Algebraic Classification of Small Bayesian Networks

Luis David Garcia, Michael Stillman, and Bernd Sturmfels

lgarcia@math.vt.edu

Virginia Tech

Bayesian Networks

- Let G be a directed acyclic graph with n nodes.
- The nodes represent random variables, denoted X_{1}, \ldots, X_{n}.
- The arrows represent causal dependencies among the variables.

- The joint probability distribution is defined as:

$$
p\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\prod_{i=1}^{n} p\left(x_{i} \mid x_{\mathrm{pa}_{i}}\right)
$$

- $p\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=p\left(x_{4}\right) p\left(x_{3} \mid x_{4}\right) p\left(x_{2} \mid x_{3}\right) p\left(x_{1} \mid x_{3}\right)$

Conditional Independence Relations

$$
\begin{array}{ll}
3 \longrightarrow 2 \longrightarrow 1 & X_{1} \Perp X_{3} \mid X_{2} \\
2 \longleftarrow 3 \longrightarrow 1 \\
3 \longrightarrow 1 \longleftarrow 2 & X_{1} \Perp X_{2} \mid X_{3} \\
& X_{3} \Perp X_{2}
\end{array}
$$

- The set of directed global Markov relations, $\operatorname{global}(G)$, is the set of independent statements $A \Perp B \mid C$, for any triple A, B, C of disjoint subsets of vertices of G such that A and B are d-separated by C.
- The set of directed local Markov relations of G is the set of independence statements

$$
\operatorname{local}(G)=\left\{X_{i} \Perp \operatorname{nd}\left(X_{i}\right) \mid \operatorname{pa}\left(X_{i}\right): i=1,2, \ldots, n\right\}
$$

Local: $\left\{X_{1} \Perp\left\{X_{2}, X_{4}\right\}\left|X_{3}, X_{2} \Perp\left\{X_{1}, X_{4}\right\}\right| X_{3}\right\}$
Global: $\operatorname{Local} \cup\left\{X_{4} \Perp\left\{X_{1}, X_{2}\right\} \mid X_{3}\right\}$

Ideals, Varieties, and Independent Statements

- Let X_{1}, \ldots, X_{n} be discrete random variables, where X_{i} takes values in $\left[d_{i}\right]=\left\{1,2, \ldots, d_{i}\right\}$.
- Let $D=\left[d_{1}\right] \times\left[d_{2}\right] \times \cdots \times\left[d_{n}\right]$ so that \mathbb{R}^{D} denotes the real vector space of n-dimensional tables of format $d_{1} \times \cdots \times d_{n}$.
- Let $p_{u_{1} u_{2} \cdots u_{n}}$ be an indeterminate representing the probability of $X_{1}=u_{1}, X_{2}=u_{2}, \ldots, X_{n}=u_{n}$.
- Let $A \Perp B \mid C$ be a conditional independence statement, where A, B and C are pairwise disjoint subsets of $\left\{X_{1}, \ldots, X_{n}\right\}$.
- Let $I_{A \Perp B \mid C}$ denote de ideal of \mathbb{R}^{D} generated by the homogeneous quadratic polynomials

$$
p(a, b, c) p\left(a^{\prime}, b^{\prime}, c\right)-p\left(a, b^{\prime}, c\right) p\left(a^{\prime}, b, c\right)
$$

for every pair a, a^{\prime} of instances of A, every pair b, b^{\prime} of instances of B, and for every instance c of C.

- $p(a, b, c)$ denotes de marginalization of $p\left(x_{1}, \ldots, x_{n}\right)$ over the variables in the complement of $A \cup B \cup C$.
- Let \mathcal{M} be the independence model
$\mathcal{M}=\left\{A^{(1)} \Perp B^{(1)}\left|C^{(1)}, \ldots, A^{(m)} \Perp B^{(m)}\right| C^{(m)}\right\}$. Then
- The independence variety is the set $V\left(I_{\mathcal{M}}\right)$ of common zeros in \mathbb{C}^{D} of the polynomials in $I_{\mathcal{M}}$.
- $V\left(I_{\mathcal{M}}\right)$ is the set of all $d_{1} \times \cdots \times d_{n}$-tables with complex number entries which satisfy the conditional independence statements in \mathcal{M}.
- $V_{\geq}\left(I_{\mathcal{M}}+\langle p-1\rangle\right)$ is the subset of the probability simplex specified by the $\operatorname{model} \mathcal{M}$. Where p denotes the sum of all unknowns.

