R and
to compare the type sequence of R with the type sequence of θD (for the
notion of type sequence we refer to [11], [1] and [13]). These relations yield
some interesting consequences.

1 Introduction

Let (R, m ) be a one-dimensional, local, Noetherian domain and let R be the
integral closure of R in its quotient field K. We assume that R is a DVR and
a finite R -module, which means that R is analitycally irreducible. Let t ∈ R
be a uniformizing parameter for R , so that t R is the maximal ideal of R .
We also suppose R to be residually rational, i.e. R/m ' R /t R .

In our hypotheses there exists a canonical module of R unique up to isomor-
phism, namely a fractional ideal ω such that ω : (ω : I) = I for each fractional
ideal I of R. We can assume that R ⊆ ω ⊂ R .
The Dedekind different of R is the ideal θD := R : ω.

Let ν : K −→ ZZ ∪∞ be the usual valuation associated to R . The image
ν(R) = {ν(x), x ∈ R, x 6= 0} ⊆ IN is a numerical semigroup of IN .

The multiplicity of R is the smallest non-zero element e in ν(R). The
conductor of ν(R) is the minimal c ∈ ν(R) such that every m ≥ c is in ν(R)
and γ := tcR is the conductor ideal of R . We denote by δ the classical
singularity degree, that is the number of gaps of the semigroup ν(R) in IN .
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We briefly recall the notion of type sequence given for rings in [11], recently
revisited in [1] and extended to modules in [13].
Let n = c− δ, and call s0 = 0, s1, . . . , sn = c the first n+1 elements of ν(R).
Form the chain of ideals R0 ⊃ R1 ⊃ R2 ⊃ . . . ⊃ Rn , where, for each i ,
Ri := {x ∈ R : ν(x) ≥ si}.
Note that R = R0 , R1 = m , Rn = γ. Now construct the two chains:

R = R : R0 ⊂ R : m ⊂ R : R2 ⊂ . . . ⊂ R : Rn = R
θD = θD : R0 ⊂ θD : m ⊂ θD : R2 ⊂ . . . ⊂ θD : Rn = R

For every i = 1 . . . n, define
ri = lR(R : Ri/R : Ri−1) = lR( ω Ri−1/ ω Ri),

ti = lR( θD : Ri/ θD : Ri−1) = lR( ω2 Ri−1/ ω
2 Ri).

The type sequence of R, denoted by t.s.(R), is the sequence [r1, . . . , rn].
The type sequence of θD , denoted by t.s.( θD ), is the sequence [t1, . . . , tn].
Observe that r1 is the Cohen Macaulay type of R which is also the minimal
number of generators of ω and that t1 is the C.M. type of the R -module θD ,
or the minimal number of generators of ω2. Moreover, for every i, we have
r1 ≥ ri ≥ 1 and t1 ≥ ti ≥ 1 (see e.g. [13], Prop. 1.6, for all details).

We show in Prop. 3.4 that, if si ∈ ν( θD ), then the correspondent ri + 1 is
1. Hence, denoting by p the number of 1 ’s in the type sequence of R, we get
(see Prop. 3.7) the inequalities

δ ≤ (c− δ)r1 − p(r1 − 1) ≤ (c− δ)r1 − lR( θD /γ)(r1 − 1)

which improve the well known formula δ ≤ (c− δ)r1 (see Remark 3.12).
A ring R is called almost Gorenstein ring if its type sequence is of the

kind [r1, 1, . . . , 1]; in the general case we focus our attention to the last i such
that ri > 1 , and we show its special meaning related to the blowing up of the
canonical module and to the Dedekind different (Prop.4.3).

We compare the two type sequences in several cases. For instance, in a ring
R of CM type 2 they can be completely determined by using the Dedekind
different (Prop. 4.10). Under suitable hypotheses we have that ri ≤ ti, although
this is not always true. We conjecture however that r1 ≤ t1 always holds and
we can prove this inequality in the following cases:
• R is almost Gorenstein (see Prop. 5.1);
• R has C.M. type 2, 3, e− 1 (see Prop. 4.10, Corollary 3.9, Prop.4.9 );
• θD = γ (see Prop. 4.8);
• R satisfies the inequality lR(R/ θD )(r1 − 2) ≤ 2δ − c (see Prop. 4.11).

In section 5 some results are achieved for minimal and maximal type se-
quences. In particular in Prop. 5.1, we prove that R is a almost Gorenstein
ring, (that is t.s.(R) is minimal), if and only if t.s.( θD ) is also minimal.
On the other side we prove in Prop. 5.4, that the t.s.(R) is maximal, i.e. of the
kind [e− 1, ...., e− 1, e− 1− a] for some a < e− 2 or of the kind [e− 1, ...., e−
1, 1] if and only if t.s.( θD ) is maximal, i.e. of the kinds [e, e, ...., e, e − a],
[e, e, ...., e, 1] respectively.
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2 Preliminaries and remarks on the canonical
module

A fractional ideal of the value semigroup ν(R) is a subset H ⊆ ZZ such that
H+ ν(R) ⊆ H. We denote by c(H) the conductor of H, which is the smallest
integer j ∈ H such that j + IN ⊆ H . The number δ(H) := #[ ZZ ≥h0 \ H]
where h0 = min{h ∈ H} is the number of gaps of H. For any fractional ideal
I of R, ν(I) is a fractional ideal of ν(R) . Further we set:

c(I) := c(ν(I)), δ(I) := δ(ν(I)), c := c(R), δ := δ(R).

We point out the useful fact that, given two fractional ideals I1, I2, I2 ⊆ I1,
the length of the R -module I1/I2 can be computed by means of valuations:
lR(I1/I2) = #[ν(I1) \ ν(I2)], (see [11], Proposition 1).

Now we collect some of the properties of the canonical module which are
important in this context.

