Dedekind Different and Type Sequence

F.Odetti A.Oneto
Dipartimento di Metodi e Modelli Matematici - Università di Genova
P.le Kennedy, Pad. D 16129 Genova (Italy)
e-mail: odetti@dimet.unige.it
oneto@dima.unige.it
\section*{E.Zatini}
Dipartimento di Matematica - Università di Genova
Via Dodecaneso, 3516146 Genova (Italy)
e-mail: zatini@dima.unige.it

Abstract

Let R be a one-dimensional, local, Noetherian domain. We assume R analitycally irreducible and residually rational. Let ω be a canonical module of R such that $R \subseteq \omega \subseteq \bar{R}$ and let $\theta_{D}:=R: \omega$ be the Dedekind different of R.

Our purpose is to study how θ_{D} is involved in the type sequence of R and to compare the type sequence of R with the type sequence of θ_{D} (for the notion of type sequence we refer to [11], [1] and [13]). These relations yield some interesting consequences.

1 Introduction

Let (R, \mathfrak{m}) be a one-dimensional, local, Noetherian domain and let \bar{R} be the integral closure of R in its quotient field K. We assume that \bar{R} is a DVR and a finite R-module, which means that R is analitycally irreducible. Let $t \in \bar{R}$ be a uniformizing parameter for \bar{R}, so that $t \bar{R}$ is the maximal ideal of \bar{R}. We also suppose R to be residually rational, i.e. $R / \mathfrak{m} \simeq \bar{R} / t \bar{R}$.

In our hypotheses there exists a canonical module of R unique up to isomorphism, namely a fractional ideal ω such that $\omega:(\omega: I)=I$ for each fractional ideal I of R. We can assume that $R \subseteq \omega \subset \bar{R}$.
The Dedekind different of R is the ideal $\theta_{D}:=R: \omega$.
Let $\nu: K \longrightarrow \mathbb{Z} \cup \infty$ be the usual valuation associated to \bar{R}. The image $\nu(R)=\{\nu(x), x \in R, x \neq 0\} \subseteq \mathbb{N}$ is a numerical semigroup of \mathbb{N}.

The multiplicity of R is the smallest non-zero element e in $\nu(R)$. The conductor of $\nu(R)$ is the minimal $c \in \nu(R)$ such that every $m \geq c$ is in $\nu(R)$ and $\quad \gamma:=t^{c} \bar{R}$ is the conductor ideal of R. We denote by δ the classical singularity degree, that is the number of gaps of the semigroup $\nu(R)$ in \mathbb{N}.

We briefly recall the notion of type sequence given for rings in [11], recently revisited in [1] and extended to modules in [13].
Let $n=c-\delta$, and call $s_{0}=0, s_{1}, \ldots, s_{n}=c$ the first $n+1$ elements of $\nu(R)$. Form the chain of ideals $R_{0} \supset R_{1} \supset R_{2} \supset \ldots \supset R_{n}$, where, for each i, $R_{i}:=\left\{x \in R: \nu(x) \geq s_{i}\right\}$.
Note that $R=R_{0}, R_{1}=\mathfrak{m}, R_{n}=\gamma$. Now construct the two chains:

$$
\begin{aligned}
& R=R: R_{0} \subset R: \mathfrak{m} \subset R: R_{2} \subset \ldots \subset R: R_{n}=\bar{R} \\
& \theta_{D}=\theta_{D}: R_{0} \subset \theta_{D}: \mathfrak{m} \subset \theta_{D}: R_{2} \subset \ldots \subset \theta_{D}: R_{n}=\bar{R}
\end{aligned}
$$

For every $i=1 \ldots n$, define

$$
\begin{gathered}
r_{i}=l_{R}\left(R: R_{i} / R: R_{i-1}\right)=l_{R}\left(\omega R_{i-1} / \omega R_{i}\right), \\
t_{i}=l_{R}\left(\theta_{D}: R_{i} / \theta_{D}: R_{i-1}\right)=l_{R}\left(\omega^{2} R_{i-1} / \omega^{2} R_{i}\right)
\end{gathered}
$$

The type sequence of R, denoted by t.s. (R), is the sequence $\left[r_{1}, \ldots, r_{n}\right]$. The type sequence of θ_{D}, denoted by t.s. $\left(\theta_{D}\right)$, is the sequence $\left[t_{1}, \ldots, t_{n}\right]$. Observe that r_{1} is the Cohen Macaulay type of R which is also the minimal number of generators of ω and that t_{1} is the C.M. type of the R-module θ_{D}, or the minimal number of generators of ω^{2}. Moreover, for every i, we have $r_{1} \geq r_{i} \geq 1$ and $t_{1} \geq t_{i} \geq 1$ (see e.g. [13], Prop. 1.6, for all details).

We show in Prop. 3.4 that, if $s_{i} \in \nu\left(\theta_{D}\right)$, then the correspondent $r_{i}+1$ is 1. Hence, denoting by p the number of 1 's in the type sequence of R, we get (see Prop. 3.7) the inequalities

$$
\delta \leq(c-\delta) r_{1}-p\left(r_{1}-1\right) \leq(c-\delta) r_{1}-l_{R}\left(\theta_{D} / \gamma\right)\left(r_{1}-1\right)
$$

which improve the well known formula $\delta \leq(c-\delta) r_{1}$ (see Remark 3.12).
A ring R is called almost Gorenstein ring if its type sequence is of the kind $\left[r_{1}, 1, \ldots, 1\right]$; in the general case we focus our attention to the last i such that $r_{i}>1$, and we show its special meaning related to the blowing up of the canonical module and to the Dedekind different (Prop.4.3).

We compare the two type sequences in several cases. For instance, in a ring R of CM type 2 they can be completely determined by using the Dedekind different (Prop. 4.10). Under suitable hypotheses we have that $r_{i} \leq t_{i}$, although this is not always true. We conjecture however that $r_{1} \leq t_{1}$ always holds and we can prove this inequality in the following cases:

- R is almost Gorenstein (see Prop. 5.1);
- R has C.M. type $2,3, e-1$ (see Prop. 4.10, Corollary 3.9, Prop.4.9);
- $\theta_{D}=\gamma$ (see Prop. 4.8);
- R satisfies the inequality $l_{R}\left(R / \theta_{D}\right)\left(r_{1}-2\right) \leq 2 \delta-c \quad$ (see Prop. 4.11).

In section 5 some results are achieved for minimal and maximal type sequences. In particular in Prop. 5.1, we prove that R is a almost Gorenstein ring, (that is t.s. (R) is minimal), if and only if t.s. $\left(\theta_{D}\right)$ is also minimal. On the other side we prove in Prop. 5.4, that the t.s. (R) is maximal, i.e. of the kind $[e-1, \ldots, e-1, e-1-a]$ for some $a<e-2$ or of the kind $[e-1, \ldots ., e-$ $1,1]$ if and only if t.s. $\left(\theta_{D}\right)$ is maximal, i.e. of the kinds $[e, e, \ldots ., e, e-a]$, $[e, e, \ldots ., e, 1]$ respectively.

2 Preliminaries and remarks on the canonical module

A fractional ideal of the value semigroup $\nu(R)$ is a subset $H \subseteq \mathbb{Z}$ such that $H+\nu(R) \subseteq H$. We denote by $c(H)$ the conductor of H, which is the smallest integer $j \in H$ such that $j+\mathbb{N} \subseteq H$. The number $\delta(H):=\#\left[\mathbb{Z}_{\geq h_{0}} \backslash H\right]$ where $h_{0}=\min \{h \in H\}$ is the number of gaps of H. For any fractional ideal I of $R, \nu(I)$ is a fractional ideal of $\nu(R)$. Further we set:

$$
c(I):=c(\nu(I)), \quad \delta(I):=\delta(\nu(I)), \quad c:=c(R), \quad \delta:=\delta(R) .
$$

We point out the useful fact that, given two fractional ideals $I_{1}, I_{2}, I_{2} \subseteq I_{1}$, the length of the R-module I_{1} / I_{2} can be computed by means of valuations: $l_{R}\left(I_{1} / I_{2}\right)=\#\left[\nu\left(I_{1}\right) \backslash \nu\left(I_{2}\right)\right]$, (see [11], Proposition 1).

Now we collect some of the properties of the canonical module which are important in this context.

