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1. OVERVIEW OF ASHTEKAR’S PROGRAM OF “LOOP
QUANTIZATION”

The program of loop quantization of gauge theories is a project which has
the intent to construct a self-consistent and mathematically rigorous model
of canonical (Hamiltonian) non-perturbative quantization of pure and con-
strained gauge theories.

The most important example of constrained gauge theory is the general
relativity written in terms of Ashtekar’s ‘new variables’, another important
example is the Chern-Simon theory in 3-D.

The fact that the quantization procedure is non-perturbative is essential
to study the gravity at a quantum level, in fact the perturbation models
assumes the existence of a base geometry (the Minkowski geometry) and
then perturbate it in such a way to introduce the spacetime distortions, but
this violates Einstein’s equivalence postulate!

To develop the loop quantization no new physical structures (like strings
of supersymmetry) are postulated, the idea is to use new techniques rather
than new concepts, i.e. to stay as close as possible to conventional canonical
quantum field theory.

The first step of the program is the individuation of a set of gauge-
invariant functions on the configuration space of the classical theory which is
complete in the sense that it contains all the physically distinct (i.e. gauge-
inequivalent) degrees of freedom of the theory. This set happens to be that
of Wilson’s loop functions.

Then one constructs the C∗-algebra generated by these functions and
reaches a quantum formulation by a GNS representation of this C∗-algebra
carried on a certain Hilbert space, which becomes the kinematical state
space Hkin of the quantum theory.

Finally the configuration observables and their conjugate momenta are
promoted to self-adjoint operators on Hkin which are required to satisfy the
canonical commutation rules.

If the theory incorporates some other constraints, such as the diffeomor-
phism and the Hamiltonian constraints like in general relativity, then these
constraints are imposed in the quantum theory by means of operator equa-
tions which has to be satisfied by the vector states belonging to Hkin. The
subspace Hphys ⊂ Hkin containing the states satisfying the constraint equa-
tions is taken to be the true (physical) state space of the quantum theory.

I anticipate that, at the moment, the kinematical part of the program has
been completed, while the dynamical part (i.e. the solution to the Hamil-
tonian constraint) is not yet well understood and remains the most difficult
open problem of the loop quantization program.
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2. A BRIEF ACCOUNT ON THE MATHEMATICAL FORMALISM OF
GAUGE THEORIES

The features of gauge theories are fully encoded in the mathematical
concept of principal fiber bundle P (M,G) once the following identifications
are made:

• M represents the spacetime of the theory;

• G is the group of the internal symmetries of the theory, also called
gauge group;

• P is a super-imposed structure, an auxiliary space containing the fibers
over the points of M (copies of G) which identifies with the internal
states of the fields (or particles, in the quantum vision) described in
the theory;

• the connections on the principal bundle are identified with the gauge
potentials, i.e. the fields representing the force which makes the matter
fields interact, these ones are introduced in the theory as sections of
vector bundles associated to the fixed principal bundle.

In local expressions the gauge potentials are g-valued 1-forms Aa
i on an

open subset ofM , where g is the Lie algebra of G, i is a spacetime index and
a is a coordinate in g and so ranges from 1 to dim(g).

The momentum conjugated to Aa
i is a tensorial density of weight +1

indicated by Ẽi
a which takes values in the dual of g.

The Poisson algebra is:

{Aa
i (t,x), A

b
j(t,y)} = 0;

{Ẽi
a(t,x), Ẽ

j
b (t,y)} = 0;

{Aa
i (t,x), Ẽ

b
j (t,y)} = δj

i δ
b
aδ

3(x,y).

It is worth noting that the characteristic invariance of gauge theories, i.e.
the gauge-invariance, imposes that the physically distinct configurations of a
gauge theory are not labelled by the set of all connections, denoted with A,
but by the set of connections modulo gauge transformations A/G, where G
is obviously the group of gauge transformations on P , i.e. the G-equivariant
automorphisms of P inducing the identity on M .

A/G is called the classical configuration space of the gauge theory.
From a physical point of view the most interesting gauge theories are the

unitary ones, i.e. those having as gauge group a subgroup of U(N), N ≥ 1.
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In fact it is well known that the standard model, i.e. the quantum
description of the electromagnetic, strong and weak nuclear interactions, is
the collections of two quantized gauge theories, precisely:

1. the electroweak theory, which unifies the electromagnetic and weak
nuclear interactions, is a quantized gauge theory with gauge group
SU(2) × U(1); the splitting of the two forces at small energy levels
is due to a phenomenon called spontaneous symmetry breaking;

2. the quantum chromodynamics, which describes the strong nuclear
forces that makes the quarks interact in the hadrons, is a quantized
gauge theory with gauge group SU(3).

In the quantum theory of gauge fields the interactions are described by
exchange of quanta of the gauge fields, which are bosonic particles: the
photon γ for the electromagnetic interactions, the three vector bosons W±,
Z0 for the weak nuclear interactions and the eight gluons for the strong
nuclear interactions.

The last interaction known in nature, i.e. the gravity, admits a self-
consistent and physically predictive formulation only at a classical level by
means of Einstein’s general relativity.

A fundamental work due to Ashtekar shows that the Euclidean version of
general relativity can be reformulated as a constrained gauge theory relative
to the gauge group SU(2).

This very important result has introduced in the community of theoretical
physicists the hope that gravity can finally be quantized by adapting the
well established techniques of quantization of gauge theories to Ashtekar’s
reformulation of general relativity.

In the next section it is briefly explained how this reformulation can be
obtained.
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3. THE REFORMULATION OF GENERAL RELATIVITY IN TERMS
OF ASHTEKAR’S “NEW VARIABLES”

Einstein’s general relativity is the physical theory which describes how
the distribution of matter and energy curves the geometry of the spacetime
in which it is immersed. The way in which it says this is expressed by the
Einstein equations.

This equations relate the stress-energy tensor, a symmetric (0, 2) ten-
sor (usually written as Tµν in local components) which express the flow of
energy and momentum through a given point of spacetime, with the cur-
vature of the Levi-Civita connection ∇ associated to the metric gµν of the
spacetime manifold.

This curvature is expressed by means of the Riemann tensor, defined
by: R(X,Y )Z := (∇X∇Y −∇Y ∇X −∇[X,Y ])Z, or, in local coordinates:

Rµ
νλγ = ∂νΓ

µ
λγ − ∂λΓ

µ
νγ + Γ

σ
λγΓ

µ
νσ − Γσ

νγΓ
µ
λσ.

The trace of this tensor gives rise to the Ricci tensor: Rµν = Rσ
µσν and the

contraction of the Ricci tensor gives the scalar curvature R = Rµ
µ.

