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Three cubes and a sum

(−2 736 111 468 807 040)3 + (−8 778 405 442 862 239)3 + 8866 128 975 287 5283

= − 20483367622797158223817952754905569383153664000

− 676467453392982277424361019810585360331722557919

+ 696950821015779435648178972565490929714876221952

33
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Keeping secrets is hard. . .

At 9:05am GMT on February 27th, a computer in Bristol found the
solution to x3 + y3 + z3 = 33 shown on the previous slide.

I told several colleagues about it later that day.

Eleven days later, one of them sent me this:

Uh oh.
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It got worse from there. . .
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Browning!

I protested:

(Yes, there was already a Wikipedia article.)

Tim professed his innocence. Eventually we worked it out:

This was Tim’s web page at the time:

It turns out that this is a good marketing strategy.
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Meanwhile, on
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A number which will live in infamy

Bjorn Poonen, Undecidability in Number Theory,
AMS Notices, March 2008:

“Does the equation x3 + y3 + z3 = 29 have a solution in integers?
Yes: (3, 1, 1), for instance.
How about the equation x3 + y3 + z3 = 30?
Again yes, although this was not known until 1999: the smallest
solution is (−283059965,−2218888517, 2220422932).
And how about x3 + y3 + z3 = 33?
This is an unsolved problem.”
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Popularization
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History

Ryley (1825): x =
(

27x3−y9

3y2(9x2+3xy3+y6)

)3

+
(

−27x3+9xy6+y9

3y2(9x2+3xy3+y6)

)3

+
(

3xy(3x+y3)

9x2+3xy3+y6

)3

Mordell (1953): x3 + y3 + z3 = 3 other than (1, 1, 1), (4, 4,−5)?

Miller and Woolett (1955): Searched for solutions to
x3 + y3 + z3 = k for 0 < k ≤ 100 using the EDSAC at Cambridge

Gardiner, Lazarus, and Stein (1964): Found one more k ≤ 100

Heath-Brown (1992): Conjectured solutions exist ∀k 6≡ ±4 (mod 9)

Heath-Brown, Lionen, and te Riele (1993)
Conn and Vaserstein (1994)
Koyama (1994), (1995)
Bremner (1995)
Koyama, Tsuruoka, and Sekigawa (1997)
Elkies (2000)
Bernstein (2001)
Beck, Pine, Tarrant, and Yarbrough Jensen (2007)
Elsenhans and Jahnel (2009)
Huisman (2016): Found all solutions for k < 1000 with max{|x |, |y |, |z |} ≤ 1015
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Elkies’ algorithm

Elkies (1996) described an algorithm to find all (x , y , z) ∈ Z3 with
max{|x |, |y |, |z |} ≤ B and |x3 + y3 + z3| ≤ B in time O(B logc B).
His observation is that we can rewrite x3 + y3 + z3 = k as(
− x

z

)3
+
(
− y

z

)3
= 1− k

z3 , so (− x
z ,−

y
z ) is a rational point “near”

the Fermat cubic X 3 + Y 3 = 1 (within distance O(B−2)).
To find these points, he breaks [0, 1/ 3

√
2] into � B subintervals of

size � 1
B and computes linear approximations to the curve on each.

If (X ,Y ) = ( xz ,
y
z ) is a point of height O(B) within distance

O(B−2) of one of the line segments, then (x , y , z) lies in a certain
parallelopiped of side lengths O(1), O(B−1), and O(B).
Finally, apply LLL to find the integer points.
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A little algebra

Suppose that x3 + y3 + z3 = k , with |x | ≥ |y | ≥ |z |. Then

k − z3 = x3 + y3 = (x + y)(x2 − xy + y2).

Writing d = |x + y | = |x |+ y sgn x , we have

|k − z3|
d

= x2 − xy + y2 = 3x2 − 3d |x |+ d2,

so that

{x , y} =

{
1

2
sgn(k − z3)

(
d ±

√
4|k − z3| − d3

3d

)}
.

Given a candidate value of z , we can try all d > 0 dividing |k − z3|.
This finds all solutions to x3 + y3 + z3 = k with
min{|x |, |y |, |z |} ≤ B in (heuristic) time O(B1+ε).

Andrew Booker 33 and all that



A better algorithm

Factoring might be subexponential, but it’s expensive in practice.

So instead of running through z and solving for d | (k − z3), it’s
better to run through d and solve for z satisfying z3 ≡ k (mod d).
With the Chinese remainder theorem and Hensel’s lemma, this can
be reduced to finding solutions to z3 ≡ k (mod p) for primes p | d .

In the particular case k ≡ 3ε (mod 9) for ε ∈ {±1}, we have
x ≡ y ≡ z ≡ ε (mod 3), and it follows that sgn z = ε

(
d
3

)
.

That leads to the following system:

d
3
√

2− 1
< |z | ≤ B, sgn z = ε

(
d

3

)
, z3 ≡ k (mod d),

3d

(
4ε

(
d

3

)
(z3 − k)− d3

)
= �.

Also, some congruence constraints come for free, e.g.
z ≡ 4

3k(2− d2) + 9(k + d) (mod 18).

Andrew Booker 33 and all that



Complexity analysis

Even with the noted optimizations, there are � B logB candidate
pairs (d , z) satisfying the first line of the system.

To get better than O(B logB) running time, we use a time-space
tradeoff: If ∆ = 3d

(
4ε
(
d
3

)
(z3 − k)− d3

)
is a square then(

∆
p

)
∈ {0, 1} for any odd prime p. Setting M =

∏
5≤p≤P p for

some auxiliary parameter P, we can restrict to the residue classes
of z (mod M) satisfying this criterion for all p | M. This comes
with O(M) setup cost, but typically reduces the number of z by a
factor of 2−ω(M).

Optimally choosing P � log logB log log logB, we get a total
(heuristic) running time of O

(
B log logB log log logB

)
.

There are many practical issues: 64-bit arithmetic, Montgomery
multiplication, fast cube roots mod p, fast sieving for primes, . . .

Andrew Booker 33 and all that



What’s next?

The only remaining k ≤ 100 with no local obstructions and no
known solutions is. . . 42. I searched for solutions with
min{|x |, |y |, |z |} ≤ 1016 without success.

Mordell’s question about solutions for k = 3 remains open.

When I shared the news with Heath-Brown on Feb 27th, he asked
“What about x3 + y3 + 2z3?”

Drew Sutherland and I are working on these, with help from our

friends at .

Oh, by the way:

795 = (−14 219 049 725 358 227)3 + 14 197 965 759 741 5713 + 2337 348 783 323 9233.
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