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Knowledge 

ABSTRACT. A framework for discussing (through the concepts of "model" and "field of experience") the 

nature of the relationships between contexts and the formation of mathematical knowledge is proposed, and 

some educational, cultural and cognitive problems of situated teaching-learning are tackled within it. This 

framework is supported and illustrated with references to the curricular innovation and educational research 

carried out by the Genoa group, of which the authors are members.  

1. TEACHING IN CONTEXT: GENERAL ISSUES 

  1.1. Introduction 

  1.2. Models … 

  1.3. … and Contexts 

    1.3.1. Reality 

    1.3.2. R M and M R 

    1.3.3. Disciplines 

    1.3.4. Contexts 

  1.4. Situated teaching-learning 

  1.5. Fields of experience 
  1.6. Examples of the use of fields of experience as tools to organize situated teaching 

2. SOME ASPECTS OF SITUATED TEACHING 

  2.1. An example 

  2.2. Mathematics incorporated into contexts or used for rationalising them 

  2.3. Normative and descriptive aspects 

  2.4. Some difficulties inherent in situated teaching 

    2.4.1. The predominance of mathematical aspects 

    2.4.2. Transfer 

  2.5. Other issues and open problems 

3. REFERENCES 

Over the past two decades, the failure of "new mathematics" has contributed, together with other 

factors, to the development of a "movement", grounded in theory and practice, which has focused 

renewed attention (in the planning of mathematics curricula and in the study of concept formation) 

on the uses of mathematics and its out-of-school applications. The Genoa Group for Research in 

Mathematics Education, has taken part in this movement.  

In Boero et al. (1995) we and other researchers of the Genoa Group explored the question of 

teaching in/with contexts as part of the relationship between "mathematics" and "culture". In this 

paper we take the viewpoint of curricular research, and explore issues in epistemology and 

cognitive psychology which we regard as being intertwined with it: 

•  forms of connection between mathematics and contexts, 

• normative and descriptive aspects of mathematization, 

• risk of predominance of mathematical point of view, 

• control over shifts between different layers of meaning, and other problems. 

We will propose a framework based on the epistemological concept of model and the didactical one 

of field of experience in order to tackle these issues, which we will illustrate with some brief 

examples based on the projects Genoa Group has carried out at various school levels.  



 

1. TEACHING IN CONTEXT: GENERAL ISSUES 

1.1. Introduction  

When speaking about "teaching/learning in context" (also known as "situated teaching/learning") 

referred to a given set of disciplinary concepts, the word "context" is used to indicate a situation or 

activity in which these concepts are introduced and applied in a meaningful manner (that is, 

meaningful as regards to the situation or activity itself). This way of teaching contrasts with other 

ones where the separate concepts are introduced in an abstract exposition, while their combination 

and application to situations are postponed to example phases, to the teaching of other subjects, or 

to post-scholastic experience.  

To clear the epistemological and didactical problems of the sense to attribute to the adjective 

"meaningful" we shall use two conceptual tools: model and field of experience.  

1.2. Models …  

Modelling is usually a form of metaphor (Boyd & Kuhn, 1979), i.e. a shift between semantic spaces 

with a non-empty intersection. It can involve abstraction or idealization. In the case of logic, model 

means particularisation of a theory (shift from the semantic space of "syntactical" objects to that of 

mathematical structures); for instance, the structure of whole numbers is a model of the theory of 

groups. Both meanings of "model" (abstraction-idealization and particularisation-exemplification) 

exist even in common language.  

We shall concentrate on the former use, that is the model as a simplified representation of a portion 

of reality (of interest in a certain problem) used for: improving the "visualisation" of some aspects 

(using a scale reproduction instead of the original diagram), generalising properties (grammar 

rules), allowing comparisons (comparing different regions using population density instead of 

population and area), etc.. From this point of view the theory of groups is a model for the structure 

of whole numbers. The model concept can be represented as in the diagram in Fig. 1, which makes 

the representations generally used in the literature on mathematical modelling (e.g. see Gilchrist, 

1984) more detailed.  

 
Fig. 1 

 
For example, let R be a quadrangular field that we wish to evaluate economically and AR the extent of that 
field. If we note that the field is more or less rectangular, we can consider the lengths of two consecutive 

http://macosa.dima.unige.it/pub/esm/fig1.htm


sides as the factors ER that determine the extent. The arrow ER  AR representing this dependence is 

dotted, as we overlook other factors: protuberances and depressions, the fact that the shape is only roughly 

rectangular, etc..  
Let us associate the lengths ER to two numbers, a and b, which express the lengths in a particular unit U; 

ER  EM is also dotted as the measurements are not exact.  

Let us associate to AR a·b; this is AM. The arrow EM  AM is not dotted; the value of a·b depends exactly 
on a and b; AR  AM is dotted because it is affected by the simplifications and approximations used in the 

choice of ERs and the association of EMs.  

