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Abstract. The main purpose of the paper is to find a suitable description
of a class of modules, which we call almost symmetric, over a complete local k-
algebra R of dimension one, k being an algebraically closed field of characteristic
zero. One of the properties characterizing the modules M of this class, including
the canonical module, is that the Cohen-Macaulay type rR(M) reaches the
known bound δ + δ(M)− c(M) + 1. Another interesting property is obtained
by extending to modules the notion of type sequence, given for rings in [1]. In
fact, it is proved that the equality rR(M) = δ + δ(M) − c(M) + 1 holds if
and only if the type sequence of M is of the form [rR(M), 1, ..., 1]. In the third
section we investigate the meaning of the almost simmetry of modules in terms
of properties of their value sets. In the last section we consider two particular
cases: i) almost symmetric modules with rR(M) = 2 (almost canonical), ii)
modules over almost symmetric rings.
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Let R = k[[x1, ..., xn]] be a complete local k-algebra of dimension one with max-
imal ideal mR, where k is an algebraically closed field of characteristic zero. We
suppose R an integral domain. Throughout the paper we shall use the same
notations and assumptions as in [9], which we list here for the convenience of the
reader: R := k[[t]] the integral closure of R in its quotient field K := k{{t}};
ν : k{{t}} −→ ZZ ∪∞ the canonical valuation given by the degree in t; Γ the
value semigroup of R; c the conductor and δ := dimk(R/R) the singularity
degree of R; r(R) := lR(R : mR)/R the Cohen-Macaulay type of R. Moreover
calling e := e(R) the multiplicity of R, we shall suppose that te ∈ mR (this
is always possible via a suitable change of coordinates).
Analogously, for any fractional R-ideal M ⊂ K, Γ(M) := {ν(m) | m ∈ M} is
the value set of M ; Γ(M) is a Γ-set, i.e. Γ(M)+Γ ⊂ Γ(M); c(M) := the small-
est integer such that tc(M)R ⊂M is the conductor ofM , i.e. c(M)+IN ⊂ Γ(M)
and c(M) − 1 /∈ Γ(M); δ(M) := lR(M/M) where M := M ⊗R R/torsion
the δ-invariant of M ; rR(M) := lR(M : mR)/M the Cohen-Macaulay type of
M . In virtue of [4], Lemma 1.1, we shall assume in the sequel, without loss
of generality, that R ⊂ M ⊂ R; this ensures that δ(M) = lR(R/M) and



lR(M/tckR) = ck − δ(M), where ck = c(M). We shall use indifferently both
notations c(M) or ck for the conductor of an R-module M . The reason is the
following. Set c0 = 0 < c1 = 2 < ... < cδ = c the integer numbers such that
ck−1 /∈ Γ for all k = 0, ..., δ. They correspond naturally to a chain of overrings:
R = R0 ⊃ R1 ⊃ ...Rk... ⊃ Rδ = R defined by Rk := R + tckR. Then there
exists k ∈ {0, ..., δ} such that c(M) = ck. In view of what follows it is useful to
note that M may be considered an R-module as well as an Rk-module.

• Two notions of type-sequence.

Given the value set of R Γ = {s0 = 0, s1, ...., sn−1, sn = c,→}, where
n := c−δ, we consider for every i = 0, ..., n the ideal Vi := {x ∈ R, ν(x) ≥ si}.
Obviously Vn = tcR, V1 = mR, V0 = R. Starting from the maximal sequence:
Vn ⊂ Vn−1 ⊂ .... ⊂ V1 ⊂ V0 we get the chain of R-ideals contained in K:

M = M : V0 ⊂M : V1 ⊂ ... ⊂M : Vn = tck−cR
Extending to the R-modules the terminology introduced in [1] for rings we put
ti := lR(M : Vi/M : Vi−1), i = 1, ..., n, and we call type-sequence of M
( t.s.(M) for short ) the sequence [t1, ...., tn]. Note that: t1 = lR(M : mR/M) =
rR(M) is the Cohen Macaulay type of M and

1.1 c− ck + δ(M) = lR(tck−cR/M) = rR(M) +
∑n

2 ti.

Also in our case

1.2 1 ≤ ti ≤ t1 ∀ i = 1, ..., n.

Since the element z := tck−1−si−1 is such that z ∈M : Vi and z /∈M : Vi−1,
ti ≥ 1. To see the second inequality we recall the following result ([6], Satz 2):
Let (R,mR) be a local one-dimensional Cohen-Macaulay ring and let a, b,M
be fractional ideals such that b ⊂ a; then : lR(M :b/M :a) ≤ lR(a/b) rR(M).
Applying this with b := Vi and a := Vi−1, since by definition lR(Vi−1/Vi) = 1,
we get ti := lR(M : Vi/M : Vi−1) ≤ rR(M) = t1.

Of course, we can do the same regarding M as an Rk-module and we obtain
the k-type-sequence of M ( k−t.s.(M) for short ) [l1, ...., lm], m := ck−k ≤ n,
where li := lR(M : V (k)

i /M : V (k)
i−1), V (k)

i := {x ∈ Rk, ν(x) ≥ si}, i = 1, ...,m.
The analogue of statement 1.1 is:

1.3 δ(M) = rk(M) +
∑m

2 li, where l1 = rk(M) is the Cohen
Macaulay type of M as Rk-module. As in the preceding case

1 ≤ li ≤ l1 ∀ i = 1, ...,m.