First we recall the following well-known:

Proposition 2.1 (see [8], [10], [12]) Let ω be a canonical module of R such
that R ⊆ ω ⊆ R and let ω ∗∗ be its bidual, i.e. ω ∗∗ = R : (R : ω ). Then:

1) ω : ω = R.
2) lR(I/J) = lR( ω : J/ ω : I).
3) c( ω ) = c and ν( ω ) = {j ∈ ZZ | c− 1− j /∈ ν(R) }.
4) ω : R = γ.
5) ω ⊆ ω ∗∗ = ω : ω θD .
6) R is Gorenstein ⇐⇒ ω = R ⇐⇒ θD = R ⇐⇒ ω = ω ∗∗.

Hence: R not Gorenstein =⇒ γ ⊆ θD ⊆ m .
7) If S ⊇ R is an overring birational to R, then ω : S is a canonical

module for S.

Lemma 2.2 Let I be a fractional ideal of R.

i) If I ⊇ γ and ν(I) ⊆ ν( ω ), then there exists a unit u ∈ R such that
uI ⊆ ω .
If ν(I) = ν( ω ), then uI = ω .

ii) There exists a unit u ∈ R such that utc−c(I)I ⊆ ω .

Proof. i) We note that I ⊇ γ =⇒ ω : I ⊆ R =⇒ ( ω : I)R ⊆ R . The
hypotheses I ⊇ γ and ν(I) ⊆ ν( ω ) imply that c(I) = c, hence I : R = γ
and lR(R /( ω : I)R ) = lR(I : R / ω : R ) = 0. From the equality
R = ( ω : I)R we deduce that ω : I contains a unit u of R and uI ⊆ ω .
The second assertion is now immediate, since lR( ω /uI) = #[ν( ω )\ν(I)] = 0.

ii) We can apply item i) to the fractional ideal tc−c(I)I, because the
conditions tc−c(I)I ⊇ γ and ν(tc−c(I)I) ⊆ ν( ω ) are satisfied.

A strict connection between the value sets of θD and ω2 is remarked by
D’Anna in [5], Lemma 3.2. Part iii) of next lemma is a slight generalization of
it.

3



Lemma 2.3 Let I be a fractional ideal of R. Let h, s ∈ ZZ , h ≥ 1. Then:

i) ν( ω : I) = ν( ω )− ν(I).

ii) ν( ω : I) = {y ∈ ZZ | c− 1− y /∈ ν(I)}.

iii) s ∈ ν(R : ω h−1I)⇐⇒ c− 1− s /∈ ν( ω hI).

In particular: s ∈ ν( θD )⇐⇒ c− 1− s /∈ ν( ω2 ).

Proof. i) The proof given in [13], Prop. 2.4, works also under our assumptions.
ii) ⊆ Using i), we see that y ∈ ν( ω : I) =⇒ c − 1 − y /∈ ν(I), since

c− 1 /∈ ν( ω ).
⊇ Let y ∈ ZZ be such that c− 1− y /∈ ν(I), and let z ∈ ν(I). Again

by i) we can prove that y+ z ∈ ν( ω ). Now c− 1− (y+ z) = (c− 1− y)− z /∈
ν(R) =⇒ y + z ∈ ν( ω ).

iii) Observe that R : ω h−1I = ω : ω hI, then apply ii).

Lemma 2.4 Let I be a fractional ideal of R and let J := I : ω . Then

i) J is a reflexive R -module, i.e. J = R : (R : J).

ii) If J is not invertible, then m : m ⊆ J : J.

In particular, θD is reflexive and m : m ⊆ θD : θD .

Proof. i) The inclusion J ⊆ R : (R : J) always holds.
To prove ⊇, observe that x(R : J) ⊆ R =⇒ x(R : J) ω ⊆ ω =⇒

x ω ⊆ ω : (R : J) = ω : ( ω : J ω ) = J ω ⊆ I =⇒ x ∈ J.
ii) It suffices to note that J not invertible =⇒ J(R : J) 6= R =⇒

J(R : J) ⊆ m =⇒ J : J = R : J(R : J) ⊇ R : m = m : m .

In the last part of this section we point out how θD brings some relations
with the bidual ω ∗∗ and the blowing up of the canonical module.

Denote by B := ∪n=0,...,∞ ω n : ω n the blowing up of the canonical module
of R (independent on the choice of ω ). This overring has been studied recently
in relation to almost Gorenstein rings (see [2], ch.3, [5], ch.3).

Remark 2.5 The ring B satisfies the following properties:

i) For m >> 0, B = ω m : ω m = ω m. ( See [5], 3) .

ii) B is a reflexive R -module.
In fact B = ( ω m : ω m−1) : ω and we can apply Lemma 2.4.

iii) γ ⊆ R : B ⊆ θD .

iv) ω (R : B) = ω : B = R : B.
In fact ω (R : B) = ω : ( ω : ( ω (R : B))) = ω : B = ω : ω m+1 = R :
ω m = R : B.
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v) θD : θD ⊆ B.
In fact B = R : (R : B) = R : ω (R : B) = θD : (R : B) ⊇ θD : θD .

Proposition 2.6 The following facts hold:

i) ω ⊆ ω ∗∗ ⊆ ω2 ⊆ B ⊆ R .

ii) lR( θD /γ) = lR(R / ω2 ).

iii) lR( ω2 / ω ∗∗) = lR( ω θD / θD ).

iv) If R is not Gorenstein, then:

c( ω2 ) ≤ c( ω ∗∗) ≤ c− e.

c( ω2 ) = c− e ⇐⇒ e ∈ ν( θD ).

Proof. i) ω ∗∗ = R : (R : ω ) = ω : ω ( ω : ω2 ) ⊆ ω : ( ω : ω2 ) = ω2 .
ii) Since ω : γ = R and ω : θD = ω : ( ω : ω2 ) = ω2 , using the

second property in Prop. 2.1, we get the thesis.
iii) is immediate by Prop. 2.1.
iv) j ≥ c − e =⇒ c − 1 − j ≤ e − 1 =⇒ either c − 1 − j = 0 or

c− 1− j /∈ ν(R) . Hence j ∈ ν( ω ) ∪ {c− 1} ⊆ ν( ω ∗∗).
Finally observe that e ∈ ν( θD ) ⇐⇒ c−1− e /∈ ν( ω2 ) by Lemma 2.3.

