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Abstract. The main purpose of the paper is to find a suitable description
of a class of modules, which we call almost symmetric, over a complete local k-
algebra R of dimension one, k being an algebraically closed field of characteristic
zero. One of the properties characterizing the modules M of this class, including
the canonical module, is that the Cohen-Macaulay type rr(M) reaches the
known bound 6+ 6(M) — ¢(M)+ 1. Another interesting property is obtained
by extending to modules the notion of type sequence, given for rings in [1]. In
fact, it is proved that the equality rgr(M) = 6 + (M) — ¢(M) + 1 holds if
and only if the type sequence of M is of the form [rr(M),1,...,1]. In the third
section we investigate the meaning of the almost simmetry of modules in terms
of properties of their value sets. In the last section we consider two particular
cases: 1) almost symmetric modules with rr(M) =2 (almost canonical), ii)
modules over almost symmetric rings.
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Let R = k[, ..., 2,] be a complete local k-algebra of dimension one with max-
imal ideal mp, where k is an algebraically closed field of characteristic zero. We
suppose R an integral domain. Throughout the paper we shall use the same
notations and assumptions as in [9], which we list here for the convenience of the
reader: R := k[t] the integral closure of R in its quotient field K := k{{t}};
v:k{{t}} — Z U oo the canonical valuation given by the degree in ¢; T the
value semigroup of R; ¢ the conductor and § := dimy(R/R) the singularity
degree of R; r(R) := lg(R : mg)/R the Cohen-Macaulay type of R. Moreover
calling e := e(R) the multiplicity of R, we shall suppose that t¢ € mg (this
is always possible via a suitable change of coordinates).

Analogously, for any fractional R-ideal M C K, T'(M) := {v(m) | m € M} is
the value setof M; T'(M) is aT-set, i.e. T'(M)+T C T'(M); ¢(M) := the small-
est integer such that t*)R C M is the conductorof M, i.e. c¢(M)+IN C T'(M)
and c¢(M)—1¢T(M); §(M) :=Ig(M/M) where M := M ®pg R/torsion
the d-invariant of M; rr(M) :=Ir(M : mg)/M the Cohen-Macaulay type of
M. 1In virtue of [4], Lemma 1.1, we shall assume in the sequel, without loss
of generality, that R C M C R; this ensures that 6(M) = Ir(R/M) and



Ir(M/t*R) = ¢, — 6(M), where ci = c¢(M). We shall use indifferently both
notations ¢(M) or ¢ for the conductor of an R-module M. The reason is the
following. Set ¢y =0 < ¢; =2 < ... < ¢ = ¢ the integer numbers such that
c,—1¢T forall k=0,...,0. They correspond naturally to a chain of overrings:
R=Ry DR D ..R;. DRs=R defined by R := R+ t°*R. Then there
exists k € {0,...,0} such that ¢(M) = cx. In view of what follows it is useful to
note that M may be considered an R-module as well as an Ry-module.

e Two notions of type-sequence.

Given the value set of R T' = {sp = 0,81,...., Sn—1, 8, = ¢,—}, where
n := c¢—4J, we consider for every i =0,...,n theideal V; :={x € R, v(x) > s;}.
Obviously V,, = t°R, Vi =mpg, Vi = R. Starting from the maximal sequence:
Vo CVpy C.... € V3 C Vg we get the chain of R-ideals contained in K:

M=M:VoCM:V;C..CM:V,=t%°R

Extending to the R-modules the terminology introduced in [1] for rings we put
ti:=Ilg(M :V;/M :V;_y), i=1,...,n, and we call type-sequence of M
(t.s.(M) for short ) the sequence [t1,....,t,]. Note that: t; = Ig(M : mr/M) =
rr(M) is the Cohen Macaulay type of M and

1.1 c—cp+6(M) =1r(t*“R/M) =rr(M)+ > 5 t;.
Also in our case
1.2 1§t1§t1 VZ:L,’HJ

Since the element z :=t*~1=%i-1 jssuchthat z€ M :V; and 2 ¢ M : V;_4,
t; > 1. To see the second inequality we recall the following result ([6], Satz 2):
Let (R,mpg) be a local one-dimensional Cohen-Macaulay ring and let a,b, M
be fractional ideals such that b C a; then: Ig(M:b/M:a) <lIgr(a/b) rr(M).
Applying this with b:=V; and a:= V;_y, since by definition Ig(V;—1/V;) = 1,
we get t;:=I1gp(M :V;/M :V,_1) <rg(M)=t.

