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At the Amalfi conference in 1989:

Theorem : (Conrey and Ghosh)
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Conrey and Ghosh conjecture: 1992

Conrey and Gonek conjecture: 1998



Keating and Snaith formula:

g1 = 1 g2 = 2 g3 = 42 g4 = 24024

g5 = 701149020
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Note that each term has a total of |A| |B| singularities; but the sum is analytic .



Conjecture (C, Farmer, Keating, Rubinstein, Snaith)
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RMT analogue

This matches perfectly with the recipe!
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Conrey, Iwaniec, Soundararajan proved a sixth moment  
estimate for Dirichlet L-functions which found the  
full 9th degree polynomial above.

Nathan Ng proved that the sixth moment of zeta with 
all lower order terms can be obtained from precise  
information about the shifted divisor problem.

Chandee and Li obtained the leading order term (the 24024) 
assuming RH for the 8th moment of this family.



There is interest in how new main terms enter the 
picture in moment problems as the order of the moment grows.  
Classically we can do the second moment of zeta by diagonal  
analysis; but the fourth moment requires shifted convolution sums. 

For averages of quadratic L-functions one uses diagonal analysis  
for the first and second moment and then Soundararajan’s Poisson  
formula for quadratic characters for the third moment. New main terms  
arise from the “square” values of k after using Poisson. 

For averaging cusp form L-functions at the center via the Peterson  
formula one initially uses only the diagonal terms at the start; then  
Kowalski, Michel and Vanderkaam show how to use parts of the  
Kloosterman sum to obtain some off-diagonal contributions; further  
investigation leads to off-off-diagonal contributions to the main term. 

In the asymptotic large sieve applications of Conrey, Iwaniec and  
Soundararajan (eg for the sixth moment of Dirichlet L-functions)  
the final main terms seem to be located in a remote part of the complex  
plane, far from other contributing singularities. 

In Zhang and Diaconu using multiple Dirichlet series found a polar term at 3/4!

Combinatorics of main terms



Moments of long 
Dirichlet polynomials
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We can often rewrite this as 

The off-diagonal piece is 
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The case of t-aspect for  
Ramanujan tau L-function 
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How does one average the moments of a cusp form L-function in t-aspect?

The shifted convolutions play a role.
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S(X,1) for 1< X < 10000



uniformly for H ⌧ X1/2
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T(X;H) for X = 5000; 1< H < 100
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So, it must be the case that 

for X � T 2
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The case of zeta
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Diaconis - Gamburd formula
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Conjecture

Sandro Bettin assumes the recipe and proves this.
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Keating, Rodgers, Roddity-Gershon, Rudnick formula

If m < N then 

By the functional equation this also works for (k-1)N , m < kN.

It’s not so clear what the formula looks like when N < m < 2n.
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Keating, Rodgers, Roddity-Gershon, Rudnick formula

Ik(m;N) is equal to

the number of k ⇥ k matrices

with non-negative integer entries at

most N in size whose rows are

weakly increasing, columns

are weakly decreasing

and whose anti-diagonal sums to kN �m

(Gelfond-Tsetlin patterns)
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Conjecture: Keating, Rodgers, Roddity-Gershon, Rudnick;  
Rodgers, Soundararajan

Lester has made progress on the divisor problem in short intervals. 
Keating, Rodgers, Roddity-Gershon, Rudnick prove the function field  
analogue of this.
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Conjecture: Keating, Rodgers, Roddity-Gershon, Rudnick;  
Rodgers, Soundararajan

Rodgers and Soundararajan prove this for delta<c<2-delta (assuming GRH). 
Keating, Rodgers, Roddity-Gershon, Rudnick prove a function  
field analogue of this.
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Back to moments  
of zeta
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The delta method of  
Duke, Friedlander  
and Iwaniec (1993) can  
provide the needed  
conjecture.

Bill Duke John Friedlander
Henryk 
Iwaniec

Divisor correlations



Delta method conjecture

The poles of this Dirichlet series can be determined by replacing the exponential 
by Dirichlet characters and finding the coefficient of the trivial character (i.e. zeta).
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This relies on the identity  

where

and
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Thus, we see the `one-swap’ terms arise from 
the standard shifted divisor problem.

What is the RMT analogue of the input from the  
            (averaged over h) delta method?

Where are the rest of the terms from the recipe???



What if r > 2?

