On irregularities of distribution

of binary sequences

relative to arithmetic progressions

Cécile Dartyge (Institut Élie Cartan, Université Lorraine)
joint work with Katalin Gyarmati and András Sárközy

Measures of pseudorandomness

Let $E_{N}=\left(e_{1}, \ldots, e_{N}\right) \in\{-1,1\}^{N}$.
Definition 1 (Mauduit and Sárközy 1996) The well-distribution measure of the sequence E_{N} is

$$
W\left(E_{N}\right)=\max _{a, b, t}\left|\sum_{j=0}^{t-1} e_{a j+b}\right|
$$

where $a, b, t \in \mathbb{N}$ and $1 \leq a \leq a+(t-1) b \leq N$. For $k \in \mathbb{N}, k \leq N$, the correlation measure of order k of the sequence E_{N} is defined by

$$
C_{k}\left(E_{N}\right)=\max _{M, D}\left|\sum_{n=1}^{M} e_{n+d_{1}} e_{n+d_{2}} \cdots e_{n+d_{k}}\right|
$$

where $D=\left(d_{1}, \ldots, d_{k}\right)$ with $0 \leq d_{1}<d_{2}<\ldots<d_{k} \leq N-M$.

A sequence E_{N} is said to possess strong pseudorandom properties if $W\left(E_{N}\right)$ and $C_{k}\left(E_{N}\right)$ are small (at least for small k).

Some Examples

The Legendre symbol

$$
E_{p-1}=\left(\left(\frac{1}{p}\right),\left(\frac{2}{p}\right), \ldots,\left(\frac{p-1}{p}\right)\right)
$$

This sequence has good PR properties (Mauduit and Sárközy)

$$
W\left(E_{p}\right) \leq 9 \sqrt{p} \log p, C_{k}\left(E_{p}\right) \leq 9 \sqrt{p} \log p
$$

The Thue-Morse sequence : $T_{N}=\left(t_{0}, t_{1}, \ldots, t_{N}\right)$ with $t_{n}=(-1)^{s_{2}(n)}$ where $s_{2}(n)$ is the sum of the digits of n in basis 2 .

Gelfond: $W\left(T_{N}\right) \leq 2(1+\sqrt{3}) N^{(\log 3 / \log 4)}$ for all $N \in \mathbb{N}$
Mauduit and Sárközy : $C_{2}\left(T_{N}\right) \geq N / 12$ for $N \geq 5$.

Weighted distribution measure

In some applications, we need binary sequences such that their "short" subsequences also satisfy good PR properties.

$$
E_{N}(n, M)=\left(e_{n+1}, e_{n+2}, \ldots, e_{n+M}\right) \quad \text { for } 0 \leq n<n+M \leq N
$$

Definition 2 (Gyarmati, Sárközy, D)

For $0 \leq \alpha \leq 1 / 2$, the weighted α-well-distribution measure of E_{N} is defined by

$$
W_{\alpha}\left(E_{N}\right)=\max _{0 \leq n<n+M} M^{-\alpha} W\left(E_{N}(n, M)\right)
$$

Remark: $W_{0}\left(E_{N}\right)=W\left(E_{N}\right)$.

Irregularity results

Theorem 1 (Roth 1964) If $N \in \mathbb{N}, E_{N} \in\{-1,1\}^{N}$, then there exist $a, t, q \in \mathbb{N}$, $1 \leq a \leq a+(t-1) q \leq N$ and $q \leq \sqrt{N}$ such that :

$$
\left|\sum_{j=0}^{t-1} e_{a+j q}\right|>c_{1} N^{1 / 4}
$$

for some absolute constant $c_{1}>0$.

The " $N^{1 / 4 "}$ " in Theorem 1 is optimal.
Theorem 2 (Matoušek and Spencer (1996)) There exists a sequence $E_{N} \in\{-1,1\}^{N}$ such that for all a, t, q with $1 \leq a \leq a+(t-1) q \leq N$, we have

$$
\left|\sum_{j=0}^{t-1} e_{a+j q}\right|<c_{2} N^{1 / 4}
$$

with some absolute c_{2}.