This objects appear, with the metric itself, in the Einstein equations:

Gµν = Rµν − 1

2
Rgµν = 8πTµν

in units where Newton’s gravitational constant is fixed to be 1.
Gµν are the components of a symmetric (0, 2) tensor named Einstein’s

tensor.
Due to the symmetries of the Ricci tensor, the Einstein equations are 10

second order hyperbolic non-linear equations in the components of the metric
tensor for every 4-dimensional spacetime.

If one imposes the Cauchy problem on these equations suddenly under-
stand that not all of them are evolutory equations, in fact 4 equations are
constraints and the remaining 6 equations are evolutory equations.

The reason why this happens is better understood if one consider the
variational formulation of general relativity.

For the sake of simplicity, the next discussion of the actions for gravity
will be focused only on the vacuum situation.

The first action for gravity is the Einstein-Hilbert action, i.e. a functional
S on the space of all Lorentzian metrics on a 4-D spacetime M given by:

S(g) :=

∫
M

Rvol
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where vol is the volume form induced by g, which can be written, in local
coordinates, as vol =

√|det(g)|dx0 ∧ . . . ∧ dx3.
The variation of S is minimized precisely when the Einstein vacuum equa-

tions hold.
The important thing to note is that this action is invariant under the

action of the orientation preserving diffeomorphisms φ of M , i.e.:∫
M

(φ∗R)φ∗vol =
∫

M

Rvol.

In general, the presence of such local symmetries implies that the Euler-
Lagrange equations deduced from the minimization of the variation of the
actions (the vacuum Einstein equations when the action is S(g)) are not
independent and the theory, both in the Lagrangian and in the Hamiltonian
formulation, is submitted to constraints.

The Hamiltonian formalism of general relativity is encoded in the ADM
(Arnowitt-Deser-Misner) formulation, its discussion will show explicitly the
constraints.

In the ADM formulation one assumes that the spacetime M is diffeo-
morphic to the cartesian product R × Σ, where Σ is a 3-D space-like slice
embedded in M . This assumption is called a splitting of the spacetime M .

Roughly speaking, in the ADM formalism, general relativity becomes a
theory which says how the curvature of Σ evolves in time.

To make this assertion rigorous one has to define the so-called extrinsic
curvature K of Σ, which is the (0, 2) symmetric tensor given by

K(u, v) := −g(∇uv, n)

where u, v are tangent vectors on Σ, ∇u is the covariant derivative defined
by g, n is a unit time-like vector normal to Σ, i.e.:

g(n, n) = −1, g(n, v) = 0 ∀v ∈ TpΣ.

K says how much Σ is curved in the way it sits in M , since it measures how
much the unit normal vector n rotates in the direction v when it is parallel
translated in the direction u.

In this formalism one can derive the so-called Gauss-Codazzi equations:

G0
0 = −1

2
(3Rm

ijk +KjkK
m
i −KikK

m
j ) = 0

G0
i =

3∇iKjk − 3∇jKik = 0, i = 1, . . . , 3

which says that 4 Einstein’s equations are indeed constraints involving the
extrinsic metric.
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The objects which appear with the left suffix 3 are constructed by the
intrinsic metric of Σ, i.e. the restriction of the metric g ofM on Σ, usually
written 3g.

By introducing the shift vector field &N and the lapse function N one
can show that the remaining 6 equations are evolutory equations which says
how Σ evolves in time, in fact they contain second order time derivatives of
the intrinsic curvature 3g of Σ.

The last purpose of this section is to describe Ashtekar’s action for general
relativity, a formulation in which the constraints significantly simplifies.

The fundamental idea behind Ashtekar formulation is to use the peculiar-
ities of the 4-dimensional spacetime to write down the self-dual part of the
Palatini action for gravity, this action turns out to induce the same equations
of general relativity.

Before showing the peculiarities of the 4-dimensional spacetime used by
Ashtekar it is worth remembering the most important issues of Palatini’s
action for gravity.

In Palatini’s formalism one consider a parallelizable oriented 4-D man-
ifold M , i.e. it assumes that there exists a vector bundle isomorphism

e : τ ≡ M × R
4 → TM

inducing the identity onM . R
4 here is called the internal space and capital

letters I, J, . . . are used to denote its coordinates.
If {ξI}I=0,...,3 is the standard base of sections of τ then the corresponding

base of vector fields on M is {eI ≡ e ◦ ξI}I=0,...,3 and eI is locally expressed
as: eI = eα

I ∂α.
The Minkowski metric on each fiber defines on τ the so-called internal

metric η.
In general the map e is called a frame and if the basis {eI} is orthonormal

with respect to a given Lorentzian metric g onM , i.e. if g(eI , eJ) = ηIJ , then
the map e is called a tetrad or a vierbein for g.

Conversely, e defines a metric g on M by the formula above.
The inverse map e−1 : TM → M ×R

4 has local coordinates eα
I satisfying

eα
I e

J
α = δJ

I and is called a cotetrad.
The important thing to stress now is that if M is parallelizable then its

frame principal bundle RM is also trivializable and every vierbein generates
a trivialization by

T : M ×GL(4) −→ RM
(x,G) �→ T (x,G) := {GJ

I e
I(x)}.
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By considering in particular the sub-bundle M ×SO(3, 1) of M ×GL(4) one
can construct the Palatini action:

S(e, A) :=

∫
M

eα
I e

β
JF

IJ
αβ vol(e)

where e is a vierbein, A is a principal connection on M × SO(3, 1), F is its
curvature and vol(e) is the volume form defined by the Lorentzian metric g
expressed as a function of e, i.e. gαβ = ηIJe

I
αe

J
β .

Thus the Palatini action is a functional of a connection A and a vierbein
e, and it can be shown that varying S, with respect to both A and e, the
equation δS = 0 implies that the metric gαβ satisfies Einstein’s vacuum
equations.

The Palatini formulation of general relativity has the remarkable fea-
ture to encode this theory in the framework of gauge theories. In Palatini’s
formalism there are both gauge and diffeomorphism constraint, due to the
invariance of S(e, A) under gauge transformations and diffeomorphisms.

Even though the form of these constraints is much simpler than in the
Einstein-Hilbert approach (since they have a polynomial character), these
constraints are not closed under Poisson brackets and this creates many dif-
ficulties in the canonical quantization of the theory.

Ashtekar’s reformulation of Palatini’s action is a clever way to eliminate
this problem and also to simplify even more the constraints.

