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Abstract. Let (R,m) be a one-dimensional, local, Noetherian domain and let R

be the integral closure of R in its quotient field K. We assume that R is not regular,

analitycally irreducible and residually rational. The usual valuation v : K −→ ZZ ∪∞
associated to R defines the numerical semigroup v(R) = {v(a), a ∈ R, a 6= 0} ⊆ IN.

The aim of the paper is to study the non-negative invariant b := (c − δ)r − δ, where

c, δ, r denote the conductor, the length of R/R and the Cohen Macaulay type of R,

respectively. In particular, the classification of the semigroups v(R) for rings having

b ≤ 2(r − 1) is realized. This method of classification might be successfully utilized

with similar arguments but more boring computations in the cases b ≤ q(r − 1), for

reasonably low values of q. The main tools are type sequences and the invariant k

which estimates the number of elements in v(R) belonging to the interval [c− e, c), e
being the multiplicity of R.

Introduction. Let (R,m) be a one-dimensional, local, Noetherian domain
and let R be the integral closure of R in its quotient field K. We assume that
R is not regular and analitycally irreducible, i.e. R is a DVR with uniformizing
parameter t and a finite R-module. We also suppose R to be residually rational,
i.e. R/m ' R/tR. Called v : K −→ ZZ ∪ ∞ the usual valuation associated to
R, the image v(R) = {v(a), a ∈ R, a 6= 0} ⊆ IN is a numerical semigroup.
Starting from the following classical invariants:

c, the conductor of R, i.e. the minimal j ∈ v(R) such that j + IN ⊂ v(R),
δ := `R(R/R), the number of gaps of the semigroup v(R) in IN,
r := `R((R : m)/R), the Cohen Macaulay type of R,

the new invariant
b := (c− δ)r − δ

has been recently considered in the literature. The general problem of classifying
rings according to the size of b has been examined by several authors. First,
Brown and Herzog in [2] characterize all the one-dimensional reduced local rings
having b = 0 or b = 1. Successively, in [3], [4], [6], Delfino, D’Anna and Micale
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consider the rings for which b ≤ r. Partial answers in the case b > r − 1 are
given in [5].

In [10, Section 4] we obtain some improvements of the quoted results. This
is done by using the expression of the invariant b in terms of the type sequence
[r1, .., rn] (defined in (1.1)), where n := c−δ and r1 equals the Cohen-Macaulay
type r of R, namely:

b =
∑n
i=1(r − ri).

So, employing the properties of the type sequence, we get as a straightforward
consequence of the preceding formula the well known bounds

0 ≤ b ≤ (n− 1)(r − 1)
(for the positivity see [2], Theorem 1; for the upper bound see [3], Proposition
2.1). Also, we recover in an immediate way the two extremal cases:

b = 0, corresponding to the so called rings of maximal length, i.e. the rings
having maximal type sequence [r, r, ..., r];

b = (n − 1)(r − 1), corresponding to the almost Gorenstein rings, i.e. the
rings having minimal type sequence [r, 1, ..., 1].
Actually, for any integer q ∈ IN it is natural to ask if it is possible to characterize
the rings verifying

(q − 1)(r − 1) ≤ b ≤ q(r − 1).
In Section 3 we write explicitly all the possible values of v(R) for 1 ≤ q ≤ 2
(see Theorems (3.3), (3.4), (3.6)), but we outline that the method used here is
absolutely general and analogous although more tedious computations might be
repeated for greater values of q.
To achieve our results, we utilize heavily the number

k := `R(R/(C + xR)),
where C := tcR denotes the conductor ideal of R in R and x an element of R such
that v(x) = e(R), the multiplicity. In [5] it is established that b = r−1 =⇒ k = 1
or 2 [5, Proposition 2.4], and that b = r − 1 and k = 2 =⇒ r = e − 2 [5,
Corollary 2.13]. In [6] the lower bound rk − e + 1 ≤ b is found. Improvements
of these results and several other inequalities relating the invariants k, b, r are
now realized by means of the type sequence of R (see (1.4) and (2.1)). For this
purpose we introduce in Section 1 a decomposition of the semigroup v(R) as a
disjoint union of subsets:

v(R)={0, e, 2e, ..., pe, c,→} ∪H1 ∪ .... ∪Hk−1,
where Hi := {yi, yi+e, ..., yi+ lie}, i = 1, ..., k−1, p, li ∈ N, and {yi}i=1,..,k−1

have distinct residues (mod e) (see Setting 1.6). This allows us to obtain in
Section 2 the useful formula (2.2.1):

b = X + Y + Z
where X := (k − 1)(r − 1) ≥ 0,

Y := k − (e− r) ≥ 0,
Z := (r + 1)(p+

∑k−1
1 li) + k + h− pe− 1 ≥ 0.

Obviously X + Y = rk− e+ 1, and so the integer Z measures how far is b from
the lower bound proved in [6].
The advantage of this formula is evident for low values of b. For instance, for
rings having b ∈ {0, 1, 2} we state in a quite simple way all the possible value



sets (see Theorems (3.1), (3.8), (3.9)). Nevertheless, a such type of classification
might be accomplished for greater values of b with similar arguments.

1 Preliminary results.

We begin by giving the setting of the paper.

Setting 1.1 Let (R,m) be a one-dimensional local Noetherian domain with
residue field κ and quotient field K. We assume throughout that R is not
regular with normalization R ⊂ K a DVR and a finite R-module, i.e., R is
analytically irreducible. Let t ∈ R be a uniformizing parameter for R, so that
tR is the maximal ideal of R. We also suppose that the field κ is isomorphic
to the residue field R/tR, i.e., R is residually rational. We denote the usual
valuation on K associated to R by v; that is, v : K −→ ZZ ∪∞, and v(t) = 1.
By [9, Proposition 1] in this setting it is possible to compute for a pair of
fractional nonzero ideals I ⊇ J the length of the R-module I/J by means of
valuations:

(1.1.1) `R(I/J) = |v(I) \ v(J)|.
The set v(R) := {v(a) | a ∈ R, a 6= 0} ⊆ IN is the numerical semigroup of R.
Since the conductor C := (R :K R) is an ideal of both R and R, there exists a
positive integer c so that C = tcR, `R(R/C) = c and c ∈ v(R). Furthermore,
denoting by δ := `R(R/R) the number of gaps of the semigroup v(R) and
r := `R((R : m)/R) the Cohen Macaulay type of R, we define the invariant

b := (c− δ)r − δ.
We list the elements of v(R) in order of size: v(R) := {si}i≥0, where s0 = 0 and
si < si+1, for every i ≥ 0. We put e := s1 the multiplicity of R and n = c−δ the
number such that sn = c. For every i ≥ 0, let Ri denote the ideal of elements
whose values are bounded by si, that is,

Ri := {a ∈ R | v(a) ≥ si}.
The ideals Ri give a strictly decreasing sequence

R = R0 ⊃ R1 = m ⊃ R2 ⊃ . . . ⊃ Rn = C ⊃ Rn+1 ⊃ ... ,
which induces the chain of duals:

R ⊂ (R : R1) ⊂ ... ⊂ (R : Rn) = R ⊂ (R : Rn+1) = t−1R ⊂ ....
Put ri := lR((R : Ri)/(R : Ri−1)), i ≥ 1; the finite sequence of integers

[r1, . . . , rn] is the type sequence of R.
In particular r1 = r, the Cohen-Macaulay type of R. Moreover it is known that:
• 1 ≤ ri ≤ r for every i ≥ 1, and ri = 1 for every i > n,
• δ =

∑n
1 ri,

• 2δ − c =
∑n

1 (ri − 1) =
∑∞

1 (ri − 1) (see, e.g. [10, Prop.2.7]).