Note that in general δ(M) ≤ (ck − k)rk(M) and (case of ”maximal”
k-type-sequence)

1.4 δ(M) = (ck − k)rk(M) ⇐⇒ k − t.s.(M) = [rk, ...., rk], rk := rk(M)



To go on in comparing the two notions of type-sequence we need to recall that
for any fractional ideals N1, N2, N2 ⊂ N1, the length of the R-module N1/N2

can be computed by means of valuations (see [6]):

1.5 lR(N1/N2) = # Γ(N1) \ Γ(N2)

1.6 Notations. For any numerical sets H, K ⊂ ZZ put
H −K := {x ∈ ZZ | x+K ⊂ H} and H+ := H ∩ IN, H− := H \H+.

Next proposition shows that each invariant li represents the positive contri-
bution of the corresponding ti and it states an upper bound for the difference
ti − li.

Proposition 1.7

i) For every i = 1, ...,m li = # (Γ(M : Vi) \ Γ(M : Vi−1))+ ≤ ti;

ii) if for some i ∈ {1, ...,m} ti = 1, then the corresponding li = 1;

iii)
∑m

1 (ti − li) ≤ δ − k ≤ c− ck;

iv)
∑m

1 (ti − li) = δ − k if and only if t.s.(M) = [t1, ..., tm, 1, ..., 1].

Proof. Recall that m = ck − k, n = c− δ.
i) By formula 1.5 ti = # Γ(M : Vi)\Γ(M : Vi−1) and since V

(k)
i = Vi+ tckR,

we have M : V (k)
i = (M : Vi) ∩ (M : tckR) = (M : Vi) ∩ R. Therefore

li = lR((M : Vi) ∩R /(M : Vi−1) ∩R) = # (Γ(M : Vi) \ Γ(M : Vi−1))+.
ii) By 1.3 li ≥ 1 and by i) li ≤ ti = 1.
iii) Combining formula 1.1: c−ck+δ(M) =

∑n
1 ti with formula 1.3: δ(M) =∑m

1 li, we get c−ck+
∑m

1 li =
∑n

1 ti, hence
∑m

1 (ti−li) = c−ck−(
∑n
m+1 ti) ≤

c− ck − (n−m) = δ − k. The second inequality is obvious, since by definition
ck − k ≤ c− δ.
iv) follows from the preceding computation.

2

The present paragraph is devoted to finding suitable characterizations of the
modules having type-sequence of the form [r, 1, ..., 1], or, equivalently, maximal
Cohen-Macaulay type, which we call almost symmetric. Our study has been
inspired by the papers of several authors, Barucci, D’Anna, Delfino, Dobbs,
Fontana, Fröberg, who considered analogous properties in the case of rings (see
[1], [2], [3]). Canonical modules play a crucial rôle in our context.

Note: all isomorphisms in this section are realized by units of R, so that
isomorphic modules have the same value set.

The dualizing module of R is: ωR = {α ∈ k{{t}} dt | res(fα) = 0 ∀f ∈ R}.
By means of the isomorphism k{{t}} dt ' k{{t}} which maps dt 7−→ 1 we



shall identify ωR with a fractional ideal. We fix as canonical ideal of R the
ideal ω̃ := εtcωR, where ε ∈ R is a unit such that R ⊂ ω̃ ⊂ R; it follows
that c(ω̃) = c and Γ(ω̃) = {j ∈ ZZ | c − 1 − j /∈ Γ}. Moreover it is well
known that rR(M) = 1 ⇐⇒ M ' ω̃, ([5], Korollar 6.12), hence ”minimal”
type-sequence, i.e. t.s.(M) = [1, ...., 1], means M ' ω̃ and ”minimal” k-
type-sequence, i.e. k − t.s.(M) = [1, ...., 1], means M ' ω̃k := ω̃Rk

. Some
properties of ω̃ are fundamental in our computations ([5], 2.): for any fractional
ideals a, b, a = ω̃ : (ω̃ : a) and lR(a/b) = lR(ω̃ :b/ω̃ :a). Moreover: ω̃ : ω̃ = R.

Using the well known ’duality’ ωR : Rk = ωRk
([5], Korollar 5.14), we

obtain by a straightforward calculation:

2.1 ω̃k ' tck−cω̃ ∩R ' ω̃ : tc−ckRk

Proof. Let ω̃ = εtcωR, ω̃k = ε′tckωRk
. ωRk

= ωR : Rk = ωR :
(R + tckR) = ωR ∩ t−ckR yields (ε′)−1t−ck ω̃k = ε−1t−cω̃ ∩ t−ckR, which is
the first assertion because ε, ε′ are units of R. Moreover ω̃k = ε′tckωRk

=
ε′tckωR : Rk = ε′tckε−1t−cω̃ : Rk = ε′ε−1ω̃ : tc−ckRk.

2.2 ω̃ : γ(M) = εtcωR : tckR = tc−ckR

2.3 mR(ω̃ : M) = ω̃ : (ω̃ : (mR(ω̃ : M))) = ω̃ : (M : mR)

We recall now the following generalization of [6] Satz 5 and a useful corollary:

2.4 ([9], Lemma 1.1) Let N be a finitely generated torsion free R-module of
rank 1. If Γ(N) ⊂ {j ∈ ZZ | c − 1 − j /∈ Γ}, then there exists a unit u ∈ R
such that uN ⊂ ω̃. If Γ(N) = {j ∈ ZZ | c− 1− j /∈ Γ}, then uN = ω̃.