The starting point of Ashtekar’s work is the recognition that, on the
4-dimensional Minkowski space M ≡ (R4, η = diag(−1,+1,+1,+1)), the
linear endomorphism given by the Hodge star operator ∗ : ∧2 M → ∧2 M
defined on the antisymmetric (0, 2) tensors as:

∗FIJ =
1

2
εKL
IJ FKL

where εKL
IJ is the Levi-Civita symbol, given by:

εIJKL =



+1 if IJKL is an even permutation of 1234
−1 if IJKL is an odd permutation of 1234
0 otherwise

doesn’t admit eigenvalues, but if one complexifies M to C
4, the Hodge star

operator has eigenvalues ±i and the space
∧2

C
4 decomposes into the direct

sum of its self-dual and antiself-dual subspaces:

2∧
C

4 =
2∧
(C4)+ ⊕

2∧
(C4)−
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which are the eigenspaces relatives to the eigenvalues ±i.
The important thing to observe now is that there exists the isomor-

phism
∧2

C
4 � so(3, 1)⊗C and, thanks to the existence of the double cover

ρ : SL(2,C) → SO0(3, 1), the above splitting of
∧2(C4) into self-dual and

antiself-dual part corresponds to the splitting

so(3, 1)⊗ C � sl(2,C)⊕ sl(2,C).

Since a Lorentz connection A on M × C
4 is just an so(3, 1) ⊗ C-valued

1-form on M , the self-dual part of this connection, written usually as +A, is
a sl(2,C)-valued 1-form on M .

Thus Ashtekar modifies Palatini’s formalism by introducing:

• the vector bundle Cτ =M × C
4;

• the complexified tangent bundle CTM =
∐

x∈M C ⊗ TxM ;

• complex frame fields, i.e. vector bundle isomorphisms e : Cτ → CTM ;

and then define an action, the so-called Ashtekar’s self-dual action for
gravity simply by taking the complexified Palatini action written in terms
of the self-dual connection +A and the complex vierbein e:

S(e, +A) :=

∫
M

eα
I e

β
J

+F IJ
αβvol(e)

miraculously, by varying S both with respect to e and +A, one gets the
vacuum Einstein equations for the complex valued metric gαβ = ηIJe

I
αe

J
β .

To obtain the usual (real) gravitation one has two possibilities:

1. impose reality conditions on the complex frame fields in terms of which
the metric is expressed, to get a real-valued metric;

2. start from an Euclidean self-dual action, defined by a volume form
vol(e) on R

4 induced by the (real) Riemannian metric

gαβ = δIJe
I
αe

J
β

and su(2)-valued self-dual connections +A. From the fact the su(2) is
the compact real form of sl(2,C), one obtains again the (real) Einstein’s
equations. The relation between the Euclidean formulation and the
Lorentzian formulation is then obtained with a generalized Wick trans-
form, called coherent state transform, constructed from Ashtekar
and others.

This Euclidean formulation of general relativity in terms of Ashtekar’s
new variables (e, +A) is the most important constrained gauge theory with
compact gauge group (SU(2)) to which the program of loop quantization
applies.
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4. THE WILSON FUNCTIONS AND THEIR USE IN GAUGE
THEORIES

For the reason discussed in 2., it is not reductive (from a physical perspec-
tive) to make the following initial assumption: in the sequel the gauge
group will be assumed to be a compact connected Lie subgroup of
U(N).

Fixed a gauge theory relative to the principal bundle P (M,G), the Wilson
functions form a complete set of gauge invariant functions, complete in the
sense that they encode all the gauge inequivalent (i.e. physically distinct)
configurations of the theory.

The rigorous introduction of the Wilson functions needs the concepts of
holonomy, holonomy map and group of loop.

Fixed a loop α in the base space M based on the point 2, a connection
A on P and a point p0 ∈ P�, the fiber over 2, it can be shown that there
exists one and only one A-horizontal lift of the loop which starts in p0, by
definition of lift it follows that its ending point, call it p1, also belongs to P�.

This point is said to be obtained from p0 by parallel transport asso-
ciated to A along α, by varying p0 in P� one gets a map ℘α,A : P� → P�

which happens to be a G-equivariant diffeomorphism. Moreover the free-
dom and the transitivity of the action of the gauge group on the fibers
of P imply that there exists exactly one element HA(α) ∈ G such that
p1 = ℘A,α(p0) = p0.HA(α), this element of G is called the holonomy of the
loop α associated to the connection A.

It can be shown that HA(α) is the solution (in the final value of the
parameter t) of a non-autonomous linear differential equation in G, precisely

ġt = −[A(α̇t)]gt

hence its explicit form is given in terms of the path-ordered exponential:

HA(α) = P exp
∮

α

A .

The map HA which assigns to the loop α its holonomy associated to the
connection A is called holonomy map.

Since the image of HA relies in G, one would like to give the structure of
a group to the set of loops in such a way to transform the holonomy map in
a homomorphism.

This can be done by introducing in the semigroup of loops in M an
equivalence relation and then by taking the quotient with respect to it.

Here I consider three equivalence relations between loops, the technical
definitions and requests common to every equivalence are the following:

10



• the loop considered are taken to be piecewise analytic;

• their interval of parameterization is taken to be [0, 1];
• two loops α and β are said to differ from an orientation-preserving
reparameterization if there is a growing diffeomorphism τ : [0, 1]→
[0, 1] such that α(t) = β(τ(t)) for every t ∈ [0, 1];

• an oriented loop is a orientation-preserving reparameterization class
of loops.

The three equivalence relations between loops are described below.

1. The elementary equivalence: a loop α is said to be immediately
retraced if it can be written as α =

∏
i γiγi

−1, for some paths γi inM .
Two oriented loops α and β are said to be elementary equivalent
if one is obtained from the other by composition with an immediately
retraced loop γ, i.e. α = βγ. The quotient of the set of oriented loops
with respect to the elementary equivalence is called the group of loops
and indicated with L�(M);

2. The thin equivalence: a loop α ∈ L�(M) is said to be thin if it is ho-
motopic to the constant loop 2 with a homotopy having image entirely
contained in α∗ ≡ Im(α). α,β ∈ L�(M) are said to be thin equiva-
lent if there exists a thin loop γ such that α = βγ. The quotient of
L�(M) with respect to this equivalence relation is indicated by L�(M);

3. The holonomic equivalence: two loops α, β ∈ L�(M) are said to be
holonomy equivalent if they have the same holonomy with respect
to every connection, i.e.

HA(α) = HA(β) ∀A ∈ A .

The quotient of L�(M) with respect to the holonomic equivalence gives
rise to a group called the hoop group and indicated with H�(M,G).

The relation between the three loop groups introduced above is contained
in the next theorem.