Say ` < r < `+ 1

To find the higher-swap terms we will need  
convolutions of shifted divisors …



Conrey - Keating approach
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Ỳ

j=1

0

@
X

mj ,nj

⌧Aj (mj)⌧Bj (nj)p
mn

1

A ˆ 
� T

2⇡
log

m1 . . .m`

n1 . . . n`

�

⇤

8
<

:

M1m1 = N1n1 + h1

. . .
M`m` = N`n` + h`

9
=

;

Note that 

ˆ 
� T

2⇡
log

m1 . . .m`

n1 . . . n`

�
⇠ ˆ (

T

2⇡

X hi

niNi
)

Split A and B up into A = A1 [ · · · [A` and B = B1 [ · · · [B`. Then

subject to

Q
mi,

Q
ni  T r

and

which controls the ranges of the sums.



h⌧A(m)⌧B(n)i(⇤)m=u

⇠ 1

M

1X

q=1

rq(h)h⌧A(m)e(mN/q)im=uh⌧B(n)e(nM/q)in=uN
M

Delta method conjecture with general linear constraint
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The poles of this Dirichlet series can be determined by replacing the exponential 
by Dirichlet characters and finding the coefficient of the trivial character (i.e. zeta).
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Connecting divisor correlations and the recipe

where U(`) denotes a set of cardinality ` with precisely one element from each

of A1, . . . , A` and similarly V (`) denotes a set of cardinality ` with precisely one

element from each of B1, . . . , B` .



If we sum this over all the ways to split up A and B we  
get what the recipe predicts times a factor

But this is the number of automorphisms of the *-system.

Automorphisms

`!2`2k�2`
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We can use this approach to discover a formula for �k(c), c > 1.
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It is a linear combination of the functions 

where ⌘ is the fractional part of c
and the products are for 1  i, j  c



Wooley has pointed out the connection with counting 
points on varieties and Manin’s idea of counting points on  
certain varieties by counting points on a stratified set of 
subvarieties; this idea may be relevant here. 

Trevor Wooley
Y. I.Manin



Manin stratification



We can see an example already from the case k=2. We expect that 

is a good approximation to zeta(s)^2 when X >>T^2.
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d(m)d(m+ h) ̂(hT/m)

But the analysis of 

averaged over h fails to reveal  a large main term of size X/T^2 
as well as a secondary main term that reflects the change in behavior 
as X passes T^2. 
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There is a closer analogy between moments of zeta and averages 
of characteristic polynomials than just that the main terms agree once  
we insert the arithmetic factor. 

In a shifted moment of zeta we let the arithmetic factors go to 1 
and we replace zeta(1+x) by z(x). The shift alpha for zeta becomes 
exp(alpha) in RMT. Finally N becomes t/(2 pi). At that point ALL of  
the main terms agree.

It stands to reason that we can learn something by carefully 
analyzing all of the pieces from both points of view. 

And, if we regard the matrix size N in RMT as the infinite prime 
it stands to reason that we should investigate carefully what happens 
with the finite primes as well. 



The same circle of ideas works for averages of ratios 
of zeta-functions and characteristic polynomials. 
In particular, using ratios, we can revisit the  
Bogomolny-Keating papers on  
      
`Hardy-Littlewood implies GUE’  

on a similar footing as this work. 

GUE



RMT problems

1. Find (simple) exact formulas for                   for m>N?

2. Do the                    satisfy a Painleve?

3. What is the RMT version of CK V?

4. Does the answer to 3 lead to a recursion formula for  

5. Can we find the analogue of                         for O(N) and USp(2N)?

6. Does 5 lead to a formulation of CK V for moments in other families?

Ik(m;N)

Ik(m;N)

Ik(m;N) ?

Ik(m;N)



Function field problems

1. Can we do pair correlation over function fields? 

2. Can we reproduce any of KRRR for fixed q?

3. Analogue of CK I-V for function fields?

4. Analogue of divisors in short intervals and in arithmetic progressions  
    for other families?



Number field problems

1. Do Rodgers-Soundararajan with shifts and with power savings.

2. What is the precise connection between the answer to 1 and  
     the moment polynomials?

Work out the sizes (asymptotics?) and  
the relationship between these averages for various lambda and  
ranges of T and X. When X > T^2 is it best to average  
over h first, possibly with Voronoi (see Jutila, Ivic)?  
Connections with Manin stratification.)
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4. Extend Nathan Ng’s work to rigorously obtain averages 
of long Dirichlet polynomials with general divisor coefficients.  

5. Asymptotics of 10th moment of L-functions in cusp form families
6. Rigorously derive n-correlation conjecture in a range [0,2]  
      from H-L conjectures

S�(X;T ) :=
X
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2and



FRG Project

A newly funded NSF project with PIs 

Conrey, Iwaniec, Keating, Soundararajan, Wooley

and senior scientists

Brad Rodgers and Caroline Turnage-Butterbaugh

will be devoted to understanding these questions. If you are interested in 
this project send me email at 

conrey@aimath.org

with subject line  

FRG

mailto:conrey@aimath.org


The End