Since a ring is Gorenstein if and only if B = ω , it is now natural to set
a characterization for the condition B = ω2 . The condition is always verified
by almost Gorenstein rings (see [2], Prop. 28). We point out that there exist
not almost Gorenstein rings with B = ω2 , for instance the semigroup ring
R = Cl [[th]], h ∈ ν(R) = {0, 7, 8, 9, 11, 13,→}.

Proposition 2.7 The following conditions are equivalent:

i) ω ∗∗ is a ring.
ii) ω ∗∗ = ω2 .

iii) ω θD = θD .

iv) θD : θD = B.

v) R : B = θD .

vi) B = ω2 .

Proof. i) =⇒ ii). In this hypothesis: ω ⊆ ω ∗∗ ⊆ ω 2 ⊆ ω ω ∗∗ = ω ∗∗.
ii) =⇒ iii) is immediate by Prop. 2.6.
iii) =⇒ iv) ω θD = θD =⇒ ω m θD = θD =⇒ B ⊆ θD : θD and the

other inclusion always holds (see Remark 2.5).
iv) =⇒ v) θD : θD = B =⇒ B θD ⊆ R =⇒ θD ⊆ R : B and the other

inclusion always holds (see Remark 2.5).
v) =⇒ vi) θD = ω : ω2 = R : B = ω : B ω = ω : B =⇒

ω : ( ω : ω2 ) = ω : ( ω : B).
vi) =⇒ i) ω3θD = ω2 θD ⊆ ω =⇒ ω2 ⊆ ω : ω θD = ω∗∗ =⇒ ω∗∗ = B.
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3 Type-sequences and length.

The number p of 1 ’s in t.s.(R), is related to the length of the R/m -
algebra R/ θD and is involved in other interesting inequalities. First we show
(Prop. 3.4) how elements of ν( θD ) give rise to 1 ’s in t.s.(R), and in t.s.( θD ).
From this we get δ ≤ (c − δ)r1 − p(r1 − 1) ≤ (c − δ)r1 − lR( θD /γ)(r1 − 1)
(Prop. 3.7) and we state other bounds.

Proposition 3.1 (see [5]) Let ν(R) = {s0 = 0, s1, ....sn = c,→}, n = c − δ,
and let t.s.(R) = [r1, ...., rn] and t.s.( θD ) = [t1, ...., tn] be the type sequences
of R and θD respectively. Then:

i) c( θD : Ri) = c(R : Ri) = c− si, for each i = 0, ...., n.

ii) ν( θD : Ri)<c−si
= {c−1−b, b ∈ ZZ ≥si

\ν( ω2 Ri)}, for each i = 0, ...., n.

iii) Let ni := c(R : Ri)− δ(R : Ri) and let mi := c( θD : Ri)− lR(R / θD :
Ri), then:

1. ri+1 = si+1 − si + ni+1 − ni, i = 0, ...., n− 1.

2. ti+1 = si+1 − si +mi+1 −mi, i = 0, ...., n− 1.

3.
∑n
i=1 ri = δ.

4.
∑n
i=1 ti = δ + lR(R/ θD ).

iv) Denoting by ωi the canonical module ω : (R : Ri) of the overring R : Ri
obtained by duality, we have: ri = lR(ωi/ωi−1).

Proof. By Lemma 2.3 we have that: x ∈ ν( θD : Ri) ⇐⇒ c − 1 − x /∈
ν( ω2 Ri).

i) If j ≥ c − si =⇒ c − 1 − j < si =⇒ c − 1 − j /∈ ν( ω2 Ri) =⇒ j ∈
ν( θD : Ri) ⊆ ν(R : Ri). Moreover si ∈ ν( ω Ri) =⇒ c− si− 1 /∈ ν(R : Ri) by
Lemma 2.3.

ii) follows from the above considerations.
iii) For the first equality see [5]. The second one is analogous:

by definition and item i), mi+1 = c − si+1 + lR(R / θD : Ri+1) and mi =
c−si+ lR(R / θD : Ri). Since lR(R / θD : Ri)− lR(R / θD : Ri+1) = lR( θD :
Ri+1/ θD : Ri) = ti+1, we get the thesis by subtraction. The other equalities
are immediate by definition.

iv) Apply Prop. 2.1, 7): ωi = ω : (R : Ri) = ω : (ω : ωRi) = ωRi.

Proposition 3.2 Let t.s.(R) = [r1, ...., rn] and t.s.( θD ) = [t1, ...., tn]. Let
xi−1 ∈ m be such that ν(xi−1) = si−1 < c. Then:

i) ri = 1 ⇐⇒ xi−1 ∈ AnnR
(
ω /(xi−1R+ ω Ri)

)
.

ii) ri = 1 =⇒ ti = 1.
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Proof. i) Since Ri−1 = xi−1R + Ri, we have ω Ri−1 = xi−1 ω + ω Ri.
Then ri = lR( ω Ri−1/ ω Ri) = 1 ⇐⇒ ω Ri−1 = xi−1R+ ω Ri ⇐⇒
xi−1 ∈ AnnR

(
ω /(xi−1R+ ω Ri)

)
.

ii) By hypothesis ω Ri−1 = xi−1R+ ω Ri =⇒ ω2 Ri−1 = xi−1 ω + ω2 Ri,
hence by i), ω2 Ri−1 = xi−1R+ ω2 Ri =⇒ ti = lR( ω2 Ri−1/ ω

2 Ri) = 1.

Lemma 3.3 ([5], Lemma 4.1) Let z1, ...., zr be any minimal set of generators of
ω . Then, if xi ∈ R and ν(xi) = si, the R -module ω Ri/ ω Ri+1 is generated
by xiz1 + ω Ri+1, ...., xizr + ω Ri+1.