Theorem. The following assertions hold:

• L�(M) and L�(M) are always isomorphic;

• if G contains a subgroup isomorphic to SU(2) then H�(M,G) is iso-
morphic to L�(M).
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The fact that there is a geometric condition which has to be satisfied in
order to have the equality between the group of loops and the hoop group is
not surprising: while the elementary and thin equivalence have a topological
nature, the holonomic one has a geometrical character!

The difference between L�(M) � L�(M) and H�(M,G) is substantial
only in the Abelian case, where H�(M,G) is an Abelian group.

It can be shown that L�(M) can be endowed with a topology which makes
it a topological Hausdorff group.

The proof of the previous theorem is not easy and relies on a fundamental
property of piecewise analytic loops, i.e. the existence of the independent
loops, i.e. collections {βi}(i = 1, . . . , n) ⊂ L�(M) such that every βi admits
an arc li such that li ∩ βj

∗ = ∅ ∀j �= i, i.e. every loop of the family has an
arc which doesn’t intersect the images of the other loops of the same family.

The importance of the independent loops relies in the fact that, under
the initial hypothesis for the gauge group, one can prove that the so-called
interpolation property holds: let {β1, . . . , βn} ⊂ L�(M) be a finite inde-
pendent family of loops and {g1, . . . , gn} ⊂ G a finite family in G with the
same cardinality. Then there exists a connection A such that

gi = HA(βi) i = 1, . . . , n.

By using the interpolation property and some other tools one can show
that the quotient which defines L�(M) is always trivial and that the one
which defines H�(M,G) is trivial when G contains SU(2). This fact is very
useful in the applications since one can use both geometrical and topological
tools to prove important results.

The important thing now is that the holonomy map factorize to a homo-
morphism between every loop group and the gauge group G, i.e. HA realizes
an unitary representation of the loop groups.

Once recognized this fact the definition of the Wilson functions is very
easy: for every loop α belonging to one of the loop groups, the Wilson func-
tion associated to α, denoted by Tα, is the function which associates to a
connection A the value of the normalized character of the unitary represen-
tation HA of the loop group calculated in the loop itself, i.e.

Tα : A −→ C

A �→ Tα(A) :=
1
N
Tr(HA(α))

Tr means the trace operator taken in the fundamental representation of the
gauge group.

The Wilson functions factorize on the quotient A/G thanks to the so-
called representation theorem which states that two connections A and
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A′ are gauge-equivalent if and only if their holonomy maps are conjugated,
i.e. if there exists g ∈ G such that HA′(α) = gHA(α)g

−1, for every loop α.
Thanks to the cyclic property of the trace one immediately sees that,

if A and A′ are gauge-equivalent, then Tα(A) = Tα(A
′), for every loop α.

Moreover, since the trace is a continuous operation and the entries of an
unitary matrix are bounded, it follows that Tα ∈ Cb(A/G), for every loop α.

This fundamental fact is resumed by saying that the Wilson functions
are gauge-invariant, i.e. they form a set of observables for gauge theories.
The outstanding fact is that every observable of a given gauge theory can
be obtained from the Wilson functions by linear combination of products of
Wilson functions!

This result is obtained by extending the well known result of one-to-one
correspondence between equivalence classes of unitary representations of a
compact group and their characters to the (non compact) loop groups, which
can be done with some topological tools.

The details are quite boring, while the final result is very precious, because
it allows to choice the Wilson functions as the set of the observables
of a unitary gauge theory.

This choice has a triple advantage:

1. it allows to implement a manifestly gauge-invariant formalism of gauge
theories in which the constraint due to the invariance under gauge
transformations is automatically solved already at a classical level. This
avoids the use of the gauge fixing procedure, which leads to the well
know problems of Gribov ambiguities;

2. it leads to the quantum configuration space of the gauge theories in a
natural way;

3. it allows to implement a representation of the quantum theory in which
the diffeomorphism contraints can easily be solved.
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5. THE HOLONOMY C∗-ALGEBRA, ITS SPECTRUM AND ITS
CHARACTERIZATIONS

The central step of the loop quantization procedure is the promotion
of Wilson’s classical observables to quantum observables, i.e. self-adjoint
operators on a suitable Hilbert space.

This step can be realized in an algebraic way by completing the algebra
generated by the Wilson functions to a C∗-algebra and by implementing a
Gelfand-Naimark-Segal (GNS) representation.

The C∗-algebra generated by the Wilson functions is an unital Abelian
C∗-algebra1 usually called ‘holonomy C∗-algebra’ and indicated withHol(M,G),
since it depends on M and G but (it can be proved) not on the entire struc-
ture of the principal fiber bundle P (M,G). The product is the punctual
multiplication, the involution is the complex conjugation and the norm is
‖ ‖∞.

It is worth remembering a few facts about C∗-algebras. In what follows
A will denote an Abelian C∗-algebra with unit u. An element a ∈ A is said
to be positive if there exists an element b ∈ A such that a = b∗b; a linear
functional ϕ on A is positive if ϕ(a) ≥ 0 for every positive element a ∈ A,
such a functional is always continuous and its norm is the value assumed in
the unit of A: ‖ϕ‖ = ϕ(u). The positive linear functionals on A of unit norm
are called the states of A and they form a compact convex subset of the dual
space A∗.

A character of A is a non-identically zero homomorphism ϕ from A to
C, i.e. ϕ ∈ Hom(A,C∗), it is always continuous and has unit norm so that
the characters of A are precisely its multiplicative states. The spectrum of
A, σ(A), is the set of all its characters; endowed with the w∗-topology2 this
is a compact Hausdorff space.

A is isometrically isomorphic to the unital Abelian C∗-algebra of contin-
uous complex-valued functions on its spectrum by means of the Gelfand
isomorphism:

ˆ : A −→ C(σ(A))
a �→ â

with â(ϕ) := ϕ(a). The Gelfand isomorphism preserves the positivity.
Identifying A with C(σ(A)) and using the Riesz-Markov theorem one has

that there is an isomorphism between positive linear functionals on A and

1A unital Banach ∗-algebra such that ‖a a∗‖∞ = ‖a‖∞2, for every element a of the
algebra.

2A sequence of characters {ϕn} converges to ϕ in the w∗-topology if and only if
limn→∞ < ϕn, a >=< ϕ, a > for every a ∈ A.

14



positive regular Borel measures on σ(A). The representation of the positive
linear functional ϕµ associated to the positive regular Borel measure µ is
given by:

ϕµ(a) =

∫
σ(A)

â dµ .

Furthermore ‖ϕµ‖ = ‖µ‖, hence the states on A are in bijection with
the probability measures on σ(A).

