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Improving Bondarenko and Seip (’15, '17), Tenenbaum and dIB proved when
N tends to infinity,

Imax S(M)
M=N | M]|

log N log, N
L(N) = exp{\/ 10g2NB },

where we denote by log, the k-th iterated logarithm. Gain : 21/2.

= L(N)?VErel),

with




The same estimate holds also for

QM) := sup
=

= L(N)?V2e),

c C_(m,n)
Z m>~m W

m,neM



The same estimate holds also for

—(man) 2v/2+0(1)
Q(M) := sup CmCn = L(N) o(1),
e m%;M o

First application
Let be

Z3(T) := TBH;&}éJC(%%—iT)‘ 0<ps<1, T>21)

Tenenbaum and d1B proved

Zs(T) > L(T)\/Z(l—ﬁ)Jro(l).

Improvement of Bondarenko and Seip by a /2 extra factor



Second application

x(n
Lo = 3 (% v, e (5) > 0).
n=>1
When ¢ is prime and tends to oo, Tenenbaum and dIB obtained

log qlog, q
L(%, > L(g)ttel) = ¢ 1+ ol SR
erriggq IL(5,%)| = L(q) xp 4 (14 0(1)) oz, ¢
X7#X0

x(—=1)=1

To compare with Hough’s theorems (’16), a +/log; ¢ extra factor




Third application

Let be
S(z,x) =Y x(n),  Alz,q) = max [S(z,y),
N erfgffq

When e(059" "™ < 4 < ¢/e(179)%(@)  Tenenbaum and dIB had
A(z,q) > Val(3g/z)V>TW (g — o).

Improvement of Hough by an extra factor /logs(3¢/z).

Valid not only for g prime.



2. Small Gal sums
We define

CmCn, JIn:=N inf T(c;N),

mn<N e CE(R+)N
b [ell1=1
V(e; N) := Z g;_ngcmcn, Vy:=N inf V(c;N),

+\N
m,n< N ce(R™)
elli=1



2. Small Gal sums
We define

V(e;N) = Z (m, 1)

m,n< N

Trivial bounds :

‘IN =N

VN =N

Vi < %‘IN < (1ogN)

inf
ce(RT)Y
ell1=1

inf
ce(RTN
el1=1

T(c;N),

V(e;N),



2. Small Gal sums

We define
(m,n) .
J(c;N) = E CmCn, JnN:=N inf J(e;N),
( | m,n<N vmn X ce(RT)N ( )
S lell1=1

V(e;N) := Z %cmcn, Vy: =N ce(i]%f_‘)N V(e; N),
lefla=1
Trivial bounds :
Vy < 1Ty < (log N)

Theorem 1 (BMT ’19). Let be n := 0.16656... < 1/6. There exists ¢ > 0
such that

(logN)" < Vn < 2Tn < (log N)"L(N)°
with L(N) := V1082 N
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S(M,N;x):== Y x(n),
M<n<M+N
where Y is a Dirichlet character to the modulus p.
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Application : Improvement of Burgess’ bound
Let

S(M,N;x):== Y x(n),
M<n<M+N
where Y is a Dirichlet character to the modulus p.

Polya and Vinogradov’s bound in O(,/plogp) is non trivial for N > pl/2te,
Burgess proved the following inequality

(+) S(M,N;x) < N'*=Vrpr+D/4% (160 p)? (r>1)

with b = 1. It is non trivial for N > pt/4+e.
Recently, Kerr, Shparlinski and Yau proved (*) for b = = + o(1).

Theorem 2 (BMT’19). Forr > 1, p< 3N

S(M,N;x) < N7 ("“+1)/4r max TL/2"
1<x<p

Hence we have (*) for b = 5& + o(1).
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Let us consider the weighted version of the multiplicative energy

2
E(e; N) = Z (Z cdct> = Z Cdy Ct, Cdo Cto

1<n<N2 dt=n 1<d1,t1,d2,t2<N
d,t<N dit1=dsts

and define
En:= inf NZ?*E(c;N).

ce(RT)Y
lefl1=1
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Let us consider the weighted version of the multiplicative energy

2
E(e; N) = Z (Z cdct> = Z Cdy Ct, Cdo Cto

1<n<N?2 dt=n 1<d1,t1,d2,t2<N
S d,t<N dit1=dots
and define
En:= inf NZ?&(c;N).
ce(RT)Y
lcl1=1

Let 0 := 1 — (1 + log,2)/log2 ~ 0.08607. Appears in table multiplication
problem (Hall, Tenenbaum 88 and Ford ’06)
N2

AV [ 0 S b SN = a0 G Ny g, N7
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ce(RT)Y
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Let 0 := 1 — (1 + log,2)/log2 ~ 0.08607. Appears in table multiplication
problem (Hall, Tenenbaum 88 and Ford ’06)

N2
(log N)° (logy N)3/2.
Theorem 3 (BMT’19). For N > 3 and suitable constant c, we have

(log N)° (logy, N)3/? < &x < (log N)°L(N)°.