For $0 \leq \alpha \leq 1 / 2$, we write

$$
m_{\alpha}(N)=\min _{E_{N} \in\{-1,1\}^{N}} W_{\alpha}\left(E_{N}\right)
$$

Theorem 1 implies : $m_{\alpha}(N) \gg N^{1 / 4-\alpha}$ for $\alpha \in[0,1 / 2]$.

Conjecture 1 For $0 \leq \alpha \leq 1 / 2$, we have :

$$
N^{1 / 4-\alpha / 2} \ll m_{\alpha}(N) \ll N^{1 / 4-\alpha / 2}
$$

The case $\alpha=0$ is a consequence of Theorem 1 and Theorem 2 .

Bounds for random binary sequences

Theorem 3 (Gyarmati, Sárközy, D)

Let $\alpha \in[0,1 / 2]$. Then for all $\varepsilon>0$, there exists $N_{0}=N_{0}(\varepsilon), \delta=\delta(\varepsilon)$ such that if $N>N_{0}$ then for a random sequence $E_{N} \in\{-1,1\}^{N}$ (that is chosen with probability $1 / 2^{N}$), we have

$$
P\left(\delta N^{1 / 2-\alpha}<W_{\alpha}\left(E_{N}\right)<6 N^{1 / 2-\alpha} \sqrt{\log N}\right)>1-\varepsilon .
$$

The case $\alpha=0$ was done by Cassaigne, Mauduit and Sárközy, and sharpened by Alon, Kohayakawa, Mauduit, Moreira and Rödl, and more recently by Aistleitner.

Proof of the upper bound of $W_{\alpha}\left(E_{N}\right)$ in Theorem 3

We start by applying

$$
P\left(\left(\max _{\ldots}{ }^{\prime \prime} .^{\prime \prime}\right) \geq " \ldots{ }^{\prime \prime}\right) \leq \sum_{\ldots} P\left({ }^{\prime \prime} \ldots{ }^{\prime \prime} \geq{ }^{\prime \prime} \ldots{ }^{\prime \prime}\right)
$$

We find:
$P\left(W_{\alpha}\left(E_{N}\right)>6 \frac{\sqrt{N \log N}}{N^{\alpha}}\right) \leq \sum_{\substack{0 \leq n \leq N-M \\ a+(t-1) b \leq M}} P\left(\left|\sum_{j=0}^{t-1} e_{n+a+j b}\right|>6 \sqrt{N \log N}\left(\frac{M}{N}\right)^{\alpha}\right)$

Lemma 1 (Chernoff's inequality, particular case) Let X_{1}, \ldots, X_{k} be independant random variables with $P\left(X_{i}=1\right)-1 / 2=P\left(X_{i}=-1\right)$. Then for $A>0$, we have

$$
P\left(\left|\sum_{i=1}^{k} X_{i}\right| \geq A\right) \leq 2 e^{-A^{2} / 2 k}
$$

We apply this lemma with $X_{i}=e_{n+a+(i-1) b}$.

Special sequences

The Rudin-Shapiro sequence

We consider a trigonometric polynomial

$$
P\left(e^{i \theta}\right)=\sum_{n=1}^{N} \varepsilon_{n} e^{2 i \pi n \theta}, \quad \varepsilon_{n}= \pm 1
$$

Parseval :

$$
N=\sum_{n=1}^{N}\left|\varepsilon_{n}\right|^{2}=\int_{0}^{1}\left|P\left(e^{t}\right)\right|^{2} d t \leq\|P\|_{\infty}^{2}
$$

Does there exists $\left(\varepsilon_{n}\right)$ such that $\|P\|_{\infty} \leq A \sqrt{N}$ for all N ? This question was solved independently by Rudin (1958) and Shapiro (1951) : $P_{N}=\sum_{n=0} r_{n} X^{n}$, where $\left(r_{n}\right)_{n \geq 0}$ is the Rudin-Shapiro sequence.

The Rudin-Shapiro sequence
$R_{N}=\left(r_{0}, \ldots, r_{N-1}\right)$, with $r_{0}=1, r_{2 n}=r_{n}$ and $r_{2 n+1}=-r_{n}$.
Mauduit and Sárközy : $W\left(R_{N}\right) \leq 2(2+\sqrt{2}) \sqrt{N}$ for all $N \in \mathbb{N}$.