Finally, to every positive measure µ on σ(A) (alias to every positive func-
tional ϕµ on A) one can associate the GNS representation, which is given
by the correspondence a �→ Mâ, where Mâ is the multiplication operator on
L2(σ(A), µ) defined by Mâψ := âψ, for every a ∈ A and ψ ∈ L2(σ(A), µ).

All these considerations and results apply to the holonomy C∗-algebra
Hol(M,G), whose compact Hausdorff spectrum σ(Hol(M,G)) has a very
important property:

Theorem. A/G is densely and injectively embedded in the spectrum of
the holonomy algebra.

For this reason σ(Hol(M,G)) is usually denoted as A/G, its elements are
written as Ā and called generalized connections.

The Gelfand isomorphism specialized to the holonomy C∗-algebra can be
written as:

ˆ : Hol(M,G) −→ C(A/G)
f �→ f̂ , f̂(Ā) := Ā(f).

The isometric isomorphism Hol(M,G) � C(A/G) is usually used to identify
Wilson functions with their Gelfand transformed.

To understand how much the spectrum A/G of Hol(M,G) is big, it is
useful to cite the first characterization of A/G, i.e. the so-called theorem of
Ashtekar-Lewandowski-Baumgärtel (ALB):

σ(Hol(M,G)) � Hom(L�(M), G)/Ad .

The proof of the result above uses in an essential way the interpolation con-
dition.

The ALB theorem shows that a generalized connection can be character-
ized in an easier way as an algebraic homomorphism from the group of loops
to the gauge group up to Ad-equivalence, without any topological request.

While this algebraic characterization of A/G is very useful to understand
what the generalized connections are, there is a second characterization of
A/G which has an enormous importance both to understand the intrinsic
structure of this space and to construct measure of it, which is an essential
tool to implement the GNS representation of the holonomy C∗-algebra.
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This second characterization uses as fundamental tool the theory of pro-
jective and inductive limits, briefly resumed below.

Def. A projective family of topological Hausdorff spaces is a triple {Ωj, πij, J}
where:

• Ωj is a topological Hausdorff space for every j ∈ J ;

• J is a directed set of indexes, i.e. it is endowed with a partial order
relationship ≤ such that

∀i, j ∈ J ∃k ∈ J such that i ≤ k and j ≤ k;

• if i ≤ j then the maps πij : Ωj → Ωi are continuous surjective projec-
tions such that:

1. πjj = idΩj
∀j ∈ J ;

2. if i ≤ j ≤ k then πij ◦ πjk = πik (“consistency relation”).

An element {ωj}j∈J of the cartesian product
∏

j∈J Ωj is called wire if it
satisfies the condition

πijωj = ωi ∀i < j

i.e. if every element of the ordered sequence is obtained from one of the
previous via projection.

The projective limit of {Ωj, πij, J} is the subset of the cartesian product∏
j∈J Ωj given by all its wires, this space is indicated by

Ω ≡ lim←−j∈J
Ωj .

The maps
πj : Ω −→ Ωj

{ωi}i∈J �→ πj({ωi}i∈J) := ωj

are called the projections of Ω.
The projective limit Ω carries a natural topology, called initial topology,

which is the smallest topology w.r.t. the projections πj of Ω are continuous.
A base of this topology is given by the sets

∏
j∈J Uj, where Uj ∈ Ωj is an

open set such that Uj = Ωj ∀j ∈ J but for a finite number of indexes.
In the initial topology the projections are open maps and the projective

limit is closed.
It is easy to proof that if I is a cofinal subset of J , i.e. ∀j ∈ J ∃i ∈ I

such that j ≤ i, then
lim←−j∈J

Ωj = lim←−i∈I
Ωi .
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Furthermore, if the spaces Ωj are all compact then the projective limit Ω
is a non-empty compact Hausdorff space.

The most important class of functions associated to the projective limit
of topological spaces is the class of the cylindrical functions.

Def. The space Cyl(Ω) of the cylindrical functions on the projective limit
Ω of the family {Ωj, πij, J} is the quotient of the disjoint union

∐
j∈J C(Ωj)

modulo the equivalence relation defined by: f ∈ C(Ωj), g ∈ C(Ωj′), f ∼ g if
there exists an index j′′ such that πjj′′(f) = πj′j′′(g).

Note that, in particular, the cylindrical functions are continuous, by con-
verse it can be easily proved that a continuous function f on Ω is cylindrical
if and only if there exists a function fj ∈ C(Ωj) such that f = fj ◦ πj, if this
is the case then f is said to be cylindrical w.r.t. the index j and one writes
f ∈ Cylj(Ω). Obviously

Cyl(Ω) =
∐
j∈J

Cylj(Ω) .

The map
i : Cyl(Ω) −→ C(Ω)

fj �→ i(fj) := fj ◦ πj

is an injective homomorphism which embeds Cyl(Ω) in C(Ω).
The final result I want to cite about projective limits is the celebrated

A.Weil’s theorem which says that every compact group is the projective limit
of compact Lie groups.

The dual construction of the projective limit is the inductive limit. For
the later purposes it is worth introducing the definition of inductive limit
directly on C∗-algebras, the same definition extends to general linear spaces
and algebras.

Def. An inductive family of C∗-algebras is a triple {Aα, iβα, A} where
Aα are C∗-algebras and A is a directed set of indexes such that, for every
α ≤ β, there exist continuous injective inclusions iβα : Aα → Aβ satisfying:

1. iαα = idAα;

2. iγβ ◦ iβα = iγα, whenever α ≤ β ≤ γ.

The inductive limit of {Aα, iβα, A} is, set-theoretically, the quotient of
the disjoint union

∐
α∈A Aα modulo the following equivalence relation: a ∈

Aα, b ∈ Aβ, a ∼ b if there exists γ ≥ α, β such that iγα(a) = iγβ(b).
The symbol used to represent the inductive limit is

A ≡ lim−→α∈A
Aα .
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The canonical inclusion of Aα, α fixed in A, in the disjoint union defines,
by quotient, the inclusion map in the inductive limit A, iα : Aα ↪→ A, which
satisfies iβ ◦ iβα = iα for every α ≤ β.

To endow A with an algebraic structure it is necessary to use the follow-
ing lemma.

Lemma Let {Aα, iβα, A} be an inductive family of C∗-algebras with inductive
limit A. Then, fixed n elements {a1, . . . , an} ⊂ A, there exist an index β and
n elements {b1, . . . , bn} ⊂ Aβ such that

ai = iβ(bi) i = 1, . . . , n.