Hence, the model M is the multiplication (or rather the formula S=a·b, if S expresses the extent in squares 

whose side is U).  
Let us take another example. Let R be the relationship that exists in the English language between how a 

noun is used for expressing one object and how it is used for expressing more than one, and AR the way the 

noun changes in appearance passing from one use to the other. We shall consider as the meaningful elements 
(ER) the final parts of the nouns and their changes. The model is made up of a collection of statements such 

as: «nouns ending in -ch, -s, -sh, -x form the plural by rewriting: noun  noun+"es"»; EMs are the final 

segments of the strings that constitute the nouns and the rewriting rules; AM is the formal procedure for 
string transformation obtained by applying the rules. This is another example of simplified representation: 

the "exceptions" (epoch  epochs, basis  bases, fish  fish, codex  codices, etc.) are overlooked. By 

considering only the strings, we have lost aspects related to pronunciation (if -ch is pronounced -k, -s is used 

instead of -es), the origin of nouns (foreign words follow different rules), changes in use, etc.. 

 

The preliminary phase of modelling involves focusing on essential aspects of the problem (the 

delimitation of AR, which applied mathematicians often call specification of the "prototype"; cf. 

Aris, 1978); then comes the choice of ERs and finally their association to EMs. Once the shift R 

 M has been completed, the model can be processed (the calculation of a·b, the choice and 

application of rewriting rule, etc.) and it is possible to carry out a reinterpretation M  R of the 

resulting processing in R (the extent of the field, how to form the plural of a particular word, etc.), 

which must take account of the simplifications employed.  

Different types of modelling are often considered simultaneously: if R represents weather conditions 

in locality X in the month Y of the year Z, we may consider R  M1 and R  M2, where M1 is a 

graph of the daily maximum temperature related to the date and M2 a distribution histogram of 

suitably classified daily temperatures. More sophisticated modelling may subsequently take place: 

when modelling the extent of the rectangular field, one can represent the lengths as indeterminacy 

intervals rather than as exact numbers.  

The "model" diagram in Fig. 1 is itself a model. It summarises and illustrates only some aspects of 

the relationships between situations and their representation, and is not easy to apply to all cases 

(e.g. the distinction between AM and EM may be interpreted differently, in some cases the arrow 

EM  AM should be dotted, etc.).  

Some apply the term "model" to the triple (M, R, {arrows}) (particularly the arrows from R to M), 

or to the triple (M,R,S), where S is the subject that constructs and/or interprets the arrows (for 

references, see Blum& Niss, 1991 and Norman, 1993). We have adopted the more common usage 

of applying it to the outcome of "modelling", i.e. the pair (EM, AM), a structure which can be 

associated to different pairs (ER, AR): S=a·b can be applied not only to the field of the previous 

example.  

1.3. … and Contexts  

1.3.1. Reality  



Models are built by using material artifacts (objects, signs, etc., like squared paper, the 

computer," ", "·", histogram rectangles, colours, etc.) or mental artifacts (the concepts "noun", 

"multiplication", "frequency", etc.) which in turn are often models themselves (histogram rectangles 

to indicate amounts, "noun" to indicate particular words, etc.). We use the term artifacts after 

Norman (1993): this seems to us more expressive than other terms like "prosthesis tools" used by 

Bruner.  

The reality R (see 1.2) is not necessarily a material object or a natural or social phenomenon. It may 

be a situation that is presented in a modelled form (e.g. a graph of a certain phenomenon), or a 

reality made up of a set of models ("being a group", "being increasing", "being singular", "being 

vectorial", etc. are models which have, like R, structures, functions, names, physical entities, etc.).  

1.3.2. R  M and M  R  

The use of models as artifacts for the construction of other models and the further modelling of 

models (i.e. the existence of metalevels of representation) characterises higher, human forms of 

reasoning. In our mental activities we frequently pass, more or less consciously, from one level to 

another, not only in the sense of R  M (reasoning based on pure numbers to find the area of a 

surface, employing grammatical rules to orient oneself in linguistic behaviour, etc.) but also in the 

sense of M  R (considering multiplication as a model for calculating the area of a rectangle in 

order to remind oneself of its commutativity, thinking up an example in order to reconstruct a 

specific rule for forming the plural of nouns, etc.).  

1.3.3. Disciplines  

Currently, the processes of modelling, reasoning at different levels of abstractions and so on are for 

the most part organised into disciplines or refer to them; they are supplied with specialised 

languages and procedures that standardise the forms of models, their internal processing, the links 

between different types of models, etc.. Furthermore, there are socially shared forms of knowledge 

which are not "accredited" but developed and passed down at popular level, into crafts, etc. (with 

their own models: proverbs, procedures, etc.).  

Essentially, disciplines differ in that they organise models that refer to different types of 

phenomena. Mathematics is an exception: currently, it is characterized not by its area of application 

(it is no longer the language of physics) but by the kind of artifacts it employs; basically, its 

organisation into sectors is linked to artifact type, not to application environments (even though 

there are some borderline sectors - mathematical physics, information theory, econometrics, etc. - 

characterised in part by relationships with certain disciplines or technologies, and there is logic, 

which has mathematical activity as its area of application).  

In mathematical modelling (i.e. when artifacts are mathematical objects), the process ER  EM is 

called mathematization. But also the use of mathematical artifacts in building a physical, biological, 

… model (for instance a physical law or a bionic model) is a mathematization. In a modelling 

activity which includes mathematization, the selection of ERs and the choice of EMs can involve 

assumptions, intentions, perceptions, intuitions, etc. which interlace mathematics' and other 

disciplines' aspects. With regard to this interaction and the nature of R, our "working definitions" of 

modelling and mathematization differ from the ones of Blum& Niss (1991): their R and AR are a 

real world and a real model which are outside mathematics, and they consider only mathematical 

models, whereas we want take into account also the mathematization of mathematics (see 1.3.1; cf. 