Of course, we can do the same regarding M as an Ri-module and we obtain
the k-type-sequence of M ( k—t.s.(M) for short ) [l1,.....;Ln], m:=cr—k <n,
where 1; := (M : Vi(k)/M : Vz(ﬂ), Vi(k) ={z € Rg, v(z) > s}, i=1,..,m.
The analogue of statement 1.1 is:

1.3 (M) = (M) + 35", where I3 = (M) is the Cohen
Macaulay type of M as Ri-module. As in the preceding case

Note that in general (M) < (cx — k)rp(M) and (case of "maximal”
k-type-sequence)

1.4 (M) =(cp —k)rp(M) < k—ts.(M)=[rg,..,ri], 7% :=1r:(M)



To go on in comparing the two notions of type-sequence we need to recall that
for any fractional ideals Ny, Ny, Ny C Ny, the length of the R-module Ny /Ny
can be computed by means of valuations (see [6]):

1.5 Ir(N1/N2) = # D(N1) \T'(NV2)

1.6 Notations. For any numerical sets H, K C Z put
H-K:={z€Z|x+KCH} and Ht":=HNIN, H :=H\H".

Next proposition shows that each invariant [; represents the positive contri-
bution of the corresponding ¢; and it states an upper bound for the difference
ti — lz

Proposition 1.7
i) Forevery i=1,...m li=# C(M:V))\I(M :V,_1))" < t;;
it) if for some i€ {1,....,m} t; =1, then the corresponding l; =1;
wi) Y(ti—1l) < d—k < c—cp;

w) Y '(ti—1;)=06—k ifand only if t.s.(M)=[t1,...,tm,1,.... 1]

Proof. Recall that m = ¢, — k, =c—
i) By formula 1.5 ti=#T(M: V)\I‘( :Vi—1) and since V( ) = Vi +t%R,
we have V(k) (M :V))n (M : t*R) = (M : V;) N R.  Therefore
L (L V)R M V) 0T — & (POT V) \LOL Vi)
ii) Byl3 1;>1 andbyi) [, <t =1
iii) Combining formula 1.1: c¢—cx+86(M) = > ]'t; with formula 1.3: §(M) =
Z;n l,j, we get C*Ck+z71n l,’ = Z? ti, hence ZT(tl*ll) = C*Ckf(zz_i_l t,) <
c—cx— (n—m) =3 —k. The second inequality is obvious, since by definition
cp,—k<c-9.
iv) follows from the preceding computation.

(M
d.
1)
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The present paragraph is devoted to finding suitable characterizations of the
modules having type-sequence of the form [r, 1, ..., 1], or, equivalently, maximal
Cohen-Macaulay type, which we call almost symmetric. Our study has been
inspired by the papers of several authors, Barucci, D’Anna, Delfino, Dobbs,
Fontana, Froberg, who considered analogous properties in the case of rings (see
(1], [2], [3]). Canonical modules play a crucial réle in our context.

Note: all isomorphisms in this section are realized by units of R, so that
isomorphic modules have the same value set.

The dualizing module of R is: wr = {a € k{{t}} dt | res(fa) =0 Vf € R}.
By means of the isomorphism k{{t}} dt ~ k{{t}} which maps dt — 1 we



shall identify wr with a fractional ideal. We fix as canonical ideal of R the
ideal @ := et°wpr, where ¢ € R is a unit such that R ¢ @ C R; it follows
that ¢(@) =c¢ and T(®) ={j € Z | ¢c—1—j ¢ I'}. Moreover it is well
known that rg(M) =1 <= M ~ &, ([5], Korollar 6.12), hence ”minimal”
type-sequence, i.e. t.s. (M) =1,...,1], means M ~ & and ”minimal” k-
type-sequence, i.e. k—t.s.(M)=11,...,1], means M ~ &y := Wg,. Some
properties of @ are fundamental in our computations ([5], 2.): for any fractional
ideals a,b, a=0w: (@:a) and Ig(a/b) =lg(@w:b/@:a). Moreover: @:w = R.

Using the well known ’duality’ wg : Rr = wg, ([5], Korollar 5.14), we
obtain by a straightforward calculation:

2.1 @ ~ tTCONR ~ @ tTRRy,

Proof. Let @ = et‘wg, Wi = €t%*wpg,. wg, = wr : Ry = wg :
(R+t*R) =wrNt R yields ()71t %@, = e 1t 0Nt °*R, which is
the first assertion because ¢, € are units of R. Moreover @) = €t%*wp, =
€t%wp R = €t*e 70 Ry = e 1w t*Ry,.