Thanks to the previous lemma one can define the ∗-algebraic structure of
A using that of the ∗-algebras appearing in the family:




λa := iβ(λb)
a1 + a2 := iβ(b1 + b2)
a1a2 := iβ(b1b2)
a∗ := iβ(b

∗)

where λ ∈ C, a, a1, a2 ∈ A and b, b1, b2 ∈ Aβ satisfy iβ(b) = a, iβ(b1) = a1

and iβ(b2) = a2.
By endowing A of the finest locally convex topology which makes the ho-

momorphisms iα continuous, called final topology, A becomes a topological
∗-algebra.

It is essential to observe that an inductive family of C∗-algebras
always induces a projective family, in fact if {Aα, iβα, A} is such a family
then a projective family is obtained by associating to every Aα its spectrum
σ(Aα) and to every inclusion iβα, α ≤ β, the restriction of its transposed
map to the spectrum of Aβ, παβ ≡ tiβα|σ(Aβ), where:

tiβα : Aβ
∗ −→ Aα

∗

ϕ �→ tiβα(ϕ),

is defined in the usual way, i.e. (tiβα(ϕ))(f) := ϕ(iβα(f)).
It is easy to verify that the family {σ(Aα), παβ, A} is a well defined pro-

jective family.
If the Aα are also unital and Abelian then the spectra σ(Aα) are compact

Hausdorff spaces, hence the projective limit lim←−α∈A
Aα is a non-void compact

Hausdorff space.
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The most remarkable fact about this family, which will be used in the
next section to obtain the projective characterization of A/G, is expressed
by the following result.

Theorem (•) Let {Aα, iβα, A} be an inductive family of Abelian C∗-algebras
with unit. Then its inductive limit A is an Abelian topological algebra with
unit (in the final topology) whose spectrum σ(A) is a compact Hausdorff space
homeomorphic to the projective limit of {σ(Aα), πβα, A}:

A = lim−→α∈A
Aα ⇒ σ(A) � lim←−α∈A

σ(Aα) .

Now that the basic facts about projective and inductive limits has been
remembered, the construction of the projective family which characterize
A/G as projective limit can be implemented.

The most important concept is that of ‘graph’ in M , this needs the con-
cepts of edge and vertex, which are introduced below.

Def. An edge in M is a continuous map e : [0, 1] → M such that its
restriction ẽ ≡ e|(0,1) is an analytic embedding3 of (0, 1) in M .

The vertexes of an edge are its starting and ending point, that is e(0)
and e(1), also called source and target, respectively.

A graph in M is the union of a finite family of images of edges inter-
secting only in their vertexes.
The usual symbol for a graph is Γ; the number of edges and vertexes of Γ
will be indicated by EΓ and VΓ, respectively.

A simple (but significant) example of graph in M is the image of a piece-
wise analytic graph γ in M .

To construct the projective family which induces A/G, first of all fix the
directed set of indexes to be the set of all graphs Γ in M ordered w.r.t. the
natural inclusion and denote it by L. This set is directed because if Γ and
Γ′ belong to L then also Γ ∪ Γ′ belongs to L and Γ ≤ Γ ∪ Γ′, Γ′ ≤ Γ ∪ Γ′.

Now the idea is to use this directed set to construct an inductive family
of C∗-algebras whose inductive limit is dense in the holonomy C∗-algebra,
then, by using theorem (•), the desired result will be reached.

To every graph Γ associate the unital Abelian C∗-algebra A(Γ) generated
by the Wilson functions Tα such that α

∗ ⊂ Γ.
It is obvious that if f ∈ A(Γ) then f ∈ A(Γ′) for every Γ′ ≥ Γ so that the

3This means that ẽ is analytic and injective, with injective tangent map and ẽ∗ is a
sub-manifold of M w.r.t. the topology induced by M .
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inclusions iΓ′Γ are naturally defined by:

iΓ′Γ : A(Γ) ↪→ A(Γ′)
f �→ iΓ′Γ(f) := f .

These inclusions satisfy the consistency relations, hence {A(Γ), iΓ′Γ, L} is
an inductive family of unital Abelian C∗-algebras whose inductive limit is
continuously included in Hol(M,G).

By comparing the definition of inductive limit of the A(Γ) ⊂ C(A/G)
with the definition of the algebra of the cylindrical functions on A/G one
immediately recognizes that the two algebras agree:

lim−→Γ∈L
A(Γ) = Cyl(A/G) .

Observe now that the polynomial algebra W generated by the Wilson
functions is contained in Cyl(A/G) hence:

Cyl(A/G) = Hol(M,G) .

If σ(Γ) denotes the (compact, Hausdorff) spectrum of A(Γ), then the theorem
(•) implies that

lim←−Γ∈L
σ(Γ) = σ(Cyl(A/G))

where the projective limit is referred to the family {σ(Γ), πΓΓ′ , L}, with
πΓΓ′ := tiΓ′Γ|σ(Γ′).

Finally the theorem of bounded extension of bounded functionals implies
that σ(Cyl(A/G)) = σ(Hol(M,G)), hence one the following result holds.

Projective characterization of A/G. The spectrum of Hol(M,G) is iso-
morphic to the projective limit of the family {σ(Γ), πΓΓ′ , L}:

A/G � lim←−Γ∈L
σ(Γ) .

Pictorially, the duality between the inductive family of C∗-algebras A(Γ)
and the projective family of their spectra σ(Γ) can be represented as follows:

. . . ⊆ A(Γ) ⊆ . . . ⊆ A(Γ′) ⊆ . . . −→ lim−→Γ∈L
A(Γ) ≡ Cyl(A/G)

. . . ⊇ σ(Γ) ⊇ . . . ⊇ σ(Γ′) ⊇ . . . ←− lim←−Γ∈L
σ(Γ) ≡ A/G .

The spectra σ(Γ) can be explicitly characterized by means of the following
isomorphisms:

σ(Γ) � Hom(L�(Γ), G)/Ad � GnΓ/Ad .
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where L�(Γ) is the subgroup of L�(M) given by the loops α such that
α∗ ⊂ Γ and nΓ is the connectivity of Γ, i.e. the integer:

nΓ = EΓ − VΓ + 1.

nΓ is a topological invariant of the graph Γ which represents the highest
number of edges that can be deleted from the graph without it fails to be
connected.

To prove this result one has to use some topological tools (such as the
properties of the first homotopy group associated to a graph and the Siefer-
Van Kampen theorem) and also the results about the independent loops.
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6. DIFFEOMORPHISM AND GAUGE INVARIANT CYLINDRICAL
MEASURES ON THE SPECTRUM OF THE HOLONOMY

C∗-ALGEBRA

Now the constructions of diffeomorphism and gauge invariant measures
on A/G can be implemented.