- Let $d_{1}=d_{2}=d_{4}=2$ and d_{3} arbitrary
- The ideal $I_{\text {local }(G)}=I_{\text {global }(G)}$ is generated by the
2×2-subdeterminants of the following d_{3} matrices
$\left(\begin{array}{llll}p_{11 k 1} & p_{11 k 2} & p_{12 k 1} & p_{12 k 2} \\ p_{21 k 1} & p_{21 k 2} & p_{22 k 1} & p_{22 k 2}\end{array}\right) \quad\left(\begin{array}{cccc}p_{11 k 1} & p_{11 k 2} & p_{21 k 1} & p_{21 k 2} \\ p_{12 k 1} & p_{12 k 2} & p_{22 k 1} & p_{22 k 2}\end{array}\right)$
- For each $k \in\left[d_{3}\right]$, the corresponding quadratic binomials define the Segre Variety $\mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1} \longrightarrow \mathbb{P}^{7}$
- $V\left(I_{\mathcal{M}}\right)$ is the join of d_{3} Segre varieties $\mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1} \longrightarrow \mathbb{P}^{7}$.

Factorization Theorem

Theorem (Factorization Theorem). Let G be a directed acyclic graph and P a probability distribution on $V(G)$, the following are equivalent:

DF: P admits a recursive factorization according to G
DG: P obeys the Directed Global Markov Property
DL: P obeys the Directed Local Markov Proterty

- For any integer $r \in[n]$ and $u_{i} \in\left[d_{i}\right]$, denote the marginalization over the first r random variables as:

$$
p_{++\cdots+u_{r+1} \cdots u_{n}}:=\sum_{i_{1}=1}^{d_{1}} \sum_{i_{2}=1}^{d_{2}} \cdots \sum_{i_{r}=1}^{d_{r}} p_{i_{1} i_{2} \cdots i_{r} u_{r+1} \cdots u_{n}}
$$

- Denote by \mathbf{p} the product of all of these linear forms.
- The equation of $\mathbf{p}=0$ defines a hyperplane arrangement in \mathbb{R}^{D}.
- $I_{\text {local }(G)}$ is prime locally outside this hyperplane arrangement, and hence so is $I_{\text {global }(G)}$.

Theorem. $\left(I_{\text {local }(G)}: \mathbf{p}^{\infty}\right)=\left(I_{\text {global }(G)}: \mathbf{p}^{\infty}\right)=\operatorname{ker}(\Phi)$.

- The prime ideal $\operatorname{ker}(\Phi)$ is called the distinguished component.
- It is the set of all homogeneous polynomial functions on \mathbb{R}^{D} which vanish on all probabilitity distributions that factor according to G.

Theorem. The following four subsets of the probability simplex coincide:

$$
\begin{gathered}
V_{\geq}\left(I_{\text {local }(G)}+\langle p-1\rangle\right)=V_{\geq}\left(I_{\text {global }(G)}+\langle p-1\rangle\right) \\
=V_{\geq}(\operatorname{kernel}(\Phi))=\quad \operatorname{image}\left(\phi_{\geq}\right)
\end{gathered}
$$

Bayesian Networks on three random variables

Theorem. For any Bayesian network G on three discrete random variables, the ideal $I_{\text {local }(G)}$ is prime, and it has a quadratic Gröbner basis.

Graph		Local/Global Markov property
Independence ideal		
3 2 1	$1 \Perp\{2,3\}, 2 \Perp\{1,3\}, 3 \Perp\{1,2\}$	$I_{\text {Segre }}$
$3 \longrightarrow 21$	$1 \Perp 3,1 \Perp 2 \mid 3,1 \Perp\{2,3\}$	$I_{1 \Perp\{2,3\}}$
$3 \longrightarrow 2 \longrightarrow 1$	$1 \Perp 3 \mid 2$	$I_{1 \Perp 3 \mid 2}$
$1 \longleftrightarrow 3 \longrightarrow 2$	$1 \Perp 2 \mid 3$	$I_{1 \Perp 2 \mid 3}$
$3 \longrightarrow 1 \longleftarrow 2$	$2 \Perp 3$	$I_{2 \Perp 3}$

Bayesian Networks on four random variables

Theorem. Of the 30 local Markov ideals on four random variables, 22 are always prime, five are not prime but always radical

