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Measures of pseudorandomness
— _ N
LetEN—(el,...,eN)E{ 1,1} :

Definition 1 (Mauduit and Sarkézy 1996) The well-distribution measure of the sequence E
IS

t—1
W(EN) = max| Y eqjtp|
a,b,t =0

where a,b,t € Nand1 <a<a—+ (t—1)b < N. Fork € N, kK < N, the correlation
measure of order k of the sequence En is defined by

M
Cp(En) = r]1\n4a5<| Y entdientds Entdyl
’ n=1

where D = (d1,...,d) withO <dj <dp < ...<dp <N — M.

A sequence Fp is said to possess strong pseudorandom properties if W (E) and Cr.(E )
are small (at least for small k).



Some Examples

The Legendre symbol

e ()-)(57)

This sequence has good PR properties (Mauduit and Sarkézy)

W(Ep) <9y/plogp, Cr(Ep) < 9¢/plogp.

The Thue-Morse sequence : Ty = (to,t1,...,tx) with tn = (—1)52(") where s5(n)
is the sum of the digits of n in basis 2.

Gelfond : W (Ty) < 2(1 4 /3)N(1093/1094) for o]l N € N

Mauduit and Sarkézy : Co>(T) > N/12 for N > 5.



Weighted distribution measure

In some applications, we need binary sequences such that their "short” subsequences also satisfy

good PR properties.

Ex(n,M) = (6n—|—17€n—|—27 - '7€n+M) forO<n<n+4+M<N.
Definition 2 (Gyarmati, Sarkézy, D)
For 0 < a < 1/2, the weighted a-well-distribution measure of Ep; is defined by

En) = M W (E M)).
Wa(EN) ogﬂiﬁM W(EN(n,M))

Remark : Wo(EN) = W(EN).



Irregularity results

Theorem 1 (Roth 1964) If N € N, En € {—1,1YN, then there exist a,t,q € N,
1<a<a+4+ (t—1)g < N and g < /N such that :

t—1

‘ Z ea—l—jq‘ > ClN1/4,
j=0

for some absolute constant c1 > 0.

The " N1/4" in Theorem 1 is optimal.

Theorem 2 (Matousek and Spencer (1996)) There exists a sequence Ep; € {—1, 1} such
that for all a,t,q withl < a <a-+ (t —1)g < N, we have

t—1

1/4
‘ > €a+jq‘ < N4,
7=0
with some absolute c».



For 0 < a < 1/2, we write

o N) = ' Wa E .
Mma(N) e x (EN)

Theorem 1 implies : ma(N) > N1/4=2 for o € [0, 1/2].

Conjecture 1 For 0 < a < 1/2, we have :

The case &« = O is a consequence of Theorem 1 and Theorem 2.



Bounds for random binary sequences

Theorem 3 (Gyarmati, Sarkézy, D)

Let « € [0,1/2]. Then for all € > 0O, there exists No = Ng(g), 6 = (&) such that

if N > Ngq then for a random sequence Eny € {—1,1}!V (that is chosen with probability
1/2N), we have

P(SNY/2= « W (En) < 6NY/27%/log N) > 1 — .

The case @ = 0 was done by Cassaigne, Mauduit and Sarkozy, and sharpened by Alon,
Kohayakawa, Mauduit, Moreira and R&dl, and more recently by Aistleitner.



Proof of the upper bound of W (E ) in Theorem 3

We start by applying

P((max' ") =" ) S3PCS 20,

We find :
Nlog N =1 M\

P (WQ(EN) > 6\/ - > < Z P ) Z en—l—a—l-jb‘ > 6+ Nlog N (—) :

N 0<n<N-—M =0 N

a+(t—1)b<M
Lemma 1 (Chernoff’s inequality, particular case) Let X1, ..., X} be independant random
variables with P(X; = 1) — 1/2 = P(X; = —1). Then for A > 0, we have
k 2
P(| Y Xi| > A) <2e7 47728
1=1

We apply this lemma with X, = €nd-ad(i—1)b-



Special sequences



The Rudin-Shapiro sequence

We consider a trigonometric polynomial

N
P = > enei™m en = £1.
n=1

Parseval :
N 2 1 t\ |2 2
N=3 lenl?= [ IP(HPdt <[P
n=1

Does there exists (ep,) such that ||Pllocc < AV N for all N7 This question was solved
independently by Rudin (1958) and Shapiro (1951) : Py = >_,,—0 m™n X", where (71),,>0
is the Rudin-Shapiro sequence.



The Rudin-Shapiro sequence
Ry = (r0,...,7N—1), withrg = 1, ro, = rn and 10,41 = —7Tn.
Mauduit and Séarkézy : W (Ry) < 2(2 4+ v/2)V/'N for all N € N.

Theorem 4 (K. Gyarmati, A. Sarkézy, D)

Wao(Ry) < 40N1/2-a
In particular, W1 ;5(Ry) < 40.

Remark : C>(Ry) > N/6 for N > 4 (Mauduit and Sérkozy).



The Legendre symbol

For p < IN we consider the sequence E% defined by

n —
o — <5> for (n,p) =1
1 it p|n

Theorem 5 For every a € [0, 1/2] there exists No = Ng(«) such that for all N > Ng
the exists p € ] %, N 3 such that

11—«
Wa(ELR) < cN 3,

for some absolute c.



Main ingredient of the proof of Theorem 5
Lemma 2 (Montgomery and Vaughan)

There exists an absolute constant ¢ such that for N € N, N > 2 there isp €|N/2, N]
satisfying forall X € Z,Y € N

X+y /.
Z (—) } < ¢c/p.
n=X-+1 \P



For 0 < a < 1/2 we can improve further Theorem 5 by applying Burgess inequality

Theorem 6 (Gyarmati, Sarkézy, D) For all 0 < o < 1/2 there is N1 = N1 («) such that
for N > N1 and p satisfying

1 8(1—a) Sa 8(1—a) 8a

5]\712 5a (log N) I2-5a < p < N1I2-5a (log N) I2-5a
and Lemma 2, we have

(1-a)(4—5a) __ 8a
Wa(E ) <cN 12-5a  (log N) 12-5«

For o = 1/2 this gives

W1 2(ER) < eN3/38(log N)8/19



Proof of Theorem 6

For H € N we define

X+H n
w.m=nz ¥ (7|

n=X+1 \P

We need to bound

max H %d(p, H).
max (p, H)
Lemma 3 (Burgess inequality for the Legendre symbol) For p prime, H,r € N we have for

%0

n=X+1 \P

some absolute constant c

T

+1
2 (log p) /7.

11
max <cH

XeZ




Lower bound for Wy, for the Legendre symbol construction

Theorem 7 (Gyarmati, Sarkézy, D) For all 0 < o < 1/2, we have

1 _

Main ingredient of the proof of Theorem 7

Lemma 4 (Winterhof). For any D C Fy; and any multiplicative character x # xo modulo

p we have

> | x@+a)|° = pD| - D]

aclk, xz€D