Proposition 3.4 Let t.s.(R) = [r1, ...., rn] and t.s.( θD ) = [t1, ...., tn] be the
type sequences of R and θD respectively. Then:

si ∈ ν( θD ) =⇒ ri+1 = ti+1 = 1.

Proof. ri+1 = lR( ω Ri/ ω Ri+1). Let ω = (1, z2, ..., zr) and let xi ∈ θD
be such that ν(xi) = si < c. Then ω Ri =< xi, ..., xizr > mod ω Ri+1, by
Lemma 3.3. Thus xi ∈ R : ω =⇒ xizj ∈ Ri+1 ⊆ ω Ri+1 for all j > 1 (since
ν(xizj) > i) =⇒ ri+1 = 1 and by Prop. 3.2 ti+1 = 1.

Notation 3.5 We put:

p := # [i ∈ {1, ..., c− δ} | ri = 1]

σ := lR( ω /R)− lR(R/ θD ) = 2δ − c− lR(R/ θD )

The invariant σ has been introduced in [9]. It is known that σ(R) ≥ 0, when
r1 ≤ 3 or R is smoothable, but there are examples with σ < 0 (see 4.12).

Lemma 3.6 The following facts hold:

i) lR( θD /γ) ≤ p.

ii) c− δ − p ≤ lR(R/ θD ) ≤ c− δ.

iii) 3δ − 2c ≤ σ ≤ 3δ − 2c+ p.

iv) c− p ≤
∑n
i=1 ti ≤ c.

Proof. i) follows from Prop. 3.4.
ii) First inequality comes from i), since lR(R/θD) = lR(R/γ)− lR(θD/γ);

the second one holds since γ ⊆ θD .
iii) is obvious by ii).
iv) lR(R/θD) + δ =

∑n
i=1 ti, so the inequalities are immediate from ii).

Proposition 3.7 Let p be the number defined in 3.5. Then:

2(c− δ)− p ≤ δ ≤ (c− δ)r1 − p(r1 − 1) ≤ (c− δ)r1 − lR( θD /γ)(r1 − 1).
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Proof. Since ri1 = . . . = rip = 1, and ri ≤ r1 ∀i, using Prop. 3.1, iii) we get:

c− δ+(c− δ−p) ≤ δ =
c−δ∑
1

ri = c− δ+
c−δ∑
1

(ri−1) ≤ c− δ+(c− δ−p)(r1−1).

To get the last inequality use Lemma 3.6, i).

Corollary 3.8 Let, as above, n = c− δ. Then:

i) 2δ − c =
∑n
i=1(ri − 1) ≤ (c− δ − p)(r1 − 1) ≤ lR(R/ θD )(r1 − 1).

ii) 2δ − c ≤ lR(R/ θD )(t1 − 2).

Proof. i) See the proof of Prop. 3.7, then use Lemma 3.6, ii).
ii) As in the proof of Prop. 3.7, using Prop. 3.1 and Prop. 3.2, we obtain:

2δ− c+ lR(R/ θD ) =
∑n
i=1(ti− 1) ≤ (c− δ− p)(t1− 1) ≤ lR(R/ θD )(t1− 1).

Corollary 3.9 Either t1 = 1 (i.e. R is Gorenstein) or t1 ≥ 3.

From the first inequality of Prop. 3.7 we deduce the following

Corollary 3.10 p ≥ 2c− 3δ.

Of course, the above lower bound for p is significant in the case 2c − 3δ > 0.
Using iii) of Lemma 3.6 we see that if σ < 0, then 2c − 3δ > 0. Example 5
in 4.12 shows that the converse is false. The following bound for lR(R/ θD ) is
non trivial when σ < 0 (see Example 4 in 4.12).

Proposition 3.11 lR(R/ θD ) ≤ (2δ − c)(r1 − 1).

Proof. Let ω = (1, z2, ..., zr1)R and consider, as in [10], Satz 3), for
every i = 1, ..., r1 the R -module ωi := (1, ..., zi)R. In particular ω2 is
two-generated, so by [3], Satz 2, lR(R/R : ω2) = lR(ω2/R). It is clear that
ωi+1/ωi ' R/bi+1, where bi+1 = AnnR(ωi+1/ωi). By [10], Hilfssatz 4 and Satz
1 we obtain: lR(R : ωi/R : ωi+1) ≤ lR(R : bi+1/R) ≤ lR(R/bi+1) + 2δ − c =
lR(ωi+1/ωi) + 2δ − c. Since R = R : ω1 ⊃ R : ω2 ⊃ .... ⊃ R : ωr1 = θD , we
have lR(R/ θD ) = lR(R/R : ω2) +

∑r1−1
i=2 lR(R : ωi/R : ωi+1) ≤

lR(ω2/R) +
∑r1−1
i=2 lR(ωi+1/ωi) + (2δ− c)(r1− 2) = lR( ω /R) + (2δ− c)(r1− 2).

The thesis follows.

Remark 3.12 The difference a := (c−δ)r1−δ has been taken into account by
several authors. In [10] it is proved that a ≥ 0, when R is a one-dimensional
local analytically unramified Cohen Macaulay ring. In [11] it had already been
shown that a ≥ 0, under more particular hypotheses. In [4] some general
stucture theorems are presented for rings with a = 0 (the so called rings of
maximal length) or a = 1 (the so called rings of almost maximal length).

Proposition 3.7 implies that a ≥ lR( θD /γ)(r1 − 1). Hence:

a < r1 − 1 =⇒ θD = γ.
a = r1 − 1 =⇒ lR( θD /γ) ≤ 1.

The cases a ≤ r1 − 1 are studied in [6] and [7]. See also the following 5.2.
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4. Relations between ri ’s and ti ’s.