$4 \longrightarrow 3 \longrightarrow 2 \longrightarrow 1$

and three are not radical.
$4 \longrightarrow 3$
7
2
2

$3 \longrightarrow 1 \longrightarrow 1$
4

- $\operatorname{Local}(G)=\{1 \Perp 2|\{3,4\}, 2 \Perp\{1,3\}| 4,3 \perp\{2,4\}\}$.
- $I_{\text {local }(G)}$ is binomial in $p_{i j k l}$ with $i \in\left\{+, 2, \ldots, d_{1}\right\}$.
- The generators are $p_{i_{1} j_{2} k_{1} l} p_{i_{2} j_{1} k_{2} l}-p_{i_{1} j_{1} k_{1} l} p_{i_{2} j_{2} k_{2} l}$, and $p_{+j_{1} k_{2} l_{1}} p_{+j_{2} k_{1} l_{2}}-p_{+j_{1} k_{1} l_{1}} p_{+j_{2} k_{2} l_{2}}$.
- The S-pairs within each group reduce to zero by the Gröbner basis property of the 2×2-minors of a generic matrix.
- The given set of irreducible quadrics is a reverse lexicographic Gröbner basis.
- The lowest variable is not a zero-divisor, and hence by symmetry none of the variables $p_{i j k l}$ is a zero-divisor.
- Since $\left(I_{\text {local }(G)}: \mathbf{p}^{\infty}\right)=\operatorname{ker}(\Phi)$, then $I_{\text {local }(G)}$ coincides with the prime ideal $\operatorname{ker}(\Phi)$.
- $I_{\text {local }(G)}$ is the irredundant intersection of $2^{d_{2}}-1$ primes.
- $\operatorname{local}(G)=\{1 \Perp\{3,4\}|2,2 \Perp 4| 3\}$.
- $I_{\text {local }(G)}$ is a binomial ideal in $p_{i j k l}$ with $i \in\left\{+, 2,3, \ldots, d_{1}\right\}$.
- The minimal primes are indexed by proper subsets of $\left[d_{2}\right]$.
- For each subset σ we introduce the monomial prime
$M_{\sigma}=\left\langle p_{+j k l}: j \in \sigma, k \in\left[d_{3}\right], l \in\left[d_{4}\right]\right\rangle$
- The complementary monomial
$m_{\sigma}=\prod_{j \in\left[d_{2}\right] \backslash \sigma} \prod_{k \in\left[d_{3}\right]} \prod_{l \in\left[d_{4}\right]} p_{+j k l}$,
- The ideal $P_{\sigma}=\left(\left(I_{\text {local }(G)}+M_{\sigma}\right): m_{\sigma}^{\infty}\right)$.
- These ideals are prime, and the union of their varieties is irredundant and equals the variety of $I_{\text {local }(G)}$.

A Non-radical example: Network 21

- $\operatorname{Local}(G)=\{1 \Perp\{3,4\} \mid 2,3 \Perp 4\}$.
- $I_{\text {local }(G)}$ is generated by $p_{i_{1} j k_{2} l_{2}} p_{i_{2} j k_{1} l_{1}}-p_{i_{1} j k_{1} l_{1}} p_{i_{2} j k_{2} l_{2}}$, and $p_{++k_{1} l_{2}} p_{++k_{2} l_{1}}-p_{++k_{1} l_{1}} p_{++k_{2} l_{2}}$.
- Let $d_{1}=d_{2}=d_{3}=2$ and $d_{4}=3 . I_{\text {local }(G)}$ is generated by 33 quadratic polynomials in 24 unknowns.
- The degree reverse lexicographic Gröbner basis of this ideal consists of 123 polynomials of degree up to 8 .
- $I_{\text {local }(G)}$ is the intersection of the distinguished component and the P-primary ideal $Q=I_{1 \Perp\{3,4\} \mid 2}+P^{2}$, where P is the prime ideal generated by the 12 linear forms $p_{+j k l}$.

Global Markov Relations on Four nodes

Theorem. Of the 30 global Markov ideals on four random variables, 26 are always prime, one is not prime but always radical

and three are not radical

Global Markov Relations on Five nodes

Theorem. Of the 301 global Markov ideals on five binary random variables, 220 are prime, 68 are radical but not prime, and 13 are not radical.

\# of components	1	3	5	7	17	25	29	33	39
\# of ideals	220	8	41	3	9	1	2	3	1

- http://math.cornell.edu/~mike/bayes/global5.html.

- $I_{\text {global }\left(G_{138}\right)}$ has 207 minimal primes, and 37 embedded primes. Each of the 207 minimal primary components are prime.
- Let G be a BN on n discrete random variables and let $P_{G}=\operatorname{ker}(\Phi)$ be its homogeneous prime ideal.
- The variables corresponding to the nodes $r+1, \ldots, n$ are hidden,
- The observable probabilities are $p_{i_{1} i_{2} \cdots i_{r}++\cdots+}=$ $\sum_{j_{r+1} \in\left[d_{r+1}\right]} \sum_{j_{r+2} \in\left[d_{r+2}\right]} \cdots \sum_{j_{n} \in\left[d_{n}\right]} p_{i_{1} i_{2} \cdots i_{r} j_{r+1} j_{r+2} \cdots j_{n}}$.
- Let $D^{\prime}=\left[d_{1}\right] \times \cdots \times\left[d_{r}\right]$ and $\mathbb{R}\left[D^{\prime}\right] \subset \mathbb{R}[D]$ generated by $p_{i_{1} i_{2} \cdots i_{r}++\cdots+}$.
- Let $\pi: \mathbb{R}^{D} \rightarrow \mathbb{R}^{D^{\prime}}$ denote the canonical linear epimorphism induced by the inclusion of $\mathbb{R}\left[D^{\prime}\right]$ in $\mathbb{R}[D]$.
- $\pi\left(V_{\geq 0}\left(P_{G}\right)\right) \subset \pi\left(V\left(P_{G}\right)\right)_{\geq 0} \subset \pi\left(V\left(P_{G}\right)\right) \subset \overline{\pi\left(V\left(P_{G}\right)\right)} \subset \mathbb{R}^{D^{\prime}}$.