Type sequence is a suitable tool to study the behavior of the invariant b.

Proposition 1.2 We have:

(1) b =
∑n
i=1(r − ri).

(2) 0 ≤ b ≤ (n− 1)(r − 1).



Proof. For (1) see [10, Section 4].
(2). We have:

∑n
i=1(r − ri) =

∑n
i=2(r − ri) ≤ (n − 1)(r − 1), because r1 = r

and ri ≥ 1, for every i ≥ 1. �

Notation 1.3 Let R be as in (1.1). We set:

• x ∈ m is an element such that v(x) = e; namely, `R(R/xR) = e.

• For a, b ∈ Z, [a, b] = {x ∈ Z | a ≤ x ≤ b}.

• i0 ∈ [1, n] is such that si0−1 = min{y ∈ v(R) | y ≥ c− e}.
(i0 = 1 ⇐⇒ c = e).

• B := [i0, n] and A := [1, n] \B (|A| ≤ n− 1).

• k := `R(R/(C + xR)) (1 ≤ k ≤ e− 1).

Theorem 1.4 The following facts hold.

(1) k = |B| = `R(C :R m/C) ≥ e− r > 0.

(2) k ≤
∑
i∈B ri ≤ e− 1. If

∑
i∈B ri = e− 1, then si0−1 = c− e.

Proof. (1) and the inequality
∑
i∈B ri ≤ e − 1 of (2) are proved in [10,

Lemma 4.2]. Since ri ≥ 1 for every i and |B| = k, the inequality k ≤
∑
i∈B ri

is done.
Moreover, denoting by ω the canonical module of R (see [10] for the existence
and the properties in our setting), we remark that∑

i∈B ri = `R(R/(R : Ri0−1)) = |v(ωRi0−1)<c| and
v(ωRi0−1)<c ⊆ [c− e, c− 2]

(see the proof of the quoted lemma). Thus
∑
i∈B ri = e− 1 =⇒ v(ωRi0−1)<c =

[c− e, c− 2], and so si0−1, the minimal element in v(ωRi0−1), equals c− e. �

The case k = 1 is completely known and recalled below for the convenience
of the reader.

Proposition 1.5 [10, Lemma 4.4] The following facts are equivalent:

(1) k = 1.

(2) v(R) = {0, e, ..., pe, c→}.

(3) The type sequence of R equals [e− 1, ...., e− 1, rn].

If R satisfies these equivalent conditions, then:

δ = c− p− 1, b = (p+ 1)e− c ≤ r − 1, r = e− 1, rn = e− 1− b.

By virtue of (1.1.1) we have k = |v(R) \ v(C + xR)|. This fact allows to
write v(R) = v(C + xR) ∪ {0, y1, ..., yk−1}, obtaining the description of v(R) as
a disjoint union of the sets Hi given in the next setting. The construction is
significant for k > 1.



Setting 1.6 Let k > 1. We set:

v(R)= {0, e, 2e, ..., pe, c,→} ∪H1 ∪ .... ∪Hk−1, where

• p is the integer such that c−e ≤ pe < c, in other words, pe+2 ≤ c ≤ (p+1)e.
(p ≥ 0 and p = 0 ⇐⇒ c = e).

• h := (p+ 1)e− c, (0 ≤ h ≤ e− 2).

• Hi := {yi, yi + e, ..., yi + lie}, i = 1, ..., k − 1, li ∈ IN.

• The integers yi ∈ IN are such that e < y1 < y2 < ... < yk−1, yi /∈ eZ,
yi 6= yj (mod e) for every i, j ∈ {1, .., k − 1}.

• The integers li, i = 1, ..., k − 1, are defined by the relations:

yi + lie < c ≤ yi + (li + 1)e.

• For k = 2 we shortly call y := y1, l := l1.

Example 1.7 If v(R) =< 10, 11, 26 >, then:
v(R) = {0, 10, 20, 30, 40, 50→}∪H1∪ ...∪H7 where H1 = {11, 21, 31, 41}, H2 =
{22, 32, 42}, H3 = {26, 36, 46}, H4 = {33, 43}, H5 = {37, 47}, H6 = {44}, H7 =
{48}. According to notations previously introduced y1 = 11, y2 = 22, y3 =
26, y4 = 33, y5 = 37, y6 = 44, y7 = 48 and l1 = 3, l2 = l3 = 2, l4 = l5 = 1, l6 =
l7 = 0. Moreover, c = 50, p = 4, h = 0.

Proposition 1.8 Let k > 1, p, h, {li} be the integers defined in (1.3) and (1.6).
Then:

(1) r ∈ {e− k, ...., e− 1}.

(2) 0 ≤ lk−1 ≤ .... ≤ l2 ≤ l1 ≤ p− 1.

(3) c− δ = p+ k +
∑k−1

1 li,

δ = (p+ 1)(e− 1)− h−
∑k−1

1 (li + 1).

Proof. Assertion (1) follows immediately from (1.4.1).
(2). By definition of li and p, we have (li + 1)e < yi + lie < c ≤ (p+ 1)e;
then li + 1 ≤ p, for every i = 1, ..., k − 1. Now note that

yi+ lie < c ≤ yi−1 +(li−1 +1)e =⇒ yi−yi−1 < (li−1 +1− li)e =⇒ li ≤ li−1.
(3). Using the integers defined in (1.6) c− δ and δ can be expressed as :

c− δ = (p+ 1) + (l1 + 1) + ...+ (lk−1 + 1) = p+ k +
∑k−1

1 li,
δ = c− (c− δ) = (p+ 1)e− h− (p+ k +

∑k−1
1 li)

= (p+ 1)(e− 1)− h−
∑k−1

1 (li + 1). �

It is natural to ask how the elements y1, ..., yk−1 introduced in (1.6) influence
the Cohen Macaulay type of R. This will be analysed in the following (1.9),
(1.11), (1.12).



Proposition 1.9 Let k = `R(R/(C +xR)) and let v(R) be as in (1.6). Further
let x1, ..., xk−1 ∈ m be such that v(xi) = yi. The following facts are equivalent:

(1) r = e− 1, i.e. R is of maximal Cohen Macaulay type.

(2) v(R) \ v(xR : m) = {0}.

(3) y1, ..., yk−1 ∈ v(xR : m).

(4) x1, ..., xk−1 ∈ (xR : m).

(5) xixj ∈ xm for every i, j = 1, ..., k − 1.

(6) `R(m/m2) = e, i.e. R is of maximal embedding dimension.

Proof. Since e − r = `R(R/xR) − `R((xR : m)/xR) = `R(R/(xR : m)), the
equality e− r = 1 means |v(R) \ v(xR : m)| = 1, and so 1 ⇐⇒ 2 is proved. In
the same way we obtain that

(∗) r = e− 1 ⇐⇒ (xR : m) = m ⇐⇒ m2 = xm. Moreover,
(∗∗) v(x−1m) ⊆ N =⇒ x−1mC ⊆ C =⇒ mC = xC =⇒ C ⊆ (xR : m).

