Minimizing GCD sums and applications

joint work with Marc Munsch and Gérald Tenenbaum

Symposium in Analytic Number Theory July 2019

Régis de la Bretèche Université Paris Diderot France
regis.delabreteche@imj-prg.fr

1. Previously in Gál sums : Large values

One traditionally defines the Gál sum

$$
S(\mathcal{M}):=\sum_{m, n \in \mathcal{M}} \frac{(m, n)}{\sqrt{m n}}
$$

where (m, n) denotes the greatest common divisor of m and n.

1. Previously in Gál sums : Large values

One traditionally defines the Gál sum

$$
S(\mathcal{M}):=\sum_{m, n \in \mathcal{M}} \frac{(m, n)}{\sqrt{m n}}
$$

where (m, n) denotes the greatest common divisor of m and n. Key point : no bound on the size of $m \in \mathcal{M}$, only bound on the size of $|\mathcal{M}|$

1. Previously in Gál sums : Large values

One traditionally defines the Gál sum

$$
S(\mathcal{M}):=\sum_{m, n \in \mathcal{M}} \frac{(m, n)}{\sqrt{m n}},
$$

where (m, n) denotes the greatest common divisor of m and n.
Key point : no bound on the size of $m \in \mathcal{M}$, only bound on the size of $|\mathcal{M}|$
Improving Bondarenko and Seip ('15, '17), Tenenbaum and dlB proved when N tends to infinity,

$$
\max _{|\mathcal{M}|=N} \frac{S(\mathcal{M})}{|\mathcal{M}|}=\mathcal{L}(N)^{2 \sqrt{2}+o(1)},
$$

with

$$
\mathcal{L}(N):=\exp \left\{\sqrt{\frac{\log N \log _{3} N}{\log _{2} N}}\right\},
$$

where we denote by $\log _{k}$ the k-th iterated logarithm. Gain : $2 \sqrt{2}$.

$$
-2-
$$

The same estimate holds also for

$$
Q(\mathcal{M}):=\sup _{\substack{c \in \mathbb{C}^{N} \\\|c\|_{2}=1}}\left|\sum_{m, n \in \mathcal{M}} c_{m} \overline{c_{n}} \frac{(m, n)}{\sqrt{m n}}\right|=\mathcal{L}(N)^{2 \sqrt{2}+o(1)}
$$

The same estimate holds also for

$$
Q(\mathcal{M}):=\sup _{\substack{c \in \mathbb{C}^{N} \\\|c\|_{2}=1}}\left|\sum_{m, n \in \mathcal{M}} c_{m} \overline{c_{n}} \frac{(m, n)}{\sqrt{m n}}\right|=\mathcal{L}(N)^{2 \sqrt{2}+o(1)}
$$

First application

Let be

$$
Z_{\beta}(T):=\max _{T^{\beta} \leqslant \tau \leqslant T}\left|\zeta\left(\frac{1}{2}+i \tau\right)\right| \quad(0 \leqslant \beta<1, T \geqslant 1)
$$

Tenenbaum and dlB proved

$$
Z_{\beta}(T) \geqslant \mathcal{L}(T)^{\sqrt{2(1-\beta)}+o(1)} .
$$

Improvement of Bondarenko and Seip by a $\sqrt{2}$ extra factor

Second application

$$
L(s, \chi):=\sum_{n \geqslant 1} \frac{\chi(n)}{n^{s}} \quad\left(\chi \neq \chi_{0}, \Re e(s)>0\right) .
$$

When q is prime and tends to ∞, Tenenbaum and dlB obtained

$$
\max _{\substack{\chi \bmod q \\ \chi \neq \chi_{0} \\ \chi(-1)=1}}\left|L\left(\frac{1}{2}, \chi\right)\right| \geqslant \mathcal{L}(q)^{1+o(1)}=\exp \left\{(1+o(1)) \sqrt{\frac{\log ^{2} \log _{3} q}{\log _{2} q}}\right\} .
$$

To compare with Hough's theorems ('16), a $\sqrt{\log _{3} q}$ extra factor

Third application

Let be

$$
S(x, \chi):=\sum_{n \leqslant x} \chi(n), \quad \Delta(x, q):=\max _{\substack{\chi \neq \chi_{0} \\ \chi \bmod q}}|S(x, \chi)|
$$

When $\mathrm{e}^{(\log q)^{1 / 2+\varepsilon}} \leqslant x \leqslant q / \mathrm{e}^{(1+\varepsilon) \omega(q)}$, Tenenbaum and dlB had

$$
\Delta(x, q) \gg \sqrt{x} \mathcal{L}(3 q / x)^{\sqrt{2}+o(1)} \quad(q \rightarrow \infty)
$$

Improvement of Hough by an extra factor $\sqrt{\log _{3}(3 q / x)}$.
Valid not only for q prime.