Theorem 4 (K. Gyarmati, A. Sárközy, D)

$$
W_{\alpha}\left(R_{N}\right)<40 N^{1 / 2-\alpha}
$$

In particular, $W_{1 / 2}\left(R_{N}\right)<40$.

Remark : $C_{2}\left(R_{N}\right)>N / 6$ for $N \geq 4$ (Mauduit and Sárközy).

The Legendre symbol

For $p \leq N$ we consider the sequence E_{N}^{p} defined by

$$
e_{n}=\left\{\begin{array}{rr}
\left(\frac{n}{p}\right) & \text { for }(n, p)=1 \\
1 & \text { if } p \mid n
\end{array}\right.
$$

Theorem 5 For every $\alpha \in[0,1 / 2]$ there exists $N_{0}=N_{0}(\alpha)$ such that for all $N>N_{0}$ the exists $\left.p \in] \frac{N^{\frac{2(1-\alpha)}{3}}}{2}, N^{\frac{2(1-\alpha)}{3}}\right]$ such that

$$
W_{\alpha}\left(E_{N}^{p}\right)<c N^{\frac{1-\alpha}{3}},
$$

for some absolute c.

Main ingredient of the proof of Theorem 5

Lemma 2 (Montgomery and Vaughan)

There exists an absolute constant c such that for $N \in \mathbb{N}, N \geq 2$ there is $p \in] N / 2, N$] satisfying for all $X \in Z, Y \in \mathbb{N}$

$$
\left|\sum_{n=X+1}^{X+Y}\left(\frac{n}{p}\right)\right|<c \sqrt{p}
$$

For $0<\alpha \leq 1 / 2$ we can improve further Theorem 5 by applying Burgess inequality

Theorem 6 (Gyarmati, Sárközy, D) For all $0 \leq \alpha \leq 1 / 2$ there is $N_{1}=N_{1}(\alpha)$ such that for $N>N_{1}$ and p satisfying

$$
\frac{1}{2} N^{\frac{8(1-\alpha)}{12-5 \alpha}}(\log N)^{-\frac{8 \alpha}{12-5 \alpha}}<p \leq N^{\frac{8(1-\alpha)}{12-5 \alpha}}(\log N)^{-\frac{8 \alpha}{12-5 \alpha}}
$$

and Lemma 2, we have

$$
W_{\alpha}\left(E_{N}^{p}\right)<c N^{\frac{(1-\alpha)(4-5 \alpha)}{12-5 \alpha}}(\log N)^{-\frac{8 \alpha}{12-5 \alpha}}
$$

For $\alpha=1 / 2$ this gives

$$
W_{1 / 2}\left(E_{N}^{p}\right)<c N^{3 / 38}(\log N)^{8 / 19}
$$

Proof of Theorem 6

For $H \in \mathbb{N}$ we define

$$
d(p, H)=\max _{X \in \mathbb{Z}}\left|\sum_{n=X+1}^{X+H}\left(\frac{n}{p}\right)\right|
$$

We need to bound

$$
\max _{H \leq N} H^{-\alpha} d(p, H) .
$$

Lemma 3 (Burgess inequality for the Legendre symbol) For p prime, $H, r \in \mathbb{N}$ we have for some absolute constant c

$$
\max _{X \in \mathbb{Z}}\left|\sum_{n=X+1}^{X+H}\left(\frac{n}{p}\right)\right|<c H^{1-\frac{1}{r}} p^{\frac{r+1}{4 r^{2}}}(\log p)^{1 / r}
$$

Lower bound for W_{α} for the Legendre symbol construction

Theorem 7 (Gyarmati, Sárközy, D) For all $0 \leq \alpha \leq 1 / 2$, we have

$$
W_{\alpha}\left(E_{p-1}^{p}\right)>\frac{1}{10} p^{1 / 2-\alpha}
$$

Main ingredient of the proof of Theorem 7

Lemma 4 (Winterhof). For any $\mathcal{D} \subset \mathbb{F}_{p}$ and any multiplicative character $\chi \neq \chi_{0}$ modulo p we have

$$
\sum_{a \in \mathbb{F}_{p}}\left|\sum_{x \in \mathcal{D}} \chi(x+a)\right|^{2}=p|\mathcal{D}|-|\mathcal{D}|^{2}
$$

