

Algebraic Classification of Small Bayesian Networks

Luis David Garcia, Michael Stillman, and Bernd Sturmfels

lgarcia@math.vt.edu

Virginia Tech

- \blacksquare Let G be a directed acyclic graph with n nodes.
- The nodes represent random variables, denoted X_1, \ldots, X_n .
- The arrows represent causal dependencies among the variables.

The joint probability distribution is defined as:

$$p(x_1, x_2, \dots, x_n) = \prod_{i=1}^n p(x_i | x_{pa_i})$$

 $p(x_1, x_2, x_3, x_4) = p(x_4)p(x_3|x_4)p(x_2|x_3)p(x_1|x_3)$

$3 \longrightarrow 2 \longrightarrow 1$	$X_1 \bot\!\!\!\bot X_3 \mid X_2$
$2 \longleftarrow 3 \longrightarrow 1$	$X_1 \bot\!\!\!\perp X_2 \mid X_3$
$3 \longrightarrow 1 \longleftarrow 2$	$X_3 \bot\!\!\!\perp X_2$

- The set of directed global Markov relations, global(G), is the set of independent statements $A \perp \!\!\!\perp B \mid C$, for any triple A, B, C of disjoint subsets of vertices of G such that A and B are d-separated by C.
- The set of directed local Markov relations of G is the set of independence statements

 $local(G) = \{X_i \perp nd(X_i) \mid pa(X_i) : i = 1, 2, ..., n\},\$

- Let X_1, \ldots, X_n be discrete random variables, where X_i takes values in $[d_i] = \{1, 2, \ldots, d_i\}$.
- Let $D = [d_1] \times [d_2] \times \cdots \times [d_n]$ so that \mathbb{R}^D denotes the real vector space of *n*-dimensional tables of format $d_1 \times \cdots \times d_n$.
- Let $p_{u_1u_2\cdots u_n}$ be an indeterminate representing the probability of $X_1 = u_1, X_2 = u_2, \ldots, X_n = u_n$.

- Let $A \perp B \mid C$ be a conditional independence statement, where A, B and C are pairwise disjoint subsets of $\{X_1, \ldots, X_n\}$.
- Let $I_{A \perp \!\!\!\perp B \mid C}$ denote de ideal of \mathbb{R}^D generated by the homogeneous quadratic polynomials

$$p(a, b, c)p(a', b', c) - p(a, b', c)p(a', b, c)$$

for every pair a, a' of instances of A, every pair b, b' of instances of B, and for every instance c of C.

 p(a, b, c) denotes de marginalization of $p(x_1, ..., x_n)$ over the variables in the complement of *A* ∪ *B* ∪ *C*.

(3)

• Let \mathcal{M} be the independence model $\mathcal{M} = \{A^{(1)} \perp \!\!\!\perp B^{(1)} \mid C^{(1)}, \dots, A^{(m)} \perp \!\!\!\perp B^{(m)} \mid C^{(m)}\}.$ Then

$$I_{\mathcal{M}} = I_{A^{(1)} \coprod B^{(1)} | C^{(1)}} + \dots + I_{A^{(m)} \coprod B^{(m)} | C^{(m)}}$$

- The independence variety is the set $V(I_{\mathcal{M}})$ of common zeros in \mathbb{C}^D of the polynomials in $I_{\mathcal{M}}$.
- $V(I_{\mathcal{M}})$ is the set of all $d_1 \times \cdots \times d_n$ -tables with complex number entries which satisfy the conditional independence statements in \mathcal{M} .

- For each $k \in [d_3]$, the corresponding quadratic binomials define the Segre Variety $\mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1 \longrightarrow \mathbb{P}^7$
- ▶ $V(I_{\mathcal{M}})$ is the join of d_3 Segre varieties $\mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1 \longrightarrow \mathbb{P}^7$.

Theorem (Factorization Theorem). Let G be a directed acyclic graph and P a probability distribution on V(G), the following are equivalent:

- DF: P admits a recursive factorization according to G
- DG: P obeys the Directed Global Markov Property
- DL: P obeys the Directed Local Markov Proterty
- For any integer $r \in [n]$ and $u_i \in [d_i]$, denote the marginalization over the first r random variables as:

$$p_{++\dots+u_{r+1}\dots u_n} := \sum_{i_1=1}^{d_1} \sum_{i_2=1}^{d_2} \dots \sum_{i_r=1}^{d_r} p_{i_1 i_2 \dots i_r u_{r+1} \dots u_n}.$$

- Denote by \mathbf{p} the product of all of these linear forms.
- The equation of $\mathbf{p} = 0$ defines a hyperplane arrangement in \mathbb{R}^D .

Theorem. $(I_{\text{local}(G)} : \mathbf{p}^{\infty}) = (I_{\text{global}(G)} : \mathbf{p}^{\infty}) = \text{ker}(\Phi).$

- The prime ideal ker(Φ) is called the distinguished component.
- It is the set of all homogeneous polynomial functions on \mathbb{R}^D which vanish on all probabilitity distributions that factor according to G.

Theorem. The following four subsets of the probability simplex coincide:

$$V_{\geq}(I_{\text{local}(G)} + \langle p - 1 \rangle) = V_{\geq}(I_{\text{global}(G)} + \langle p - 1 \rangle)$$
$$= V_{\geq}(\text{kernel}(\Phi)) = \text{image}(\phi_{\geq}).$$

Theorem. For any Bayesian network G on three discrete random variables, the ideal $I_{local(G)}$ is prime, and it has a quadratic Gröbner basis.