Freudental, 1968) and the presence of interferences with other disciplines.  



1.3.4. Contexts  

In a modelling activity, R is the context of AR, i.e. the setting or the conditions in which the aspects 

we want consider are found or take place.  

The context of modelling includes the reasons for the choice of AR and the artifacts that one has at 

his disposal and means to use to build M. In Blum & Niss (1991) this context is described as a 

problem to solve, but the usual "didactical" meaning of problem solving can run down the 

complexity of the interests of the various "solvers "involved in a real modelling activity.  

Contexts can be internal to a discipline (see 1.3.1). For an example, the context R of derivative 

concept can be the rate of the change of a function, while the context of formulating this concept 

can be the need of a tool for building the differential equation concept.  

1.4. Situated teaching-learning  

Among arguments in favour of including real situations of use and modelling activities in 

mathematics instruction (cf. Blum & Niss, 1991, de Lange, 1996) we can distinguish the ones that 

emphasize how referring to reality offers opportunities for forming critical and socially and 

culturally aware people, and the ones that focus on its potentialities in promoting an effective and 

balanced construction of mathematical concepts. In this paper we are considering especially topics 

that are linked to the latter ones.  

In traditional teaching disciplinary concepts are not presented as models, but only as things to 

study. In example phases, if present, there is only AR as context of AM; it is usually introduced 

verbally, and in most cases is (1) a make-believe context used as an alternative to symbols for 

setting out a stereotyped disciplinary problem, or a quiz-type question (as in puzzle-magazines). 

Rarely, especially at secondary level, AR is (2) explicitly presented as "educational" simplification 

of real-life problem; type (2) contexts are sometimes used also at the beginning, as a springboard 

for the abstract introduction of concepts. Case (1) presents merely a caricature of the phase ER 

 EM; case (2) involves the phase of choosing ERs, but the delimitation of AR (i.e. its context, R) is 

usually neglected.  

When discussing situated teaching, by context we usually mean the context of the modelling 

activity (see 1.3.4) in which the concept is introduced (it is introduced as M or a model used as an 

artifact to build M).  

By referring the introduction of concepts to meaningful contexts, situated teaching aims to develop 

students' skills in managing the interaction between the various linguistic and semantic levels 

through which knowledge is organised and applied: in particular, the significant aspect of teaching 

how to employ mathematics for solving problems does not lie so much in pupils' internal mastery of 

the symbols used to build the model of a situation, but rather in their understanding of or confidence 

with the process by which the problem is transformed into a (more) formalised situation and 

subsequently further transformed (through internal processing and/or transfer to other - more 

formalised or less formalised - situations that are easier to solve) until the solution becomes clear.  

Both the choice of the contexts and their didactic management (teacher's interaction with the 

students, organisation of learning material, etc.) are important to this effect. A context can be 

presented in various ways: (partially) experienced, evoked by drawing on student experience, etc. or 

described verbally and graphically as it happens for examples in traditional teaching. What's 

important is to exploit the potential cognitive resources of working with a non-prepacked situation 



for a prolonged period. By reorganizing (and referring to mathematics learning) arguments from 

Norman (1993), we can say it is well suited for:  

– • facilitating cohabitation, interaction and contribution of students who have different styles of 

exploration/understanding/use of concepts, different levels of formalised knowledge, etc.; • 

permitting the teacher to scale and differentiate the pace at which pupils move from work on ERs to 

work on EMs, thus giving everyone the chance to follow the main aspects of the activity; • offering 

the students a chance to think back over things when the work has given rise to new motivations;  

– • helping more balanced development of reflective learning and experiential learning (hereafter, 

we use these two poles as a simplified model of human cognition in the sense of Norman, 1993; for 

an example, think of learning Latin and pre-school learning mother tongue); • focusing better on the 

role and process of formalization without placing undue importance (in activities, pupil evaluation, 

etc.) on the harder, more mechanical and less important aspects of mathematics (attention, patience, 

precision), the ones that school often stresses, to the detriment of softer aspects: creativity, critical 

sense, managing the shift from R to M, using R to reflect on M (building oneself situations of use; 

see 1.3.2);  

– facilitating the design and restructuring of the schemata through which knowledge is organised 

(according to cognitive psychology's usage, by "schemata" we mean mental entities into which 

perceptual stimuli and internal representations are organised; cf. Bartelett, 1932; Scholnik, 1983).  

1.5. Fields of experience  

When the Genoa group was set up in the late seventies and tackled the context problem, it was 

pursuing a desire for school reform linked to the experience of its members, and drew on a varied 

background (study and reflection on the history of culture, skills in mathematical logic and applied 

mathematics which clearly revealed the cultural and technical shortcomings of "new mathematics", 

etc.). In teaching, it was natural for us to extend the definition of "mathematics" and "culture" 

beyond the knowledge that today's mathematicians and "learned men" possess to include the ways 

of thinking and reasoning by which this knowledge is developed and applied more or less explicitly 

in various human endeavours. Only at a later point was this outlook coupled with cognitive 

considerations (see 1.4).  