2. Small Gál sums

We define

$$
\begin{array}{ll}
\mathcal{T}(\boldsymbol{c} ; N):=\sum_{m, n \leqslant N} \frac{(m, n)}{\sqrt{m n}} c_{m} c_{n}, & \mathcal{T}_{N}:=N \inf _{\substack{c \in\left(\mathbb{R}^{+}\right)^{N} \\
\|c\|_{1}=1}} \mathcal{T}(\boldsymbol{c} ; N) \\
\mathcal{V}(\boldsymbol{c} ; N):=\sum_{m, n \leqslant N} \frac{(m, n)}{m+n} c_{m} c_{n}, & \mathcal{V}_{N}:=N \inf _{\substack{c \in\left(\mathbb{R}^{+}\right)^{N} \\
\|c\|_{1}=1}} \mathcal{V}(\boldsymbol{c} ; N)
\end{array}
$$

2. Small Gál sums

We define

$$
\begin{array}{ll}
\mathcal{T}(\boldsymbol{c} ; N):=\sum_{m, n \leqslant N} \frac{(m, n)}{\sqrt{m n}} c_{m} c_{n}, & \mathcal{T}_{N}:=N \inf _{\substack{c \in\left(\mathbb{R}^{+}\right)^{N} \\
\|c\|_{1}=1}} \mathcal{T}(\boldsymbol{c} ; N) \\
\mathcal{V}(\boldsymbol{c} ; N):=\sum_{m, n \leqslant N} \frac{(m, n)}{m+n} c_{m} c_{n}, & \mathcal{V}_{N}:=N \inf _{\substack{c \in\left(\mathbb{R}^{+}\right)^{N} \\
\|c\|_{1}=1}} \mathcal{V}(\boldsymbol{c} ; N)
\end{array}
$$

Trivial bounds :

$$
\mathcal{V}_{N} \leqslant \frac{1}{2} \mathcal{T}_{N} \ll(\log N)
$$

2. Small Gál sums

We define

$$
\begin{array}{ll}
\mathcal{T}(\boldsymbol{c} ; N):=\sum_{m, n \leqslant N} \frac{(m, n)}{\sqrt{m n}} c_{m} c_{n}, & \mathcal{T}_{N}:=N \inf _{\substack{c \in\left(\mathbb{R}^{+}\right)^{N} \\
\|c\|_{1}=1}} \mathcal{T}(\boldsymbol{c} ; N) \\
\mathcal{V}(\boldsymbol{c} ; N):=\sum_{m, n \leqslant N} \frac{(m, n)}{m+n} c_{m} c_{n}, & \mathcal{V}_{N}:=N \inf _{\substack{c \in\left(\mathbb{R}^{+}\right)^{N} \\
\|c\|_{1}=1}} \mathcal{V}(\boldsymbol{c} ; N)
\end{array}
$$

Trivial bounds :

$$
\mathcal{V}_{N} \leqslant \frac{1}{2} \mathcal{T}_{N} \ll(\log N)
$$

Theorem 1 (BMT '19). Let be $\eta:=0.16656 \ldots<1 / 6$. There exists $c>0$ such that

$$
(\log N)^{\eta} \ll \mathcal{V}_{N} \leqslant \frac{1}{2} \mathcal{T}_{N} \ll(\log N)^{\eta} L(N)^{c}
$$

with $L(N):=e^{\sqrt{\log _{2} N}}$.

Application : Improvement of Burgess' bound

 Let$$
S(M, N ; \chi):=\sum_{M<n \leqslant M+N} \chi(n),
$$

where χ is a Dirichlet character to the modulus p.

Application : Improvement of Burgess' bound

Let

$$
S(M, N ; \chi):=\sum_{M<n \leqslant M+N} \chi(n),
$$

where χ is a Dirichlet character to the modulus p. Pólya and Vinogradov's bound in $O(\sqrt{p} \log p)$ is non trivial for $N>p^{1 / 2+\varepsilon}$.