Starting from the almost Gorenstein case, we are led to consider in a t.s.
[r1, . . . , ri, 1, 1, . . . , 1] the index i of the last element ri which is not 1. This
number has a central role in Prop. 4.3 which involves Ri , θD and B. When
i = 1, this proposition gives again the known characterizations of almost Goren-
stein rings.

Lemma 4.1 Let J be any proper ideal of R. If ν(Ri) ⊆ ν(J) , then Ri ⊆ J.

Proof. In fact ν(Ri) ⊆ ν(J) =⇒ ν(Ri ∩ J) = ν(Ri) =⇒ Ri ∩ J = Ri =⇒
=⇒ Ri ⊆ J.

Lemma 4.2 The following facts hold:

i) ri+1 > 1 =⇒ c− 1 ∈ ν( ω2 Ri).

ii) c− 1 ∈ ν( ω2 Ri) ⇐⇒ Ri 6⊆ θD .

iii) If rn > 1, then tn ≥ rn + 1.

Proof. i) By Prop. 3.4, ri+1 > 1 =⇒ si /∈ ν( θD ) =⇒
c− 1− si ∈ ν( ω2 ) \ ν( ω ) =⇒ c− 1 = si + (c− 1− si) ∈ ν( ω2 Ri).

ii) By Lemma 2.3 c−1 ∈ ν( ω2 Ri) ⇐⇒ 0 /∈ ν(R : ω Ri). Suppose c−1 ∈
ν( ω2 Ri). If Ri ⊆ θD , then 1 ∈ θD : Ri = R : ω Ri, contradiction. Vice
versa, if Ri 6⊆ θD , by Lemma 4.1 there exists an element x ∈ Ri \ θD such
that ν(x) /∈ ν( θD ); then u x ω 6⊆ R for all units u ∈ R .
It follows that 0 /∈ ν(R : ω Ri).

iii) We have: rn = lR( ω Rn−1/ ω Rn) = lR( ω Rn−1/γ) ≤
lR( ω2 Rn−1/γ) = lR( ω2 Rn−1/ ω

2 Rn) = tn. Looking at valuations we see that
the above inequality is strict since c− 1 ∈ ν( ω2 Rn−1) \ ν( ω Rn−1), by i).

In [2] it is proved that

R is almost Gorenstein ⇐⇒ m = ω m ⇐⇒ r1 − 1 = 2δ − c.

Hence: R almost Gorenstein, not Gorenstein ⇐⇒ θD = m . In other words:
t.s.(R) = [r1, . . . , 1] with r1 > 1 ⇐⇒ R1 ⊆ θD and R0 6⊆ θD .

Next proposition is a generalization of this fact.

Proposition 4.3 Let 1 ≤ i ≤ n and let B = ω m be the blowing up of the
canonical module of R. The following are equivalent:

i) Ri ⊆ θD and Ri−1 6⊆ θD .

ii) B ⊆ R : Ri and B 6⊆ R : Ri−1.

iii) t.s.(R) = [r1, . . . , ri, 1, 1, . . . , 1] with ri > 1.

iv) t.s.( θD ) = [t1, . . . , ti, 1, 1, . . . , 1] with ti > 1.
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Proof. i) ⇐⇒ ii) Ri ⊆ θD ⇐⇒ ω Ri = Ri ⇐⇒ ω mRi = Ri ⇐⇒ B ⊆
R : Ri.

i) =⇒ iii) By hypothesis sj ∈ ν( θD ) ∀j ≥ i =⇒ rj = 1 ∀j > i. We
have to prove that ri > 1. If ri = 1, then by Prop. 3.2, i),
ω Ri−1 = xi−1R+ ω Ri ⊆ R =⇒ Ri−1 ⊆ θD , absurd.

iii) =⇒ iv) ri = lR(R /R : Ri−1)− lR(R /R : Ri) =
lR(R /R : Ri−1)− (n− i) and analogously, by Prop. 3.2, ii),
ti = lR(R / θD : Ri−1)− (n− i) =⇒ ti ≥ ri > 1.

iv) =⇒ iii) If i = n, the implication is true by Prop. 3.2, ii).
Let i ≤ n−1. Surely, by Prop. 3.2, ri > 1 and by Lemma 4.2, iii), rn = 1. If
rj > 1 with i < j < n and all the subsequents equal to 1, as above we would
get tj ≥ rj > 1, contradiction.

iii) =⇒ i) rn = 1 =⇒ ω Rn−1 = xn−1R + γ ⊆ R =⇒ Rn−1 ⊆ θD . If
also rn−1 = 1, then ω Rn−2 = xn−2R + ω Rn−1 ⊆ R, then Rn−2 ⊆ θD and
so on. If Ri−1 ⊆ θD , then ri = 1, and this concludes the proof.

Proposition 4.4 If i ≤ n − 1 is such that ri > 1 and rj = 1 for all
j, i+ 1 ≤ j ≤ n, then

ti = ri + 1.

Proof. By Prop. 4.3 we have Ri ⊆ θD , hence ri = lR( ω Ri−1/Ri) and
ti = lR( ω2 Ri−1/Ri). Since, by Lemma 4.2, i), c − 1 ∈ ν( ω2 Ri−1), our
thesis will follow by proving that ν( ω2 Ri−1) = ν( ω Ri−1) ∪ {c − 1}. Hence,
let m ∈ ν( ω2 Ri−1) \ ν( ω Ri−1) : we claim that m = c− 1.
By Lemma 2.3 c − 1 − m ∈ ν(R : Ri−1). Let m = ν(x), x ∈ ω2 Ri−1 and
c − 1 − m = ν(y), y ∈ R : Ri−1. If ν(y) > 0, then yRi−1 ⊆ Ri, hence
c − 1 = ν(xy) ∈ ν( ω2 Ri) = ν(Ri), absurd. Hence ν(y) = 0 and the thesis is
achieved.

Proposition 4.5 The following are equivalent:

i) sn−1 ∈ ν( θD ).
ii) sn−1 = c− 2.

iii) rn = 1.