"Educational theories" were approached in a non-rigid manner, considering them as "models" (for 

instance, we adopted some concepts developed by the French school of mathematics education - 

like "didactical contract" or "tool-object dialectics" - even though we did not share their reference to 

Piaget's constructivism; cf. Boero, 1993). When, to provide a framework for planning and 

describing the evolution of situated teaching in the classrooms, a specific "model" of our own was 

established, we chose a flexible one in order to avoid the risk of tunnel vision inherent in all 

modelling activities, particularly in cognitive research (cf. Norman, 1993, Ch.5): persisting in 

interpreting R on the grounds of a short-sighted or prejudicial selection of ERs, in trying to fit one's 

own model overlooking or disregarding other factors that would put the whole modelling process in 

doubt.  

The established model is the field of experience concept (Boero et al., 1995), seen as a sector of 

human culture which the teacher and pupils (or similar characters involved in a learning situation) 

can recognise and consider as sufficiently unitary and homogeneous (from the standpoint of their 

schemata).  



We can identify three main components through which references to a field of experience evolve in 

teaching/learning situations (we use "component" in the sense of polarity - by extension of statistics 

and physics uses - rather than in the sense of "part"): an "external" component made up of the 

portions of "reality" (objects, phenomena, information, documents, procedures, etc.) that are the 

subject of reflection, discussion and analysis; a component "internal to the pupil" constituted by 

his/her schemata, conceptions (including the unconscious ones), emotions, expectations, etc.; and a 

corresponding component "internal to the teacher", which also includes learning goals.  

Fields of experience can be related to contexts in different ways.  

The field of experience related to the way production costs form may be the context for a learning 

activity, but may also be recalled in an activity involving other contexts, e.g. activities concerning 

the limitations of mathematical modelling (under what conditions and up to what production levels 

can a linear model be used), or the set of linear functions (for recalling an application example, for 

consolidating the roles of two parameters, etc.).  

Even in cases where the field of experience is the context of a learning activity, it does not 

necessarily need to be handled comprehensively in the classroom. It can be evoked, if, in terms of 

the pupil's schemata, it really is already a field of experience (so that the modes of learning 

examined in 1.4 can be activated).  

A field of experience can also be gradually built up at school within work on other contexts (e.g. the 

field of experience of linear functions dealt with in activities related to economics, technology, etc.). 

This may then become a direct context for a learning activity (for introducing the definition of the 

linear function concept, studying the properties of the structure of linear functions, etc.).  

1.6. Examples of the use of fields of experience as tools to organize situated teaching  

We shall briefly illustrate through a few examples how the choice (and the construction) of fields of 

experience and contexts (internal and external) have been developed in our projects (see Boero, 

1997, 1996 and Gruppo Didattico MaCoSa, 1997 for documentation about primary, lower 

secondary and upper secondary school projects, respectively).  

At the beginning of primary school, money and calendars are already fields of experience for the children. 

Actual money transactions in school and the use of the calendar to take notes on classroom activity, weather 

conditions and other facts (to be gone over again later and analysed "statistically") are learning contexts that 

interact with pupils' out-of-school experience, enriching these fields and helping to build the field of 

experience of numbers.  

The shadows phenomenon is a field of experience in which the child's point of view may be affected by 

various misconceptions. In primary and lower secondary school it is adopted as a context that is enriched and 

rationalised through new experiences, exchanges of opinion, experiments etc., as well as the development of 
suitable mathematical models. Work in this field of experience contributes to the construction of the 

geometry and astronomy fields of experience  

Bodily development is a problem of great significance in adolescence, involving comparison with others and 

monitoring of progress. This field of experience is tackled in lower and upper secondary school as a learning 

context for the meaningful introduction of mathematical models that allow pupils to rationalise, 
depersonalise and socialise their problems. It also helps in the building of the statistics and probability fields 

of experience.  



We have concentrated on wide-ranging contexts, presented to students in a manner that integrates 

verbal and graphical forms, references to life experience or non-scholastic knowledge (handling 

money, technology, observation of nature, etc.), and, in many cases, activities that deal directly with 

the situation itself. We choose wide-ranging contexts not only for the cognitive reasons we 

discussed in 1.4, but in order to avoid giving the idea that the mathematization of a phenomenal 

area is a mere summation of many (only) mathematical models and historically developed as a 

summation of problem solving activities (see 1.3.3, 1.3.4).  

References to aspects of daily life are not reduced to the reproduction of realistic problem (such as 

"make a cake" or "plan a trip"): "bodily development" is a real matter which interests pupils but its 

mathematization is not a real life problem. The "external" components are related to the "internal" 

ones: pupils' needs/knowledge (adolescence problems, biological conceptions, mathematical 

background, etc.) and teacher's goals/knowledge (relating to pupils' problems, introducing to 

statistics, biology and statistics knowledge, etc.). In the mathematics education literature (in both 

examples and general considerations) this kind of interplay with students' life is usually left out of 

account (see for instance Burkhardt, 1994 and de Lange, 1996).  

The various contexts, combined with "traditional" example-contexts (see 1.4) and practice activities 

(mixed in different proportions depending on the school level: from primary to secondary school we 

pass from an "interdisciplinary integrated approach" to a "mathematics curriculum integrated 

approach": see Blum & Niss, 1991), are arranged within pathways which take account of 

mathematical, cultural and motivational background and priorities. Contexts are referred not only to 

non-scholastic experience and knowledge (see 1.3.4).  

The fields of experience within mathematics whose construction was touched upon above are gradually taken 
on as contexts. For example, as early as grade one of primary school, numbers constitute a subject of direct 

study. In upper secondary school, the entire field of experience of numbers becomes a context (reflection on 

the various uses of numbers in society, the concept of numerical structure, calculations with real numbers, 

etc.).  