The above statement is slightly more general than the quoted result of [9]; we
have only to prove that the assumption ’N containing tcR’ is redundant.
If c(N) ≤ c, then N ⊃ tcR. If c(N) > c, then consider the k-vector space
N/(tcR ∩ N) instead of N/tcR and repeat Step 1, Step 2, until to find the
unit u such that Res(unr/tc) = 0 ∀ r ∈ R, ∀ n ∈ N, ν(n) < c. Since for any
n ∈ N, ν(n) ≥ c, certainly Res(unr/tc) = 0 ∀ r ∈ R, we can conclude.

2.5 ([9], Prop.1.2) For any R-module M ⊂ R with conductor c(M) = ck
there exist units u, u′ ∈ R such that uM ⊂ ω̃k and u′tc−ckM ⊂ ω̃.

In the rest of the paper we shall refer to these inclusions as canonical immer-
sions of M . Unfortunately, as next example shows, it is not always possible to
realize both immersions by means of the same unit.

Examples
• If R := k[[t15, t21, t25 + t28, t32]] and Rk := k[[t15, t21, t25 + t28, t29,→]],

k = 25, then we have ω̃ =< 1, t10, t11(1 − t3), t13(1 − t6), t17, t20(1 − t3) > R
and ω̃k = Rk + (1 − t3)−1 < t, t2, t4, t5, t6, t8, t9, t10, t11, t12, t14, t18 > Rk. Let
M := ω̃k and suppose that there exists a unique unit u ∈ R such that
uM ⊂ ω̃k and utc−ckM ⊂ ω̃. Then u ∈ ω̃k : ω̃k = Rk and tc−ckM ⊂ ω̃.



This would imply in particular, since c = 70 and ck = 29, that t41 ∈ ω̃. If
so, then t69 = (t25 + t28)t41 − t30(t25 + t28)t11(1− t3)− t72 ∈ ω̃, contradiction.
• We note also that in general it does not exist a unit u ∈ R such that

R ⊂ uM ⊂ ω̃. Let R := k[[t5, t8, t22]] and M := (1 + t2)R + t8R + t13R.
In this case we have c = 20 and ω̃ =< 1, t2 > R. Suppose there exists
u = 1 + b1t + b2t

2 + b3t
3 + ....., bi ∈ k, such that 1 = u m, m ∈ M , i.e.

1 = (1+b1t+b2t2+b3t3+.....) (a1+a1t
2+a2t

5+a2t
7+a3t

8+.....), ai ∈ k. Then an
easy calculation gives u = 1−t2+t4+...... Since ut17 = t17−t19+t21+.... ∈ uM
and t17 ∈ ω̃, the inclusion uM ⊂ ω̃ would imply c− 1 = 19 ∈ Γ(ω̃), absurd.

As a first consequence we can get an elementary result on valuations:

Lemma 2.6 For any fractional ideal N ⊂ K
Γ(ω̃ : N) = Γ(ω̃)− Γ(N)

Proof. Since the inclusion ⊂ holds in general, we have to prove ⊃. Let j
be such that j + Γ(N) ⊂ Γ(ω̃) =⇒ Γ(tjN) ⊂ Γ(ω̃) =⇒ by the quoted lemma
2.4 utjN ⊂ ω̃ for some unit u ∈ R =⇒ utj ∈ ω̃ : N =⇒ j ∈ Γ(ω̃ : N).

and, considering again the fixed immersions of M , other interesting relations:

Lemma 2.7

i) ω̃ : tc−ckM ' ω̃k : M ;

ii) lR(ω̃/u′tc−ckM) = δ + δ(M)− c(M);

iii) lR(ω̃k/uM) = k + δ(M)− c(M).

Proof. i) By 2.1 we have: ω̃ : tc−ckM = (ω̃ : tc−ckRk) : M ' ω̃k : M .
ii) Using duality and 2.2 we get δ+δ(M)−c(M) = lR(R/R)−lR(M/γ(M)) =
lR(R/R)− lR(R/ω̃ : tc−ckM) = lR(ω̃ : tc−ckM/u′R) = lR(ω̃/u′tc−ckM).
iii) Using also i) k + δ(M)− c(M) = lR(R/Rk)− lR(R/ω̃k : M) =
lR(ω̃k : M/uRk) = lR(ω̃k/uM).

Remark 2.8 About assertion ii) we could be a little more precise.
From lR(ω̃ : mR/ω̃) = 1 we deduce ω̃ : mR = ω̃ + tc−1R, hence:
rR(M) = lR(u′tc−ckM : mR/u

′tc−ckM) ≤ lR(ω̃ : mR/u
′tc−ckM) =

= lR(ω̃/u′tc−ckM) + 1. Thus ii) of 2.7 implies the well known result

2.9 rR(M)− 1 ≤ δ + δ(M)− c(M)

Notice that inequality 2.9 follows also immediately from 1.1; a generaliza-
tion of this formula is given in [9], Prop.1.4.

At this point we are able to describe a family of modules, including the
canonical module, in which the Cohen-Macaulay type achieves the maximal
value. We need the following lemma:

Lemma 2.10 For any fractional ideal N ⊂ ω̃
rR(N)− 1 = lR(ω̃/N) ⇐⇒ mR = mR (ω̃ : N)



Proof. From lR(ω̃/N) = lR(ω̃ : N/R) = lR(ω̃ : N/mR(ω̃ : N)) +
lR(mR(ω̃ : N)/mR)− 1 = rR(N) + lR(mR(ω̃ : N)/mR)− 1 we infer the thesis.