Proof. Recall that ω Rn = γ.
i) =⇒ ii). If c − 2 /∈ ν(R) , then 1 ∈ ν( ω ). But this would imply that

sn−1 and sn−1+1 ∈ ν( ω Rn−1)\ν(γ) =⇒ rn > 1 =⇒ sn−1 /∈ ν( θD ), absurd.
ii) =⇒ iii) Obviously ν( ω Rn−1) \ ν(γ) = {sn−1}.

Corollary 4.6 B = R ⇐⇒ rn > 1.

Proof. B = R ⇐⇒ 1 ∈ ν( ω ) ⇐⇒ c− 2 /∈ ν(R) .

Corollary 4.7 If θD = Ri for some i, then the equivalent conditions of
Proposition 2.7 hold.
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Proof. B ⊆ R : Ri by Prop. 4.3 =⇒ R : B ⊇ Ri = θD =⇒ R : B = θD ,
since the other inclusion is always true.

In the particular case θD = Rn we obtain:

Proposition 4.8 Set, as above, ni := c(R : Ri)− δ(R : Ri) and mi := c( θD :
Ri)− lR(R / θD : Ri). The following facts are equivalent:

i) θD = γ.

ii) ω2 = R .

iii) ti = si − si−1 for each i = 1, ...., n.
iv) mi = 0 for each i = 0, ...., n.
v) θD : Ri = tc−si R for each i = 0, ...., n.

vi) ω ∗∗ = R .

If the above conditions hold, then

a) t1 = e.

b) ∀ i > 1, ri > ti ⇐⇒ ni > ni−1.

Proof. i) ⇐⇒ ii) See Prop. 2.6, ii).
ii) =⇒ iii) In fact ti = lR( ω2 Ri/ ω

2 Ri−1)= lR(Ri R /Ri−1 R ) = si−si−1.
iii) =⇒ iv) We have seen in Prop. 3.1 that ti = si − si−1 + mi −mi−1.

Hypothesis iii) implies that m1 = m2 = .... = mn = c(R )− δ(R ) = 0.
iv) =⇒ v) mi = 0 =⇒ ν( θD : Ri) = [c − si,+∞). Since the inclusion

tc−si R ⊆ θD : Ri holds for every i = 0, ...., n, the equality of the value sets
implies the other inclusion.

v) =⇒ i) Take in v) i = 0.
vi) =⇒ ii) and i) =⇒ vi) are immediate by Prop. 2.6.
a) t1 = s1 − s0 = e.
b) Using Prop. 3.1 iii), it is immediate.

Our conjecture t1 ≥ r1 is true for rings having maximal C.M. type, namely
r1 = e− 1. In this case we get a more precise result.

Proposition 4.9 Let e ≥ 3. If for some 1 ≤ i ≤ n ri = e−1, then ti = e.
Moreover, for the same i we have: si−1 = (i− 1)e, si = ie.

Proof. Since teRi−1 ⊆ Ri ⊂ Ri−1, we have the chain te ω Ri−1 ⊆ ω Ri ⊆
ω Ri−1.
Hypothesis ri = e−1 implies that lR( ω Ri/te ω Ri−1) = 1 and since c−1+e ∈
ν(ωRi) \ ν(teωRi−1), it follows that

(∗) ωRi = teωRi−1 + zR with ν(z) = c− 1 + e.

Analogously, considering the chain te ω 2Ri−1 ⊆ ω 2Ri ⊆ ω 2Ri−1, we see
that the thesis ti = e is equivalent to teω2Ri−1 = ω2Ri. It will be sufficient
to prove this last equality. From (∗) we have ω2Ri = teω2Ri−1 + zω. Now,
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z ∈ γ ⊆ Ri for every i =⇒ zω ⊆ ωRi =⇒ ω2Ri = teω2Ri−1+zR. By Lemma
4.2 ri > 1 =⇒ c− 1 ∈ ν(ω2Ri−1), then ν(z) ∈ ν(teω2Ri−1) : we obtain that
teω2Ri−1 = ω2Ri, as claimed.

To prove the other equalities, note that by definition si ≤ si−1 + e. As
already remarked ri = e− 1 implies that ν(ωRi) = ν(teωRi−1) ∪ {c− 1 + e}.
Hence si ∈ ν(teωRi−1), but si ≥ si−1 + e =⇒ si = si−1 + e = ie.

For rings of C.M. type 2, we have a complete description of the type se-
quences of R and θD . In this case the arrow =⇒ of Prop. 3.4 becomes ⇐⇒ .

Proposition 4.10 Suppose r1 = 2. Then:

si ∈ ν( θD ) =⇒ ri+1 = ti+1 = 1

si /∈ ν( θD ) =⇒ ri+1 = 2, ti+1 = 3.

Proof. We have from Corollary 3.8, i) and Prop. 3.11 that lR(R/ θD ) = 2δ−
c hence lR( θD /γ) = 2c−3δ. The elements of the type sequence [r1, ...., rn], n =
c − δ, of R are 1 or 2, suppose p times 1 and n − p times 2. Then δ =∑n
i=1 ri = p + 2(n − p) =⇒ p = 2c − 3δ. Hence p = lR( θD /γ) and ri+1 =

1 ⇐⇒ si ∈ θD (see Prop. 3.4). By hypothesis ω is two-generated, say ω =
(1, z), then 1, z, z2 constitue a system of generators for ω2 ; hence t1 ≤ 3, and
Corollary 3.9 implies that t1 = 3. Consider now the type sequence of θD , by
Prop. 3.2, ri = 1 =⇒ ti = 1. Suppose that for some i either ti = 2 or ri = 2
and ti = 1. Then δ + lR(R/ θD ) =

∑n
i=1 ti < lR( θD /γ) + 3lR(R/ θD ) =⇒

δ < c− δ + 2δ − c, absurd. The thesis follows.

Another case in which our conjecture t1 ≥ r1 is true comes directly from
Corollary 3.8:

Proposition 4.11 If lR(R/ θD )(r1 − 2) ≤ 2δ − c, then r1 ≤ t1.