Application : Improvement of Burgess' bound

Let

$$
S(M, N ; \chi):=\sum_{M<n \leqslant M+N} \chi(n),
$$

where χ is a Dirichlet character to the modulus p. Pólya and Vinogradov's bound in $O(\sqrt{p} \log p)$ is non trivial for $N>p^{1 / 2+\varepsilon}$. Burgess proved the following inequality

$$
\begin{equation*}
S(M, N ; \chi) \ll N^{1-1 / r} p^{(r+1) / 4 r^{2}}(\log p)^{b} \tag{*}
\end{equation*}
$$

$$
(r \geqslant 1)
$$

with $b=1$. It is non trivial for $N>p^{1 / 4+\varepsilon}$.

Application : Improvement of Burgess' bound

Let

$$
S(M, N ; \chi):=\sum_{M<n \leqslant M+N} \chi(n),
$$

where χ is a Dirichlet character to the modulus p. Pólya and Vinogradov's bound in $O(\sqrt{p} \log p)$ is non trivial for $N>p^{1 / 2+\varepsilon}$. Burgess proved the following inequality

$$
\begin{equation*}
S(M, N ; \chi) \ll N^{1-1 / r} p^{(r+1) / 4 r^{2}}(\log p)^{b} \tag{*}
\end{equation*}
$$

$$
(r \geqslant 1)
$$

with $b=1$. It is non trivial for $N>p^{1 / 4+\varepsilon}$.
Recently, Kerr, Shparlinski and Yau proved (*) for $b=\frac{1}{4 r}+o(1)$.
Theorem 2 (BMT'19). For $r \geqslant 1, p \leqslant \frac{1}{2} N$

$$
S(M, N ; \chi) \ll N^{1-1 / r} p^{(r+1) / 4 r^{2}} \max _{1 \leqslant x \leqslant p} \mathcal{T}_{x}^{1 / 2 r}
$$

Hence we have $\left({ }^{*}\right)$ for $b=\frac{\eta}{2 r}+o(1)$.

Let us consider the weighted version of the multiplicative energy

$$
\mathcal{E}(c ; N):=\sum_{1 \leqslant n \leqslant N^{2}}\left(\sum_{\substack{d t=n \\ d, t \leqslant N}} c_{d} c_{t}\right)^{2}=\sum_{\substack{1 \leqslant d_{1}, t_{1}, d_{2}, t_{2} \leqslant N \\ d_{1} t_{1}=d_{2} t_{2}}} c_{d_{1}} c_{t_{1}} c_{d_{2}} c_{t_{2}}
$$

and define

$$
\mathcal{E}_{N}:=\inf _{\substack{c \in\left(\mathbb{R}^{+}\right)^{N} \\\|c\|_{1}=1}} N^{2} \mathcal{E}(\boldsymbol{c} ; N) .
$$

Let us consider the weighted version of the multiplicative energy

$$
\mathcal{E}(\boldsymbol{c} ; N):=\sum_{\substack{1 \leqslant n \leqslant N^{2}}}\left(\sum_{\substack{d t=n \\ d, t \leqslant N}} c_{d} c_{t}\right)^{2}=\sum_{\substack{1 \leqslant d_{1}, t_{1}, d_{2}, t_{2} \leqslant N \\ d_{1} t_{1}=d_{2} t_{2}}} c_{d_{1}} c_{t_{1}} c_{d_{2}} c_{t_{2}}
$$

and define

$$
\mathcal{E}_{N}:=\inf _{\substack{c \in\left(\mathbb{R}^{+}\right)^{N} \\\|c\|_{1}=1}} N^{2} \mathcal{E}(\boldsymbol{c} ; N)
$$

Let $\delta:=1-\left(1+\log _{2} 2\right) / \log 2 \approx 0.08607$. Appears in table multiplication problem (Hall, Tenenbaum '88 and Ford '06)

$$
H(N):=\left|\left\{n \leqslant N^{2} \quad \exists a, b \leqslant N \quad n=a b\right\}\right| \asymp \frac{N^{2}}{(\log N)^{\delta}\left(\log _{2} N\right)^{3 / 2}}
$$