Theorem 2.11 The following are equivalent:

i) rR(M)− 1 = δ + δ(M)− c(M);

ii) rR(M)− 1 = lR(ω̃/u′tc−ckM);

iii) mR ' mR (ω̃ : tc−ckM);

iv) ω̃ : mR ' tc−ckM : mR;

v) mR ω̃ ⊂ u′tc−ckM ;

vi) t.s.(M) = [rR(M), 1, ...., 1].

We call M almost symmetric if it fulfills the above equivalent conditions.
We call M weakly almost symmetric if it is almost symmetric as Rk-module.

Proof. i) ⇐⇒ ii) is an immediate consequence of preceding 2.7 ii).
ii) ⇐⇒ iii) by lemma 2.10 taking N = u′tc−ckM , because rR(N) = rR(M).
iii) ⇐⇒ iv) by duality.
iv) ⇐⇒ v). As noted in remark 2.8 ω̃ : mR = ω̃ + tc−1R, then condition iv)
holds ⇐⇒ ω̃ : mR ⊂ u′tc−ckM : mR ⇐⇒ ω̃ ⊂ u′tc−ckM : mR (because the
inclusion tc−1R ⊂ u′tc−ckM : mR is always verified) ⇐⇒ mRω̃ ⊂ u′tc−ckM .
i) ⇐⇒ vi). We know that

∑n
2 ti = c − c(M) + δ(M) − rR(M), n = c − δ.

Therefore, if ti = 1, i = 2, ..., n, then we get i). Conversely, i) implies that∑n
2 ti = c− δ − 1 and since ti ≥ 1, i = 2, ..., n, the thesis is proved.

Remark 2.12

• In virtue of 1.7 ii) we see immediately that:
M almost symmetric =⇒ M weakly almost symmetric.
• Conditions i),..,iv) can be viewed as the module theoretic analogue of the

characterization of the almost Gorenstein rings given in prop. 20 of [2]. Notice
that for M = R relation iii) becomes mR = mR ω̃ and, more generally, for
any overring M ⊃ R having c(M) = c it becomes mR = mR ω̃M .
• Condition v) can be rewritten in the equivalent form: u′M ⊃ εtckωmR:mR

.
In fact v) ⇐⇒ u′M ⊃ εtckmR ωR and, by duality, mR ωR = ωR : (mR:mR) =
ωmR:mR

.

Corollary 2.13 The following conditions are equivalent:

i) mR : mR is almost symmetric as R-module;

ii) R is almost symmetric and r(R) = e− 1;

iii) mR : mR is a Gorenstein ring.



Proof. First observe that r(R) = e− 1 ⇐⇒ lR(te(mR : mR)/temR) = e
⇐⇒ te(mR : mR) = mR. Then apply 2.11 with M = mR : mR, ck = c − e,
u′ = 1. By v) of the quoted theorem M is almost symmetric means mR ω̃ =
te(mR : mR) = mR. i) ⇐⇒ ii) follows now immediately.
Moreover mR : mR is a Gorenstein ring ⇐⇒ mR : mR ' ω̃mR:mR

⇐⇒
te(mR : mR) ' ω̃ mR ⇐⇒ te(mR : mR) = ω̃ mR = mR. Then iii) ⇐⇒ ii).
A proof of ii) ⇐⇒ iii) is also in [2] , Prop.25.

Let M(R) be the reduced moduli variety for finitely generated torsion free
R-modules of rank 1 constructed by G.M. Greuel and G. Pfister in [4]. It is
well known that the number δ(M :M) represents the orbit dimension of M
in M(R) (see also [9]).

Proposition 2.14 Let M be almost symmetric, then:

i) M :M ⊂ mR : mR

ii) δ − r(R) ≤ δ(M :M) ≤ k

iii) c− ck ≤ e

iv) rR(M) ≤ r(R) + 1 .

Moreover the following are equivalent:

v) rR(M) = r(R) + 1

vi) mR ω̃ = u′tc−ckM

vii) δ(M : M) = δ − r(R).

Proof. We have obviously that: u′tc−ckM : u′tc−ckM ⊂ ω̃ : u′tc−ckM , hence
mR ⊂ mR(M :M) ⊂ mR(ω̃ : u′tc−ckM) = mR. This implies i).
Claim ii) is immediate since Rk ⊂M :M ⊂ mR:mR.
Claim iii) holds because condition v) of 2.11 implies the inclusion Γ(mRω̃) ⊂
Γ(tc−ckM), hence e ∈ c− ck + Γ(M).
From r(R) = lR(ω̃/mRω̃) = lR(ω̃/u′tc−ckM) + lR(u′tc−ckM/mRω̃) = rR(M)−
1 + d where d := lR(u′tc−ckM/mRω̃) we can deduce rR(M) ≤ r(R) + 1
and v) ⇐⇒ vi).
Combining the last inequality with ck − δ(M) ≤ δ(M :M) ≤ k (see [9],
Prop. 2.1) and ck − δ(M) = δ − rR(M) + 1 ( see 2.11, i)), we obtain:
δ − r(R) ≤ δ − rR(M) + 1 ≤ δ(M : M) ≤ k. So v) ⇐⇒ vii).