2.2 @:vy(M)=etwp:t*R=1t"%R
23 mp(@: M)=w:(0: (mg(@: M))=0:(M:mg)
We recall now the following generalization of [6] Satz 5 and a useful corollary:

2.4 ([9], Lemma 1.1) Let N be a finitely generated torsion free R-module of
rank 1. If T(N)C{j €Z | c—1—j ¢T}, then there exists a unit u € R
such that uN Cw. If T(N)={j€Z | c—1—3j¢T}, then uN =0.

The above statement is slightly more general than the quoted result of [9]; we
have only to prove that the assumption 'N containing t°R’ is redundant.

If ¢(N)<e, then N Dt°R. If ¢(N) > ¢, then consider the k-vector space
N/(t*RN N) instead of N/t°R and repeat Step 1, Step 2, until to find the
unit u such that Res(unr/t®) =0 Vr e R, ¥Yn e N, v(n) <c. Since for any

n € N, v(n) > ¢, certainly Res(unr/t®) =0 Vr € R, we can conclude.

2.5 ([9], Prop.1.2) For any R-module M C R with conductor ¢(M) = ¢,
there exist units u,u’ € R such that uM C &, and u't“ M C ©.

In the rest of the paper we shall refer to these inclusions as canonical immer-
stons of M. Unfortunately, as next example shows, it is not always possible to
realize both immersions by means of the same unit.

Examples

o If R:=Ek[t", 6?2 +*5,¢%2] and Ry := k[t'°,¢*',1*° +12%,1%9, =],
k = 25, then we have © =< 1,#10 #11(1 —#3),¢13(1 — ¢5), 41", +2°(1 - #3) > R
and @ = Ry + (1 —3)71 < t,¢2, ¢4, 5,16 48,49 410 411 #12 414 318 5 Ry Let
M := & and suppose that there exists a unique unit uw € R such that
uM C @, and uwt"*M C w. Then w € Wy : W, = Ry, and t°**M C w.



This would imply in particular, since ¢ =70 and c, = 29, that t*!' ¢ @. If
so, then %9 = (#25 4+ ¢28)¢41 — #30(¢25 1 28)¢11(1 — #3) —¢™ € &, contradiction.

e We note also that in general it does not exist a unit « € R such that
RCuM C @ Let R:=k[t5,t5,t?2] and M := (1 +t*)R+ R+ t3R.
In this case we have ¢ = 20 and @ =< 1,t> > R. Suppose there exists

u=1+bt+bst>?+bst>+ ..., by €k, suchthat 1 =um, m e M, ie.
1= (1+b1t+b2t2—|—b3t3+ ..... ) (a1+a1t2+a2t5—|—a2t7+a3t8—|— ..... ), a; € k. Then an
easy calculation gives u = 1—t24+t*+...... Since ut!” = 17 —t194421 4 € uM

and t'7 € O, the inclusion uM C & would imply ¢—1=19 € I'(©), absurd.

As a first consequence we can get an elementary result on valuations:

Lemma 2.6 For any fractional ideal N C K
INw:N)= T'(w) —T(N)
Proof.  Since the inclusion C holds in general, we have to prove D. Let j
be such that j+T(N) C I'(@) = T'(N) C I'(@) = by the quoted lemma
2.4 ut!/N C& for some unit u€ R = ut! € o: N = je'(@:N).

and, considering again the fixed immersions of M, other interesting relations:
Lemma 2.7
i) WitTHM ~ O M;
i) lp(@/u'tc=* M) =06+ 6(M)—c(M);
iii) Ilp(Wp/uM)=k+6(M)—c(M).

Proof. i) By 2.1 we have: @ :t*" %M = (0:t%*Ry): M ~ @wy: M.
ii) Using duality and 2.2 we get §+86(M)—c(M) = Ir(R/R)—Ir(M/y(M)) =
IrR(R/R) —lp(R/& :t" M) = Ig(@w:t"**M/u'R) = Ip(w/u'tc=*M).
iii) Using alsoi) k+6(M)—c(M) = Ir(R/Ri) —Ilr(R/0x: M) =
ZR(&k : M/URk) = lR((:Dk/’U,M)

Remark 2.8  About assertion ii) we could be a little more precise.
From [p(w:mp/@) =1 we deduce ©:mpr=0w+t"1R, hence:
rr(M) =Ilg(W't=*M :mp/u'tc* M) < lg(0:mg/u't"*M) =
=Ip(@/u't®= M)+ 1. Thus ii) of 2.7 implies the well known result

2.9 rp(M)—1< 6+ 3(M)—c(M)

Notice that inequality 2.9 follows also immediately from 1.1; a generaliza-
tion of this formula is given in [9], Prop.1.4.