Proof. If r1 > t1, from Corollary 3.8, ii), we get 2δ−c ≤ lR(R/ θD )(t1−2) <
lR(R/ θD )(r1 − 2).

Example 4.12 Suppose R = Cl [[th]], h ∈ ν(R) , is a semigroup ring. The
first three examples show that the converses of Prop. 3.2, ii), Prop. 3.4 and
Prop. 4.9 are false.

1. Let ν(R) = {0, 10, 11, 17, 20 →}, then θD = γ, δ = 16, c − δ = 4 <
12 = 2δ − c, t.s.(R) = [7, 2, 5, 2], t.s.( θD ) = [10, 1, 6, 3].
In this case t2 = 1 and r2 > 1.

2. Let ν(R) = {0, 5, 6, 10→}, then θD = γ, δ = 7, c−δ = 3 < 4 = 2δ−c,
t.s.(R) = [3, 1, 3], t.s.( θD ) = [5, 1, 4]. In this case t2 = r2 = 1. But
s1 = 5 /∈ ν( θD ).

3. Let ν(R) = {0, 10, 11, 12, 14, 17, 20→}. Then: c = 20, δ = 14, r1 = 5,
ω = 〈0, 1, 3, 4, 6〉 , ω2 = R , hence θD = γ. t.s(R) = [5, 1, 1, 3, 2, 2],
t.s.( θD ) = [10, 1, 1, 2, 3, 3]. In this case t1 = 10, but r1 = 5 < e − 1,
moreover r4 > t4 = 2.
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4. Let ν(R) = 〈13, 121, 133, 163, 164, 166, 168, 170, 171〉 . We have δ = 181 ,
c = 322 , r1 = 4 , θD = 〈121, 166, 168, 198, 216, 223, 234, 241, 248, 266〉 .
Hence lR(R/ θD ) = 43 and σ = −3.
Here bound in Prop. 3.11 is better than bound in Lemma 3.6, ii) . In fact:

2δ − c = 40 < lR(R/ θD ) = 43 < (2δ − c)(r1 − 1) = 120 < c− δ = 141.
The type sequences t.s.(R) and t.s.( θD ) are respectively:
[4 4 4 4 4 3 2 2 2 2 1 2 2 1 2 1 1 1 1 1 2 1 1 1 1 2 2 1 1 2 1 1 1 1 2 2 1 1 2 1 1

1 1 2 2 1 1 2 1 1 1 1 2 2 1 1 2 1 1 1 1 2 1 1 1 2 1 1 1 1 2 1 . . . 1]
[10 10 10 10 8 6 3 3 3 3 1 3 2 1 3 1 1 1 1 1 2 1 1 1 1 3 2 1 1 2 1 1 1 1 3 2 1 1 2 1 1

1 1 3 2 1 1 2 1 1 1 1 3 2 1 1 2 1 1 1 1 3 1 1 1 2 1 1 1 1 3 1 . . . 1]

5. Let ν(R) = {7, 8, 9, 10, 12→}. We have δ = 7, r1 = 3, c = 12. and R
is almost Gorenstein, so θD = m , hence σ = 1, but 3δ − 2c < 0.

5. Minimality and maximality.

In the comparison between the type sequences of the ring and of the Dedekind
different, properties like minimality and maximality are completely equivalent.

• Minimal type sequences. In [2] one can find the properties of almost
Gorenstein rings. Analogous properties for fractional ideals are considered in
[13]: a fractional ideal I is called of minimal type sequence (m.t.s. for short)
if and only if t.s.(I) = [r(I), 1, ...., 1], where r(I) is the Cohen Macaulay type
of I as an R -module. Since it is well known that r(I) = 1 ⇐⇒ I ' ω , it
follows in particular that t1 = 1 ⇐⇒ R is Gorenstein.

Next proposition deals with the m.t.s. property in the not Gorenstein case.

Proposition 5.1 Let R be not Gorenstein. The following are equivalent:
i) R is almost Gorenstein.

ii) θD is m.t.s.

iii) ω ∗∗ = R : m .

iv) B = R : m .

In this case t1 = r1 + 1.

Proof. i) ⇐⇒ ii) is equivalence iii) ⇐⇒ iv) of Prop. 4.3 for i = 1.
i) =⇒ iii) is immediate, since when R is almost Gorenstein, we have

θD = m = m ω and by Prop. 2.6 ω ∗∗ = ω2 = R : m . Last equality is
proved in [2], Prop. 28.

iii) =⇒ iv) ω ∗∗ is a ring =⇒ ω ∗∗ = ω 2 = B by Prop.2.7.
i) ⇐⇒ iv) has been proved by D’Anna in [5], Prop.3.4.

• Maximal type sequences. Recalling that in general t.s.(R) =
[r1, ...., rn], with r1 ≤ e − 1 and ri ≤ r1, of course ”maximal” type sequence
means t.s.(R) = [e−1, ...., e−1]. In [7] and [6] the authors characterize all the
rings whose type sequence is closer to the maximal one in the following sense:

13



t.s.(R) = [e − 1, ...., e − 1, e − 1 − a]. For simplicity, we call a-maximal a type
sequence of this form.

Proposition 5.2 (See [6] and [7]). Let a ∈ IN be such that a ≤ r1 − 1. The
following facts are equivalent:

i) (c− δ)r1(R)− δ = a and r1 = e− 1.

ii) ν(R) = {0, e, 2e, ...., (n− 1)e, ne− a,→}.

iii) t.s.(R) = [e− 1, ...., e− 1, e− 1− a].

Moreover, if a ≤ r1 − 2, then condition r1 = e− 1 in i) is superflous.