Proposition 2.15

i) If S is any overring such that R ⊂ S ⊂ mR : mR, then ω̃S is an almost
symmetric R-module;

ii) in particular ω̃mR:mR
is R-almost symmetric of C.M. type r(R) + 1;

iii) ω̃k is almost symmetric ⇐⇒ c− ck ≤ e.



Proof. i) Let c(S) = ck and let ε be the unit such that εtcω = ω̃. Multiplying
by εtc the chain ωR : (mR:mR) ⊂ ωR : S ⊂ ωR and using duality we get:
mRω̃ ⊂ εtcωS ⊂ ω̃. Since there exists a unit τ ∈ R such that ωS = τt−ck ω̃S ,
we can write: mRω̃ ⊂ ετtc−ck ω̃S ⊂ ω̃. So ω̃S verifies condition v) of 2.11.
ii) Apply i) and proposition 2.14. It is easy to see that ω̃mR:mR

verifies
condition vii).
iii) Implication ⇐= is iii) of 2.14. Implication =⇒ follows from i), because
Rk ⊂ mR:mR ⇐⇒ c− ck ≤ e.

3

Our purpose is now to investigate the meaning of the almost simmetry of mod-
ules in terms of properties of their value sets.

First of all by analogy with the notion of t.s.(M) studied in the first section,
we introduce the concept of type-sequence for the Γ-set Γ(M). This is a nat-
ural generalization of the definition of type-sequence given in [1] for numerical
semigroups.

Given the value set of R Γ = {s0 = 0, s1, ...., sn−1, sn = c,→}, where
n := c − δ, we consider for every i = 0, ..., n the ideal Si := {s ∈ Γ, s ≥ si}.
Obviously Sn = [c,→], S1 = Γ(mR), S0 = Γ and, in general, Si = Γ(Vi).
Starting from the maximal sequence: Sn ⊂ Sn−1 ⊂ .... ⊂ S0 we get the chain:

Γ(M) = Γ(M)− S0 ⊂ Γ(M)− S1 ⊂ ... ⊂ Γ(M)− Sn = [ck − c,→]
and we put τi := # (Γ(M)− Si) \ (Γ(M)− Si−1), i = 1, ..., n. We shall call
type-sequence of Γ(M) ( t.s.(ΓM ) for short) the sequence [τ1, ...., τn]. Note
that (Γ(M)− S1) \ (Γ(M)− S0) = (Γ(M)− Γ(mR)) \ Γ(M) is exactly the set
denoted in [9] by AΓ(M)∪ {ck − 1}, so τ1 − 1 = αR(M) := # AΓ(M) is the
invariant introduced in [9].
We can naturally repeat the same process regarding this time Γ(M) as a Γk-set,
Γk := Γ(Rk), obtaining the k-type-sequence of Γ(M) (k − t.s.(ΓM ) for short)
[λ1, ...., λm], m := ck − k ≤ n, where λi := # (Γ(M)− S(k)

i ) \ (Γ(M)− S(k)
i−1)

and S
(k)
i := {s ∈ Γk, s ≥ si}, i = 1, ...,m.

Since again (Γ(M) − S(k)
1 ) \ (Γ(M) − S(k)

0 ) = (Γ(M) − Γ(mk)) \ Γ(M) is the
set denoted in [9] by AΓ(Rk)(M)∪{ck− 1}, it follows that λ1− 1 = αk(M) :=
# AΓ(Rk)(M) is the invariant introduced in [9].
The analogue of statements 1.1, 1.2, 1.3, is:

3.1 c− ck + δ(M) = # [ck − c,→] \ Γ(M) =
∑n

1 τi, τ1 = αR(M) + 1

1 ≤ τi ≤ τ1 ∀ i = 1, ..., n.

Proof. The first row is the definition of type-sequence. To prove 1 ≤ τi it
suffices to observe that ck−1−(si−1) ∈ Γ(M)−Si, /∈ Γ(M)−Si−1. To prove
τi ≤ τ1, we may consider the monomial module M0 =

∑
γ t
γk, γ ∈ Γ(M),

over the monomial ring R0 =
∑
γ t
γk, γ ∈ Γ. Since Γ(M0 : Vi(M0)) =



Γ(M0) − Γ(Vi(M0)) = Γ(M) − Si, ti(M0) = τi ∀ i = 1, ..., n, we conclude by
1.2 that τi = ti(M0) ≤ t1(M0) = τ1.

3.2 δ(M) =
∑m

1 λi, λ1 = αk(M) + 1

1 ≤ λi ≤ λ1 ∀ i = 1, ...,m

Proof. This is 3.1 when M is regarded as an Rk-module.

The analogue of 1.7 is:

Proposition 3.3

i) For every i = 1, ...,m λi = # ((Γ(M)− Si) \ (Γ(M)− Si−1))+ ≤ τi;

ii) if for some i ∈ {1, ...,m} τi = 1, then the corresponding λi = 1;

iii)
∑m

1 (τi − λi) ≤ δ − k ≤ c− ck;

iv)
∑m

1 (τi − λi) = δ − k if and only if t.s.(M) = [τ1, ..., τm, 1, ..., 1].

