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1. Previously in Gál sums : Large values

One traditionally defines the Gál sum

S(M) :=
X

m,n2M

(m,n)p
mn

,

where (m,n) denotes the greatest common divisor of m and n.
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One traditionally defines the Gál sum

S(M) :=
X

m,n2M

(m,n)p
mn

,

where (m,n) denotes the greatest common divisor of m and n.
Key point : no bound on the size of m 2 M, only bound on the size of |M|

Improving Bondarenko and Seip (’15, ’17), Tenenbaum and dlB proved when
N tends to infinity,

max
|M|=N

S(M)
|M| = L(N)2

p
2+o(1),

with

L(N) := exp

(s
log N log3 N

log2 N

)

,

where we denote by logk the k-th iterated logarithm. Gain : 2
p

2.
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The same estimate holds also for

Q(M) := sup
c2CN

kck2=1

�����
X

m,n2M

cmcn
(m,n)p

mn

����� = L(N)2
p

2+o(1).
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The same estimate holds also for

Q(M) := sup
c2CN

kck2=1

�����
X

m,n2M

cmcn
(m,n)p

mn

����� = L(N)2
p

2+o(1).

First application
Let be

Z�(T ) := max
T �6⌧6T

��⇣(1
2 + i⌧)

�� (0 6 � < 1, T > 1)

Tenenbaum and dlB proved

Z�(T ) > L(T )
p

2(1��)+o(1).

Improvement of Bondarenko and Seip by a
p

2 extra factor
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Second application

L(s,�) :=
X

n>1

�(n)
ns

(� 6= �0, <e (s) > 0).

When q is prime and tends to 1, Tenenbaum and dlB obtained

max
� mod q
�6=�0

�(�1)=1

��L(1
2 ,�)

�� > L(q)1+o(1) = exp

(
�
1 + o(1)

�
s

log q log3 q

log2 q

)

.

To compare with Hough’s theorems (’16), a
p

log3 q extra factor
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Third application
Let be

S(x,�) :=
X

n6x

�(n), �(x, q) := max
�6=�0

� mod q

|S(x,�)| ,

When e(log q)1/2+"
6 x 6 q/e(1+")!(q), Tenenbaum and dlB had

�(x, q) �
p

xL(3q/x)
p

2+o(1) (q !1).

Improvement of Hough by an extra factor
p

log3(3q/x).
Valid not only for q prime.
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2. Small Gál sums

We define

T(c;N) :=
X

m,n6N

(m,n)p
mn

cmcn, TN := N inf
c2(R+)N

kck1=1

T(c;N),

V(c;N) :=
X

m,n6N

(m,n)
m + n

cmcn, VN := N inf
c2(R+)N

kck1=1

V(c;N),
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mn
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c2(R+)N

kck1=1

T(c;N),

V(c;N) :=
X

m,n6N

(m,n)
m + n

cmcn, VN := N inf
c2(R+)N

kck1=1

V(c;N),

Trivial bounds :

VN 6 1
2TN ⌧ (log N)

Theorem 1 (BMT ’19). Let be ⌘ := 0.16656 . . . < 1/6. There exists c > 0
such that

(log N)⌘ ⌧ VN 6 1
2TN ⌧ (log N)⌘L(N)c

with L(N) := e
p

log2 N .
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Application : Improvement of Burgess’ bound
Let

S(M,N ;�) :=
X

M<n6M+N

�(n),

where � is a Dirichlet character to the modulus p.
Pólya and Vinogradov’s bound in O(pp log p) is non trivial for N > p1/2+".
Burgess proved the following inequality

(⇤) S(M,N ;�) ⌧ N1�1/rp(r+1)/4r2
(log p)b (r > 1)

with b = 1. It is non trivial for N > p1/4+".
Recently, Kerr, Shparlinski and Yau proved (*) for b = 1

4r + o(1).

Theorem 2 (BMT’19). For r > 1, p 6 1
2N

S(M,N ;�) ⌧ N1�1/rp(r+1)/4r2
max

16x6p
T1/2r

x .