First we recall the following well-known:
Proposition $2 . \frac{1}{R}$ (see [8], [10], [12]) Let ω be a canonical module of R such that $R \subseteq \omega \subseteq \bar{R}$ and let $\omega^{* *}$ be its bidual, i.e. $\omega^{* *}=R:(R: \omega)$. Then:

1) $\omega: \omega=R$.
2) $l_{R}(I / J)=l_{R}(\omega: J / \omega: I)$.
3) $c(\omega)=c \quad$ and $\quad \nu(\omega)=\{j \in \mathbb{Z} \mid c-1-j \notin \nu(R)\}$.
4) $\omega: \bar{R}=\gamma$.
5) $\omega \subseteq \omega^{* *}=\omega: \omega \theta_{D}$.
6) R is Gorenstein $\Longleftrightarrow \omega=R \Longleftrightarrow \theta_{D}=R \Longleftrightarrow \omega=\omega^{* *}$. Hence: R not Gorenstein $\Longrightarrow \gamma \subseteq \theta_{D} \subseteq \mathfrak{m}$.
7) If $S \supseteq R$ is an overring birational to R, then $\omega: S$ is a canonical module for S.

Lemma 2.2 Let I be a fractional ideal of R.
i) If $I \supseteq \gamma$ and $\nu(I) \subseteq \nu(\omega)$, then there exists a unit $u \in \bar{R}$ such that $u I \subseteq \omega$.
If $\nu(I)=\nu(\omega)$, then $u I=\omega$.
ii) There exists a unit $u \in \bar{R}$ such that $u t^{c-c(I)} I \subseteq \omega$.

Proof. i) We note that $I \supseteq \gamma \Longrightarrow \omega: I \subseteq \bar{R} \Longrightarrow(\omega: I) \bar{R} \subseteq \bar{R}$. The hypotheses $I \supseteq \gamma$ and $\nu(I) \subseteq \nu(\omega)$ imply that $c(I)=c$, hence $I: \bar{R}=\gamma$ and $l_{R}(\bar{R} /(\omega: I) \bar{R})=l_{R}(I: \bar{R} / \omega: \bar{R})=0$. From the equality $\bar{R}=(\omega: I) \bar{R}$ we deduce that $\omega: I$ contains a unit u of \bar{R} and $u I \subseteq \omega$. The second assertion is now immediate, since $l_{R}(\omega / u I)=\#[\nu(\omega) \backslash \nu(I)]=0$.
ii) We can apply item i) to the fractional ideal $t^{c-c(I)} I$, because the conditions $t^{c-c(I)} I \supseteq \gamma$ and $\nu\left(t^{c-c(I)} I\right) \subseteq \nu(\omega)$ are satisfied.

A strict connection between the value sets of θ_{D} and ω^{2} is remarked by D'Anna in [5], Lemma 3.2. Part iii) of next lemma is a slight generalization of it.

Lemma 2.3 Let I be a fractional ideal of R. Let $h, s \in \mathbb{Z}, h \geq 1$. Then:
i) $\nu(\omega: I)=\nu(\omega)-\nu(I)$.
ii) $\nu(\omega: I)=\{y \in \mathbb{Z} \mid c-1-y \notin \nu(I)\}$.
iii) $s \in \nu\left(R: \omega^{h-1} I\right) \Longleftrightarrow c-1-s \notin \nu\left(\omega^{h} I\right)$.

In particular: $\quad s \in \nu\left(\theta_{D}\right) \Longleftrightarrow c-1-s \notin \nu\left(\omega^{2}\right)$.
Proof. i) The proof given in [13], Prop. 2.4, works also under our assumptions.
$i i) \subseteq$ Using i, we see that $y \in \nu(\omega: I) \Longrightarrow c-1-y \notin \nu(I)$, since $c-1 \notin \nu(\omega)$.
\supseteq Let $y \in \mathbb{Z}$ be such that $c-1-y \notin \nu(I)$, and let $z \in \nu(I)$. Again by i) we can prove that $y+z \in \nu(\omega)$. Now $c-1-(y+z)=(c-1-y)-z \notin$ $\nu(R) \Longrightarrow y+z \in \nu(\omega)$.
iii) Observe that $R: \omega^{h-1} I=\omega: \omega^{h} I$, then apply ii).

Lemma 2.4 Let I be a fractional ideal of R and let $J:=I: \omega$. Then
i) J is a reflexive R-module, i.e. $J=R:(R: J)$.
ii) If J is not invertible, then $\mathfrak{m}: \mathfrak{m} \subseteq J: J$.

In particular, θ_{D} is reflexive and $\mathfrak{m}: \mathfrak{m} \subseteq \theta_{D}: \theta_{D}$.
Proof. $i)$ The inclusion $J \subseteq R:(R: J)$ always holds.
To prove \supseteq, observe that $x(R: J) \subseteq R \Longrightarrow x(R: J) \omega \subseteq \omega \Longrightarrow$ $x \omega \subseteq \omega:(R: J)=\omega:(\omega: J \omega)=J \omega \subseteq I \Longrightarrow x \in J$.
ii) It suffices to note that J not invertible $\Longrightarrow J(R: J) \neq R \Longrightarrow$ $J(R: J) \subseteq \mathfrak{m} \Longrightarrow J: J=R: J(R: J) \supseteq R: \mathfrak{m}=\mathfrak{m}: \mathfrak{m}$.

In the last part of this section we point out how θ_{D} brings some relations with the bidual $\omega^{* *}$ and the blowing up of the canonical module.

Denote by $B:=\cup_{n=0, \ldots, \infty} \omega^{n}: \omega^{n}$ the blowing up of the canonical module of R (independent on the choice of ω). This overring has been studied recently in relation to almost Gorenstein rings (see [2], ch.3, [5], ch.3).

Remark 2.5 The ring B satisfies the following properties:
i) For $m \gg 0, B=\omega^{m}: \omega^{m}=\omega^{m}$. (See [5], 3).
ii) B is a reflexive R-module.

In fact $B=\left(\omega^{m}: \omega^{m-1}\right): \omega$ and we can apply Lemma 2.4.
iii) $\gamma \subseteq R: B \subseteq \theta_{D}$.
iv) $\omega(R: B)=\omega: B=R: B$.

In fact $\omega(R: B)=\omega:(\omega:(\omega(R: B)))=\omega: B=\omega: \omega^{m+1}=R:$ $\omega^{m}=R: B$.
v) $\theta_{D}: \theta_{D} \subseteq B$.

In fact $B=R:(R: B)=R: \omega(R: B)=\theta_{D}:(R: B) \supseteq \theta_{D}: \theta_{D}$.
Proposition 2.6 The following facts hold:
i) $\omega \subseteq \omega^{* *} \subseteq \omega^{2} \subseteq B \subseteq \bar{R}$.
ii) $l_{R}\left(\theta_{D} / \gamma\right)=l_{R}\left(\bar{R} / \omega^{2}\right)$.
iii) $l_{R}\left(\omega^{2} / \omega^{* *}\right)=l_{R}\left(\omega \theta_{D} / \theta_{D}\right)$.
iv) If R is not Gorenstein, then:

$$
\begin{aligned}
& c\left(\omega^{2}\right) \leq c\left(\omega^{* *}\right) \leq c-e \\
& c\left(\omega^{2}\right)=c-e \Longleftrightarrow e \in \nu\left(\theta_{D}\right)
\end{aligned}
$$

Proof. i) $\omega^{* *}=R:(R: \omega)=\omega: \omega\left(\omega: \omega^{2}\right) \subseteq \omega:\left(\omega: \omega^{2}\right)=\omega^{2}$.
ii) Since $\omega: \gamma=\bar{R}$ and $\omega: \theta_{D}=\omega:\left(\omega: \omega^{2}\right)=\omega^{2}$, using the second property in Prop. 2.1, we get the thesis.
iii) is immediate by Prop. 2.1.
iv) $j \geq c-e \Longrightarrow c-1-j \leq e-1 \Longrightarrow$ either $c-1-j=0$ or $c-1-j \notin \nu(R)$. Hence $j \in \nu(\omega) \cup\{c-1\} \subseteq \nu\left(\omega^{* *}\right)$.