Let us consider the weighted version of the multiplicative energy

$$
\mathcal{E}(\boldsymbol{c} ; N):=\sum_{1 \leqslant n \leqslant N^{2}}\left(\sum_{\substack{d t=n \\ d, t \leqslant N}} c_{d} c_{t}\right)^{2}=\sum_{\substack{1 \leqslant d_{1}, t_{1}, d_{2}, t_{2} \leqslant N \\ d_{1} t_{1}=d_{2} t_{2}}} c_{d_{1}} c_{t_{1}} c_{d_{2}} c_{t_{2}}
$$

and define

$$
\mathcal{E}_{N}:=\inf _{\substack{c \in\left(\mathbb{R}^{+}\right)^{N} \\\|c\|_{1}=1}} N^{2} \mathcal{E}(\boldsymbol{c} ; N)
$$

Let $\delta:=1-\left(1+\log _{2} 2\right) / \log 2 \approx 0.08607$. Appears in table multiplication problem (Hall, Tenenbaum '88 and Ford '06)

$$
H(N):=\left|\left\{n \leqslant N^{2} \quad \exists a, b \leqslant N \quad n=a b\right\}\right| \asymp \frac{N^{2}}{(\log N)^{\delta}\left(\log _{2} N\right)^{3 / 2}}
$$

Theorem 3 (BMT'19). For $N \geqslant 3$ and suitable constant c, we have $(\log N)^{\delta}\left(\log _{2} N\right)^{3 / 2} \ll \mathcal{E}_{N} \ll(\log N)^{\delta} L(N)^{c}$.

First application : Non vanishing of theta functions
Balasubramanian and Murty ' 92 proved that a positive proportion of characters verify $L\left(\frac{1}{2}, \chi\right) \neq 0$. We consider

$$
\vartheta(x ; \chi)=\sum_{n \geqslant 1} \chi(n) \mathrm{e}^{-\pi n^{2} x / p} \quad\left(\chi \in X_{p}^{+}=\left\{\chi \bmod p: \chi \neq \chi_{0}, \chi(-1)=1\right\}\right) .
$$

First application : Non vanishing of theta functions
Balasubramanian and Murty ' 92 proved that a positive proportion of characters verify $L\left(\frac{1}{2}, \chi\right) \neq 0$. We consider

$$
\vartheta(x ; \chi)=\sum_{n \geqslant 1} \chi(n) \mathrm{e}^{-\pi n^{2} x / p} \quad\left(\chi \in X_{p}^{+}=\left\{\chi \bmod p: \chi \neq \chi_{0}, \chi(-1)=1\right\}\right) .
$$

The function ϑ satisfies for any even non-principal character

$$
\tau(\bar{\chi}) \vartheta(x ; \chi)=(q / x)^{1 / 2} \vartheta(1 / x ; \bar{\chi})
$$

First application : Non vanishing of theta functions
Balasubramanian and Murty ' 92 proved that a positive proportion of characters verify $L\left(\frac{1}{2}, \chi\right) \neq 0$. We consider

$$
\vartheta(x ; \chi)=\sum_{n \geqslant 1} \chi(n) \mathrm{e}^{-\pi n^{2} x / p} \quad\left(\chi \in X_{p}^{+}=\left\{\chi \bmod p: \chi \neq \chi_{0}, \chi(-1)=1\right\}\right) .
$$

The function ϑ satisfies for any even non-principal character

$$
\tau(\bar{\chi}) \vartheta(x ; \chi)=(q / x)^{1 / 2} \vartheta(1 / x ; \bar{\chi})
$$

Let $M_{0}(p)=\left\{\chi \bmod p: \quad \chi \neq \chi_{0}, \quad \chi(-1)=1, \quad \vartheta(1 ; \chi) \neq 0\right\}$.

First application : Non vanishing of theta functions
Balasubramanian and Murty ' 92 proved that a positive proportion of characters verify $L\left(\frac{1}{2}, \chi\right) \neq 0$. We consider

$$
\vartheta(x ; \chi)=\sum_{n \geqslant 1} \chi(n) \mathrm{e}^{-\pi n^{2} x / p} \quad\left(\chi \in X_{p}^{+}=\left\{\chi \bmod p: \chi \neq \chi_{0}, \chi(-1)=1\right\}\right) .
$$

The function ϑ satisfies for any even non-principal character

$$
\tau(\bar{\chi}) \vartheta(x ; \chi)=(q / x)^{1 / 2} \vartheta(1 / x ; \bar{\chi})
$$