Proof. i) Since S
(k)
i = Si∪[ck,→], Γ(M)−S(k)

i = (Γ(M)−Si)∩Γ(M)−[ck,→])
= (Γ(M) − Si) ∩ IN. Therefore λi = # (Γ(M) − S(k)

i ) \ (Γ(M) − S(k)
i−1) =

# (Γ(M)− Si)+ \ (Γ(M)− Si−1)+ = # ((Γ(M)− Si) \ (Γ(M)− Si−1))+.
For the rest of the proof see 1.7 replacing ti with τi and li with λi.

3.4 ([9], remark after 1.3) In particular we have:

λ1 = αk(M) + 1 ≤ αR(M) + 1 = τ1
|
∨

|
∨

l1 = rk(M) ≤ rR(M) = t1

According to the terminology used in [2] for semigroups, given the Γ-set
Γ(M) we call B1 := {ck − 1− x, x ∈ Γ} the set of holes of the first type and
B2 := {x ∈ ZZ, x /∈ Γ(M) and ck − 1− x /∈ Γ} the set of holes of the second
type. B1 ∩B2 = ∅ by definition and B(M) := B1 ∪B2 is the whole set of
holes of Γ(M).

Proposition 3.5

i) B2 = Γ(tck−cω̃) \ Γ(M);

ii) B+
2 = {x /∈ Γ(M) | ck − 1− x /∈ Γk} = Γ(ω̃k) \ Γ(M);

iii) # B2 = δ − (c(M)− δ(M));

iv) # B+
2 = k − (c(M)− δ(M)).

Proof. i) and ii) follow directly from definitions.
iii) By i) and 1.5 # B2 = lR(ω̃/u′tc−ckM) = δ+ δ(M)− c(M), where the last
equality is ii) of 2.7.
iv) Analogously # B+

2 = lR(ω̃k/uM) = k + δ(M) − c(M) , where the last
equality is iii) of 2.7.



3.6 AΓ(M) ⊂ B2.

Proof. Let j ∈ AΓ(M); we have to prove that j − ck + c ∈ Γ(ω̃), i.e.,
c−1−(j−ck+c) /∈ Γ. On the contrary, by definition of AΓ(M), j+(ck−1−j) =
ck − 1 ∈ Γ(M), the desired contradiction.

Theorem 2.11 in terms of valuations is:

Theorem 3.7 The following are equivalent:

i) AΓ(M) = B2;

ii) αR(M) = δ + δ(M)− c(M);

iii) Γ(mR) = Γ(mR) + Γ(ω̃ : tc−ckM);

iv) t.s.(ΓM ) = [αR(M) + 1, 1, ...., 1].

We call Γ(M) almost symmetric if it fulfills the above equivalent conditions.
We call Γ(M) weakly almost symmetric if it is almost symmetric as Rk-module.

Proof. i) ⇐⇒ ii) follows from 3.5 and 3.6.
i) =⇒ iii): B2 ⊂ AΓ(M) =⇒ Γ(tck−cω̃) + Γ(mR) ⊂ Γ(M) =⇒ Γ(ω̃) +
Γ(mR) ⊂ Γ(tc−ckM) =⇒ Γ(ω̃) + Γ(mR) + Γ(ω̃ : tc−ckM) ⊂ Γ(tc−ckM) + Γ(ω̃ :
tc−ckM) ⊂ Γ(ω̃) =⇒ Γ(mR) + Γ(ω̃ : tc−ckM) ⊂ Γ(ω̃) − Γ(ω̃) = Γ. From
this, since Γ(ω̃ : tc−ckM) ⊂ IN by i) of lemma 2.7, we can deduce that
Γ(mR) + Γ(ω̃ : tc−ckM) ⊂ Γ(mR).
iii) =⇒ i): Let j ∈ B2 =⇒ j /∈ Γ(M) and j = ck − c+ x, x ∈ Γ(ω̃) =⇒ j 6=
ck − 1. Claim: j + Γ(mR) ⊂ Γ(M). Now x+ Γ(mR) ⊂ Γ(ω̃) =⇒ using the
hypothesis, x+ Γ(mR) + Γ(ω̃ : tc−ckM) ⊂ Γ(ω̃), i.e.,
j + Γ(mR) + Γ(ω̃ : M) ⊂ Γ(ω̃) =⇒ j + Γ(mR) ⊂ Γ(M), by 2.6.
ii) ⇐⇒ iv): By 3.1 c − ck + δ(M) = (αR(M) + 1) +

∑n
2 τi. Hence the

hypothesis τi = 1 ∀ i = 2, ..., n implies ii). Conversely, if ii) holds, then∑n
2 τi = c− δ − 1 and since τi ≥ 1, i = 2, ..., n, claim iv) is proved.

• As in the case of modules in virtue of 3.3 ii) we see immediately that:
Γ(M) almost symmetric =⇒ Γ(M) weakly almost symmetric.

Theorem 3.8

i) M is almost symmetric if and only if Γ(M) is almost symmetric and
rR(M)− 1 = α(M);

ii) M is weakly almost symmetric if and only if Γ(M) is weakly almost
symmetric and rk(M)− 1 = αk(M).

Proof. The implications ⇐= follow directly from definition.
(i), =⇒: By 3.6 and iii) of 3.5 inequalities hold: rR(M)−1 ≤ α(M) ≤ # B2 =
δ − (c(M)− δ(M)), which become equalities in the almost symmetric case.
(ii), =⇒: Similarly inequalities : rk(M)− 1 ≤ αk(M) ≤ # B+

2 = k− (c(M)−
δ(M)) become equalities in the weakly almost symmetric case.