Considering the chain of ideals
R ⊃ m ⊇ C + (x, x1, ..., xk−1)R ⊃ C + (x, x1, ..., xk−2)R ⊃ ... ⊃ C + xR,

we see that `R(R/(C + xR)) = k =⇒ m = C + (x, x1, ..., xk−1)R, hence
(∗ ∗ ∗) xim = (xxi)R+ (xixj)R+ xiC for every j = 1, ..., k − 1.

By (∗) we have immediately 1 ⇐⇒ 6 and 1 =⇒ 5.
5 =⇒ 4. By the assumption xixj ∈ xm, ∀ i, j = 1, ..., k − 1 and by the obvious
inclusion xiC ⊆ mC = xC, from (∗ ∗ ∗) we get xim ⊆ xR, then xi ∈ (xR : m).
The implication 4 =⇒ 3 is obvious.
Finally, 3 =⇒ 2 holds by (∗∗). �

Remark 1.10 It is clear from (1.9) (see the equivalence 1-5) that the condition
yi + yj − e ∈ v(R) for every i, j = 1, ..., k − 1, is necessary to have maximal
Cohen Macaulay type. Unfortunately, it is not sufficient. For example, if R =
κ[[t6, t9 + t10, t14, t16, t17, t19]], then k = 2, y = 9, 2y − e = 12 ∈ v(R), but
r = e− 2. In this case (1.9.5) does not hold, because (t9 + t10)2 /∈ xR.

Proposition 1.11 Let k = `R(R/(C + xR)) and let v(R) be as in (1.6).

(1) r = e− k, k ≥ 2, ⇐⇒ v(R) \ v(xR : m) = {0, y1, ...., yk−1}.

(2) If r < e− 1, then
(a) 2y1 < c+ e,

(b) p ≤ 2l1 + 2 and p = 2l1 + 2 =⇒ h > 0.

(3) If r = e− k, then
(a) y1 + yj < c+ e, for every j = 1, ..., k − 1.

(b) p ≤ l1 + lk−1 + 2 and p = l1 + lk−1 + 2 =⇒ h > 0.

(4) If p ≥ 3 and i is such that li = 0, then 2yi > c+ e.



Proof. (1). By means of (∗∗) stated in the proof of (1.9), we have the
inclusions (C + xR) ⊆ (xR : m) ⊆ R. Since e − r = `R(R/(xR : m)) and
k = `R(R/(C + xR)), it follows that e− r = k ⇐⇒ (C + xR) = (xR : m).
To see (2.a), suppose 2y1 ≥ c+e, then yi+yj ≥ c+e for every i, j = 1, ..., k−1.
Let xi ∈ m be elements such that v(xi) = yi and let s ∈ m. If s ∈ (C+xR), then
xis ∈ m(C+xR) ⊆ xR. If s /∈ (C+xR), then v(s) = yj , for some j, 1 ≤ j ≤ k−1,
hence v(xis) = yi + yj ≥ c+ e =⇒ xis ∈ xC ⊂ xR. In both cases xi ∈ (xR : m),
and so yi ∈ v(xR : m). Thus v(R) \ v(xR : m) = {0} and r = e − 1 by (1.9), a
contradiction.
To see (2.b), consider that by (1.3) and (1.6):

y1 ≥ c− (l1 + 1)e = (p− l1)e− h.
Combining this with the preceding (2.a), we obtain

(2p− 2l1)e− 2h ≤ 2y1 < c+ e = (p+ 2)e− h.
Thus (p− 2l1 − 2)e < h and since h ≤ e− 2, we see that p ≤ 2l1 + 2 and also
that p = 2l1 + 2 =⇒ h > 0.
To prove (3.a), it suffices to show that y1+yk−1 < c+e. Suppose y1+yk−1 ≥ c+e,
then yi + yk−1 ≥ c + e for all i. Let xk−1 ∈ m be an element such that
v(xk−1) = yk−1. As in (2.a), we get xk−1 ∈ (xR : m), and so yk−1 ∈ v(xR : m),
a contradiction, since the assumption e − r = k means v(R) \ v(xR : m) =
{0, y1, ...., yk−1} (see item 1).
We prove now (3b). As in (2.b),

yj ≥ c− (lj + 1)e = (p− lj)e− h, for j = 1, ..., k − 1,
and by (3.a)

(2p− lj − l1)e− 2h ≤ y1 + yj < c+ e = (p+ 2)e− h. Hence
(p− lj − l1 − 2)e < h ≤ e− 2, for every j = 1, ..., k − 1.

We conclude
p ≤ l1 + lj + 2 ≤ l1 + lk−1 + 2 and also the last assertion.

For (4), note that li = 0 =⇒ yi + e ≥ c, and that p ≥ 3 =⇒ c > 3e.
Thus: 2yi ≥ 2c− 2e = c+ (c− 2e) > c+ e, as desired. �

We may describe the particular case k = 2 in a more precise way.

Proposition 1.12 Assume k = 2. With setting (1.6) we have:

(1) r = e− 1 ⇐⇒ one of the following conditions is satisfied:

(a) 2y ≥ c+ e;

(b) 2y = (2q + 1)e < c+ e, q ≥ 1, p ≥ 2 and y ∈ v(xR : m).

(2) r = e− 2 ⇐⇒ 2y < c+ e and if 2y = (2q + 1)e, then y /∈ v(xR : m).

Proof. First recall that by (1.4.1) one has r ≥ e−2. For implication =⇒ in
(1), note that y ∈ v(xR : m), by (1.9), and so 2y−e ∈ v(m). Then regarding the
structure of v(R), we have the claim. For the opposite implication, note that in
case (a) for any s ∈ m such that v(s) = y, v(x−1s2) = 2y − e ≥ c =⇒ x−1s2 ∈
C =⇒ s2 ∈ xm; now use again (1.9) to conclude.
(2) is immediate by (1). �



2 Bounds for the invariant b.

Starting from the preliminary result (1.2) we go on in studying the integer b.
First (see (2.1)) we find lower and upper bounds using the properties of the
type sequence, then (see (2.2)) we express b in terms of the integers k, p, li, h
occurring in the decomposition of v(R) as in (1.6). This description becomes
quite simple in the particular cases k = 2, 3 (see (2.3) and (2.4)). The last result
of the present section (see(2.5)) furnishes informations according to the range
(q − 1)(r − 1) < b ≤q(r − 1), that will be basic in the next section.

Proposition 2.1 With Notation 1.3, the following facts hold.

(1) (e− r − 1)(r − 1) ≤ rk − e+ 1 ≤ b−
∑
i∈A(r − ri) ≤ k(r − 1).

(2) b = (k − 1)(r − 1) +
∑
i∈A(r − ri) ⇐⇒

∑
i∈B ri = e− 1 and k = e− r.

(3) b = k(r − 1) +
∑
i∈A(r − ri) ⇐⇒ ri = 1 for every i ∈ B.

(4) The following conditions are equivalent:

(a) b = (e− r − 1)(r − 1).

(b) b = (k − 1)(r − 1).

(c) e− r = k,
∑
i∈B ri = e− 1 and ri = r for every i ∈ A.

If these conditions hold, then si0−1 = c− e.