Let $M_{0}(p)=\left\{\chi \bmod p: \quad \chi \neq \chi_{0}, \quad \chi(-1)=1, \quad \vartheta(1 ; \chi) \neq 0\right\}$.
Louboutin conjectured $M_{0}(p)=\frac{1}{2}(p-1)$. Checked for $3 \leqslant p \leqslant 10^{6}$ by Molin. Louboutin and Munsch ' 13 showed that $M_{0}(p) \gg p / \log p$.
Theorem 4 (BMT'19). With $\delta:=1-\left(1+\log _{2} 2\right) / \log 2 \approx 0.08607$, we have

$$
M_{0}(p) \gg \frac{p}{\mathcal{E}\lfloor\sqrt{q / 3}\rfloor} \gg \frac{p}{(\log p)^{\delta} L(p)^{c}} .
$$

Second application : Lower bounds for low moments of character sums Recently, Harper '17 announced

$$
\frac{1}{p-2} \sum_{\chi \neq \chi_{0}}\left|\sum_{n \leqslant N} \chi(n)\right| \ll \frac{\sqrt{N}}{\min \left(\log _{2} L, \log _{3} 6 p\right)^{1 / 4}}
$$

where $L:=\min \{N, p / N\}$. More than squareroot cancellation!

Second application : Lower bounds for low moments of character sums Recently, Harper '17 announced

$$
\frac{1}{p-2} \sum_{\chi \neq \chi_{0}}\left|\sum_{n \leqslant N} \chi(n)\right| \ll \frac{\sqrt{N}}{\min \left(\log _{2} L, \log _{3} 6 p\right)^{1 / 4}}
$$

where $L:=\min \{N, p / N\}$. More than squareroot cancellation!
Theorem 5 (BMT'19). Let $r \in] 0,4 / 3[$ be fixed. For sufficiently large p and all $N \in[1, \sqrt{p}[$, we have

$$
\frac{1}{p-2} \sum_{\chi \neq \chi_{0}}|S(N ; \chi)|^{r} \gg \frac{N^{r / 2}}{\mathcal{E}_{N}^{1-r / 2}}
$$

In particular, for a suitable constant c,

$$
\frac{1}{p-2} \sum_{\chi \neq \chi_{0}}|S(N ; \chi)| \gg \sqrt{\frac{N}{\mathcal{E}_{N}}} \gg \frac{\sqrt{N}}{(\log N)^{\delta / 2} L(N)^{c}}
$$

Note $\frac{1}{2} \delta \approx 0,04303$.

Same result when $T \geqslant 1,1 \leqslant N \leqslant \sqrt{T}$ for

$$
\frac{1}{T} \int_{0}^{T}\left|\sum_{n \leqslant N} n^{i t}\right|^{r} \mathrm{~d} t \gg \frac{N^{r / 2}}{\mathcal{E}_{N}^{1-r / 2}} .
$$

Same result when $T \geqslant 1,1 \leqslant N \leqslant \sqrt{T}$ for

$$
\frac{1}{T} \int_{0}^{T}\left|\sum_{n \leqslant N} n^{i t}\right|^{r} \mathrm{~d} t \gg \frac{N^{r / 2}}{\mathcal{E}_{N}^{1-r / 2}}
$$

3. Proofs for $\varepsilon(c ; \mathbf{N})$

The lower bound immediately follows from the Cauchy-Schwarz inequality. Indeed, defining $r(n):=\sum_{\substack{d t=n \\ d, t \leqslant N}} c_{d} c_{t}$, we have

$$
\|\boldsymbol{c}\|_{1}^{4}=\left(\sum_{n \leqslant N^{2}} r(n)\right)^{2} \leqslant H(N) \sum_{n \leqslant N^{2}} r(n)^{2}=H(N) \mathcal{E}(\boldsymbol{c} ; N)
$$

where $H(N):=\left|\left\{n \leqslant N^{2}: \quad \exists a, b \leqslant N \quad n=a b\right\}\right|$.
Following Ford'06, we have

$$
H(N) \ll N^{2} /\left\{(\log N)^{\delta}\left(\log _{2} N\right)^{3 / 2}\right\} .
$$

To establish the upper bound, select $m \mapsto c_{m}$ as the indicator function of the set of those integers $\left.m \in] \frac{1}{2} N, N\right]$ satisfying $\Omega(m)=\left\lfloor\frac{1}{\log 4} \log _{2} N\right\rfloor$