Finally observe that $e \in \nu\left(\theta_{D}\right) \Longleftrightarrow c-1-e \notin \nu\left(\omega^{2}\right)$ by Lemma 2.3.
Since a ring is Gorenstein if and only if $B=\omega$, it is now natural to set a characterization for the condition $B=\omega^{2}$. The condition is always verified by almost Gorenstein rings (see [2], Prop. 28). We point out that there exist not almost Gorenstein rings with $B=\omega^{2}$, for instance the semigroup ring $R=\mathbb{C}\left[\left[t^{h}\right]\right], h \in \nu(R)=\{0,7,8,9,11,13, \rightarrow\}$.

Proposition 2.7 The following conditions are equivalent:
i) $\omega^{* *}$ is a ring.
ii) $\omega^{* *}=\omega^{2}$.
iii) $\omega \theta_{D}=\theta_{D}$.
iv) $\theta_{D}: \theta_{D}=B$.
v) $R: B=\theta_{D}$.
vi) $B=\omega^{2}$.

Proof. $i) \Longrightarrow i i)$. In this hypothesis: $\omega \subseteq \omega^{* *} \subseteq \omega^{2} \subseteq \omega \omega^{* *}=\omega^{* *}$.
$i i) \Longrightarrow i i i)$ is immediate by Prop. 2.6.
iii) $\Longrightarrow i v) \omega \theta_{D}=\theta_{D} \Longrightarrow \omega^{m} \theta_{D}=\theta_{D} \Longrightarrow B \subseteq \theta_{D}: \theta_{D}$ and the other inclusion always holds (see Remark 2.5).
$i v) \Longrightarrow v) \quad \theta_{D}: \theta_{D}=B \Longrightarrow B \theta_{D} \subseteq R \Longrightarrow \theta_{D} \subseteq R: B$ and the other inclusion always holds (see Remark 2.5).

$$
\begin{gathered}
v) \Longrightarrow v i) \quad \theta_{D}=\omega: \omega^{2}=R: B=\omega: B \omega=\omega: B \Longrightarrow \\
\omega:\left(\omega: \omega^{2}\right)=\omega:(\omega: B) \\
v i) \Longrightarrow i) \omega^{3} \theta_{D}=\omega^{2} \theta_{D} \subseteq \omega \Longrightarrow \omega^{2} \subseteq \omega: \omega \theta_{D}=\omega^{* *} \Longrightarrow \omega^{* *}=B
\end{gathered}
$$

3 Type-sequences and length.

The number p of 1 's in t.s. (R), is related to the length of the $R / \mathfrak{m}-$ algebra R / θ_{D} and is involved in other interesting inequalities. First we show (Prop. 3.4) how elements of $\nu\left(\theta_{D}\right)$ give rise to 1 's in t.s. (R), and in t.s. $\left(\theta_{D}\right)$. From this we get $\delta \leq(c-\delta) r_{1}-p\left(r_{1}-1\right) \leq(c-\delta) r_{1}-l_{R}\left(\theta_{D} / \gamma\right)\left(r_{1}-1\right)$ (Prop. 3.7) and we state other bounds.

Proposition 3.1 (see [5]) Let $\nu(R)=\left\{s_{0}=0, s_{1}, \ldots . s_{n}=c, \rightarrow\right\}, n=c-\delta$, and let t.s. $(R)=\left[r_{1}, \ldots, r_{n}\right]$ and t.s. $\left(\theta_{D}\right)=\left[t_{1}, \ldots, t_{n}\right]$ be the type sequences of R and θ_{D} respectively. Then:
i) $c\left(\theta_{D}: R_{i}\right)=c\left(R: R_{i}\right)=c-s_{i}$, for each $i=0, \ldots, n$.
ii) $\nu\left(\theta_{D}: R_{i}\right)_{<c-s_{i}}=\left\{c-1-b, b \in \mathbb{Z}_{\geq s_{i}} \backslash \nu\left(\omega^{2} R_{i}\right)\right\}$, for each $i=0, \ldots, n$.
iii) Let $n_{i}:=c\left(R: R_{i}\right)-\delta\left(R: R_{i}\right)$ and let $m_{i}:=c\left(\theta_{D}: R_{i}\right)-l_{R}\left(\bar{R} / \theta_{D}\right.$: R_{i}), then:

1. $r_{i+1}=s_{i+1}-s_{i}+n_{i+1}-n_{i}, \quad i=0, \ldots ., n-1$.
2. $t_{i+1}=s_{i+1}-s_{i}+m_{i+1}-m_{i}, \quad i=0, \ldots, n-1$.
3. $\sum_{i=1}^{n} r_{i}=\delta$.
4. $\sum_{i=1}^{n} t_{i}=\delta+l_{R}\left(R / \theta_{D}\right)$.
iv) Denoting by ω_{i} the canonical module $\omega:\left(R: R_{i}\right)$ of the overring $R: R_{i}$ obtained by duality, we have: $r_{i}=l_{R}\left(\omega_{i} / \omega_{i-1}\right)$.
$\frac{\text { Proof. }}{2} R_{1}$ By Lemma 2.3 we have that: $x \in \nu\left(\theta_{D}: R_{i}\right) \Longleftrightarrow c-1-x \notin$ $\nu\left(\omega^{2} R_{i}\right)$.
$i)$ If $j \geq c-s_{i} \Longrightarrow c-1-j<s_{i} \Longrightarrow c-1-j \notin \nu\left(\omega^{2} R_{i}\right) \Longrightarrow j \in$ $\nu\left(\theta_{D}: R_{i}\right) \subseteq \nu\left(R: R_{i}\right)$. Moreover $s_{i} \in \nu\left(\omega R_{i}\right) \Longrightarrow c-s_{i}-1 \notin \nu\left(R: R_{i}\right)$ by Lemma 2.3.
ii) follows from the above considerations.
iii) For the first equality see [5]. The second one is analogous: by definition and item $i), m_{i+1}=c-s_{i+1}+l_{R}\left(\bar{R} / \theta_{D}: R_{i+1}\right)$ and $m_{i}=$ $c-s_{i}+l_{R}\left(\bar{R} / \theta_{D}: R_{i}\right)$. Since $l_{R}\left(\bar{R} / \theta_{D}: R_{i}\right)-l_{R}\left(\bar{R} / \theta_{D}: R_{i+1}\right)=l_{R}\left(\theta_{D}:\right.$ $\left.R_{i+1} / \theta_{D}: R_{i}\right)=t_{i+1}$, we get the thesis by subtraction. The other equalities are immediate by definition.
iv) Apply Prop. 2.1, 7): $\omega_{i}=\omega:\left(R: R_{i}\right)=\omega:\left(\omega: \omega R_{i}\right)=\omega R_{i}$.

Proposition 3.2 Let t.s. $(R)=\left[r_{1}, \ldots, r_{n}\right]$ and t.s. $\left(\theta_{D}\right)=\left[t_{1}, \ldots, t_{n}\right]$. Let $x_{i-1} \in \mathfrak{m}$ be such that $\nu\left(x_{i-1}\right)=s_{i-1}<c$. Then:
i) $r_{i}=1 \Longleftrightarrow x_{i-1} \in \operatorname{Ann}_{R}\left(\omega /\left(x_{i-1} R+\omega R_{i}\right)\right)$.
ii) $r_{i}=1 \Longrightarrow t_{i}=1$.

Proof. $i)$ Since $R_{i-1}=x_{i-1} R+R_{i}$, we have $\omega R_{i-1}=x_{i-1} \omega+\omega R_{i}$. Then $r_{i}=l_{R}\left(\omega R_{i-1} / \omega R_{i}\right)=1 \Longleftrightarrow \omega R_{i-1}=x_{i-1} R+\omega R_{i} \Longleftrightarrow$ $x_{i-1} \in \operatorname{Ann}_{R}\left(\omega /\left(x_{i-1} R+\omega R_{i}\right)\right)$.
ii) By hypothesis $\omega R_{i-1}=x_{i-1} R+\omega R_{i} \Longrightarrow \omega^{2} R_{i-1}=x_{i-1} \omega+\omega^{2} R_{i}$, hence by $i), \quad \omega^{2} R_{i-1}=x_{i-1} R+\omega^{2} R_{i} \Longrightarrow t_{i}=l_{R}\left(\omega^{2} R_{i-1} / \omega^{2} R_{i}\right)=1$.

Lemma 3.3 ([5], Lemma 4.1) Let z_{1}, \ldots, z_{r} be any minimal set of generators of ω. Then, if $x_{i} \in R$ and $\nu\left(x_{i}\right)=s_{i}$, the R-module $\omega R_{i} / \omega R_{i+1}$ is generated by $x_{i} z_{1}+\omega R_{i+1}, \ldots ., x_{i} z_{r}+\omega R_{i+1}$.