(5) b ≥ (r − 1)s, where s := |{i ∈ [1, n] | ri = 1}|.

Proof. Write the invariant b =
∑n
i=1(r − ri) in the following form:

(∗) b =
∑
i∈B

(r − ri) +
∑
i∈A

(r − ri) = rk −
∑
i∈B

ri +
∑
i∈A

(r − ri).

Using that
∑
i∈B ri ≤ e− 1 (see 1.4.2), we obtain

(∗∗) rk − (e− 1) ≤ b−
∑
i∈A(r − ri) ≤ k(r − 1).

Then, since k ≥ e− r by (1.4.1), the inequalities of (1) are clear.
(2). Supposing b−

∑
i∈A(r−ri) = (k−1)(r−1) we have by item 1 (k−1)(r−1) ≥

rk− e+ 1, hence k ≤ e− r and since always k ≥ e− r, it follows that k = e− r.
From (∗)

∑
i∈B ri = rk − (k − 1)(r − 1) = k + r − 1 = e− 1. For the converse,

it suffices to substitute
∑
i∈B ri = k + r − 1 in (∗).

(3). Using (∗) we have b−
∑
i∈A(r−ri) = k(r−1) ⇐⇒

∑
i∈B(r−ri) = k(r−1).

Since r − ri ≤ r − 1 for every i and k = |B|, the last fact is equivalent to say
that ri = 1 for every i ∈ B.
(4), a =⇒ b. By (1) we have immediately

∑
i∈A(r−ri) = 0 and (e−r−1)(r−1) =

rk − e+ 1 =⇒ e− r = k, as desired.
b =⇒ c. By (1) we have

∑
i∈A(r− ri) ≤ b− (rk− e+ 1) = −k− r+ e ≤ 0, then

we can apply item 2 with
∑
i∈A(r − ri) = 0.

c =⇒ a. Substitute in (∗) the relations of (c).
The fact si0−1 = c− e is immediate by (1.4.2).



By applying [10, Corollary 3.13.2], with I = C we get (5). �

Utilizing the description of the value set v(R) introduced in (1.6), we obtain
the next useful formula for the invariant b.

Theorem 2.2 With Setting 1.6, assume k > 1. The following equalities hold:

(1) b = (r + 1)
∑k−1

1 (li + 1)− (p+ 1)(e− r − 1) + h = X + Y + Z

where X := (k − 1)(r − 1) ≥ 0,

Y := k − (e− r) ≥ 0,

Z := (r + 1)(p+
∑k−1

1 li) + k + h− pe− 1 ≥
∑
i∈A(r − ri) ≥ 0.

(2) c = (p+ 1 +
∑k−1

1 (li + 1))(r + 1)− b.

Proof. (1). To get the desired formula it suffices to substitute in the equality
b = (c− δ)r− δ the expressions of c− δ and δ given in (1.8.3). The positivity of
Y is clear by (1.4.1). To prove the positivity of Z we use the second inequality
of (2.1.1): X+Y = kr−e+1 ≤ b−

∑
i∈A(r−ri), and so we have the conclusion:

Z = b− (X + Y ) ≥
∑
i∈A(r − ri) ≥ 0.

(2). Since b+ c = (r + 1)(c− δ), (2) follows easily. �

Lemma 2.3 Case k = 2. With Setting 1.6, assume k = 2.

(1) If r = e− 1, then b = (l + 1)e+ h ≤ (l + 2)e− 2.

Further: b = (l + 2)e− 2 ⇐⇒ h = e− 2.

(2) If r = e− 2, then:

b = (l + 1)(e− 1) + h− p− 1,

c = (p+ l + 2)(e− 1)− b.
Further we have:

(a) l + 1 ≤ p ≤ 2l + 2 and p = 2l + 2 =⇒ h > 0.

(b) (l + 1)(e− 3) ≤ b ≤ (l + 1)(e− 2) + e− 3. In particular
b = (l + 1)(e− 3) ⇐⇒ p = 2l + 2, h = 1 or p = 2l + 1, h = 0.
b = (l + 1)(e− 2) + e− 3 =⇒ p = l + 1, p > 1, h = e− 2, y = e+ 1.

Proof. For k = 2, we write v(R)={0, e, 2e, ..., pe, c,→}∪{y, y+e, ..., y+ le},
with r ∈ {e−2, e−1}, c−δ = p+2+ l, c = (p+1)e−h. (see 1.8), (1.6)). Then
the expressions of b, in items 1,2, come from (1.8.4) with k = 2 and e− r = 1, 2,
respectively. To complete the proof of item 1 recall that h ≤ e− 2.
The bounds for p in item 2 come from (1.8.2) and (1.11.3) and the value of c
comes from (2.2.2).
Rewriting b in the form

b = (l + 1)(e− 2) + (l − p) + h,
and recalling that l − p ≤ −1, h ≤ e− 2, we obtain the upper bound for b.
Rewriting b in the form



b = (l + 1)(e− 3) + (2l + 2− p) + (h− 1),
and using part a, we obtain the lower bound and also b = (l + 1)(e − 3) ⇐⇒
p = 2l + 2, h = 1 or p = 2l + 1, h = 0.
Finally, note that b = (l + 1)(e − 2) + e − 3 =⇒ h = (p − l − 1) + e − 2 ≥
e − 2 =⇒ p = l + 1, h = e − 2 =⇒ c = pe + 2 and since by definition of l
y + le < c, it follows that y < e+ 2, hence y = e+ 1 and p > 1. �

Lemma 2.4 Case k = 3. With Setting 1.6, assume k = 3.

(1) If r = e− 3, then b = (l1 + l2 + 2)(e− 2) + h− 2(p+ 1). Moreover,

p < l1 + l2 + 2 =⇒ b ≥ (l1 + l2 + 2)(e− 4) + h, h ≥ 0.

p = l1 + l2 + 2 =⇒ b = (l1 + l2 + 2)(e− 4) + h− 2, h > 0.

(2) If r = e− 2, then b = (l1 + l2 + 2)(e− 1) + h− p− 1 and p ≤ 2l1 + 2.
Further, p = 2l1 + 2 =⇒ h > 0.

(3) If r = e− 1, then b = (l1 + l2 + 2)e+ h.

Proof. Recall that by (1.4) e− r ≤ 3 and by (1.6)
v(R)={0, e, 2e, ..., pe, c,→} ∪ {y1, ..., y1 + l1e} ∪ {y2, ..., y2 + l2e}.

Formula (2.2.1) with k = 3 becomes
b = (r + 1)(l1 + l2 + 2)− (p+ 1)(e− r − 1) + h.

By substituing r with e− 1, e− 2, e− 3, we get the desired expressions for b in
items 3, 2, 1, respectively. To complete the proof of (1) and (2), apply (1.11.3)
and (1.11.2), respectively. �

Proposition 2.5 Let q ∈ IN be such that 0 < b ≤ q(r − 1). Then:

(1) r ≥ e− q − 1. In particular,

(a) If r = e − 1 − q, then b = q(r − 1), q ≤ e − 3, and the equivalent
conditions of (2.1.4) hold.

(b) If r ≥ e− q, then e− r ≤ k ≤ q.

(2) If (q − 1)(r − 1) < b ≤ q(r − 1), we have:

(c) k − 1 ≤ q ≤ n− 1.