At this point we are able to describe a family of modules, including the
canonical module, in which the Cohen-Macaulay type achieves the maximal
value. We need the following lemma:

Lemma 2.10 For any fractional ideal N C w
T’R(N)fli ZR(&/N) <~ mp = mMp (LT} N)



Proof. From I[g(0/N) = Igr(@: N/R) = Ig(@: N/mg(@: N)) +
ZR(mR(uN; : N)/mR) —1= ’I’R(N) + lR(mR(& : N)/mR) — 1 we infer the thesis.

Theorem 2.11  The following are equivalent:
i) TR(M)—1= 64+0(M)—c(M);
i) rrR(M)—1= lg(@/u't~*M);
i) mrp ~ mp (W: t°"*M);
w) w:mp >~ t°"%M: mpg;
v) mpw CutTkM;
vi) t.s.(M)= [rr(M),1,.....1].

We call M almost symmetric if it fulfills the above equivalent conditions.
We call M weakly almost symmetric if it is almost symmetric as Ri-module.

Proof. i) <= ii) is an immediate consequence of preceding 2.7 ii).

ii) <= iii) by lemma 2.10 taking N =/t~ M, because rgr(N)=rr(M).
ili) <= iv) by duality.

iv) < v). As noted in remark 2.8 & :mp =+ t°"'R, then condition iv)
holds <= W:mpr C Wt *M: mp<= w Cu't" *M:mp (because the
inclusion t°"'R C w't=° M : mp is always verified) <= mprw C W't~ M.
i) <= vi). We know that Y 5t =c—c(M)+§M)—rg(M), n=c—34.
Therefore, if t; =1, i = 2,...,n, then we get i). Conversely, i) implies that
Yoti=c—8—1 andsince ¢; > 1, i =2,...,n, the thesis is proved.

Remark 2.12

o In virtue of 1.7 ii) we see immediately that:

M almost symmetric = M weakly almost symmetric.

e Conditions i),..,iv) can be viewed as the module theoretic analogue of the
characterization of the almost Gorenstein rings given in prop. 20 of [2]. Notice
that for M = R relation iii) becomes mrp = mp w and, more generally, for
any overring M D R having ¢(M) =c¢ it becomes mr = mp Oy.

e Condition v) can be rewritten in the equivalent form: «'M D et Wy pimp-
Infact v) <= v/'M D et®*mpg wr and, by duality, mr wr = wg : (Mrmg) =

Wmpimp -
Corollary 2.13  The following conditions are equivalent:
i) mpg:mpg s almost symmetric as R-module;
it) R is almost symmetric and r(R) =e—1;

iti) mpg:mg is a Gorenstein ring.



Proof. First observe that 7(R) = e —1 <= Ir(t®(mg: mg)/t°mg) =¢

< t°(mpr:mpg) =mpg. Then apply 2.11 with M =mpgr:mg, cx =c—e,
v’ = 1. By v) of the quoted theorem M is almost symmetric means mgr @ =
t°(mp : mp) =mp. i) <= ii) follows now immediately.

Moreover mp :mp is a Gorenstein ring <= mp:Mp ~ Wnpm, <
t*(mp:mp) ~ Wmp < t°(mp:mg) = wmr = mg. Then iii) < ii).
A proof of ii) <= iii) is also in [2] , Prop.25.

Let M(R) be the reduced moduli variety for finitely generated torsion free
R-modules of rank 1 constructed by G.M. Greuel and G. Pfister in [4]. It is
well known that the number §(M:M) represents the orbit dimension of M
in M(R) (see also [9]).

Proposition 2.14  Let M be almost symmetric, then:
i) M:M Cmpg:mg
it) 6 —r(R) < 6(M:M) <k
i) c—cp < e
w) (M) < r(R)+1.

Moreover the following are equivalent:
v) rr(M) = r(R)+1
vi)) mpw = utT*M
vii) 6(M: M) = §—r(R).

Proof. We have obviously that: w/t¢=% M : u/t*"**M C @ : v/t °* M, hence
mr Cmrp(M:M) C mg(@ : w't°"* M) = mg. This implies i).

Claim ii) is immediate since Ry C M:M C mg:mg.

Claim iii) holds because condition v) of 2.11 implies the inclusion I'(mgrw) C
[(t= M), hence e € ¢ —cp +T'(M).

From r(R) = lg(@/mgrw) = lg(@/u't*"* M) + Ig(u't*"*M/mpw) = rr(M)—
1+d where d:=Igr(u't"**M/mrw) we can deduce rr(M) <r(R)+1
and v) <= vi).