In upper secondary school the mathematical model concept as well as the entire field of experience of 

mathematics repeatedly become contexts for learning activities.  

 

2. SOME ASPECTS OF SITUATED TEACHING 

2.1. An example  

Having examined several general aspects of the rationale behind context-based teaching and the 

way it can be organised, we shall explore in greater detail a few issues concerning how to choose 

and deal with contexts. In order to introduce these issues we refer to an example: the money and 

calendar fields of experience (see 1.6), the first ones considered in our primary school project.  

These fields are used as starting contexts for building the field of experience of arithmetic. Behind this 
choice there also lies the goal of balanced development and integration, from the outset of primary school, 

of: • ordinal, cardinal and vectorial aspects of numbers; • various calculation strategies; • lexicographic and 

polynomial aspects of writing numbers; • working with "big" and "small" numbers; • different uses of 

numbers (for sorting, labelling, measuring physical or economic entities both directly and indirectly, etc.); • 
the procedural and declarative meaning of "=" and its commutativity; • different representations of numbers 

and operations (strings, the number line, histograms, graphs, Venn diagrams, etc.) (cf. Dapueto et al., 1986).  



These contexts, chosen for a suitable introduction of arithmetic, in turn suggested re-examining/rearranging 

objectives of teaching: they led to the introduction from grade one of primary school of negative numbers 

(temperature), numbers in the order of magnitude of thousands ( in Italy an ice-cream costs over 1000 lire), 

histograms, and so on.  

In the organisation of learning material and classroom activities, we (researchers and teachers involved in 

projects) took care the fields of experiences were handled paying special attention to substantial integration 

with out-of-school life, where mathematics occurs in both normative (incorporated) and descriptive forms. 
This attention has the purpose the activities foster effective formation of object-prototypes (the number line, 

histograms, etc.) and process-prototypes (strategies, transcriptions, etc. for transforming problems), which 

the pupils are able to reconstruct mentally to tackle other situations. See 2.2 and 2.3.  

According to our experience (see Boero et al., 1995 for references), the development of these prototypes can 

take place if the teacher is able to make explicit in the classroom the mental strategies that children use in 
out-of-school practices without untimely translation into abstract form or connection to "scholastic" 

strategies: • when adding 2 hundred lire and 3 hundred lire, the child has little difficulty in considering "2 

hundred + 3 hundred" as "(2+3) hundred"; this distribution procedure in standard teaching is obscured, while 
in money context the teacher, with appropriate (linguistic, graphics, …) activities, can focus on and transfer 

it to numerical problems concerning days, minutes or degrees, in "calendar" field of experiences; • the child 

easily finds two days back starting from the 21st day, using an ordinal procedure which the teacher can 

gradually transpose on abstract numbers line and, then, indirectly, to money field of experience.  

Consolidating prototypes related to the two fields and transition from a context form of a problem to abstract 
form and vice versa is useful for confronting the conceptual obstacles connected with reference to situations 

of use (interpreting 300·15 as "3 hundred lire times 15" may hinder its transformation into 15·3·100, 

interpreting 1/4 as "1 hour divided by 4" may hinder its transformation into 25 hundredths). See 2.4.  

Behind the choice of money and calendar fields lie also historical considerations: most basic knowledge in 
arithmetic was developed in the fields of measurement of time and commercial trading. Reference to 

historical development of mathematical number concept (considering the technical and foundational contexts 

of employing set-theory, for instance) was useful also in order to critically examine the didactic introduction 

of it.  

2.2. Mathematics incorporated into contexts or used for rationalising them  

When choosing a non-mathematical context in which a specific mathematical concept is to be 

introduced, consideration must be given to which aspects of the mathematical concept (1) are 

incorporated in the context and/or (2) have a meaningful role in understanding it. Mutatis mutandis, 

similar considerations can be made about mathematics contexts (see 1.3.4).  

As far as (1) is concerned, we note mathematics is usually incorporated in everyday objects which 

are not merely "things" but include functions of use, knowledge, etc. (e.g. money, calendars, rulers, 

thermometers, scales, watches, speedometers, standard containers, diagrams, playing cards, 

calculators, radios, cameras, and so on); it is also incorporated in the social relations that are 

inherent in these objects (cf. Bishop, 1988). The teaching effectiveness of references to these 

objects depends heavily on two factors (as we saw for money and calendar contexts): the extent to 

which the aspects of function and social relations have been taken into account, and the links that 

the class-work maintains with out-of-school modes of learning and knowledge transmission (see the 

end of 1.4). For further investigation, problematic aspects and references see 2.4.2, Walkerdine 

(1988), Nunes (1992), Boero et al. (1995) and Fitz Simons et al. (1996).  

Also in case (2), the effectiveness of references to contexts depends on the success in reproducing 

in the classroom forms of training and communication (collective discussion, mutual correction, 



etc.) common in out-of-school environments (work, play, sport, etc.; for further investigation and 

references see Norman, 1993), so that children (with teacher's help) can use, explicit and compare 

their own mental strategies (which are often richer and more directly linked to pure mathematical 

concepts than standard scholastic ones) and build prototypes that they can use as a support for 

abstract mathematical reasoning.  