To establish the upper bound, select $m \mapsto c_{m}$ as the indicator function of the set of those integers $\left.m \in] \frac{1}{2} N, N\right]$ satisfying $\Omega(m)=\left\lfloor\frac{1}{\log 4} \log _{2} N\right\rfloor$ satisfying the additional condition

$$
\Omega(m ; t) \leqslant \frac{1}{\log 4} \log _{2}(3 t)+C \sqrt{\log _{2} N} \quad(1 \leqslant t \leqslant N)
$$

To establish the upper bound, select $m \mapsto c_{m}$ as the indicator function of the set of those integers $\left.m \in] \frac{1}{2} N, N\right]$ satisfying $\Omega(m)=\left\lfloor\frac{1}{\log 4} \log _{2} N\right\rfloor$ satisfying the additional condition

$$
\Omega(m ; t) \leqslant \frac{1}{\log 4} \log _{2}(3 t)+C \sqrt{\log _{2} N} \quad(1 \leqslant t \leqslant N)
$$

We have

$$
\sum_{n \leqslant N^{2}} r(n)=\|\boldsymbol{c}\|_{1}^{2} \gg \frac{N^{2}}{(\log N)^{\delta} \log _{2} N}
$$

To establish the upper bound, select $m \mapsto c_{m}$ as the indicator function of the set of those integers $\left.m \in] \frac{1}{2} N, N\right]$ satisfying $\Omega(m)=\left\lfloor\frac{1}{\log 4} \log _{2} N\right\rfloor$ satisfying the additional condition

$$
\Omega(m ; t) \leqslant \frac{1}{\log 4} \log _{2}(3 t)+C \sqrt{\log _{2} N} \quad(1 \leqslant t \leqslant N)
$$

We have

$$
\sum_{n \leqslant N^{2}} r(n)=\|\boldsymbol{c}\|_{1}^{2} \gg \frac{N^{2}}{(\log N)^{\delta} \log _{2} N}
$$

We get

$$
\frac{N^{2}}{\|\boldsymbol{c}\|_{1}^{4}} \mathcal{E}(\boldsymbol{c} ; N)=\frac{N^{2}}{\|\boldsymbol{c}\|_{1}^{4}} \sum_{n \leqslant N^{2}} r(n)^{2} \ll \frac{N^{4} L(N)^{c}}{\|\boldsymbol{c}\|_{1}^{4}(\log N)^{\delta}}
$$

The last upper bound was proved in the book Divisors ' 88 by Hall and Tenenbaum.

Proofs for $\mathcal{T}(c ; \mathbf{N})$. To establish the upper bound, select $m \mapsto c_{m}$ as the indicator function of the set of $\left.m \in] \frac{1}{2} N, N\right\rfloor$ satisfying $\Omega(m)=\left\lfloor\beta \log _{2} N\right\rfloor$ satisfying $\Omega(m ; t) \leqslant \beta \log _{2}(3 t)+C \sqrt{\log _{2} N} \quad(1 \leqslant t \leqslant N)$.

Proofs for $\mathcal{T}(c ; \mathbf{N})$. To establish the upper bound, select $m \mapsto c_{m}$ as the indicator function of the set of $\left.m \in] \frac{1}{2} N, N\right\rfloor$ satisfying $\Omega(m)=\left\lfloor\beta \log _{2} N\right\rfloor$ satisfying $\Omega(m ; t) \leqslant \beta \log _{2}(3 t)+C \sqrt{\log _{2} N} \quad(1 \leqslant t \leqslant N)$.
Using the convolution identity $(m, n)=\sum_{d \mid m, n} \varphi(d)$, we get

$$
\mathcal{T}(\boldsymbol{c} ; N)=\sum_{m, n \leqslant N} \frac{(m, n)}{\sqrt{m n}} c_{m} c_{n}=\sum_{d \leqslant N} \frac{\varphi(d)}{d} x_{d}^{2}
$$

with $x_{d}:=\sum_{m \leqslant N / d} \frac{c_{m d}}{\sqrt{m}}$.