Combining the last inequality with ¢, — 6(M) < 6(M:M) < k  (see [9],
Prop. 2.1) and ¢, —6(M) = 6 —rgp(M)+1 ( see 2. 11 1)) we obtain:
§—7r(R) < d—rr(M)+1 < §(M:M) <k. So v) < vii)

Proposition 2.15

i) If S is any overring such that R C S C mp : mpg, then Wg is an almost
symmetric R-module;

i) in particular @mpm, 5 R-almost symmetric of C.M. type r(R)+1;

i11) g s almost symmetric <= c—c < e.



Proof. i) Let ¢(S) = ¢ andlet e be the unit such that etw = &. Multiplying
by et the chain wg : (mpmg) C wg : S C wr and using duality we get:
MpE C et®wg C . Since there exists a unit 7 € R such that wg = 7t %*@g,
we can write: mpw C eTt % wg C w. So wg verifies condition v) of 2.11.

ii) Apply i) and proposition 2.14. It is easy to see that Wy,.m, verifies
condition vii).

iii) Implication <= isiii) of 2.14. Implication = follows from i), because
Ry Cmpmp <= c—c¢. < e

3

Our purpose is now to investigate the meaning of the almost simmetry of mod-
ules in terms of properties of their value sets.

First of all by analogy with the notion of ¢.s.(M) studied in the first section,
we introduce the concept of type-sequence for the I'-set I'(M). This is a nat-
ural generalization of the definition of type-sequence given in [1] for numerical
semigroups.

Given the value set of R T' = {sg = 0,81,....,80-1,8, = ¢,—}, where
n := ¢ — 0, we consider for every i =0,...,n theideal S;,:={seTl, s> s;}.
Obviously S, = [¢,—], S1 =T(mg), So =T and, in general, S; = I'(V;).
Starting from the maximal sequence: S, C S,_1 C .... C Sy we get the chain:

NM)=T(M)—-SocT'(M)-S; C..CT(M) -5, =[ck —¢,—]

and we put 7; :=# (I'(M) = S;))\ (T (M) — S;—1), i=1,..,n. We shall call
type-sequence of T'(M) (t.s.(I'ps) for short) the sequence [ri,....,7,]. Note
that (T'(M) — S1) \ (T(M) — Sp) = (I'(M) — T'(mp)) \ ['(M) is exactly the set
denoted in [9] by Ap(M)U{cy —1}, so 1 —1=ar(M):=# Apr(M) is the
invariant introduced in [9].
We can naturally repeat the same process regarding this time I'(M) as a ['y-set,
Iy :==T(Ry), obtaining the k-type-sequence of I'(M) (k —t.s.(I'ps) for short)
Aly oo Ay M= — k < n, where A := # (D(M) — S")\ (@) — S&)
and Si(k) ={se€Tly, s>s}, i=1,...,m.
Since again (I'(M) — S\ (D(M) — 8§y = (T(M) — T(my)) \ T(M) is the
set denoted in [9] by Ap(g,)(M)U{cy —1}, it follows that A\ —1 = ax(M) :=
# Ar(r,)(M) is the invariant introduced in [9].
The analogue of statements 1.1, 1.2, 1.3, is:

3.1 C—Ck-i-é(M):#[Ck—q—?]\F(M): Z?Th leOéR(M)+1
1§TiST1 Vi:l,...,n.

Proof. The first row is the definition of type-sequence. To prove 1 < 7; it

suffices to observe that c;—1—(s;—1) e I'(M)—S;, ¢ I'(M)—S;_1. To prove

7; < 11, we may consider the monomial module My = > "k, v € I'(M),
over the monomial ring Ry = ZA/ 'k, v € T.  Since T'(My : V;(My)) =



(M) — T(V;(My)) =T (M) — S;, ti(Mo)=7; Vi=1,..,n, we conclude by
1.2 that 7, =6(Mo) < t1(Mg) = 71.

3.2 5(M): Z;n/\z, )\1:Oék(M)+1

1§/\1 S)\l Vi:l,...,m
Proof. This is 3.1 when M is regarded as an Ri-module.

The analogue of 1.7 is:
Proposition 3.3
i) Forevery i=1,..m X =4# (O(M)—S;)\(T(M)—S;_1)" < 7;
ii) if for some i€ {1,...m} 7, =1, then the corresponding \; =1;
wi) Y(m—XN) < d—k < c—ck;
w) Y (ri—XN)=0—k ifandonlyif t.s.(M)=I[r1,...Tm,1,...,1].
Proof. i) Since S = S;U[ex, —], T(M)—S*) = (D(M)—S8;)NT(M)—[cx, —]
= (O(M) — §;) NIN.  Therefore  \; = # (I(M) — S\ (D(M) — S¥) =

# (D(M) = S) "\ (D(M) = Si—1)" = # (T(M) — ;) \ (T(M) — S;—1))*.
For the rest of the proof see 1.7 replacing t; with 7; and [; with A;.