Proposition 3.4 Let t.s. $(R)=\left[r_{1}, \ldots, r_{n}\right]$ and t.s. $\left(\theta_{D}\right)=\left[t_{1}, \ldots ., t_{n}\right]$ be the type sequences of R and θ_{D} respectively. Then:

$$
s_{i} \in \nu\left(\theta_{D}\right) \Longrightarrow r_{i+1}=t_{i+1}=1
$$

Proof. $r_{i+1}=l_{R}\left(\omega R_{i} / \omega R_{i+1}\right)$. Let $\omega=\left(1, z_{2}, \ldots, z_{r}\right)$ and let $x_{i} \in \theta_{D}$ be such that $\nu\left(x_{i}\right)=s_{i}<c$. Then $\omega R_{i}=<x_{i}, \ldots, x_{i} z_{r}>\bmod \omega R_{i+1}$, by Lemma 3.3. Thus $x_{i} \in R: \omega \Longrightarrow x_{i} z_{j} \in R_{i+1} \subseteq \omega R_{i+1}$ for all $j>1$ (since $\left.\nu\left(x_{i} z_{j}\right)>i\right) \Longrightarrow r_{i+1}=1$ and by Prop. $3.2 t_{i+1}=1$.

Notation 3.5 We put:

$$
\begin{aligned}
p & :=\#\left[i \in\{1, \ldots, c-\delta\} \mid r_{i}=1\right] \\
\sigma & :=l_{R}(\omega / R)-l_{R}\left(R / \theta_{D}\right)=2 \delta-c-l_{R}\left(R / \theta_{D}\right)
\end{aligned}
$$

The invariant σ has been introduced in [9]. It is known that $\sigma(R) \geq 0$, when $r_{1} \leq 3$ or R is smoothable, but there are examples with $\sigma<0$ (see 4.12).

Lemma 3.6 The following facts hold:
i) $l_{R}\left(\theta_{D} / \gamma\right) \leq p$.
ii) $c-\delta-p \leq l_{R}\left(R / \theta_{D}\right) \leq c-\delta$.
iii) $3 \delta-2 c \leq \sigma \leq 3 \delta-2 c+p$.
iv) $c-p \leq \sum_{i=1}^{n} t_{i} \leq c$.

Proof. i) follows from Prop. 3.4.
ii) First inequality comes from i, since $l_{R}\left(R / \theta_{D}\right)=l_{R}(R / \gamma)-l_{R}\left(\theta_{D} / \gamma\right)$; the second one holds since $\gamma \subseteq \theta_{D}$.
$i i i)$ is obvious by $i i)$.
iv) $l_{R}\left(R / \theta_{D}\right)+\delta=\sum_{i=1}^{n} t_{i}$, so the inequalities are immediate from $\left.i i\right)$.

Proposition 3.7 Let p be the number defined in 3.5. Then:

$$
2(c-\delta)-p \leq \delta \leq(c-\delta) r_{1}-p\left(r_{1}-1\right) \leq(c-\delta) r_{1}-l_{R}\left(\theta_{D} / \gamma\right)\left(r_{1}-1\right)
$$

Proof. Since $r_{i_{1}}=\ldots=r_{i_{p}}=1$, and $r_{i} \leq r_{1} \forall i$, using Prop. 3.1, iii) we get:
$c-\delta+(c-\delta-p) \leq \delta=\sum_{1}^{c-\delta} r_{i}=c-\delta+\sum_{1}^{c-\delta}\left(r_{i}-1\right) \leq c-\delta+(c-\delta-p)\left(r_{1}-1\right)$.
To get the last inequality use Lemma 3.6, i).
Corollary 3.8 Let, as above, $n=c-\delta$. Then:
i) $2 \delta-c=\sum_{i=1}^{n}\left(r_{i}-1\right) \leq(c-\delta-p)\left(r_{1}-1\right) \leq l_{R}\left(R / \theta_{D}\right)\left(r_{1}-1\right)$.
ii) $2 \delta-c \leq l_{R}\left(R / \theta_{D}\right)\left(t_{1}-2\right)$.

Proof. i) See the proof of Prop. 3.7, then use Lemma 3.6, ii).
ii) As in the proof of Prop. 3.7, using Prop. 3.1 and Prop. 3.2, we obtain: $2 \delta-c+l_{R}\left(R / \theta_{D}\right)=\sum_{i=1}^{n}\left(t_{i}-1\right) \leq(c-\delta-p)\left(t_{1}-1\right) \leq l_{R}\left(R / \theta_{D}\right)\left(t_{1}-1\right)$.
Corollary 3.9 Either $t_{1}=1$ (i.e. R is Gorenstein) or $t_{1} \geq 3$.
From the first inequality of Prop. 3.7 we deduce the following
Corollary $3.10 \quad p \geq 2 c-3 \delta$.
Of course, the above lower bound for p is significant in the case $2 c-3 \delta>0$. Using iii) of Lemma 3.6 we see that if $\sigma<0$, then $2 c-3 \delta>0$. Example 5 in 4.12 shows that the converse is false. The following bound for $l_{R}\left(R / \theta_{D}\right)$ is non trivial when $\sigma<0$ (see Example 4 in 4.12).

Proposition $3.11 \quad l_{R}\left(R / \theta_{D}\right) \leq(2 \delta-c)\left(r_{1}-1\right)$.
Proof. Let $\omega=\left(1, z_{2}, \ldots, z_{r_{1}}\right) R$ and consider, as in [10], Satz 3), for every $i=1, \ldots, r_{1}$ the R-module $\omega_{i}:=\left(1, \ldots, z_{i}\right) R$. In particular ω_{2} is two-generated, so by [3], Satz $2, l_{R}\left(R / R: \omega_{2}\right)=l_{R}\left(\omega_{2} / R\right)$. It is clear that $\omega_{i+1} / \omega_{i} \simeq R / \mathfrak{b}_{i+1}$, where $\mathfrak{b}_{i+1}=\operatorname{Ann} n_{R}\left(\omega_{i+1} / \omega_{i}\right)$. By [10], Hilfssatz 4 and Satz 1 we obtain: $l_{R}\left(R: \omega_{i} / R: \omega_{i+1}\right) \leq l_{R}\left(R: \mathfrak{b}_{i+1} / R\right) \leq l_{R}\left(R / \mathfrak{b}_{i+1}\right)+2 \delta-c=$ $l_{R}\left(\omega_{i+1} / \omega_{i}\right)+2 \delta-c$. Since $R=R: \omega_{1} \supset R: \omega_{2} \supset \ldots \supset R: \omega_{r_{1}}=\theta_{D}$, we have $\quad l_{R}\left(R / \theta_{D}\right)=l_{R}\left(R / R: \omega_{2}\right)+\sum_{i=2}^{r_{1}-1} l_{R}\left(R: \omega_{i} / R: \omega_{i+1}\right) \leq$ $l_{R}\left(\omega_{2} / R\right)+\sum_{i=2}^{r_{1}-1} l_{R}\left(\omega_{i+1} / \omega_{i}\right)+(2 \delta-c)\left(r_{1}-2\right)=l_{R}(\omega / R)+(2 \delta-c)\left(r_{1}-2\right)$. The thesis follows.
Remark 3.12 The difference $a:=(c-\delta) r_{1}-\delta$ has been taken into account by several authors. In [10] it is proved that $a \geq 0$, when R is a one-dimensional local analytically unramified Cohen Macaulay ring. In [11] it had already been shown that $a \geq 0$, under more particular hypotheses. In [4] some general stucture theorems are presented for rings with $a=0$ (the so called rings of maximal length) or $a=1$ (the so called rings of almost maximal length).
Proposition 3.7 implies that $a \geq l_{R}\left(\theta_{D} / \gamma\right)\left(r_{1}-1\right)$. Hence:

$$
\begin{aligned}
& a<r_{1}-1 \Longrightarrow \theta_{D}=\gamma \\
& a=r_{1}-1 \Longrightarrow l_{R}\left(\theta_{D} / \gamma\right) \leq 1
\end{aligned}
$$

The cases $a \leq r_{1}-1$ are studied in [6] and [7]. See also the following 5.2.