In shadows field of experience (see 1.6) mathematics has especially a rationalising, so a type (2), role. These 

didactic activities give the chance of building important prototypes for geometrical reasoning: figures are 
approached genetically (the half-line as a unidirectional trajectory, angles generated by a rotating half-line, 

etc.) and dynamically (a square that becomes a parallelogram, right-angled or not); this makes it possible to 

avoid (or overcome) misconceptions arising from interpretation of figures as limited parts of space and from 

the limitations and static nature of figures confined to the page (imagining two lines that do not intersect on 
the page is different from the visualisation of sun rays using a perforated rod), etc.. In addition, this field of 

experience permits an early, meaningful approach to three-dimensional geometry (not limited to the study of 

solid figures), brings to light the ideal nature of geometric models, and provides an opportunity for educating 
in argumentation and introducing proof: transferring reasoning from the situation to the geometric model; 

thinking up experiments and engaging in hypothetical reasoning (What would happen if the sun were in this 

position?); reasoning beyond the bounds of experience (Is there a position from which a bulb projects a 
rectangle into a non-rectangular parallelogram?); making explicit and using the things we are now (or 

assume be) sure of as facts that form the basis of reasoning; etc..  

This transition from context to abstraction, from individual ideas to shared knowledge, is successful if the 

teacher is able to motivate the pupils, help them to render their ideas explicit and understandable, support 

these ideas or put them in a state of crisis, relate them to the teacher's inner and the external components 

(make tasks and constraints clear, …),etc..  

Connections between the components (external and internal ones) change according to the features 

of the field of experience. In "money", didactic activities especially concern the external 

component. In "shadows", they especially concern the relationship between the phenomenon 

(external component) and the pupils' conceptions (their internal components). In other fields the 

components have further ways of linking together.  

In the primary school project numerous learning activities (drawing pathways, machinery, human activities, 

etc., linked to shadow field too) interact with fields of experience concerning plane representation of spatial 

situations and vision. In lower secondary school, these fields become an explicit learning context: the pupils' 
critical analysis of their own drawings gradually moves on to the first steps in mathematical modelling of 

perspective (and contributes to the construction of proof fields of experience, in a similar way as shadows 

field does). In pupils' works the external component (the subject and its representation) and the internal one 
(the observing and drawing skills evidenced by the representation) overlap; in these activities, rationalising 

refers not only to "reality", but also to own behaviour.  

2.3. Normative and descriptive aspects  

In situations where mathematics is incorporated, there is often overlap of so-called normative 

aspects (mathematics used for building the object) and descriptive aspects (mathematics for 

describing the object). For example, if we graph Italian railway fares in relation to mileage (see Fig. 

2), the discovery that this step function can be approximated with a continuous piecewise linear 

function not only leads to concise modelling but also reveals the "logic" behind fare definition.  



Figure 2
 

In money and calendar fields this overlapping is evident. It is present in the drawing field too. But 

this twofold aspect is especially present in the automation field of experience.  

In our projects, automation (from programmed machines to programmable ones) is first outlined in the 

pocket-calculator field of experience and in activities within other contexts involving automated systems. 
Later on, it is featured in other learning activities both as a direct context and incidentally. The interaction 

between automation and mathematical fields of experience is special and multifaceted: • it provides tools 

(which have now become basic) for the study of mathematics; • it is an out-of-school context that draws 

heavily on mathematics in a meaningful way; • the use and mastery of automatic processing systems calls for 

special mathematical languages and models, and so on (cf. Blum & Niss, 1991).  

In learning activities, the external component of this field of experience often overlaps (in a different way by 

comparison with previous fields) with students' and teacher's internal ones: suggestions and elaborations 

made by students and teacher can develop integrated with information, forms of knowledge, etc. that are 
incorporated into computer files and software; the pupils can work autonomously, conduct self-evaluation 

and work at their own pace on the basis of the computer's response to their behaviour; etc.. In particular, in 

order to carry out the didactical potentialities of computer's use, links with out-of-school modes of using (in 

work or play) must be maintained: the natural combination of reflective and experiential aspects the 

computer allows, the shift in the boundary between hard and soft skills, etc.: see 1.4.  

The relation between normative and descriptive aspects in this field of experience provides a 

context for learning activities of various levels: • interpreting unexpected outcomes (seeking to 

understand the underlying mathematics and then mathematically modelling the behaviour of a 

calculator or computer program that gives an unexpected value for a numerical term, or the 

behaviour of Derive when it makes a mistake in solving or graphically representing an equation, 

etc.); • learning to use paint or draw applications (What is a figure within these applications? When 

ruler and compass are abandoned in favour of computer graphics, what are the new basic 

"geometric" entities?); • exploring/describing the working logic of black boxes; • exploring/studying 

artificial languages to communicate commands and procedures to computer; • pointing out the role 

of mathematical modelling in creating automated systems, simulations, etc.; up to • focusing on 

formal and historically determined nature of mathematical proofs (which cannot be identified with 

absolute ideas of reasoning, truth, etc. but depends on a definition of rule concept; cf. Davis, 1978).  

2.4. Some difficulties inherent in situated teaching  

Two of the most common objections to situated teaching of a discipline are that (1) reference to real 

contexts involves the use of models from other disciplines and the consequent presence of 

interferences of goals, conceptions and languages which are difficult to manage, and (2) reference 

to particularsituations of use may inhibit the shift to abstract reasoning, misdirect it or hinder the 

transfer of abstract reasoning to other contexts. These objections in some cases are a priori, in 

others correspond to teachers' real difficulties.  