First of all, if J is a directed set and there is a family of probability spaces
{Ωj}(j ∈ J) which has measurable projections πjj′ , defined for every j ≤ j′

and satisfying the axioms of a projective family, then the triple {Ωj, πjj′ , J}
is said to be a projective family of probability spaces.

Suppose now to have a measure µ on the projective limit Ω of this family,
then the push-forward of µ via the canonical projection πj : Ω → Ωj, i.e.
µj := πj∗µ ≡ µ ◦ πj, is a measure on Ωj, for every j ∈ J .

Furthermore the family of measures {µj}(j ∈ J) satisfies the consistency
condition

µj = (πjj′)∗µj′ = µj′|Ωj ◦ πjj′

which guaranties that there is no ambiguity when a portion of Ωj is measured
directly by µj or by the restriction of µj′ to Ωj.

A family of measures {µj}(j ∈ J) satisfying the consistency condition is
said to be a promeasure.

A classical problem of measure theory is to study when it is possible
to construct a measure µ on Ω starting from a promeasure, i.e. when it is
possible to obtain a representation theorem for measures on projective limits,
since the inverse process is always possible, as just discussed.

Luckily, when the probability spaces are compact the extension of a
promeasure to a measure on the projective limit is always possible.

To simplify the notation a regular Borel probability measure will be sim-
ply called “probability measure”.

Theorem. Let {Ωj, πjj′ , J} be a projective family of compact Hausdorff
spaces with projective limit Ω.

Then there is a bijective correspondence between probability measures on
Ω and probability promeasures {µj}(j ∈ J).

The proof of the theorem uses the fact that, when Ω is compact, the
Stone-Weierstrass theorem implies that Cyl(Ω) = C(Ω).

This result can be specialized to the projective family of the compact
Hausdorff spaces {σ(Γ)}(Γ ∈ L), which gives rise to the the compact Haus-
dorff space A/G, to obtain the following important result.

Theorem. There is a bijection between the probability measures on A/G
and the probability promeasures {µΓ}(Γ ∈ L) on the spectra σ(Γ).
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Thanks to the characterization σ(Γ) � GnΓ/Ad an explicit (and natural)
promeasure which gives rise to a probability measure on A/G is given by
the family of the normalized Haar measures dgnΓ on the groups GnΓ , which
are Ad-invariant (thanks to the assumption of compactness for G) and thus
passes unaffected to the quotient GnΓ/Ad.

The probability measure obtained from the promeasure {dgnΓ}(Γ ∈ L) is
called the uniform measure on A/G and denoted by µ0.

If a function f ∈ Hol(M,G) � C(A/G) is cylindrical w.r.t. the index-
graph Γ, i.e. it exists fΓ ∈ C(GnΓ/Ad) such that f = fΓ ◦πΓ, then its explicit
integral w.r.t. the uniform measure is given by:

∫
A/G f(Ā) dµ0(Ā) =

∫
GnΓ

fΓ(g1, . . . , gnΓ
) dgnΓ(g1, . . . , gnΓ

) .

Thanks to the density of Cyl(A/G) in C(A/G), the formula above extends
(by uniform limit) to all the functions of C(A/G).

The most important properties of the uniform measure are the following:

1. µ0 is gauge-invariant: this follows from the bi-invariance of the Haar
measure on compact groups;

2. µ0 is invariant under diffeomorphisms: this follows from the fact that
the only possible dependence of µ0 on the diffeomorphisms of M is
contained in the connectivity nΓ, but this is a topological invariant and
so it is unaffected by them (more rigorously it can be proved that the
so-called ‘covariance condition’ is satisfied);

3. µ0 is faithful, i.e. f ∈ C(A/G), f ≥ 0 and
∫
A/G f dµ0 = 0 implies f ≡ 0;

4. µ0 is concentrated on the generalized connections, i.e µ0(A/G) = 0.

Beside the uniform measure there are also many other gauge and diffeo-
morphism invariant measures on A/G, they can be constructed starting from
G-valued random variables using a procedure implemented by Baez which
contemplates the uniform measure as a particular case.
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7. THE QUANTIZATION OF THE HOLONOMY ALGEBRA AND THE
ALGORITHM OF THE LOOP QUANTIZATION IN DETAIL

What usually happens in the quantization of gauge theories is that on the
classical configuration space, denoted generically with X, there is a cylindri-
cal but not σ-additive measure µ which enables to construct the pre-Hilbert
space L2

cyl(X,µ) of the square-integrable cylindrical functions on X; if µ
admits an extension to a Borel measure µ̄ on X then the completion of
L2

cyl(X,µ) leads to the Hilbert space L2(X, µ̄).
However, if this extension is not available, the quantum theory is imple-

mented by extending (on the base of physical and/or mathematical consid-
erations) the classical configuration space X to a wider space X̄ on which
a genuine measure ν is available, in order to construct the Hilbert space
L2(X̄, ν).

The space X̄ is called the quantum configuration space and the
Hilbert space L2(X̄, ν) is taken to be the space of the quantum kine-
matical states of the theory.

This is precisely what happens in the loop quantization of gauge theories:
the lack of a measure on A/G leads to search an extension of this space, the
major candidate to this role is A/G for the following reasons:

• first of all A/G is injectively and densely embedded in A/G, hence the
classical theory is, in a sense, contained in the quantum theory;

• A/G is an infinite-dimensional compact Hausdorff space endowed with
a natural probability measure, the uniform measure µ0. Associated to
this (faithful) measure there is one and only one faithful representation
of the holonomy C∗-algebra Hol(M,G) supported by the Hilbert space
L2(A/G, µ0), i.e. the GNS representation:

Hol(M,G) −→ B(L2(A/G, µ0))
f �→ Mf̂

Mf̂ (ψ) := f̂(Ā)ψ(Ā), ∀ψ ∈ L2(A/G, µ0), f̂ ∈ C(A/G) ⊂ L2(A/G, µ0)
is the Gelfand transformed of f . Hence the elements of the holon-
omy C∗-algebra are promoted to bounded multiplication operators on
the Hilbert space L2(A/G, µ0), they are bounded because the Wilson
functions (which generate Hol(M,G)) are bounded and the Gelfand
isomorphism is isometric. The real part of the Wilson functions are
thus promoted to bounded self-adjoint operators on L2(A/G, µ0), i.e.
observables in the quantum theory, this is way the GNS representa-
tion on L2(A/G, µ0) is called the quantum representation of the
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holonomy C∗-algebra. It is worth noting that the real parts of the
Wilson functions generate the same C∗-algebra thanks to the identity
Tα