4. Relations between r_{i} 's and t_{i} 's.

Starting from the almost Gorenstein case, we are led to consider in a t.s. $\left[r_{1}, \ldots, r_{i}, 1,1, \ldots, 1\right]$ the index i of the last element r_{i} which is not 1 . This number has a central role in Prop. 4.3 which involves R_{i}, θ_{D} and B. When $i=1$, this proposition gives again the known characterizations of almost Gorenstein rings.

Lemma 4.1 Let J be any proper ideal of R. If $\nu\left(R_{i}\right) \subseteq \nu(J)$, then $R_{i} \subseteq J$.
Proof. In fact $\nu\left(R_{i}\right) \subseteq \nu(J) \Longrightarrow \nu\left(R_{i} \cap J\right)=\nu\left(R_{i}\right) \Longrightarrow R_{i} \cap J=R_{i} \Longrightarrow$ $\Longrightarrow R_{i} \subseteq J$.

Lemma 4.2 The following facts hold:
i) $r_{i+1}>1 \Longrightarrow c-1 \in \nu\left(\omega^{2} R_{i}\right)$.
ii) $c-1 \in \nu\left(\omega^{2} R_{i}\right) \Longleftrightarrow R_{i} \nsubseteq \theta_{D}$.
iii) If $r_{n}>1$, then $t_{n} \geq r_{n}+1$.

Proof. $i)$ By Prop. 3.4, $r_{i+1}>1 \Longrightarrow s_{i} \notin \nu\left(\theta_{D}\right) \Longrightarrow$
$c-1-s_{i} \in \nu\left(\omega^{2}\right) \backslash \nu(\omega) \Longrightarrow c-1=s_{i}+\left(c-1-s_{i}\right) \in \nu\left(\omega^{2} R_{i}\right)$.
ii) By Lemma $2.3 c-1 \in \nu\left(\omega^{2} R_{i}\right) \Longleftrightarrow 0 \notin \nu\left(R: \omega R_{i}\right)$. Suppose $c-1 \in$ $\nu\left(\omega^{2} R_{i}\right)$. If $R_{i} \subseteq \theta_{D}$, then $1 \in \theta_{D}: R_{i}=R: \omega R_{i}$, contradiction. Vice versa, if $R_{i} \nsubseteq \theta_{D}$, by Lemma 4.1 there exists an element $x \in R_{i} \backslash \theta_{D}$ such that $\nu(x) \notin \nu\left(\theta_{D}\right)$; then $u x \omega \nsubseteq R$ for all units $u \in \bar{R}$.
It follows that $0 \notin \nu\left(R: \omega R_{i}\right)$.
iii) We have: $r_{n}=l_{R}\left(\omega R_{n-1} / \omega R_{n}\right)=l_{R}\left(\omega R_{n-1} / \gamma\right) \leq$
$l_{R}\left(\omega^{2} R_{n-1} / \gamma\right)=l_{R}\left(\omega^{2} R_{n-1} / \omega^{2} R_{n}\right)=t_{n}$. Looking at valuations we see that the above inequality is strict since $c-1 \in \nu\left(\omega^{2} R_{n-1}\right) \backslash \nu\left(\omega R_{n-1}\right)$, by $\left.i\right)$.

In [2] it is proved that
R is almost Gorenstein $\Longleftrightarrow \mathfrak{m}=\omega \mathfrak{m} \Longleftrightarrow r_{1}-1=2 \delta-c$.
Hence: R almost Gorenstein, not Gorenstein $\Longleftrightarrow \theta_{D}=\mathfrak{m}$. In other words:

$$
\text { t.s. }(R)=\left[r_{1}, \ldots, 1\right] \text { with } r_{1}>1 \Longleftrightarrow R_{1} \subseteq \theta_{D} \text { and } R_{0} \nsubseteq \theta_{D}
$$

Next proposition is a generalization of this fact.
Proposition 4.3 Let $1 \leq i \leq n$ and let $B=\omega^{m}$ be the blowing up of the canonical module of R. The following are equivalent:
i) $R_{i} \subseteq \theta_{D}$ and $R_{i-1} \nsubseteq \theta_{D}$.
ii) $B \subseteq R: R_{i}$ and $B \nsubseteq R: R_{i-1}$.
iii) t.s.(R) $=\left[r_{1}, \ldots, r_{i}, 1,1, \ldots, 1\right]$ with $r_{i}>1$.
iv) t.s. $\left(\theta_{D}\right)=\left[t_{1}, \ldots, t_{i}, 1,1, \ldots, 1\right]$ with $t_{i}>1$.

Proof. \quad i) $\Longleftrightarrow i i) \quad R_{i} \subseteq \theta_{D} \Longleftrightarrow \omega R_{i}=R_{i} \Longleftrightarrow \omega^{m} R_{i}=R_{i} \Longleftrightarrow B \subseteq$ $R: R_{i}$.
$i) \Longrightarrow i i i)$ By hypothesis $s_{j} \in \nu\left(\theta_{D}\right) \forall j \geq i \Longrightarrow \quad r_{j}=1 \quad \forall j>i$. We have to prove that $r_{i}>1$. If $r_{i}=1$, then by Prop. 3.2, i), $\omega R_{i-1}=x_{i-1} R+\omega R_{i} \subseteq R \Longrightarrow R_{i-1} \subseteq \theta_{D}$, absurd.
iii) $\Longrightarrow i v) \quad r_{i}=l_{R}\left(\bar{R} / R: R_{i-1}\right)-l_{R}\left(\bar{R} / R: R_{i}\right)=$ $l_{R}\left(\bar{R} / R: R_{i-1}\right)-(n-i)$ and analogously, by Prop. 3.2, ii), $t_{i}=l_{R}\left(\bar{R} / \theta_{D}: R_{i-1}\right)-(n-i) \Longrightarrow t_{i} \geq r_{i}>1$.
$i v) \Longrightarrow i i i)$ If $i=n$, the implication is true by Prop. 3.2, $i i$).
Let $i \leq n-1$. Surely, by Prop. 3.2, $r_{i}>1$ and by Lemma 4.2, iii), $r_{n}=1$. If $r_{j}>1$ with $i<j<n$ and all the subsequents equal to 1 , as above we would get $t_{j} \geq r_{j}>1$, contradiction.
iii) \Longrightarrow i) $r_{n}=1 \Longrightarrow \omega R_{n-1}=x_{n-1} R+\gamma \subseteq R \Longrightarrow R_{n-1} \subseteq \theta_{D}$. If also $r_{n-1}=1$, then $\omega R_{n-2}=x_{n-2} R+\omega R_{n-1} \subseteq R$, then $R_{n-2} \subseteq \theta_{D}$ and so on. If $R_{i-1} \subseteq \theta_{D}$, then $r_{i}=1$, and this concludes the proof.

Proposition 4.4 If $i \leq n-1$ is such that $r_{i}>1$ and $r_{j}=1$ for all $j, i+1 \leq j \leq n$, then

$$
t_{i}=r_{i}+1
$$

Proof. By Prop. 4.3 we have $R_{i} \subseteq \theta_{D}$, hence $r_{i}=l_{R}\left(\omega R_{i-1} / R_{i}\right)$ and $t_{i}=l_{R}\left(\omega^{2} R_{i-1} / R_{i}\right)$. Since, by Lemma 4.2, $\left.i\right), c-1 \in \nu\left(\omega^{2} R_{i-1}\right)$, our thesis will follow by proving that $\nu\left(\omega^{2} R_{i-1}\right)=\nu\left(\omega R_{i-1}\right) \cup\{c-1\}$. Hence, let $m \in \nu\left(\omega^{2} R_{i-1}\right) \backslash \nu\left(\omega R_{i-1}\right)$: we claim that $m=c-1$.
By Lemma $2.3 c-1-m \in \nu\left(R: R_{i-1}\right)$. Let $m=\nu(x), x \in \omega^{2} R_{i-1}$ and $c-1-m=\nu(y), y \in R: R_{i-1}$. If $\nu(y)>0$, then $y R_{i-1} \subseteq R_{i}$, hence $c-1=\nu(x y) \in \nu\left(\omega^{2} R_{i}\right)=\nu\left(R_{i}\right)$, absurd. Hence $\nu(y)=0$ and the thesis is achieved.

Proposition 4.5 The following are equivalent:
i) $s_{n-1} \in \nu\left(\theta_{D}\right)$.
ii) $s_{n-1}=c-2$.
iii) $r_{n}=1$.