Corollary 3.9

i) If M is almost symmetric, then:
rR(M)− rk(M) = α(M)− αk(M) = δ − k.

ii) M is almost symmetric if and only if
M is weakly almost symmetric and rR(M)− rk(M) = δ − k.

iii) If M is almost symmetric, then:
δ − k ≤ rR(M)− 1 ≤ e− 1.

Proof. i) We have observed that M almost symmetric =⇒ M weakly
almost symmetric, so by definition rR(M) − rk(M) = δ − k. Moreover by 3.8
rR(M)− 1 = α(M) and rk(M)− 1 = αk(M).
ii) follows from i) and proposition 1.7, iv).
iii) is an immediate consequence of i).

4

In this section we want to characterize a subclass of almost symmetric R-
modules, which we call almost canonical, having CM-type two. The name is
motivated by the fact that they can be easily constructed by deleting one el-
ement in a minimal system of generators of the canonical module. In the last
part we investigate CM-type and reflexiveness of modules over almost symmetric
rings.

Theorem 4.1 The following are equivalent:

i) δ + δ(M)− c(M) = 1;

ii) M is almost symmetric and rR(M) = 2;

iii) t.s.(M) = [2, 1, ..., 1];

iv) Γ(M) is almost symmetric and αR(M) = 1;

v) t.s.(ΓM ) = [2, 1, ..., 1].

We call M almost canonical if it fulfills the above equivalent conditions.

Proof. ii) =⇒ i) by definition of almost symmetric.
i) =⇒ ii): In general rR(M) − 1 ≤ δ + δ(M) − c(M), then rR(M) ≤ 2.
But rR(M) = 1 means M ' ω̃ ([5], Korollar 6.12) and in this case
δ + δ(M) − c(M) = 0 (see prop.1.5 of [9]). Therefore rR(M) = 2 and M
is almost symmetric.
ii) ⇐⇒ iii) by theorem 2.11.
ii) ⇐⇒ iv) by theorem 3.8, since rR(M) ≤ α(M) + 1.
iv) ⇐⇒ v) by theorem 3.7.

In the case M = R such a ring is called Kunz in [1]. Next structure theorem
will be useful to justify the name ”almost canonical”:



Theorem 4.2 M is almost canonical if and only if
either k = δ − 1 and M ' ω̃k
or c(M) = c and lR(ω̃/uM) = 1.
In this last case either M : M = R or M ' ω̃M :M .

Proof. Suppose M is almost canonical, then rk(M) ≤ rR(M) = 2.
rk(M) = 1 means M ' ω̃k and δ − k = rR(M) − rk(M) = 1 by 3.9. If
rk(M) = 2, then δ− k = 0, i.e., c(M) = c and by iv) of 2.11 lR(ω̃/uM) = 1.
On the other hand, if k = δ−1 and M ' ω̃k, then by [9] c(M) = δ(M) +k =
δ(M) + δ − 1 i.e. M is almost canonical; if c(M) = c and lR(ω̃/uM) = 1,
then by 2.7 δ + δ(M)− c(M) = lR(ω̃/uM) = 1.
It remains to prove that if M is almost canonical and c(M) = c, i.e., k = δ,
then either M : M = R or M ' ω̃M :M .
By [9], Prop. 2.1, c(M) − δ(M) + αΓ(M :M)(M) ≤ δ(M : M) ≤ δ. Hence, in
our case, δ − 1 + αΓ(M :M)(M) ≤ δ(M : M) ≤ δ =⇒ either δ(M : M) = δ
or δ(M : M) = δ − 1. In the first case M : M = R. Suppose now δ(M :
M) = δ − 1. Since c(ω̃M :M ) = δ(M : M) + δ(ω̃M :M ) and c(ω̃M :M ) = c(M),
using the hypothesis c(M) = δ(M) + δ − 1, we conclude δ(M) = δ(ω̃M :M )
i.e. M ' ω̃M :M .

Remark 4.3 Let M be any overring of R with the same conductor c(M) = c.
Then: lR(M/R) = 1 =⇒ ω̃M is almost canonical as R-module.
Proof. By duality 1 = lR(M/R) = lR(ω̃/ω̃M ) =⇒ δ(ω̃M ) = δ(ω̃) + 1 =
c− δ + 1 = c(ω̃M )− δ + 1.

Examples
• Let R := k[[t5, t12, t13, t14, t16]] and M := R + t2R + t3R + t9R. Com-

puting Γ(R) = {0, 5, 10, 12,→}, Γ(M) = {0, 2, 3, 5, 7, 8, 9, 10, 12 →}, we see
that M is almost canonical and M = ω̃M :M .
• Let R as above and M := R + tR + t2R + t3R. Then Γ(M) =

{0, 1, 2, 3, 5, 6, 7, 8, 10,→}, k = 8, rR(M) = 2, rk(M) = 1 because of
AΓ(M) = {−2} and δ + δ(M) − c(M) = 9 + 2 − 10 = 1, so M is al-
most canonical and M ' ω̃k.
• Let R as above and M := R+t2R+t3R+t7R+t9R+t12R. Here Γ(M) =

{0, 2, 3, 5, 7,→}, AΓ(M) = {−5,−3,−2, 4}, hence rR(M) = 5, rk(M) = 2. In
this case since k+ δ(M)− c(M) = 5 + 3− 7 = 1, M is almost canonical as Rk-
module, i.e., k− t.s.(M) = [2, 1]; but since δ+ δ(M)− c(M) = 9 + 3− 7 6= 4,
M is not almost canonical as R-module. According to theorem 4.2 we have:
M : M = Rk.