Hence we have (*) for b = ⌘
2r + o(1).
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Let us consider the weighted version of the multiplicative energy

E(c;N) :=
X

16n6N2

 
X

dt=n
d,t6N

cdct

!2

=
X

16d1,t1,d2,t26N
d1t1=d2t2

cd1ct1cd2ct2

and define

EN := inf
c2(R+)N

kck1=1

N2E(c;N).
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and define

EN := inf
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N2E(c;N).

Let � := 1 � (1 + log2 2)/ log 2 ⇡ 0.08607. Appears in table multiplication
problem (Hall, Tenenbaum ’88 and Ford ’06)

H(N) :=
���n 6 N2 9a, b 6 N n = ab

 �� ⇣ N2

(log N)�(log2 N)3/2
·

Theorem 3 (BMT’19). For N > 3 and suitable constant c, we have

(log N)�(log2 N)3/2 ⌧ EN ⌧ (log N)�L(N)c.
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First application : Non vanishing of theta functions
Balasubramanian and Murty ’92 proved that a positive proportion of characters
verify L(1

2 ,�) 6= 0. We consider

#(x;�) =
X

n>1

�(n)e�⇡n2x/p (� 2 X+
p = {�mod p : � 6= �0, �(�1) = 1}).
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verify L(1

2 ,�) 6= 0. We consider

#(x;�) =
X

n>1

�(n)e�⇡n2x/p (� 2 X+
p = {�mod p : � 6= �0, �(�1) = 1}).

The function # satisfies for any even non-principal character

⌧(�)#(x;�) = (q/x)1/2#(1/x;�)

Let M0(p) = {�mod p : � 6= �0, �(�1) = 1, #(1;�) 6= 0}.
Louboutin conjectured M0(p) = 1

2 (p � 1). Checked for 3 6 p 6 106 by Molin.
Louboutin and Munsch ’13 showed that M0(p) � p/ log p.

Theorem 4 (BMT’19). With � := 1� (1 + log2 2)/ log 2 ⇡ 0.08607, we have

M0(p) � p

E⌅p
q/3

⇧ �
p

(log p)�L(p)c
.
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Second application : Lower bounds for low moments of character sums
Recently, Harper ’17 announced

1
p� 2

X

�6=�0

����
X

n6N

�(n)
����⌧

p
N

min (log2 L, log3 6p)1/4

where L := min {N, p/N}. More than squareroot cancellation !



– 10 –

Second application : Lower bounds for low moments of character sums
Recently, Harper ’17 announced

1
p� 2

X

�6=�0

����
X

n6N

�(n)
����⌧

p
N

min (log2 L, log3 6p)1/4

where L := min {N, p/N}. More than squareroot cancellation !

Theorem 5 (BMT’19). Let r 2]0, 4/3[ be fixed. For su�ciently large p and

all N 2 [1,pp[, we have

1
p� 2

X

�6=�0

���S(N ;�)
���
r
� Nr/2

E
1�r/2
N

.

In particular, for a suitable constant c,

1
p� 2

X

�6=�0

���S(N ;�)
����

r
N

EN
�

p
N

(log N)�/2L(N)c
.

Note 1
2� ⇡ 0, 04303.
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Same result when T > 1, 1 6 N 6
p

T for

1
T

Z T

0

����
X

n6N

nit

����
r

dt � Nr/2

E
1�r/2
N

·
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Same result when T > 1, 1 6 N 6
p

T for

1
T

Z T

0

����
X

n6N

nit

����
r

dt � Nr/2

E
1�r/2
N

·

3. Proofs for E(c ;N)

The lower bound immediately follows from the Cauchy-Schwarz inequality.
Indeed, defining r(n) :=