Proof. Recall that $\omega R_{n}=\gamma$.
$i) \Longrightarrow i i)$. If $c-2 \notin \nu(R)$, then $1 \in \nu(\omega)$. But this would imply that s_{n-1} and $s_{n-1}+1 \in \nu\left(\omega R_{n-1}\right) \backslash \nu(\gamma) \Longrightarrow r_{n}>1 \Longrightarrow s_{n-1} \notin \nu\left(\theta_{D}\right)$, absurd.
ii) \Longrightarrow iii) Obviously $\nu\left(\omega R_{n-1}\right) \backslash \nu(\gamma)=\left\{s_{n-1}\right\}$.

Corollary 4.6 $B=\bar{R} \Longleftrightarrow r_{n}>1$.
Proof. $B=\bar{R} \Longleftrightarrow 1 \in \nu(\omega) \Longleftrightarrow c-2 \notin \nu(R)$.
Corollary 4.7 If $\theta_{D}=R_{i}$ for some i, then the equivalent conditions of Proposition 2.7 hold.

Proof. $B \subseteq R: R_{i}$ by Prop. $4.3 \Longrightarrow R: B \supseteq R_{i}=\theta_{D} \Longrightarrow R: B=\theta_{D}$, since the other inclusion is always true.

In the particular case $\theta_{D}=R_{n}$ we obtain:
Proposition 4.8 Set, as above, $n_{i}:=c\left(R: R_{i}\right)-\delta\left(R: R_{i}\right)$ and $m_{i}:=c\left(\theta_{D}:\right.$ $\left.R_{i}\right)-l_{R}\left(\bar{R} / \theta_{D}: R_{i}\right)$. The following facts are equivalent:
i) $\theta_{D}=\gamma$.
ii) $\omega^{2}=\bar{R}$.
iii) $t_{i}=s_{i}-s_{i-1} \quad$ for each $i=1, \ldots, n$.
iv) $m_{i}=0$ for each $i=0, \ldots, n$.
v) $\theta_{D}: R_{i}=t^{c-s_{i}} \bar{R} \quad$ for each $i=0, \ldots, n$.
vi) $\omega^{* *}=\bar{R}$.

If the above conditions hold, then
a) $t_{1}=e$.
b) $\forall i>1, \quad r_{i}>t_{i} \Longleftrightarrow n_{i}>n_{i-1}$.

Proof. $i) \Longleftrightarrow i i)$ See Prop. 2.6, ii).
ii) $\Longrightarrow i i i)$ In fact $t_{i}=l_{R}\left(\omega^{2} R_{i} / \omega^{2} R_{i-1}\right)=l_{R}\left(R_{i} \bar{R} / R_{i-1} \bar{R}\right)=s_{i}-s_{i-1}$.
$i i i) \Longrightarrow i v)$ We have seen in Prop. 3.1 that $t_{i}=s_{i}-s_{i-1}+m_{i}-m_{i-1}$.
Hypothesis iii) implies that $m_{1}=m_{2}=\ldots=m_{n}=c(\bar{R})-\delta(\bar{R})=0$.
$i v) \Longrightarrow v) m_{i}=0 \Longrightarrow \nu\left(\theta_{D}: R_{i}\right)=\left[c-s_{i},+\infty\right)$. Since the inclusion $t^{c-s_{i}} \bar{R} \subseteq \theta_{D}: R_{i}$ holds for every $i=0, \ldots, n$, the equality of the value sets implies the other inclusion.
$v) \Longrightarrow i)$ Take in v) $i=0$.
$v i) \Longrightarrow i i)$ and $i) \Longrightarrow v i)$ are immediate by Prop. 2.6.
a) $t_{1}=s_{1}-s_{0}=e$.
b) Using Prop. 3.1 iii), it is immediate.

Our conjecture $t_{1} \geq r_{1}$ is true for rings having maximal C.M. type, namely $r_{1}=e-1$. In this case we get a more precise result.

Proposition 4.9 Let $e \geq 3$. If for some $1 \leq i \leq n \quad r_{i}=e-1$, then $t_{i}=e$. Moreover, for the same i we have: $\quad s_{i-1}=(i-1) e, \quad s_{i}=i e$.
 ωR_{i-1}.
Hypothesis $r_{i}=e-1$ implies that $l_{R}\left(\omega R_{i} / t^{e} \omega R_{i-1}\right)=1$ and since $c-1+e \in$ $\nu\left(\omega R_{i}\right) \backslash \nu\left(t^{e} \omega R_{i-1}\right)$, it follows that

$$
\begin{equation*}
\omega R_{i}=t^{e} \omega R_{i-1}+z R \quad \text { with } \quad \nu(z)=c-1+e . \tag{*}
\end{equation*}
$$

Analogously, considering the chain $t^{e} \omega^{2} R_{i-1} \subseteq \omega^{2} R_{i} \subseteq \omega^{2} R_{i-1}$, we see that the thesis $t_{i}=e$ is equivalent to $t^{e} \omega^{2} R_{i-1}=\omega^{2} R_{i}$. It will be sufficient to prove this last equality. From (*) we have $\omega^{2} R_{i}=t^{e} \omega^{2} R_{i-1}+z \omega$. Now,
$z \in \gamma \subseteq R_{i}$ for every $i \Longrightarrow z \omega \subseteq \omega R_{i} \Longrightarrow \omega^{2} R_{i}=t^{e} \omega^{2} R_{i-1}+z R$. By Lemma $4.2 r_{i}>1 \Longrightarrow c-1 \in \nu\left(\omega^{2} R_{i-1}\right)$, then $\nu(z) \in \nu\left(t^{e} \omega^{2} R_{i-1}\right)$: we obtain that $t^{e} \omega^{2} R_{i-1}=\omega^{2} R_{i}$, as claimed.

To prove the other equalities, note that by definition $s_{i} \leq s_{i-1}+e$. As already remarked $r_{i}=e-1$ implies that $\nu\left(\omega R_{i}\right)=\nu\left(t^{e} \omega R_{i-1}\right) \cup\{c-1+e\}$. Hence $s_{i} \in \nu\left(t^{e} \omega R_{i-1}\right)$, but $s_{i} \geq s_{i-1}+e \Longrightarrow s_{i}=s_{i-1}+e=i e$.

For rings of C.M. type 2, we have a complete description of the type sequences of R and θ_{D}. In this case the arrow \Longrightarrow of Prop. 3.4 becomes \Longleftrightarrow.

Proposition 4.10 Suppose $r_{1}=2$. Then:

$$
\begin{aligned}
& s_{i} \in \nu\left(\theta_{D}\right) \Longrightarrow r_{i+1}=t_{i+1}=1 \\
& s_{i} \notin \nu\left(\theta_{D}\right) \Longrightarrow r_{i+1}=2, t_{i+1}=3 .
\end{aligned}
$$

Proof. We have from Corollary 3.8, i) and Prop. 3.11 that $l_{R}\left(R / \theta_{D}\right)=2 \delta-$ c hence $l_{R}\left(\theta_{D} / \gamma\right)=2 c-3 \delta$. The elements of the type sequence $\left[r_{1}, \ldots, r_{n}\right], n=$ $c-\delta$, of R are 1 or 2 , suppose p times 1 and $n-p$ times 2 . Then $\delta=$ $\sum_{i=1}^{n} r_{i}=p+2(n-p) \Longrightarrow p=2 c-3 \delta$. Hence $p=l_{R}\left(\theta_{D} / \gamma\right)$ and $r_{i+1}=$ $1 \Longleftrightarrow s_{i} \in \theta_{D}$ (see Prop. 3.4). By hypothesis ω is two-generated, say $\omega=$ $(1, z)$, then $1, z, z^{2}$ constitue a system of generators for ω^{2}; hence $t_{1} \leq 3$, and Corollary 3.9 implies that $t_{1}=3$. Consider now the type sequence of θ_{D}, by Prop. 3.2, $r_{i}=1 \Longrightarrow t_{i}=1$. Suppose that for some i either $t_{i}=2$ or $r_{i}=2$ and $t_{i}=1$. Then $\delta+l_{R}\left(R / \theta_{D}\right)=\sum_{i=1}^{n} t_{i}<l_{R}\left(\theta_{D} / \gamma\right)+3 l_{R}\left(R / \theta_{D}\right) \Longrightarrow$ $\delta<c-\delta+2 \delta-c$, absurd. The thesis follows.