(d) (q − k − 1)(r − 1) <
∑
i∈A(r − ri) ≤ (q − k)(r − 1) + e− 1− k.

Proof. (1). First we deduce the inequalities
(�) (e− r − 1)(r − 1) ≤ b ≤ q(r − 1),

by combining (2.1.1) with the assumption. Hence we get r ≥ e− q − 1.
(a). If r = e− 1− q, then relations (�) give b = (e− r − 1)(r − 1), and so the
conditions of (2.1.4) hold.
(b). Assertion (∗∗) in the proof of (2.1) insures that kr − (e − 1) ≤ b. Hence
assuming r ≥ e − q, we have rk ≤ b + e − 1 ≤ q(r − 1) + e − 1 ≤ (q + 1)r − 1;
then k ≤ q.
(2). Put M :=

∑
i∈A(r−ri). We have to compare the two inequalities of (2.1.1)



(k − 1)(r − 1) +M + k − (e− r) ≤ b ≤ k(r − 1) +M
with the assumption

(q − 1)(r − 1) < b ≤ q(r − 1).
We obtain the following:

(k − 1)(r − 1) +M + k − (e− r) ≤ q(r − 1), and also
(q − 1)(r − 1) < k(r − 1) +M .

The first inequality gives q ≥ k − 1 and M ≤ (q − k)(r − 1) + e− 1− k.
The second one says that M > (q − k − 1)(r − 1). Moreover, combining the
hypothesis with (2.1.2)

(q − 1)(r − 1) < b ≤ (n− 1)(r − 1),
and this implies q ≤ n− 1, as desired. �

3 Classification.

Our aim is now to classify the value sets for one dimensional local domains
having

0 ≤ b ≤ 2(r − 1).
On this topic several results are present in the literature. For semigroup rings
R = κ[[tα;α ∈ S]], S ⊂ IN a numerical semigroup, Brown and Herzog in [2,
Corollary after Theorem 4] illustrate the case b = 1. This result can be extended
to rings R as in Setting 1.1 (see (3.1)). Successively D. Delfino in [5, Corollary
2.11 and Corollary 2.14] gives a characterization of rings satisfying the condition
b < r − 1 and exhibits all the possible value sets in the case b ≤ r, under the
additional assumption r = e− 1. See also Proposition 2.7 from [3] for a further
generalization. An exaustive description of the cases 0 < b < r−1 can be found
in [10, Th.4.6].

In this section we assume Setting 1.1 and Notation 1.3. Moreover, t.s.(R)
will denote the type sequence of R, defined in (1.1).

First we recall in (3.1) and (3.2) the quoted known results, which now be-
come an easy consequence of our preceding statements.

Theorem 3.1 Case b = 0.
The following conditions are equivalent:

(1) b = 0.

(2) Either R is Gorenstein, or v(R) = {0, e, .., pe, (p+ 1)e→}.

(3) t.s.(R) = [r, ..., r].

Proof. By (2.1.1) 0 = b ≥ (k − 1)(r − 1); hence either r = 1 or k = 1, and this
last condition gives, by (1.5), v(R) = {0, e, .., pe, (p + 1)e →}, or equivalently,
t.s.(R) = [e−1, ..., e−1] = [r, .., r]. Hence 1 =⇒ 2 ⇐⇒ 3 are clear. Of course, in
the Gorenstein case we have t.s.(R) = [1, .., 1]. Implication 3 =⇒ 1 is immediate
by (1.2.1). �



Theorem 3.2 [10, Theorem 4.6.1] Case 0 < b < r − 1.
The following facts are equivalent:

(1) 0 < b < r − 1.

(2) v(R) = {0, e, .., pe, c→} with pe+ 2 < c ≤ (p+ 1)e.

(3) t.s.(R) = [e− 1, e− 1, ..., e− 1, rn], rn > 1.

If these conditions hold, then:
b < e− 2, r = e−1, rn = e−1−b, k = 1, c = (p+ 1)e− b.

Theorem 3.3 Case b = r − 1.
If b = r − 1 > 0, then either r = e− 1 or r = e− 2.

1. Subcase r = e− 1. The following facts are equivalent:

(a) b = r − 1 > 0 and r = e− 1.

(b) v(R) = {0, e, .., pe, pe+ 2→}, e > 2.

(c) t.s.(R) = [e− 1, ...., e− 1, 1], e > 2.

(d) b = r − 1 > 0 and k = 1.

2. Subcase r = e− 2. The following facts are equivalent:

(e) b = r − 1 > 0 and r = e− 2.

(f) either v(R) = {0, e, 2e− 1, 2e, 3e− 1→}, e > 3,
or v(R) = {0, e, y, 2e→}, with 2y < 3e, e > 3.

(g) either t.s.(R) = [e− 2, e− 2, 1, e− 2], with e > 3,
or t.s.(R) = [e− 2, r2, r3], with r2+ r3 = e− 1, e > 3.

(h) b = r − 1 > 0 and k = 2.

Proof. Applying (2.5.1) with q = 1, we obtain that r ≥ e − 2. Further, if
b = r − 1, then r = e − 2 ⇐⇒ k = 2 by (2.5.1a) and (2.1.4); also, if b = r − 1,
then r = e − 1 ⇐⇒ k = 1 by (2.5.1b). This proves the first assertion and the
equivalences a ⇐⇒ d, e ⇐⇒ h.

(1). First note that (a) implies e > 2; in fact, e = 2 would imply r = 1, b = 0.
d =⇒ b. Since k = 1, the equivalent conditions of (1.5) hold, and

v(R) = {0, e, .., pe, c→}, with c = (p+ 1)e− b = pe+ 2, e > 2.
b =⇒ c. If (b) holds, then by (1.5) t.s.(R) = [e− 1, ...., e− 1, rn], with r−rn =
b = r − 1, hence rn = 1, as in (c).
c =⇒ a. By (1.2.1), (c) implies r = e− 1 and b = r − rn = r − 1, as in (a).

(2). First note that (a) implies e > 3; in fact, e = 3 would imply r = 1, b = 0.
h =⇒ f . Since k = 2 we use (2.3.2) recalling that p ≤ 2l + 2:

e− 3 = b = (l + 1)(e− 1) + h− p− 1 ≥ (l + 1)(e− 1) + h− 2l − 3.
Hence we get l(e− 3) + h ≤ 1 and the following possibilities occur by (2.3.2c):

(l, p, h) = (0, 1, 0), or (l, p, h) = (0, 2, 1), or h = 0, e = 4, l = 1.
- If (l, p, h) = (0, 1, 0), then c = 2e, v(R) = {0, e, y, 2e→} with 2y < 3e, e > 3.
- If (l, p, h) = (0, 2, 1), then v(R) = {0, e, 2e, c→} ∪ {y}, with c− δ = 4,



c = (p+ 1)e− h = 3e− 1, 2y < c+ e = 4e− 1 =⇒ y ≤ 2e− 1,
c−e ∈ v(R) =⇒ y = 2e−1. Hence v(R) = {0, e, 2e−1, 2e, 3e−1→}, e > 3.