∗ = Tα−1 ;

• it can be proved that L2(A/G, µ0) supports even the quantum version
of the strip-moments TS conjugated to the Wilson functions, which are
gauge-invariant linear combinations of the densitized triads Ẽi

a. These
observables becomes self-adjoint derivative operators on A/G satisfying
the canonical commutation rules with the operators T̂α. The differential
structure on A/G which allows the definition of the quantum version
of the strip moments is induced again by the projective nature of this
space. This structure is too wide to explain here and so I avoid also
to write down the specifical form of the quantum version of the strip
moments;

• while the previous are mathematically rigorous motivations for the
choice of A/G as the quantum configuration space, there is a fur-
ther heuristic motivation based on a physical intuition: in a lattice
gauge theory, with lattice given by a graph Γ, the configuration space is
GnΓ/Ad, hence, beingA/G the projective limit of the family {GnΓ/Ad}Γ,
a gauge field theory which has A/G as quantum configuration space is
suitable to be interpreted as the continuous limit of the lattice gauge
theories corresponding to every fixed graph, which are approximated
(or regularized) theories. The fact that a graph deformed by a diffeo-
morphism is again a graph, i.e. that the set of graphs is closed under
diffeomorphisms, is an important property when the diffeomorphism
invariance is taken into account. For the reasons discussed above, a
graph Γ is interpreted in the formalism of the loop quantization as a
floating lattice in M .

The compactification of the configuration space is not a characteristic
feature of this procedure, but it often appears in the quantization of the sys-
tems with an infinite number of degrees of freedom, such as field theories.
For example in the quantization of the scalar field in d-dimensions the clas-
sical configuration space, i.e. the Schwartz space S(Rd), is substituted by
S ′(Rd), the space of the tempered distributions on R

d, in which it is densely
embedded.

I stress that the compactification A/G ↪→ A/G is highly non-trivial, since
the uniform measure µ0 restricted to A/G is the null measure. This fact has
put in evidence the important role of the generalized connections in the loop
quantization in the same way as the quantum field theory has put in evidence
the role of the operator-valued distributions.
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The assumption of the Wilson functions as configuration observables
solves already at the classical level the Gauss constraint generated by the
invariance under gauge transformations.

If the gauge theory is also invariant under diffeomorphisms (as the general
relativity in Ashtekar’s formulation), then the constraints generated by this
invariance are imposed at the quantum level by selecting a suitable subspace
of the kinematical state space L2(A/G, µ0) given by the states satisfying this
constraint.

In the canonical quantization one operates the splitting of the space-time
in space+time, hence there are two kind of constraints generated by the
invariance under diffeomorphism: the constraint depending on the spatial
part and that depending on the temporal evolution, called Hamiltonian
constraint or Wheeler-De Witt equation.

While the Hamiltonian constraint is not yet well understood, the spatial
diffeomorphism constraints can be solved passing implementing the so-called
‘loop representation’, which is described in the next section.
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8. THE “LOOP REPRESENTATION” OF ROVELLI AND SMOLIN

The quantum theory which one reaches following the prescriptions of the
algorithm described above is called the ‘connection representation’, because
the states of this theory, i.e. the unit vectors of L2(A/G, µ0), are functions
of (generalized) connections.

In 1990 Rovelli and Smolin constructed an important instrument to pass
from this quantum representation to another description in which the states
are functions of loops and for this reason called ‘loop representation’.

The major advantage of this representation is that the diffeomorphism
constraint admits explicit solutions in terms of ‘knot invariant states’.

The map which takes a state ψ ∈ L2(A/G, µ0) in the connection repre-
sentation into a state Hψ in the loop representation is the loop transform,
whose expression is this:

Hψ(α) :=
∫
A/G Tα(Ā)ψ(Ā)dµ0(Ā).

If the measure ψdµ0 is gauge and diffeomorphism invariant (and such mea-
sures exist, as shown above) then Hψ is a knot invariant, i.e. it assumes the
same value on every loop β obtained by α by means of a diffeomorphism
ϕ ∈ Diff0(M), in more explicit words: if β = ϕ ◦ α then Hψ(α) = Hψ(β).

It can be proved that the knot invariant states solve the diffeomorphism
constraint in the loop representation.

Since the expectation values of an observable O in the state |ψ > (i.e. the
measured mean value of the observable after many measurements conducted
on the system prepared in the state |ψ >) is contained in the inner product
< ψ|Oψ >, the loop representation gives the same physical information of
the connection representation if and only if the transform which connects the
two representations, i.e. the loop transform, is a unitary operator.

If this is the case, then its range is the space of the quantum states in the
loop representation.

The proof of the unitary character of the loop transform for non-Abelian
gauge theories is still lacking, but it can be proved that, if the gauge group
is U(1) as in the electromagnetism, then the loop transform is a unitary
operator between the Hilbert spaces L2(A/G, µ0) and L2(H�(M,U(1)), µd),
where µd is the discrete measure on the hoop group.

The unitary character of the loop transform in the Abelian case follows
from the fact that in this case the loop transform is an inductive limit of
Fourier-Plancherel transforms on n-dimensional tori.

The loop transform can serve as a useful instrument to define the ‘mo-
mentum observables’ in the quantum theory: in fact one can postulate them
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to be the self-adjoint operators unitary equivalent to the T̂α via the loop
transform, in the same way the momentum operators in quantum mechanics
are related to the position operators via unitary equivalence inducted by the
Fourier transform.
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9. SOME RECENT DEVELOPMENTS OF THE PROGRAM AND
OPEN PROBLEMS

The loop quantization program is still incomplete at a dynamical level
since the Hamiltonian constraint has not been solved yet, this is of course
the most important open problem of this theory.

The most promising works in this direction are those related to the use
of the Jones polynomials to solve this constraint.

Another important open problem is the rigorous proof of the fact that the
loop transform is a unitary operator and the discovery of the characterization
of its range, i.e. the quantum kinematical space of the loop representation.

There is an hope that the inductive construction of the loop transform
can be extended to the non-Abelian case in order to obtain the solution of
these problems.

Also, there is no common agreement on how the matter (spinorial) fields
has to be introduced in the theory.

Even though there are still this foundational problems, in the program of
loop quantization, in the last 90’s there has been some interesting develop-
ments of the theory, at least at a heuristic level. The perhaps more surprising
and interesting are the following:

1. the construction of volume and area operators with discrete spectrum,
which would indicate the outstanding result of a discretization of the
spacetime structure at the Planck scale;

2. the treatment of the Hawking-Bekenstein black-holes entropy in a more
systematic way then in the perturbative treatment of this problem in
quantum gravity.
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