Another case in which our conjecture $t_{1} \geq r_{1}$ is true comes directly from Corollary 3.8:

Proposition 4.11 If $l_{R}\left(R / \theta_{D}\right)\left(r_{1}-2\right) \leq 2 \delta-c$, then $\quad r_{1} \leq t_{1}$.
Proof. If $r_{1}>t_{1}$, from Corollary 3.8, ii), we get $2 \delta-c \leq l_{R}\left(R / \theta_{D}\right)\left(t_{1}-2\right)<$ $l_{R}\left(R / \theta_{D}\right)\left(r_{1}-2\right)$.

Example 4.12 Suppose $R=\mathbb{C}\left[\left[t^{h}\right]\right], h \in \nu(R)$, is a semigroup ring. The first three examples show that the converses of Prop. 3.2, ii), Prop. 3.4 and Prop. 4.9 are false.

1. Let $\nu(R)=\{0,10,11,17,20 \rightarrow\}$, then $\theta_{D}=\gamma, \delta=16, c-\delta=4<$ $12=2 \delta-c$, t.s. $(R)=[7,2,5,2]$, t.s. $\left(\theta_{D}\right)=[10,1,6,3]$.
In this case $t_{2}=1$ and $r_{2}>1$.
2. Let $\nu(R)=\{0,5,6,10 \rightarrow\}$, then $\theta_{D}=\gamma, \delta=7, c-\delta=3<4=2 \delta-c$, $t . s .(R)=[3,1,3]$, t.s. $\left(\theta_{D}\right)=[5,1,4]$. In this case $t_{2}=r_{2}=1$. But $s_{1}=5 \notin \nu\left(\theta_{D}\right)$.
3. Let $\nu(R)=\{0,10,11,12,14,17,20 \rightarrow\}$. Then: $c=20, \delta=14, r_{1}=5$, $\omega=\langle 0,1,3,4,6\rangle, \quad \omega^{2}=\bar{R}$, hence $\theta_{D}=\gamma . t . s(R)=[5,1,1,3,2,2]$, t.s. $\left(\theta_{D}\right)=[10,1,1,2,3,3]$. In this case $t_{1}=10$, but $r_{1}=5<e-1$, moreover $r_{4}>t_{4}=2$.
4. Let $\nu(R)=\langle 13,121,133,163,164,166,168,170,171\rangle$. We have $\delta=181$, $c=322, r_{1}=4, \quad \theta_{D}=\langle 121,166,168,198,216,223,234,241,248,266\rangle$. Hence $l_{R}\left(R / \theta_{D}\right)=43$ and $\sigma=-3$.
Here bound in Prop. 3.11 is better than bound in Lemma 3.6, ii). In fact: $2 \delta-c=40<l_{R}\left(R / \theta_{D}\right)=43<(2 \delta-c)\left(r_{1}-1\right)=120<c-\delta=141$.
The type sequences t.s. (R) and t.s. $\left(\theta_{D}\right)$ are respectively:
$[4 \quad 4 \quad 4 \quad 4 \quad 4322221221211111211112211211112211211$
$1122112111122112111121112111121 \ldots 1]$
$[101010108633331321311111211113211211113211211$
$1132112111132112111131112111131 \ldots 1]$
5. Let $\nu(R)=\{7,8,9,10,12 \rightarrow\}$. We have $\delta=7, r_{1}=3, c=12$. and R is almost Gorenstein, so $\theta_{D}=\mathfrak{m}$, hence $\sigma=1$, but $3 \delta-2 c<0$.

5. Minimality and maximality.

In the comparison between the type sequences of the ring and of the Dedekind different, properties like minimality and maximality are completely equivalent.

- Minimal type sequences. In [2] one can find the properties of almost Gorenstein rings. Analogous properties for fractional ideals are considered in [13]: a fractional ideal I is called of minimal type sequence (m.t.s. for short) if and only if t.s. $(I)=[r(I), 1, \ldots ., 1]$, where $r(I)$ is the Cohen Macaulay type of I as an R-module. Since it is well known that $r(I)=1 \Longleftrightarrow I \simeq \omega$, it follows in particular that $t_{1}=1 \Longleftrightarrow R$ is Gorenstein.

Next proposition deals with the m.t.s. property in the not Gorenstein case.
Proposition 5.1 Let R be not Gorenstein. The following are equivalent:
i) R is almost Gorenstein.
ii) θ_{D} is m.t.s.
iii) $\quad \omega^{* *}=R: \mathfrak{m}$.
iv) $B=R: \mathfrak{m}$.

In this case $t_{1}=r_{1}+1$.
Proof. $i) \Longleftrightarrow i i)$ is equivalence $i i i) \Longleftrightarrow i v$) of Prop. 4.3 for $i=1$.
$i) \Longrightarrow i i i)$ is immediate, since when R is almost Gorenstein, we have $\theta_{D}=\mathfrak{m}=\mathfrak{m} \omega$ and by Prop. $2.6 \omega^{* *}=\omega^{2}=R: \mathfrak{m}$. Last equality is proved in [2], Prop. 28.
$i i i) \Longrightarrow i v) \quad \omega^{* *}$ is a ring $\Longrightarrow \omega^{* *}=\omega^{2}=B$ by Prop.2.7.
$i) \Longleftrightarrow i v)$ has been proved by D'Anna in [5], Prop.3.4.

- Maximal type sequences. Recalling that in general t.s. $(R)=$ [r_{1}, \ldots, r_{n}], with $r_{1} \leq e-1$ and $r_{i} \leq r_{1}$, of course "maximal" type sequence means t.s. $(R)=[e-1, \ldots ., e-1]$. In [7] and [6] the authors characterize all the rings whose type sequence is closer to the maximal one in the following sense:
t.s. $(R)=[e-1, \ldots ., e-1, e-1-a]$. For simplicity, we call a-maximal a type sequence of this form.

Proposition 5.2 (See [6] and [7]). Let $a \in \mathbb{N}$ be such that $a \leq r_{1}-1$. The following facts are equivalent:
i) $(c-\delta) r_{1}(R)-\delta=a$ and $r_{1}=e-1$.
ii) $\nu(R)=\{0, e, 2 e, \ldots .,(n-1) e, n e-a, \rightarrow\}$.
iii) t.s. $(R)=[e-1, \ldots ., e-1, e-1-a]$.

Moreover, if $a \leq r_{1}-2$, then condition $r_{1}=e-1$ in i) is superflous.
We want to show now that the a-maximality of t.s. (R) is equivalent to the a-maximality of t.s. $\left(\theta_{D}\right)$, i.e. t.s. $\left(\theta_{D}\right)=[e, \ldots ., e, e-a]$, (see Prop. 5.4). To do this we need some more or less well known results, that we list below for our convenience.
In the following $\left\langle l_{1}, \ldots, l_{i}\right\rangle$ denotes the $\nu(R)$-set generated by l_{1}, \ldots, l_{i} and, for any numerical set $H \subset \mathbb{Z}, H+l:=\{h+l, h \in H\}$.

Lemma 5.3 Let $0 \leq a \leq e-2$ and let $\nu(R)=\{0, e, 2 e, \ldots,(n-1) e, n e-a, \rightarrow\}$. In this case $c=n e-a, n=c-\delta$.
i) Canonical ideals:

For $a=0$ then $\nu(\omega)=\langle 0,1,2, \ldots, e-2\rangle$. Call it $\nu\left(\omega_{0}\right)$.
For any $a \geq 1$, change the last a generators by addying 1 to each one, i.e. $\nu\left(\omega_{a}\right)=\langle 0,1, \ldots ., e-a-2, e-a, \ldots, e-1\rangle$.