3.4 (]9], remark after 1.3) In particular we have:

Alzak(M)+1 < QR(M)+1:7'1
Y% Y
ll = ’I"k(M) S TR(M) = tl

According to the terminology used in [2] for semigroups, given the I'-set
(M) we call By :={cy—1—=x, x €T} theset of holes of the first type and
By:={x€Z, x ¢ (M) and ¢, —1—x ¢ T'} theset of holes of the second
type. By N By =0 by definition and B(M) := B; U By is the whole set of
holes of I'(M).

Proposition 3.5
i) By =T(t* W) \T'(M);
i) Bf ={z@T(M) | cx—1—x ¢ Ty} =T(@)\ D(M);
it1) F# Ba=0— (c(M)—46(M));
iv) # B = k— (c(M) = 6(M)).

Proof. 1) and ii) follow directly from definitions.

ili) Byi)and 1.5 # By = lp(@/u't*"*M) =0+ (M) —c(M), where the last
equality is ii) of 2.7.

iv) Analogously # By = Ip(@r/uM) = k + §(M) — c¢(M) , where the last
equality is iii) of 2.7.



3.6 Ar(M)C Bs.

Proof. Let j € Ap(M); we have to prove that j — ¢ + ¢ € T'(@), i.e.,
c—1—(j—ck+c) ¢ T. On the contrary, by definition of Ap(M), j+(cx—1—j) =
¢, —1 €T'(M), the desired contradiction.

Theorem 2.11 in terms of valuations is:
Theorem 3.7 The following are equivalent:
i) Ar(M) = By;
i) ar(M) = 6+ 8(M)—c(M);
iti) T(mg) = T(mg)+T@: t°*M);
w) ts.(Ty)= [ar(M)+1,1,.....1].

We call T(M) almost symmetric if it fulfills the above equivalent conditions.
We call T'(M) weakly almost symmetric if it is almost symmetric as Ri-module.

Proof. i) <= ii) follows from 3.5 and 3.6.
i) = iii): By C Ar(M) = T(@* W)+ T'(mp) CT(M) = T'w)+
IFmg) cT(t M) = T(@)+T(mg)+T(@:t M) CcT(t*M)+TI'(w
t*M) Cc T(W) = Tmg)+T(@:t*M) C T'(w) —T'(w) =T. From
this, since T(@ : t*"*M) C IN by i) of lemma 2.7, we can deduce that
F(mg) + (@ : tc= M) C T'(mpg).
ili) =i): LetjeBy = j¢I' (M) and j=c, —c+z, 2 €T(®) = j #
¢p — 1. Claim: j+T'(mgr) CI'(M). Now z+I'(mp) C I'(W) = using the
hypothesis, =+ T'(mg) +T(@: t“"*M) C I(©), ie.,
j+Tmg) + T(@w: M) CcT'(w) = j+T(mg) CT(M), by 2.6.
ii) <= iv): By31l c—c¢ +6(M)= (ar(M)+1) + > 57. Hence the
hypothesis 7, =1 Vi = 2,...,n implies ii). Conversely, if ii) holds, then
Z; T, =c—0—1 andsince 7, > 1, i =2,...,n, claim iv) is proved.

e As in the case of modules in virtue of 3.3 ii) we see immediately that:
(M) almost symmetric = I'(M) weakly almost symmetric.

Theorem 3.8

i) M is almost symmetric if and only if T(M) is almost symmetric and
rr(M) — 1= a(M);

it) M is weakly almost symmetric if and only if T(M) is weakly almost
symmetric and rp(M) —1 = ap(M).

Proof. The implications <= follow directly from definition.
(i), =: By 3.6 and iii) of 3.5 inequalities hold: rr(M)—1< a(M) < # By =
0 — (e(M) —§(M)), which become equalities in the almost symmetric case.
(ii), =>: Similarly inequalities : 74(M) —1 < ap(M) < # B =k — (c¢(M) —
0(M)) become equalities in the weakly almost symmetric case.



Corollary 3.9

i) If M is almost symmetric, then:
rr(M) —rp(M) =a(M) —ap(M) =6 — k.

it) M s almost symmetric if and only if
M is weakly almost symmetric and rr(M) —r(M)=4§ — k.

i11) If M is almost symmetric, then:
d—k < rg(M)-1 < e—1.