- If h = 0, e = 4, l = 1, then e− 3 = b = (l + 1)(e− 1) + h− p− 1 =⇒
p = 4 = 2l + 2 =⇒ h > 0, which is absurd. Hence h =⇒ f is proved.

f =⇒ g. Denoting R0 = κ[[td, d ∈ v(R)]] the monomial ring such that v(R0) =
v(R) = {0, e, 2e− 1, 2e, 3e− 1→}, we have r(R0) = e− 2. Since r(R) ≤ r(R0)
and r(R) ≥ e−2 by (1.4.1), we conclude that r(R) = e−2. The other invariants
are easily derived from v(R): c − δ = 4, δ = 3e − 5, b = (c − δ)r − δ = e − 3.
By substituting in (2.1.1), we obtain

∑
h∈A(r − rh) = 0, hence r2 = e − 2 and

r3 + r4 = e− 1, as desired.
The same reasoning holds for v(R) = {0, e, y, 2e→}.
To see g =⇒ e, it suffices to recall that b =

∑n
h=1(r − rh), see (1.2.1). �

Theorem 3.4 Case r − 1 < b < 2(r − 1).
We have r − 1 < b < 2(r − 1) if and only if v(R) is one of the following:

(1) v(R) = {0, e, ...., pe, c→} ∪ {y}, with y /∈ eZ,
and either 2y ≥ c+ e, pe+ 5 ≤ c ≤ min{y + e, (p+ 1)e}, e ≥ 5,
or e = 2e′, y = 3e′, p = 2, 4e′ + 5 ≤ c ≤ 5e′, e ≥ 10, y ∈ v(xR : m).

(2) v(R) = {0, e, 2e, c→} ∪ {y}, with y /∈ eZ, 2y < c+ e and:
if 2y 6= 3e, then 2e+ 3 ≤ c ≤ 3e− 2, e ≥ 5;
if 2y = 3e, then e = 2e′, 4e′ + 3 ≤ c ≤ 5e′, e ≥ 6, y /∈ v(xR : m).

(3) v(R) = {0, e, y, c→},
with y /∈ eZ, e ≥ 5, 2y < c+ e, e+ 4 ≤ c ≤ 2e− 1.

In each case k = 2; in case (1), r = e − 1 and b ≥ r + 1; in cases (2) and (3),
r = e− 2.

Proof. Assume r − 1 < b < 2(r − 1).
Step 1. Claim: k = 2 and e− 2 ≤ r ≤ e− 1, r > 2.

We have r > 2, since r = 2 =⇒ 1 < b < 2, which is absurd. Further (2.1.1)
gives (k − 1)(r − 1) ≤ b, and so k ≤ 2. But k = 1 would imply b ≤ r − 1 by
(1.5), then k = 2. We conclude using (1.4.1).
Now utilizing the notation in (1.6) we write:

(∗)
{
v(R)={0, e, 2e, ..., pe, c,→} ∪ {y, y + e, ..., y + le}, p ≥ 1, y > e, y /∈ eZ,
y + le < c = (p+ 1)e− h ≤ y + (l + 1)e, l + 1 ≤ p.

Step 2. Claim: l = 0 and e ≥ 5. Further, if r = e− 2, then p ≤ 2.
- If r = e − 1, then, by (2.3.1) we know that b = (l + 1)e + h, l, h ≥ 0. Hence
b < 2(r − 1) = 2e− 4 =⇒ (l − 1)e+ h < −4 =⇒ l = 0, h < e− 4; further we
get : c = (p+ 1)e− h ≥ pe+ 5, e ≥ 5 and b = h+ e ≥ e = r + 1.
- If r = e − 2, we have (l + 1)(e − 3) ≤ b and l + 1 ≤ p ≤ 2l + 2 by
(2.3.2). Then b < 2(r− 1) = 2(e− 3) =⇒ l = 0 and p ≤ 2; also, the assumption
e− 3 < b < 2e− 6 implies e ≥ 5.

Step 3. When r = e− 1, recalling the relations proved in Step 2, we obtain
v(R) = {0, e, ...., pe, c →} ∪ {y}, with e ≥ 5, pe + 5 ≤ c, as in item 1. Recall
that by definition of p and l we have c ≤ (p+ 1)e and c ≤ y + e. Moreover, by



(1.12.1) one of the following conditions is satisfied:
either (a) 2y ≥ c+ e, or (b) 2y = (2q + 1)e < c+ e, p ≥ 2 and y ∈ v(xR : m).
Further, as noted in (1.11.4), p ≥ 3, l = 0 =⇒ 2y > c+ e, hence in case (b) we
have p = 2 and consequently (2q+ 1)e < c+ e ≤ 4e =⇒ q = 1. This proves (1).

Step 4. When r = e− 2, we have by Step 2 that l = 0 and p ≤ 2.
In the case p = 2 we get item 2. In fact from (2.3.2) we obtain c = 4e − 4 − b
and the bounds for c follow at once. The last assertion in item 2 comes from
(1.12). Analogously, in the case p = 1 we get item 3. Notice that when p = 1
we cannot have 2y = 3e < c+ e, because c+ e ≤ 3e− 1.

To complete the proof, let v(R) be as in items (1), (2), (3); we claim that
r − 1 < b < 2(r − 1). In every case k = 2; in case (1) r = e − 1 and in cases
(2), (3) r = e− 2 by (1.12). The rest is a direct computation based on relation
(2.2.2): c = (p+ 2)(r + 1)− b. �

Example 3.5 We supply an example for each case of the above proposition.
• Case (1) with 2y ≥ c+ e.

Let R = κ[[t5, t10, t12, t15,→]]. Then: y = 12, p = 2, c = 15, r = 4, b = 5.
• Case (1) with 2y = 3e.

Let R = κ[[t10, t15, t20, t25,→]]. Then: y = 15, p = 2, c = 25, r = 9, b = 15.
• Case (2).

Let R = κ[[t10, t15 + t16, t20, t25,→]]. As above, y = 15, p = 2, c = 25, but r = 8
by 1.9 since (t15 + t16)2 /∈ xm. Then b = 11.
• Case (3).

Let R = κ[[t5, t6, t9,→]]. Here y = 6, p = 1, c = 9, r = 3, b = 3.

Theorem 3.6 Case b = 2(r − 1).
b = 2(r − 1) > 0 if and only if v(R) is one of the following:

1. (a) v(R)={0, e, e+ 2, e+ 4→}, e ≥ 4.

(b) v(R)={0, e, 2e, 2e+ 4→} ∪ {y}, e ≥ 4, y ∈ v(xR : m).

(c) v(R)={0, e, 2e, ..., pe, pe+4→}∪{y}, e ≥ 4, y ≥ (p−1)e+4, p ≥ 3.

2. (a) v(R)={0, e, e+ 1, e+ 3→}, e ≥ 4.

(b) v(R)={0, e, y, 2e, 2e+ 2→}, e ≥ 5, 2e+ 4 ≤ 2y < 3e+ 2, 2y 6= 3e.

(c) v(R)={0, e, 2e, 3e− 1, 3e, 4e− 1, 4e, 5e− 1→}, e ≥ 4.

(d) v(R)={0, e, 2e, y, 3e, y + e, 4e→}, e ≥ 4, 2y < 5e.

3. (a) v(R)={0, e, y1, y2, 2e→}, e ≥ 5, y1 + y2 < 3e.

(b) v(R)={0, e, 2e− 2, 2e− 1, 2e, 3e− 2→}, e ≥ 5.