Graph	Local/Global Markov property	Independence ideal			
$3 \ 2 \ 1$	$1 \amalg \{2,3\}, \ 2 \amalg \{1,3\}, \ 3 \amalg \{1,2\}$	$I_{ m Segre}$			
$3 \longrightarrow 2 1$	$1 \pm 3, \ 1 \pm 2 \mid 3, \ 1 \pm \{2,3\}$	$I_{1 \perp \!\!\!\perp \{2,3\}}$			
$3 \longrightarrow 2 \longrightarrow 1$	$1 \bot \!\!\!\perp 3 \mid 2$	$I_{1 \perp \!\! \perp 3 \mid 2}$			
$1 \longleftarrow 3 \longrightarrow 2$	$1 \bot \!\!\!\perp 2 \mid 3$	$I_{1 \perp \!\!\! \perp 2 \mid 3}$			
$3 \longrightarrow 1 \longleftarrow 2$	2⊥⊥3	$I_2 \perp I_3$			

- $Local(G) = \{1 \perp 2 \mid \{3,4\}, 2 \perp \{1,3\} \mid 4, 3 \perp \{2,4\} \}.$
- $I_{\text{local}(G)}$ is binomial in p_{ijkl} with $i \in \{+, 2, \dots, d_1\}$.
- **•** The generators are $p_{i_1j_2k_1l}p_{i_2j_1k_2l} p_{i_1j_1k_1l}p_{i_2j_2k_2l}$, and $p_{+j_1k_2l_1}p_{+j_2k_1l_2} p_{+j_1k_1l_1}p_{+j_2k_2l_2}$.
- The S-pairs within each group reduce to zero by the Gröbner basis property of the 2×2 -minors of a generic matrix.
- The given set of irreducible quadrics is a reverse lexicographic Gröbner basis.
- The lowest variable is not a zero-divisor, and hence by symmetry none of the variables p_{ijkl} is a zero-divisor.
- Since $(I_{local(G)} : \mathbf{p}^{\infty}) = ker(\Phi)$, then $I_{local(G)}$ coincides with the prime ideal $ker(\Phi)$.

- $I_{\text{local}(G)}$ is the irredundant intersection of $2^{d_2} 1$ primes.
- $local(G) = \{1 \perp \{3,4\} \mid 2, 2 \perp 4 \mid 3\}.$
- $I_{\text{local}(G)}$ is a binomial ideal in p_{ijkl} with $i \in \{+, 2, 3, \dots, d_1\}$.
- \blacksquare The minimal primes are indexed by proper subsets of $[d_2]$.
- For each subset σ we introduce the monomial prime $M_{\sigma} = \langle p_{+jkl} : j \in \sigma, k \in [d_3], l \in [d_4] \rangle$
- The complementary monomial $m_{\sigma} = \prod_{j \in [d_2] \setminus \sigma} \prod_{k \in [d_3]} \prod_{l \in [d_4]} p_{+jkl},$
- The ideal $P_{\sigma} = ((I_{\text{local}(G)} + M_{\sigma}) : m_{\sigma}^{\infty}).$
- These ideals are prime, and the union of their varieties is irredundant and equals the variety of $I_{local(G)}$.

- $Local(G) = \{1 \bot\!\!\!\bot \{3,4\} \,|\, 2, \, 3 \bot\!\!\!\bot 4\}.$
- $I_{\text{local}(G)} \text{ is generated by } p_{i_1 j k_2 l_2} p_{i_2 j k_1 l_1} p_{i_1 j k_1 l_1} p_{i_2 j k_2 l_2}, \text{ and } \\ p_{++k_1 l_2} p_{++k_2 l_1} p_{++k_1 l_1} p_{++k_2 l_2}.$
- ▶ Let $d_1 = d_2 = d_3 = 2$ and $d_4 = 3$. $I_{local(G)}$ is generated by 33 quadratic polynomials in 24 unknowns.
- The degree reverse lexicographic Gröbner basis of this ideal consists of 123 polynomials of degree up to 8.

 I_{local(G)} is the intersection of the distinguished component and the P-primary ideal Q = I_{1⊥⊥{3,4}|2} + P², where P is the prime ideal generated by the 12 linear forms p_{+ikl} .

Theorem. Of the 30 global Markov ideals on four random variables, 26 are always prime, one is not prime but always radical

and three are not radical

Theorem. Of the 301 global Markov ideals on five binary random variables, 220 are prime, 68 are radical but not prime, and 13 are not radical.

# of components	1	3	5	7	17	25	29	33	39
# of ideals	220	8	41	3	9	1	2	3	1

http://math.cornell.edu/~mike/bayes/global5.html.

I_{global(G138)} has 207 minimal primes, and 37 embedded primes.
Each of the 207 minimal primary components are prime.

- Let *G* be a BN on *n* discrete random variables and let $P_G = \ker(\Phi)$ be its homogeneous prime ideal.
- The variables corresponding to the nodes $r + 1, \ldots, n$ are hidden,
- The observable probabilities are $p_{i_1i_2\cdots i_r+\cdots+} = \sum_{j_{r+1}\in[d_{r+1}]}\sum_{j_{r+2}\in[d_{r+2}]}\cdots\sum_{j_n\in[d_n]}p_{i_1i_2\cdots i_rj_{r+1}j_{r+2}\cdots j_n}$.
- Let $D' = [d_1] \times \cdots \times [d_r]$ and $\mathbb{R}[D'] \subset \mathbb{R}[D]$ generated by $p_{i_1 i_2 \cdots i_r + + \cdots + \cdot}$
- Let $\pi : \mathbb{R}^D \to \mathbb{R}^{D'}$ denote the canonical linear epimorphism induced by the inclusion of $\mathbb{R}[D']$ in $\mathbb{R}[D]$.