Proofs for $\mathcal{T}(c ; \mathbf{N})$. To establish the upper bound, select $m \mapsto c_{m}$ as the indicator function of the set of $\left.m \in] \frac{1}{2} N, N\right\rfloor$ satisfying $\Omega(m)=\left\lfloor\beta \log _{2} N\right\rfloor$ satisfying $\Omega(m ; t) \leqslant \beta \log _{2}(3 t)+C \sqrt{\log _{2} N} \quad(1 \leqslant t \leqslant N)$. Using the convolution identity $(m, n)=\sum_{d \mid m, n} \varphi(d)$, we get

$$
\mathcal{T}(c ; N)=\sum_{m, n \leqslant N} \frac{(m, n)}{\sqrt{m n}} c_{m} c_{n}=\sum_{d \leqslant N} \frac{\varphi(d)}{d} x_{d}^{2},
$$

with $x_{d}:=\sum_{m \leqslant N / d} \frac{c_{m d}}{\sqrt{m}}$.
Let $\beta \in] 0,1[$ be an absolue constant. For all $y, z \in] \beta, 1]$ and suitable $c=c(\beta)$, we may write $x_{d} \leqslant L(N)^{c / 2} U_{d}$ with

$$
U_{d} \leqslant \begin{cases}\sum_{m \leqslant N / d} \frac{y^{\Omega(m d)} z^{\Omega(m d, d)}}{\sqrt{m}(\log N)^{\alpha \log y(\log 2 d)^{\alpha \log z}}} & \text { if } d \leqslant \sqrt{N}, \\ \sum_{m \leqslant N / d} \frac{y^{\Omega(m d)} z^{\Omega(m d, N / d)}}{\sqrt{m}(\log N)^{\alpha \log y(\log 2 N / d)^{\alpha \log z}}} & \text { if } \sqrt{N}<d \leqslant N .\end{cases}
$$

Proof of Theorem 5 for $r=1$. Given $\boldsymbol{c} \in\left(\mathbb{R}^{+}\right)^{N}$, we define

$$
M(N ; \chi)=\sum_{m \leqslant N} c_{m} \overline{\chi(m)}
$$

Let us put
$\mathfrak{S}_{k}(N):=\frac{1}{p-1} \sum_{\chi \neq \chi_{0}}|S(N ; \chi)|^{k} \quad(k>0), \quad \mathfrak{M}_{4}(N):=\frac{1}{p-1} \sum_{\chi \neq \chi_{0}}|M(N ; \chi)|^{4}$.
Applying Hölder's inequality, we get

$$
\|\boldsymbol{c}\|_{1} \ll \frac{1}{p-1}\left|\sum_{\chi \neq \chi_{0}} S(N ; \chi) M(N ; \chi)\right| \leqslant \mathfrak{S}_{1}(N)^{1 / 2} \mathfrak{S}_{2}(N)^{1 / 4} \mathfrak{M}_{4}(N)^{1 / 4}
$$

Proof of Theorem 5 for $r=1$. Given $\boldsymbol{c} \in\left(\mathbb{R}^{+}\right)^{N}$, we define

$$
M(N ; \chi)=\sum_{m \leqslant N} c_{m} \overline{\chi(m)}
$$

Let us put
$\mathfrak{S}_{k}(N):=\frac{1}{p-1} \sum_{\chi \neq \chi_{0}}|S(N ; \chi)|^{k} \quad(k>0), \quad \mathfrak{M}_{4}(N):=\frac{1}{p-1} \sum_{\chi \neq \chi_{0}}|M(N ; \chi)|^{4}$.
Applying Hölder's inequality, we get

$$
\|\boldsymbol{c}\|_{1} \ll \frac{1}{p-1}\left|\sum_{\chi \neq \chi_{0}} S(N ; \chi) M(N ; \chi)\right| \leqslant \mathfrak{S}_{1}(N)^{1 / 2} \mathfrak{S}_{2}(N)^{1 / 4} \mathfrak{M}_{4}(N)^{1 / 4}
$$

Orthogonality relations yield that $\mathfrak{S}_{2}(N) \ll N$ and $\mathfrak{M}_{4}(N) \ll \mathcal{E}(c ; N)$. By choosing \boldsymbol{c} optimally, we deduce

$$
\mathfrak{S}_{1}(N) \gg \frac{\|\boldsymbol{c}\|_{1}^{2}}{\varepsilon(\boldsymbol{c} ; N)^{1 / 2} N^{1 / 2}} \gg \frac{N^{1 / 2}}{\varepsilon_{N}^{1 / 2}} .
$$

Thank you for your attention !