Proposition 4.4 Suppose R almost symmetric and M such that c(M) = c.
Then:

i) M is almost symmetric;

ii) r(R) = lR(M/R) + rR(M).

Proof. As observed in the second remark of 2.12 the hypothesis R almost
symmetric means mR = mR ω̃.



i) Claim: mR = mR(ω̃ : M). Let uM ⊂ ω̃ be the canonical immersion.
Then umR ⊂ mR(ω̃ : M) ⊂ mR ω̃ = mR. Since u is a unit, the preceding
inclusions are equalities.
ii) r(R) = lR(ω̃/mR ω̃) = lR(ω̃/mR) = lR(ω̃/ω̃ : M) + lR(ω̃ : M/umR) =
lR(M/R) + lR(ω̃ : M/mR (ω̃ : M)) = lR(M/R) + rR(M); we have here used i)
and 1.5 to say that lR(ω̃ : M/umR) = lR(ω̃ : M/mR(ω̃ : M)).

Next counterexample shows that the implication ”M almost symmetric as
Rk-module =⇒ Rk almost symmetric” fails, even if R is almost symmetric.
Let R := k[[t4, t9, t14, t19]] and M := R + t5R + t10R + t15R. Then Γ(R) =
{0, 4, 8, 9, 12, 13, 14, 16,→} and Γ(M) = {0, 4, 5, 8, 9, 10, 12,→}. Since δ =
9, c = 16, r(R) = 3, R is an almost symmetric ring. We can easily verify that
δ(M) = 6, c(M) = 12, rR(M) = 4, rk(M) = 3, hence M is almost symmetric
as Rk-module, but Rk is not almost symmetric and formula ii) of Theorem 2.11
does not hold. In fact k = 8, δ(Rk) = 8, c(Rk) = 12, r(Rk) = 3.

Corollary 4.5 Suppose R almost symmetric and r(R) = 2. There are exactly
two isomorphism classes of R-modules having c(M) = c: either M ' R or
M ' ω̃.

Proof. The conclusion follows immediately from assertion ii) of the above propo-
sition: lR(M/R) + rR(M) = 2.

Remark 4.6 The only R-module M ”reflexive” over R, i.e., M = M∗∗ :=
R : (R : M), such that R ⊂M ⊂ R and c(M) = c is M = R.
Proof. Suppose M = M∗∗ and M 6= R. Then, since R : M ⊂ mR and
(R : mR)(R : M) ⊂ R, it follows that R : mR ⊂ M∗∗ = M . Thus
c(M)− 1 = c− 1 ∈ Γ(R : mR) ⊂ Γ(M), which is a contradiction.

Proposition 22 of [2] may be slightly generalized considering any R-module
M instead of a strict overring of R in this way:

Proposition 4.7 The inequality (*) lR(M/R) ≤ lR(R/R : M) + lR(ω̃/R)
is valid in general. If we consider the conditions:

i) ω̃ ⊂M : M , i.e., ω̃ M = M

ii) R : M = (R : M) ω̃ = ω̃ : M

iii) = holds in (*)

iv) M = M∗∗

v) (R : M) ω̃ = ω̃ : M

then (i) ⇐⇒ (ii) ⇐⇒ (iii) =⇒ (iv) ⇐⇒ (v). Assuming R almost
symmetric and M 6= R, all conditions are equivalent.



Proof. To prove (*) it suffices to note that: lR(M/R) = lR(ω̃/ω̃ : M) ≤
lR(ω̃/R : M) = lR(ω̃ M/R) = lR(R/R : M) + lR(ω̃/R). Then the equivalences
(i) ⇐⇒ (ii) ⇐⇒ (iii) are clear. Moreover by duality: lR(M∗∗/M) =
lR(ω̃ : M/(R : M) ω̃), so (iv) ⇐⇒ (v). Finally (ii) =⇒ (v) is trivial.
Suppose now R almost symmetric and M 6= R. Since R : M = mR : M and
mR = mR ω̃, we get (R : M) M ω̃ ⊂ mR, hence (R : M) ω̃ = R : M . So
(v) =⇒ (ii).

Corollary 4.8 If R is almost symmetric, then
M is reflexive if and only if M : M is reflexive.

Proof. Put B := M : M and apply (iv) ⇐⇒ (i) of the preceding proposition.
M reflexive ⇐⇒ ω̃ ⊂ B ⇐⇒ ω̃ ⊂ B : B ⇐⇒ B reflexive.

Remark 4.9

• Next counterexample shows that the hypothesis ’R almost symmetric’
is needed to state the equivalence of conditions 4.7. Let R := k[[t3, t7, t8]],
M := R+ t4R+ t5R. Here M = M∗∗, but ω̃ M 6= M because t ∈ ω̃ M .
• Relations between reflexiveness and canonical ideals are present in the

literature. In the case M is an overring of R the equivalence (iv) ⇐⇒ (v)
becomes the well known assertion:

γM/RωR = ωM ⇐⇒ M is reflexive
γM/R = R : M being the usual conductor. This idea has been extended to
the not birational case by means of the notion of complementary module (see,
for instance, [8], theorem 2.3 with the additional hypothesis ’γM/RωR Cohen-
Macaulay’ and [7], Proposition 4.34).
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