Proof. i) We have observed that M almost symmetric = M weakly
almost symmetric, so by definition rg(M) — rp(M) = § — k. Moreover by 3.8
rr(M)—1=a(M) and riy(M)—1=ar(M).

ii) follows from i) and proposition 1.7, iv).
iii) is an immediate consequence of i).

4

In this section we want to characterize a subclass of almost symmetric R-
modules, which we call almost canonical, having CM-type two. The name is
motivated by the fact that they can be easily constructed by deleting one el-
ement in a minimal system of generators of the canonical module. In the last
part we investigate CM-type and reflexiveness of modules over almost symmetric
rings.

Theorem 4.1  The following are equivalent:
i) 64+ 06(M)—c(M)=1;
it) M is almost symmetric and rr(M) = 2;
iii) t.s.(M)=12,1,..,1];
iw) T(M) is almost symmetric and ar(M)=1;
v) ts.(Ty)=1[2,1,...,1].

We call M almost canonical if it fulfills the above equivalent conditions.

Proof. ii) = i) by definition of almost symmetric.
i) = ii): In general rp(M)—1< 4§+ §(M)—c(M), then rg(M) < 2.
But rg(M) = 1 means M ~ & ([5], Korollar 6.12) and in this case
0+ 6(M) — (M) = 0 (see prop.1.5 of [9]). Therefore rr(M) =2 and M
is almost symmetric.
ii) <= iii) by theorem 2.11.
ii) <= iv) by theorem 3.8, since rr(M) < a(M)+ 1.
iv) <= v) by theorem 3.7.

In the case M = R such a ring is called Kunz in [1]. Next structure theorem
will be useful to justify the name ”almost canonical”:



Theorem 4.2 M is almost canonical if and only if
either k=6—1 and M =~ Wy

or c(M)=c and Ip(@/uM)=1.

In this last case either M :M =R or M =~ Wy

Proof. Suppose M is almost canonical, then 7ri(M) < rgr(M) = 2.
re(M) =1 means M ~ &, and 6 —k = rg(M) — r.(M) = 1 by 3.9. If
r(M) =2, then § —k =0, ie., ¢(M)=c and by iv) of 2.11 Ig(@/uM) = 1.
On the other hand, if k=d—1 and M ~ @&y, then by [9] ¢(M) =6(M)+k =
0(M)+4+6—1 ie. M is almost canonical; if ¢(M)=c and Ilg(w/uM) =1,
then by 2.7 6 +d(M) — (M) = lg(@/uM) = 1.

It remains to prove that if M is almost canonical and ¢(M) = ¢, i.e., k = 0,
then either M : M =R or M >~ 0.

By [9], Prop. 2.1, ¢(M) —6(M) + armean (M) < (M : M) < 4. Hence, in
our case, 0 — 1+ apmran(M) <O(M : M) <5 = either §(M : M) =46
or (M : M) =46—1. In the first case M : M = R. Suppose now §(M :
M) =06—1. Since c(wp.pr) =6(M : M)+ 6(Oprpr) and  c(@ar.pr) = (M),
using the hypothesis ¢(M) = 6(M) + 0 — 1, we conclude 6(M) = §(@ar.nr)
ie. M ZLEMM

Remark 4.3 Let M be any overring of R with the same conductor ¢(M) = c.
Then: Igr(M/R)=1 = @) is almost canonical as R-module.

Proof. By duality 1 = Ig(M/R) = lp(@0/0n) = d(om) =6@)+1 =
c—0+1=c(@y)—90+1.

Examples

o Let R := k[t>,t'2, ¢3¢ ¢16] and M := R+ t?R+t*R+t°R. Com-
puting I'(R) = {0,5,10,12,—}, T'(M) = {0,2,3,5,7,8,9,10,12 —}, we see
that M is almost canonical and M = Wy .

e Let R as above and M := R+ tR + t?R + t*R. Then I'(M) =
{0,1,2,3,5,6,7,8,10,—}, k = 8, rr(M) = 2, rx(M) = 1 because of
Ar(M) = {-2} and 6 +6(M)—c¢(M) =9+2—-10 =1, so M is al-
most canonical and M ~ wy.

e Let Rasabove and M = R+t?R+t3R+t"R+t"R+t12R. Here I'(M) =
{0,2,3,5,7,—}, Ar(M) ={-5,-3,-2,4}, hence rg(M) =5, ry(M)=2. In
this case since k+d6(M)—c(M)=5+3—7=1, M is almost canonical as Ry-
module, i.e., k—t.s.(M)=[2,1]; but since 6 +6(M)—c(M)=9+3—7#4,
M is not almost canonical as R-module. According to theorem 4.2 we have:
M : M = Ry.