In particular, $\nu\left(\omega_{e-2}\right)=\langle 0,2,3, \ldots, e-1\rangle$.
ii) Type sequence of R :

$$
t . s .(R)=[e-1, \ldots ., e-1, e-1-a] .
$$

iii) Omega square:
for $a=0, \ldots ., e-3 \quad \omega^{2}=\bar{R}$, for $a=e-2 \quad \nu\left(\omega^{2}\right)=\{0,2, \rightarrow\}$.
iv) Type sequence of θ_{D} : for $a=0, \ldots ., e-3 \quad t . s .\left(\theta_{D}\right)=[e, e, \ldots ., e, e-a]$,
for $a=e-2 \quad$ t.s. $\left(\theta_{D}\right)=[e, e, \ldots ., e, 1]$.
v) Dedekind different:

$$
\begin{array}{ll}
\text { for } a=0, \ldots ., e-3 & \theta_{D}=\gamma, \\
\text { for } a=e-2 & \theta_{D}=z R+\gamma \quad \text { with } \quad \nu(z)=(n-1) e .
\end{array}
$$

Proof. i) Just remember that $\nu(\omega)=\{j \in \mathbb{Z} \mid c-1-j \notin \nu(R)\}$.
ii) For every $a=0, \ldots, e-2$ and for every $i=0, \ldots, n-1$, we have $\nu\left(\omega R_{i}\right)=\nu(\omega)+i e$. Then for every $i=0, \ldots, n-2$,

$$
\nu\left(\omega R_{i}\right) \backslash \nu\left(\omega R_{i+1}\right)=\{0,1, \ldots, e-a-2, e-a, \ldots, e-1\}+i e .
$$

So we obtain that $r_{i+1}=l_{R}\left(\omega R_{i} / \omega R_{i+1}\right)=e-1$.

Let now $i=n-1$. By definition $r_{n}=\#\left[\nu\left(\omega R_{n-1}\right) \backslash \nu(\gamma)\right]$. Since $\nu\left(\omega R_{n-1}\right)=$ $\nu(\omega)+(n-1) e=\langle(n-1) e,(n-1) e+1, \ldots ., n e-a-2, n e-a, \ldots, n e-1\rangle$, we see that only the first $e-a-1$ elements are smaller than $c=n e-a$ and we conclude that $r_{n}=e-a-1$.
iii) For $a=0, \ldots, e-3$ we see that $1 \in \nu(\omega)$, then $\omega^{2}=\bar{R}$.

For $a=e-2$, by item i) $\omega=\langle 0,2,3, \ldots, e-1\rangle$, then $\omega^{2}=\{0,2, \rightarrow\}$.
iv) For $a=0, \ldots, e-3$ and for $i=0, \ldots, n-2$, using $i i i)$ we get $t_{i+1}=l_{R}\left(R_{i} \bar{R} / R_{i+1} \bar{R}\right)=e$.
For $a=e-2$ and for $i=0, \ldots, n-2$, we have $\nu\left(\omega^{2} R_{i}\right) \backslash \nu\left(\omega^{2} R_{i+1}\right)=$ $\{0,2, \ldots, e-1, e+1\}+i e$ and we get again $t_{i+1}=e$.
It remains to compute the last component $t_{n}=\#\left[\nu\left(\omega^{2} R_{n-1}\right) \backslash \nu(\gamma)\right]$. For $a=0, \ldots, e-3, \quad \nu\left(\omega^{2} R_{n-1}\right)=\nu\left(R_{n-1} \bar{R}\right)=\{(n-1) e, \rightarrow\} ;$ in this set the elements $<c$ are $e-a$, so $t_{n}=e-a$. For $a=e-2$, we have by i) $r_{n}=1$, then by Prop. 3.2 also $t_{n}=1$.
v) The thesis follows from $i i i$), by applying Lemma 2.3.
Proposition 5.4 Let $e \geq 3$.
i) For $0 \leq a<e-2$,

$$
\text { t.s. }(R)=[e-1, \ldots ., e-1, e-1-a] \Longleftrightarrow t . s .\left(\theta_{D}\right)=[e, e, \ldots ., e, e-a] .
$$

ii) t.s. $(R)=[e-1, \ldots ., e-1,1] \Longleftrightarrow$ t.s. $\left(\theta_{D}\right)=[e, e, \ldots ., e, 1]$.

Proof. Both implications \Longrightarrow follow from Prop.5.2 and Lemma 5.3.
$i) \Longleftarrow$ Suppose $0 \leq a<e-2$ and t.s. $\left(\theta_{D}\right)=[e, e, \ldots ., e, e-a]$. By Lemma $4.2 r_{n}=\delta-\sum_{i=1}^{n-1} r_{i}<e-a$ and by hypothesis $\delta+l_{R}\left(R / \theta_{D}\right)=n e-a$. Then $n e-a-l_{R}\left(R / \theta_{D}\right)-\sum_{i=1}^{n-1} r_{i}<e-a \Longrightarrow \sum_{i=1}^{n-1} r_{i}>(n-1) e-l_{R}\left(R / \theta_{D}\right)=$ $(n-1)(e-1)+\left(n-l_{R}\left(R / \theta_{D}\right)\right)-1$, i.e. $\sum_{i=1}^{n-1} r_{i} \geq(n-1)(e-1)+\left(n-l_{R}\left(R / \theta_{D}\right)\right)$.

On the other hand $\sum_{i=1}^{n-1} r_{i} \leq(n-1) r_{1} \leq(n-1)(e-1)$. The only possibility is $\sum_{i=1}^{n-1} r_{i}=(n-1)(e-1)$ and $l_{R}\left(R / \theta_{D}\right)=n$, i.e. $\quad \theta_{D}=t^{c} \bar{R}$. Hence $r_{i}=e-1$ for $i=1, \ldots, n-1$ and $r_{n}=n e-a-n-(n-1)(e-1)=e-a-1$.
ii) \Longleftarrow Suppose t.s. $\left(\theta_{D}\right)=[e, e, \ldots, e, 1]$. By Lemma $4.2 r_{n}=1$. As in the above item we find $\sum_{i=1}^{n-1} r_{i}=(n-1)(e-1)+n-l_{R}\left(R / \theta_{D}\right)-1$. Hence $n-l_{R}\left(R / \theta_{D}\right)-1 \leq 0$, i.e. either $n-l_{R}\left(R / \theta_{D}\right)=0$ or $n-l_{R}\left(R / \theta_{D}\right)=1$. In the first case $\theta_{D}=\gamma$, moreover $\delta=\sum_{i=1}^{n-1} r_{i}+1=(n-1)(e-1) \Longrightarrow$ $\delta=n e-n-e+1=n e-c+\delta-e+1 \Longrightarrow c-1=n e-e$, which is a contradiction.
The other possibility leads to $l_{R}\left(\theta_{D} / \gamma\right)=1$ and $\sum_{i=1}^{n-1} r_{i}=(n-1)(e-1)$, hence $r_{i}=e-1$ for every $i=0, \ldots, n-1$.

References

[1] V. Barucci, D. E. Dobbs, M. Fontana, Maximality Properties in Numerical Semigroups and Applications to One-Dimensional Analytically Irreducible Local Domains, Mem. Amer. Math. Soc. vol. 125, n. 598 (1997).
[2] V. Barucci, R. Fröberg, One-Dimensional Almost Gorenstein Rings, Journal of Algebra 188 (1997) 418-442.
[3] R. Berger, Differentialmoduln eindimensionaler lokaler Ringe, Math. Zeitschr. 81, 326-354 (1963).
[4] W.C.Brown, J.Herzog, One Dimensional Local rings of Maximal and Almost Maximal Length, Journal of Algebra 151, 332-347 (1992).
[5] M. D'Anna, Canonical Module and One-Dimensional Analytically Irreducible Arf Domains, Lecture Notes in Pure and Applied Math., Dekker, vol 185 ().
[6] M. D'Anna, D. Delfino, Integrally closed ideals and type sequences in onedimensional local rings, Rocky Mountain J. Math. 27, (4) (1997) 1065-1073.
[7] D. Delfino, On the inequality $\lambda(\bar{R} / R) \leq t(R) \lambda(R / C)$ for one-dimensional local rings, J. Algebra 169, (1994), 332-342.
[8] J. Herzog, E. Kunz, Der kanonische Modul eines Cohen-Macaulay Rings, Lecture Notes in Math. vol. 238, Springer, Berlin, (1971).
[9] J. Herzog, R. Waldi, Differentials of linked curve singularities, Arch.Math., 42, 335-343 (1984).
[10] J. Jäger, Längenberechnung und kanonische Ideale in eindimensionalen Ringen, Arch. Math. 29 (1977), 504-512.
[11] T. Matsuoka, On the degree of singularity of one-dimensional analytically irreducible noetherian rings, J. Math. Kyoto Univ. 11:3 (1971), 485-491.
[12] E. Kunz, R. Waldi, "Regular Differential Forms", Contemporary Mathematics, Vol. 79, Am. Math. Soc. (anno ?)
[13] A. Oneto, E. Zatini, Type-sequences of modules, Journal of Pure and Applied Algebra, (2001).