2.4.1. The predominance of mathematical aspects  

When presented with concepts inside a modelling activity, pupils may face additional difficulties in 

relation to the knowledge of the context. At the same time, teachers may need extra knowledge and 

skills in order to fully exploit the learning potential that the context offer (see 2.2). It is not easy to 

draw a line between mathematical and non-mathematical work, nor to strike the right balance 

(between artistic and geometrical aspects in drawing field, biological and statistical ones in the 

bodily development field, physical and geometrical ones in the shadow field, etc.). There is a risk of 

concentrating too much on the introduction of mathematical models and neglecting the specificity 

of the viewpoints, models, languages, etc. of other disciplines (or knowledge domains), running 

into possible cultural errors. It is important to allow for mental interference with concept 

construction in other disciplines and with the pupils' related conceptions and misconceptions.  

Depending on how closely the choice of ERs and the ER  EM association are linked to mastery of 

R, a mathematical model may be either conceptual or formal. Conceptual models are based on 

careful identification of AR factors and of the relations between them, as it occurred in the 

mathematical modelling of classical physics. Formal (analogical or empirical, for some authors) 

models are those in which we seek to define M so that there is a behaviour analogy (an 

"isomorphism" according to Bertalanffy, 1968) between AM and AR, omitting to study (by 

reasoning about R) in what sense the ERs are factors of AR, as it occurred in modelling heartbeat as 

relaxation-oscillations (cf. Israel, 1996).  

Teaching often trivialises the modelling process, concentrating on a "formal" approach even in 

cases where a "conceptual" approach would be more meaningful, for example when the role of 

mathematics in physics is reduced to graphic representation of data or to the search for an 

approximation function. In other occasions, the application of certain models is extended 

groundlessly, for example when the sum of vectors is introduced for consecutive displacements and 

then also used, without explanations, for simultaneous displacements.  

Intertwining and confusion with physics inevitably occur in (situated or not) mathematics teaching: 

mathematics only became a discipline in its own right in the late nineteenth century, an evolution 

that, emblematically, corresponds with the transition from (Euler's) concept of function as a graph 

of a physical phenomenon to the first mathematical definition of function, as "a set of pairs such 

that…".  

This is a fruitful combination in educational terms but can also create serious conceptual confusion 

if differences are not clearly focused at some point. Consider, for example, the subtle presence of 

the time variable in many geometric activities (when dealing with movements, defining or 

describing curves, etc.), as well as the presence of "physical" reasoning in activities on euclidean 

geometry (using point as particle or centroid as barycentre, using movements without an axiomatic 

or analytical definition,…).  

A "dual" aspect (with respect to 2.3 and this section) is that of interference with (or separation from) 

the ways in which mathematical concepts and techniques are used or introduced in other 

disciplines. This area has not been the subject of in-depth educational research yet (it is worth 

mentioning Pollak, 1976); we started confronting this issue at secondary school level.  

2.4.2. Transfer  

In this section we argue (with references to previous sections) that the transfer problem involves not 

only situated teaching but all forms of teaching which are not limited to experiential development of 



certain hard skills, and that teaching practice which explicitly deals with interference between 

different types and levels of knowledge seems to be better equipped to tackle it.  

•   In 1.4 (and 1.3.2) we observed doing mathematics (not only applying it) consists mainly in 

transforming problems from a language or an (internal or external) context into another. These 

transformations are of various kinds, also because the ways in which mathematical concepts formed 

are various.  

On the one extreme many concepts do not emerge from generalisations but surface in response to 

one or just a few situations, corresponding to primordial experiences. Consider for example the 

structure of natural numbers (even a child can quickly grasp the abstract structure,  , 

drawing on the subjective sensation of time passing) and the concepts of function, order and soon. 

Only at a later point when the abstract structure has been perceived can analogies be drawn with 

other situations.  

On the other extreme there are concepts which have not been conceived as refinements of intuitive 

ones: many concepts originated as models of situations that had already been transformed into 

mathematical form (the group concept, the polynomial function concept, etc.).  

In between there are cases of a complex and discontinuous transition from intuitive or everyday 

concepts related to "common sense" (the line as a pen stroke, a piece of cord, etc.) to concepts 

related to a mathematical practice but not rigorously defined (the lines of descriptive geometry, or 

of Euclid's Elements), and to formally defined concepts (the line as an equation or system of 

equations, or defined vectorially, or defined implicitly by a system of axioms, etc.).  

•   One didactical aspect of these considerations is how to take into consideration the variety of 

forms of relation between mathematics and situations of use, at which we already hinted in 2.3 and 

2.4.1.  

Educating students to use concepts requires not so much tackling a lot of examples as dealing with 

some meaningful situations (prototypes: see 2.1 and 2.2) which point up the nature and the 

problems of the main kinds of transfer, enable students to grasp and experiment with shifts between 

different layers of meaning and can be internalized as emblematic stories (Schank, 1990): 

recollecting how the class dealt with a context may become a schema by which the pupil mentally 

arranges information, concepts, relationships between models and contexts (how to formalise, what 

the limits are of modelling, etc.), the strategies at play, the cognitive conflicts encountered, etc., as 

well as the feelings experienced. In order that this happen it is not enough to deal a lot of times with 

the same contexts: the apparent mastery of a kind of use can fade away shortly after, if teaching did 

not build communication channels between didactic activities and real situations of use (see 2.2) or 

other disciplines (see 2.4.1).  