Proposition 4.4  Suppose R almost symmetric and M such that ¢c(M) = c.
Then:

i) M is almost symmetric;
it) r(R) =Ilr(M/R)+rgr(M).

Proof.  As observed in the second remark of 2.12 the hypothesis R almost
symmetric means mpr = mp w.



i) Claim: mprp =mg(@: M). Let uM C & be the canonical immersion.
Then wump C mg(w: M) C mgp @ = mg. Since w is a unit, the preceding
inclusions are equalities.

11) T’(R) = ZR(&/mR &) = lR(fu/mR) = ZR(&/& : M) +ZR(&} : M/umR) =
IR(M/R)+Ir(@: M/mp (0: M)) =1g(M/R) +rr(M); we have here used i)
and 1.5 to say that Ig(@: M/umpg) =Ir(&: M/mg(&: M)).

Next counterexample shows that the implication ” M almost symmetric as
Ri-module = Ry almost symmetric” fails, even if R is almost symmetric.
Let R:=k[t4,¢7,¢14 9] and M := R+t°R+t'"R+t'R. Then T'(R) =
{0,4,8,9,12,13,14,16,—} and T'(M) = {0,4,5,8,9,10,12,—}. Since 0 =
9, ¢ =16, r(R) =3, R is an almost symmetric ring. We can easily verify that
0(M) =6, ¢c(M)=12, rr(M) =4, (M) =3, hence M is almost symmetric
as Rg-module, but Ry, is not almost symmetric and formula ii) of Theorem 2.11
does not hold. In fact k=38, §(Ry) =8, c¢(Rx) =12, r(Rx) = 3.

Corollary 4.5 Suppose R almost symmetric and r(R) = 2. There are exactly
two isomorphism classes of R-modules having ¢(M) = ¢: either M ~ R or
M ~ 0.

Proof. The conclusion follows immediately from assertion ii) of the above propo-
sition: Ir(M/R)+rr(M) = 2.

Remark 4.6  The only R-module M "reflexive” over R, i.e., M = M** :=
R:(R:M), suchthat RC M CR and ¢(M)=c is M =R.
Proof. Suppose M = M** and M # R. Then, since R : M C mgr and
(R : mg)(R : M) C R, it follows that R : mg C M*™ = M. Thus
c(M)—1=c—1€T(R:mp) C (M), which is a contradiction.

Proposition 22 of [2] may be slightly generalized considering any R-module
M instead of a strict overring of R in this way:

Proposition 4.7  The inequality (*) Ir(M/R) <Igr(R/R: M)+ Ir(®/R)

is valid in general. If we consider the conditions:
i) WCM:M, ie, OM=M
ii) R-M=R:-M)w=w:M
itt) = holds in (*)
w) M= M
v) (R:M)w=w:M

then (1) < (it) < (iii) = (iv) <= (v). Assuming R almost
symmetric and M # R, all conditions are equivalent.



Proof.  To prove (*) it suffices to note that: Igr(M/R) = lg(®/w : M) <
IR(@/R:M)=Ig(@ M/R)=Igr(R/R: M)+Ir(@w/R). Then the equivalences
(1) < (ii) <= (i) are clear. Moreover by duality: [r(M**/M) =
Ig(@: M/(R: M) ), so (iv) <= (v). Finally (ii) = (v) is trivial.
Suppose now R almost symmetric and M # R. Since R: M =mpg: M and
mrp =mpw, weget (R: M) M & C mpg, hence (R: M)w=R: M. So

Corollary 4.8 If R is almost symmetric, then
M is reflexive if and only if M : M is reflexive.

Proof. Put B:= M : M and apply (iv) <= (i) of the preceding proposition.
M reflexive <= wWC B <= WC B:B <= B reflexive.

Remark 4.9

e Next counterexample shows that the hypothesis 'R almost symmetric’
is needed to state the equivalence of conditions 4.7. Let R := k[t3,¢7,t%],
M :=R+t*R+t°R. Here M = M**, but @ M # M because t € w M.

e Relations between reflexiveness and canonical ideals are present in the
literature. In the case M is an overring of R the equivalence (iv) <= (v)
becomes the well known assertion:

YM/RWR = wym = M is reflezive
Ym/r = R : M being the usual conductor. This idea has been extended to
the not birational case by means of the notion of complementary module (see,
for instance, [8], theorem 2.3 with the additional hypothesis "yy; rwr Cohen-
Macaulay’ and [7], Proposition 4.34).
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