Further:
in case 1, r = e− 1 and `R(R/(C + xR)) = 2;
in case 2, r = e− 2 and `R(R/(C + xR)) = 2;
in case 3, r = e− 3 and `R(R/(C + xR)) = 3.



Proof. Let, as above, k = `R(R/(C+xR)). First we assume b = 2(r−1) > 0
and we observe that by (2.1.1) (k − 1)(r − 1) ≤ b = 2(r − 1), then k ≤ 3. Since
k = 1 implies b ≤ r − 1 by (1.5), one of the following cases occurs: or k = 2 and r = e− 1

or k = 2 and r = e− 2
or k = 3 and r = e− 3.

In case k = 2 by Setting 1.6 we have:

(∗)
{
v(R)={0, e, 2e, ..., pe, c,→} ∪ {y, y + e, ..., y + le}, p ≥ 1, y > e, y /∈ eZ,
y + le < c = (p+ 1)e− h ≤ y + (l + 1)e, l + 1 ≤ p.

Step 1. Assuming r = e − 1 and k = 2, we prove that v(R) has the form
described in item 1. By (2.3.1) and the assumption we have the equalities
b = (l + 1)e + h = 2e − 4; hence (l − 1)e + h = −4 =⇒ l = 0, h = e − 4, e ≥
4, c = (p+ 1)e− h = pe+ 4. Now, l = 0 =⇒ y ≥ c− e = (p− 1)e+ 4, and so

v(R)={0, e, ..., pe, pe+ 4→}∪{y}, with (p− 1)e+ 4 ≤ y ≤ pe+ 2, e ≥ 4.
For p = 1 we get (1.a). In fact, by (1.12.1) 2y ≥ c + e = 2e + 4 =⇒ y ≥
e+ 2 =⇒ y = e+ 2. For p = 2 we get (1.b). For p ≥ 3 we get (1.c).

Step 2. Assuming r = e− 2 and k = 2, we prove that v(R) satisfies item 2.
First, by (2.3.2) we have that l + 1 ≤ p ≤ 2l + 2 and also that

(∗∗) (l + 1)(e− 3) ≤ (l + 1)(e− 1) + h− p− 1 = b.
Then b = 2(e− 3) > 0 implies (l + 1)(e− 3) ≤ 2(e− 3), i.e. l ≤ 1.
Case l = 0, and consequently 1 ≤ p ≤ 2.

(·) If l = 0, p = 1, then by (∗∗), h = e− 3, thus c = e+ 3, and (2.a) holds.
(·) If l = 0, p = 2, then h = e− 2, c = 2e+ 2, hence (2.b) holds.

Case l = 1. Now, relation (∗∗) combined with the assumption b = 2e−6 implies
h− p− 1 = −4, 2 ≤ p ≤ 4 and two possibilities occur:

(·) p = 4, h = 1, c = 5e− 1. The relation c ≤ y + (l + 1)e gives y ≥ 3e− 1,
the relation 2y < c+ e gives y ≤ 3e− 1. Hence (2.c) holds.

(·) p = 3, h = 0, c = 4e; hence (2.d) holds.
Step 3. Assuming r = e − 3 and k = 3, we prove that v(R) has the form

described in item 3. First, by Setting 1.6 and by (2.4.1) we have:

(∗)


v(R)={0, e, ..., pe, c→} ∪ {y1, y1 + e, ..., y1 + l1e} ∪ {y2, y2 + e, ..., y2 + l2e}
p ≥ 1, y2 > y1 > e, yi /∈ eZ,
yi + lie < c = (p+ 1)e− h ≤ yi + (li + 1)e, li + 1 ≤ p,
b = (l1 + l2 + 2)(e− 2) + h− 2(p+ 1).

By (1.11.3), since r = e− k, then p ≤ l1 + l2 + 2.
(·) If p < l1 + l2 + 2, then substituting b = 2(e − 4) > 0 in (∗) we get

(l1+l2)(e−4)+h ≤ 0, h ≥ 0.Hence h = l1 = l2 = 0, p = 1, c = 2e, y1+y2 < c+e
by (1.11.3), and so we have (3.a).

(·) If p = l1+l2+2, then analogously we get (l1+l2)(e−4)+h−2 = 0, with 0 <
h ≤ 2. The case h = 1 is impossible. In fact, h = 1 =⇒ l1+l2 = 1 (in particular,
by (1.8.2), l2 ≤ l1, hence l2 = 0, l1 = 1), e = 5, p = 3, c = (p+1)e−h = 19. The
relation of (1.6) c ≤ yi + (li + 1)e gives y1 ≥ 19− 10 = 9, y2 ≥ 19− 5 = 14, but
y1 + y2 < c+ e = 24 by (1.11.3); the only possibility would be y1 = 9, y2 = 14.
Absurd that y1 = y2 (mod 5). Hence h = 2, l1 = l2 = 0, p = 2, c = 3e− 2 and

v(R)={0, e, 2e, 3e− 2,→} ∪ {y1, y2}.
Since l1 = 0, the bound c ≤ y1 + e gives y1 ≥ 2e− 2. Recalling that by (1.11.3)



y1 + y2 < c+ e, we conclude y1 = 2e− 2, y2 = 2e− 1, as in (3.b).
Viceversa, we assume in the following v(R) having the form described in

items 1,2,3, and we prove that b = 2(r − 1) > 0.
For a v(R) as in item 1 we see that r = e− 1 using (1.12). In fact, in case (1.a)
we have y = e+ 2, 2y = c+ e and in case (1.c):

2y ≥ 2(p− 1)e+ 8 > c+ e = (p+ 1)e+ 4.
In conclusion in each case of item 1 we have `R(R/(C+xR)) = 2, r = e−1, l = 0.
Using (2.3.1) b = e+ h = 2e− 4 = 2(r − 1), as desired.
In case (2.a), y = e + 1 /∈ v(xR : m), then r = e − 2 by (1.9). In case (2.b)
by hypothesis 2y < c + e and 2y 6= 3e, then r = e − 2 by (1.12). In case (2.c)
we get by a direct calculation v(xR0 : m) \ v(R0) = {4e + 1, ...., 5e − 2}, then
r = r(R0) = e−2. In case (2.d) 2y < c+e and 2y /∈ eZ, then r = e−2 by (1.12).
In conclusion, in each case of item 2 one has: `R(R/(C + xR)) = 2, r = e − 2,
and so by (2.3.2) b = (l + 1)e− 1) + h− p− 1. Putting in this formula

(·) l = 0, p = 1, h = e− 3, in case (2.a),
(·) l = 0, p = 2, h = e− 2, in case (2.b),
(·) l = 1, p = 4, h = 1, in case (2.c),
(·) l = 1, p = 3, h = 0, in case (2.d),

we get b = 2e− 6 = 2(r − 1), as desired.
In both cases of item 3 we have r = e−3. In fact, y1 +y2−e /∈ v(R) =⇒ y1, y2 /∈
v(xR : m) =⇒ e−r = 3 by (1.11.1). Hence `R(R/(C+xR)) = 3, r = e−3, l1 =
l2 = 0, and by (2.4.3) b = 2(e− 2) + h− 2(p+ 1). Putting in this formula

(·) h = 0, p = 1 in case (3.a),
(·) h = p = 2 in case (3.b),

we get b = 2e− 8 = 2(r − 1), as desired. �

With similar arguments one can evaluate the semigroups v(R) of rings having
b > 2(r− 1). For instance, if 2(r− 1) < b ≤ 3(r− 1) there are few possible cases
and the classification is tedious but easy. Now, for each q ≥ 3 we construct
a family of rings of multiplicity e and Cohen Macaulay type r = e − 1 having
b = q(r − 1) or (q − 1)(r − 1) < b < q(r − 1).