X

dt=n
d,t6N

cdct, we have

kck41 =
✓ X

n6N2

r(n)
◆2

6 H(N)
X

n6N2

r(n)2 = H(N)E(c;N)

where H(N) :=
���n 6 N2 : 9a, b 6 N n = ab

 ��.
Following Ford’06, we have

H(N) ⌧ N2/
�
(log N)�(log2 N)3/2

 
.
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To establish the upper bound, select m 7! cm as the indicator function of the

set of those integers m 2 ]12N,N ] satisfying ⌦(m) =
�

1
log 4

log2 N

⌫
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To establish the upper bound, select m 7! cm as the indicator function of the

set of those integers m 2 ]12N,N ] satisfying ⌦(m) =
�

1
log 4

log2 N

⌫

satisfying the additional condition

⌦(m; t) 6
1

log 4
log2(3t) + C

p
log2 N (1 6 t 6 N).

We have
X

n6N2

r(n) = kck21 �
N2

(log N)� log2 N
.

We get
N2

kck41
E(c;N) =

N2

kck41

X

n6N2

r(n)2 ⌧ N4L(N)c

kck41(log N)�
.

The last upper bound was proved in the book Divisors ’88 by Hall and
Tenenbaum.
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Proofs for T(c ;N). To establish the upper bound, select m 7! cm as the
indicator function of the set of m 2 ]12N,N ] satisfying ⌦(m) = b� log2 Nc
satisfying ⌦(m; t) 6 � log2(3t) + C

p
log2 N (1 6 t 6 N).
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indicator function of the set of m 2 ]12N,N ] satisfying ⌦(m) = b� log2 Nc
satisfying ⌦(m; t) 6 � log2(3t) + C

p
log2 N (1 6 t 6 N).

Using the convolution identity (m,n) =
P

d|m,n '(d), we get

T(c;N) =
X

m,n6N

(m,n)p
mn

cmcn =
X

d6N

'(d)
d

x2
d,

with xd :=
P

m6N/d
cmdp

m
·
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satisfying ⌦(m; t) 6 � log2(3t) + C

p
log2 N (1 6 t 6 N).

Using the convolution identity (m,n) =
P

d|m,n '(d), we get

T(c;N) =
X

m,n6N

(m,n)p
mn

cmcn =
X

d6N

'(d)
d

x2
d,

with xd :=
P

m6N/d
cmdp

m
·

Let � 2]0, 1[ be an absolue constant. For all y, z 2]�, 1] and suitable c = c(�),
we may write xd 6 L(N)c/2Ud with

Ud 6

8
>>>><

>>>>:

X

m6N/d

y⌦(md)z⌦(md,d)

p
m(log N)↵ log y(log 2d)↵ log z

if d 6
p

N ,

X

m6N/d

y⌦(md)z⌦(md,N/d)

p
m(log N)↵ log y(log 2N/d)↵ log z

if
p

N < d 6 N .
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Proof of Theorem 5 for r = 1. Given c 2 (R+)N , we define

M(N ;�) =
X

m6N

cm�(m).

Let us put

Sk(N) :=
1

p� 1

X

�6=�0

|S(N ;�)|k (k > 0), M4(N) :=
1

p� 1

X

�6=�0

|M(N ;�)|4.

Applying Hölder’s inequality, we get

kck1 ⌧
1

p� 1

����
X

�6=�0

S(N ;�)M(N ;�)
���� 6 S1(N)1/2S2(N)1/4M4(N)1/4.
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Let us put

Sk(N) :=
1

p� 1

X

�6=�0

|S(N ;�)|k (k > 0), M4(N) :=
1

p� 1

X

�6=�0

|M(N ;�)|4.

Applying Hölder’s inequality, we get

kck1 ⌧
1

p� 1

����
X

�6=�0

S(N ;�)M(N ;�)
���� 6 S1(N)1/2S2(N)1/4M4(N)1/4.

Orthogonality relations yield that S2(N) ⌧ N and M4(N) ⌧ E(c;N). By
choosing c optimally, we deduce

S1(N) � kck21
E(c;N)1/2N1/2

� N1/2

E
1/2
N

·
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Thank you for your attention !