•   Another aspect is the control (during the shifts) of linguistic interference.  

Interference between sectorial languages and natural language underlies many pupils' difficulties 

(cf. Pimm, 1994). This is true particularly of scientific languages, whose ambiguous terminology 

evolved before the "model" idea had emerged (scientific concepts as models instead of descriptions) 

and specialised languages had come into common use. The same is true (though less justifiably) for 

scholastic jargon, like the algebraic jargon that uses "to move right", "to cancel", etc..  

When using terms that are also part of everyday language, there is a risk of retaining meanings that 

have no place in the discipline concerned (in front of 2x=0 a pupil can transform it into x=-2 by a 



movement to right, if he/she believes a movement cannot make "2" vanish). Likewise, when we 

reason about a concept and picture it in a less abstract context, we add "data" that may prove 

misleading. We saw some examples in 2.1 and 2.2; here are some more. By materializing the 

triangle concept we are unable to represent it in both a non-isosceles and a non-scalene manner. 

When thinking of a continuous function F as a graphic representation, we actually include 

conditions on F (finite length, countable set of slopeless points,…), etc.. Even a mathematically-

versed person may experience difficulty in: dealing with the idea that A has the same number of 

elements as B even when A B (if he/she interprets the sets in a finite universe); grasping complex 

numbers without an ordinal relationship (if he/she links the number concept to real numbers); 

realising that, even if 3x
2
+3x divided by x+1 "equals" 3x, (3x

2
+3x)/(x+1) is not equivalent to it (if 

he/she interprets the division as one between numbers); and so on.  

•   If it is true that relation of mathematics with reality is often mediated by other disciplines' 

models, transfer problem of mathematics involves transfer problems of these ones too; for instance, 

in a didactical activity about the mathematization of a physical phenomenon, it may be necessary to 

tackle the difficulties which follow from the fact that "force" is not an abstraction of the intuitive 

concept of "force" (related to "push", "effort", etc.) but can only be grasped in relation to other 

physics concepts. On this subject links with educational research in other disciplines appear weak. 

Problems related to modelling, misconceptions, student motivation for schooling, etc. are often 

treated with a separate, unilateral approach within each disciplinary sector of educational research 

(for instance, many issues in common to physics education emerge from reading McDermott, 

1993).  

•   In conclusion, pupils have to be prepared to use and control the shift from contexts to 

abstractions and vice versa, must be confronted with the leaps and breakaways that occur (with 

respect to common sense, to other knowledge domains, and to their previous experience) into the 

development of new concepts. They must also be aware of the limits of mathematization and of the 

applicability of mathematical language (outside mathematics, interpreting the "angle" as an 

unlimited figure maybe "wrong"). They must become conscious that every modelling activity 

presents the risk of tunnel vision (see 1.5): confining oneself to those things that can be dealt with 

using the disciplinary tools one has chosen.  

The source of difficulties does not lie in the reference to contexts but rather in disregarding them or 

in neglecting the consideration of their characteristics while planning and managing didactic 

activities.  

2.5. Other issues and open problems  

In 2.2-2.4 we analysed how different modelling activities can present different roles of 

mathematics, different forms of interference with other knowledge domains, and different ways of 

interacting of the three components of experience fields. In 2.1 we alluded to other issues too, which 

we do not go into in this paper; in particular:  

•   the vital role of curricular research based on contexts: where contexts are chosen and developed 

not just in response to exemplification established prior to the use of concepts, this research may 

permit a debate on teaching objectives in mathematics and their updating;  

•   the "potentialities" of referring to historical formation of concepts as a source of clues for 

identifying meaningful (today too) contexts and as a source of contexts (e.g. analysis of historical 

documents to explore the evolution of algebraic thought); but also its "limitations", if one overlooks 

the fact that the network of concepts of students and the social diffusion of mathematics differ 



widely from those of scholars of the past (e.g. experience with cars - knowing the speedometer, 

talking about acceleration, etc. - offers references for the introduction of mathematical analysis that 

were not available to Galileo or Newton).  

Context-based teaching can modify the respective roles that the teacher and the pupil play in 

traditional teaching. We mention some important related problems which actually deserve more 

detailed examination (for some references, cf. Blum & Niss, 1991; Boero, Dapueto & Parenti, 1996; 

Sierpinska, 1997):  

•   pupil and teacher can no longer rely on their familiar reference points (syllabus schedule, 

identification of basic skills to be tested, etc.): it is necessary to outline a new set of basic skills and 

a new balance between experiential and reflective learning, to develop new criteria for the 

assessment which exploit the opportunity for dynamic evaluation (day-to-day, in various 

activities,…) that differs from pre-set and ad hoc testing, but overcome the risk of prejudicial 

evaluations; 

•   the motivations and viewpoints of teacher-researchers (involved in designing projects or in 

critical experimenting and evaluating them) differ from those of "normal" teachers; the non-neutral 

act of choosing contexts means assuming greater educational responsibility; managing the 

transition from contexts to abstraction, from individual ideas to shared knowledge, etc. and the 

interaction with out-of-school ways of training and communication arouse conflicts with the 

conventional wisdom of school education; all that makes the question of spreading situated teaching 

complex. 
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