Example 3.7 Let q ≥ 3. Following notations of Setting 1.6 we consider
v(R) = {0, e, 2e, ..., pe, c→} ∪ {y, y + e, ..., y + le},

with e > p, p = 2q, l = q − 2. In this case k = 2. Using (1.12) we see that
r = e− 1, because y+ (q− 1)e ≥ c > 2qe =⇒ y > (q+ 1)e =⇒ 2y > 2(q+ 1)e ≥
c + e. Then by (2.3.1) b = (q − 1)e + h, with 0 ≤ h ≤ e − 2. Now, with an
additional hypothesis on the conductor, we are in goal. In fact:

1) Assuming c = pe+ p, we have h = (p+ 1)e− c = −p+ e = −2q+ e, then
b = (q − 1)e+ (−2q + e) = q(e− 2) = q(r − 1).

2) Assuming c > pe+p, i.e. e−h > 2q, we have (q−1)(e−2) < (q−1)e ≤ b =
(q−1)e+h = q(e−2)+2q−e+h < q(e−2), hence (q−1)(r−1) < b < q(r−1).

As a further application of the previous results we describe exhaustively the
cases b = 1 and b = 2 (see next (3.8), (3.9); for b = 1 see also [2], Section 4).



With regard to the formula

b =
n∑
i=1

(r − ri)

it becomes natural to consider the invariant bas a measure of how far is the type
sequence [r1, ..., rn] from the maximal one [r, ..., r]. For instance, for b = 1 one
expects a type sequence of the form [r, ..., r−1, ..., r], for b = 2 [r, ..., r−1, ..., r−
1, ..., r] or [r, ..., r − 2, ..., r], and so on. Surprisingly, after finding by a direct
computation all the possible value sets and the corresponding type sequences,
we discover that very few choices are possible. For b = 1 (resp. b = 2) either
e ≤ 4 (resp. e ≤ 5) or t.s.(R) = [e− 1, ..., e− 1, e− 1− b].

Corollary 3.8 Case b = 1. Here t.s. stands for t.s.(R).
b = 1 if and only if v(R) is one of the following:

v(R) = {0, 4, 7, 8, 11→}, with t.s. [2, 2, 1, 2];
v(R) = {0, 4, 5, 8,→}, with t.s. [2, 1, 2];
v(R) = {0, e, ..., pe, (p+ 1)e− 1,→}, e ≥ 3, with t.s. [e− 1, ..., e− 1, e− 2].

Proof. First recall that b > 0 =⇒ r > 1 by (1.2.1). Let, as in (2.2.1),
b = X + Y + Z, where X := (k − 1)(r − 1) ≥ 0, Y := k − (e− r) ≥ 0, and
Z := (r + 1)(p+

∑k−1
1 li) + k + h− pe− 1 ≥ 0.

Assuming b = 1, we have to consider the choices:
X Y Z

a) 1 0 0
b) 0 1 0
c) 0 0 1

In a) k = r = 2, 2− (e− 2) = 0 =⇒ e = 4. By (3.3.2) with e = 4 we find:
v(R) = {0, 4, 7, 8, 11→},
v(R) = {0, 4, 5, 8,→}.

In b) k = 1, 1− (e− r) = 1, which is absurd.
In c) k = 1, 1 − (e − r) = 0 =⇒ r = e − 1, e ≥ 3, Z = ep + 1 + h − pe − 1 =
1 =⇒ h = 1 =⇒ c = (p+ 1)e− 1. By (1.5) we find:

v(R) = {0, e, ..., pe, (p+ 1)e− 1,→}, e ≥ 3. �

Corollary 3.9 Case b = 2. As above, t.s. stands for t.s.(R).
b = 2 if and only if v(R) is one of the following:

v(R) = {0, 4, 5, 7,→}, with t.s. [2, 1, 1];
v(R) = {0, 4, 8, 11, 12, 15, 16, 19,→}, with t.s. [2, 2, 2, 1, 2, 1, 2];
v(R) = {0, 4, 8, 9, 12, 13, 16,→}, with t.s. [2, 2, 1, 2, 1, 2];
v(R) = {0, 5, 9, 10, 14,→}, with t.s. [3, 3, 1, 3];
v(R) = {0, 5, 6, 10,→}, with t.s. [3, 1, 3];
v(R) = {0, 5, 7, 10,→}, with t.s. [3, 2, 2];
v(R) = {0, 5, 6, 7, 10,→}, with t.s. [2, 1, 1, 2];
v(R) = {0, 5, 6, 8, 10,→}, with t.s. [2, 2, 1, 1];
v(R) = {0, 5, 8, 9, 10, 13,→}, with t.s. [2, 2, 1, 1, 2];
v(R) = {0, e, ..., pe, (p+ 1)e− 2,→}, e ≥ 4, with t.s. [e− 1, ..., e− 1, e− 3].



Proof. As in the preceding proof, assuming b = 2, we have to consider the
following choices:

X Y Z
a) 0 1 1
b) 1 0 1
c) 1 1 0
d) 2 0 0
e) 0 2 0
f) 0 0 2

First recall that k = 1 =⇒ r = e − 1 by (1.5), and so X = 0 (with r > 0)
=⇒ k − (e− r) = Y = 0 and cases a), e) are impossible.

In b) X = 1 =⇒ k = r = 2, 2− (e− 2) = Y = 0 =⇒ e = 4, hence b = 2(r − 1)
and we can apply (3.6.2) with e = 4. We find:

v(R) = {0, 4, 5, 7,→},
v(R) = {0, 4, 8, 11, 12, 15, 16, 19,→},
v(R) = {0, 4, 8, 9, 12, 13, 16,→}.

In c) X = 1 =⇒ k = r = 2, 2− (e− 2) = Y = 1 =⇒ e = 3, Z = 3(p+ l) + 2 +
h− 3p− 1 = 0 =⇒ 3l + h+ 1 = 0, which is absurd.
In d) the condition X = (k − 1)(r − 1) = 2 implies two possibilities:
d1) k = 2, r = 3, 2− (e−3) = 0 =⇒ e = 5. We are in case b = r−1, r = e−2.
By (3.3.2) with e = 5 we find:

v(R) = {0, 5, 9, 10, 14,→},
v(R) = {0, 5, 6, 10,→},
v(R) = {0, 5, 7, 10,→}.

d2) k = 3, r = 2, e = 5. We are in case b = 2(r − 1), r = e − 3, and so by
(3.6.3) with e = 5 we find:

v(R) = {0, 5, 6, 7, 10,→},
v(R) = {0, 5, 6, 8, 10,→},
v(R) = {0, 5, 8, 9, 10, 13,→}.

In f) k = 1, r = e−1, Z = ep+1+h−pe−1 = 2 =⇒ h = 2 =⇒ c = (p+1)e−2.
By (1.5) we find:

v(R) = {0, e, ..., pe, (p+ 1)e− 2,→}, e ≥ 4. �
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