H(N):=[{n<N° 3Ja,b< N n=ab}| =




— 8 —

First application : Non vanishing of theta functions

Balasubramanian and Murty 92 proved that a positive proportion of characters
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First application : Non vanishing of theta functions
Balasubramanian and Murty 92 proved that a positive proportion of characters

verify L(3,x) # 0. We consider
I(wsx) =Y x(n)e™™ P (x € X;f = {xmodp : x # xo0, x(—1) = 1}).
n>1

The function ¥ satisfies for any even non-principal character
T(X)0(x; x) = (¢/2)"*0(1/2;X)

Let My(p) = {xmodp : x #xo0, x(—1)=1, I(1;x) #0}.
Louboutin conjectured My(p) = % (p — 1). Checked for 3 < p < 10° by Molin.
Louboutin and Munsch ’13 showed that My(p) > p/logp.

Theorem 4 (BMT’19). With 6 :=1 — (1 + log, 2)/log 2 ~ 0.08607, we have

Mo(p)> —2 > p

SL\/ngJ (logp)° L(p)c
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Second application : Lower bounds for low moments of character sums
Recently, Harper ’17 announced

Y x(n)

n<N

VN

min (log, L, logs 6p

<

_ 9 L
P X7X0

)1/4

where L := min {N,p/N}. More than squareroot cancellation !
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Second application : Lower bounds for low moments of character sums

Recently, Harper '17 announced

Y x(n)

n<N

VN

min (log, L, logs 6p)

1/4

D—2
P x#xO

where L := min {N,p/N}. More than squareroot cancellation !

Theorem 5 (BMT’19). Let r €]0,4/3| be fixed. For sufficiently large p and
all N € [1,,/p|, we have

In particular, for a suitable constant c,

1 N VN
p—2 )3 ‘S<N;X)| > \g>> (log N)*/2L(N)e’

Note 28 ~ 0,04303.
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Same result when 7> 1, 1 < N < /T for

1 T r/2

8]1V—r/2

dt >
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Same result when 7> 1, 1 < N < /T for

e itr N"/?
P s o
0 Thgw N

3. Proofs for &(c;N)

The lower bound immediately follows from the Cauchy-Schwarz inequality.
Indeed, defining r(n) := Z cqct, we have

dt=n
d,t<N

2
lelit = (3 rn)) <O X rl)? = HOV e
n<IN?2 n<IN?2
where H(N) := Hn <N?: Ja,b<N n= ab}’.
Following Ford’06, we have
H(N) < N2/{(log]\f)5(log2 N)S/Z}.



~ 19 —
To establish the upper bound, select m — ¢,, as the indicator function of the

1
log, N
log4 082 J

set of those integers m €]3 N, N] satisfying Q(m) = {
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To establish the upper bound, select m — ¢,, as the indicator function of the

1
log, N
log4 052 J

set of those integers m €]3 N, N] satisfying Q(m) = {

satistfying the additional condition

1
O

We have
N2
. 2
> rn) = llellf > ooy

n<N?2

We get

N? N? N4L(N)®
E(e; N) = r(n)? < .
lell3 el ng,:\,g lef|3(log N)°

The last upper bound was proved in the book Divisors 88 by Hall and

Tenenbaum.
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Proofs for T(c;N). To establish the upper bound, select m — ¢, as the
indicator function of the set of m €]sN,N] satisfying Q(m) = [Slog, N|
satisfying Q(m;t) < Flog,(3t) + C'y/logy N (I<t< N).
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Proofs for T(c;N). To establish the upper bound, select m — ¢, as the
indicator function of the set of m €]sN,N] satisfying Q(m) = [Slog, N|

satisfying Q(m;t) < Flog,(3t) + C'y/logy N (I<t< N).
Using the convolution identity (m,n) =»_ ., , ¢(d), we get

T N)= ) ) o = Z@ﬂfu

A/ 1Mn
m,n<N d<N

with 24 := ) n/4 %ﬁ

Let 3 €]0,1] be an absolue constant. For all y, z €]3, 1] and suitable ¢ = ¢(3),
we may write z4 < L(N)*/2U, with

B> i i ifd < VN
m<N/d vm(log N)>legy (log 2d) > loe = X ,
Ug < § yﬂ(md)ZQ(md7N/d) |
\ mg;/d Ji(log N)al8v(log 2N/jd)alos= VN <d<N.
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Proof of Theorem 5 for » = 1. Given ¢ € (RT)", we define

M(N;x)= > cmx(m).

m<N

Let us put

SL(N) = —— OISV (R>0), My(N):=—— > |[M(N;x)["

Applying Holder’s inequality, we get

> SN X)M(N; x)| < 61(N) 28y (N)omy (V) /4,

1
lelly < ——
P X7X0
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Proof of Theorem 5 for » = 1. Given ¢ € (RT)", we define

M(NQX): Z Cmm'

m<N
Let us put
1 1
Ep(N) = — D ISP (k>0), Mu(N) = b1 > IM(N; X))
b X7X0 X7X0
Applying Holder’s inequality, we get
lelly < f > SN )| < G1(N) 262 (N) 4y (V).

X7X0
Orthogonality relations yield that G5(/N) < N and 94(N) < E(e; N). By
choosing ¢ optimally, we deduce

le||? N'/Z

E(c; N)/2NT2 = gl

S1(N) >
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Thank you for your attention'!