We want to show now that the a -maximality of t.s.(R) is equivalent to the
a -maximality of t.s.( θD ), i.e. t.s.( θD ) = [e, ...., e, e− a], (see Prop. 5.4). To
do this we need some more or less well known results, that we list below for our
convenience.
In the following 〈l1, ...., li〉 denotes the ν(R) -set generated by l1, ...., li and,
for any numerical set H ⊂ ZZ , H + l := {h+ l, h ∈ H}.

Lemma 5.3 Let 0 ≤ a ≤ e−2 and let ν(R) = {0, e, 2e, ...., (n−1)e, ne−a,→}.
In this case c = ne− a, n = c− δ.

i) Canonical ideals:
For a = 0 then ν( ω ) = 〈0, 1, 2, ...., e− 2〉 . Call it ν( ω 0).
For any a ≥ 1, change the last a generators by addying 1 to each one,
i.e. ν( ω a) = 〈0, 1, ...., e− a− 2, e− a, ...., e− 1〉 .
In particular, ν( ω e−2) = 〈0, 2, 3, ...., e− 1〉 .

ii) Type sequence of R :
t.s.(R) = [e− 1, ...., e− 1, e− 1− a].

iii) Omega square:
for a = 0, ...., e− 3 ω2 = R ,
for a = e− 2 ν( ω2 ) = {0, 2,→}.

iv) Type sequence of θD :
for a = 0, ...., e− 3 t.s.( θD ) = [e, e, ...., e, e− a],
for a = e− 2 t.s.( θD ) = [e, e, ...., e, 1].

v) Dedekind different:
for a = 0, ...., e− 3 θD = γ,
for a = e− 2 θD = zR+ γ with ν(z) = (n− 1)e.

Proof. i) Just remember that ν( ω ) = {j ∈ ZZ | c− 1− j /∈ ν(R) }.
ii) For every a = 0, ...., e − 2 and for every i = 0, ...., n − 1, we have

ν( ω Ri) = ν( ω ) + ie. Then for every i = 0, ...., n− 2,
ν( ω Ri) \ ν( ω Ri+1) = {0, 1, ...., e− a− 2, e− a, ...., e− 1}+ ie.

So we obtain that ri+1 = lR( ω Ri/ ω Ri+1) = e− 1.
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Let now i = n−1. By definition rn = #[ν( ω Rn−1)\ν(γ)]. Since ν( ω Rn−1) =
ν( ω ) + (n − 1)e = 〈(n− 1)e, (n− 1)e+ 1, ...., ne− a− 2, ne− a, ...., ne− 1〉 ,
we see that only the first e− a− 1 elements are smaller than c = ne− a and
we conclude that rn = e− a− 1.

iii) For a = 0, ...., e− 3 we see that 1 ∈ ν( ω ), then ω2 = R .
For a = e− 2, by item i) ω = 〈0, 2, 3, ...., e− 1〉 , then ω2 = {0, 2,→}.

iv) For a = 0, ...., e− 3 and for i = 0, ...., n− 2, using iii) we get
ti+1 = lR(Ri R /Ri+1 R ) = e.

For a = e − 2 and for i = 0, ...., n − 2, we have ν( ω2 Ri) \ ν( ω2 Ri+1) =
{0, 2, ...., e− 1, e+ 1}+ ie and we get again ti+1 = e.
It remains to compute the last component tn = #[ν( ω2 Rn−1) \ ν(γ)]. For
a = 0, ...., e − 3, ν( ω2 Rn−1) = ν(Rn−1 R ) = {(n − 1)e,→}; in this set the
elements < c are e− a, so tn = e− a. For a = e− 2, we have by i) rn = 1,
then by Prop. 3.2 also tn = 1.

v) The thesis follows from iii), by applying Lemma 2.3.

Proposition 5.4 Let e ≥ 3.

i) For 0 ≤ a < e− 2,
t.s.(R) = [e− 1, ...., e− 1, e− 1− a] ⇐⇒ t.s.( θD ) = [e, e, ...., e, e− a].

ii) t.s.(R) = [e− 1, ...., e− 1, 1] ⇐⇒ t.s.( θD ) = [e, e, ...., e, 1].

Proof. Both implications =⇒ follow from Prop.5.2 and Lemma 5.3.
i)⇐= Suppose 0 ≤ a < e−2 and t.s.( θD ) = [e, e, ...., e, e−a]. By Lemma

4.2 rn = δ−
∑n−1
i=1 ri < e−a and by hypothesis δ+lR(R/ θD ) = ne−a. Then

ne− a− lR(R/ θD )−
∑n−1
i=1 ri < e− a =⇒

∑n−1
i=1 ri > (n− 1)e− lR(R/ θD ) =

(n−1)(e−1)+(n−lR(R/ θD ))−1, i.e.
∑n−1
i=1 ri ≥ (n−1)(e−1)+(n−lR(R/ θD )).

On the other hand
∑n−1
i=1 ri ≤ (n− 1)r1 ≤ (n− 1)(e− 1). The only possibility

is
∑n−1
i=1 ri = (n − 1)(e − 1) and lR(R/ θD ) = n, i.e. θD = tc R . Hence

ri = e− 1 for i = 1, ..., n− 1 and rn = ne− a−n− (n− 1)(e− 1) = e− a− 1.
ii) ⇐= Suppose t.s.( θD ) = [e, e, ...., e, 1]. By Lemma 4.2 rn = 1. As in

the above item we find
∑n−1
i=1 ri = (n− 1)(e− 1) + n− lR(R/ θD )− 1. Hence

n− lR(R/ θD )− 1 ≤ 0, i.e. either n− lR(R/ θD ) = 0 or n− lR(R/ θD ) = 1.

In the first case θD = γ, moreover δ =
∑n−1
i=1 ri + 1 = (n− 1)(e− 1) =⇒

δ = ne − n − e + 1 = ne − c + δ − e + 1 =⇒ c − 1 = ne − e, which is a
contradiction.
The other possibility leads to lR( θD /γ) = 1 and

∑n−1
i=1 ri = (n − 1)(e − 1),

hence ri = e− 1 for every i = 0, ..., n− 1.
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