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The cubic characters are given by the cubic residue symbols.
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≡ a(p−1)/3 mod p.

The cubic characters χp, χp take values in µ3 ⊆ C∗ by fixing an
isomorphism between the cube roots of unity in (Z/pZ)∗ with µ3.

Extending by multiplicativity, we get the cubic characters over Q.



Cubic characters over Q

Let a(n) is the number of primitive characters of conductor n
co-prime to 3. Then,

G (s) =
∞∑
d=1

a(n)

ns
=

∏
p≡1 (mod 3)

(
1 +

2

ps

)
,



Cubic characters over Q
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d=1
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ns
=
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,

and
#C(X ) ∼ c3X

where

c3 =
11
√

3

20π

∏
p≡1 (mod 3)

(p + 2)(p − 1)

p(p + 1)
.



Cubic Dirichlet twists

For a primitive cubic character χ of conductor h, let

L(s, χ) =
∞∑
n=1

χ(n)n−s

be the Dirichlet L-function. It has analytic continuation for all
s ∈ C, and functional equation

Λ(s, χ) =
G (χ)√

h
Λ(1− s, χ),

where

Λ(s, χ) =
(π
h

)−s/2
Γ(s/2)L(s, χ)

and G (χ) is the Gauss sum

G (χ) =
∑

a (mod h)

χ(a)e
(a
h

)
, e(x) = e2πix .
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The family of cubic Dirichlet twists is a unitary family.



Moments of cubic Dirichlet twists

Using the “recipe” of Conrey, Farmer, Keating, Rubinstein and
Snaith, one can obtain the more precise conjecture〈

L(1/2, χ)kL(1/2, χ)
`
〉
X
∼

gk,`ak,`
k!`!

Pk,`(logX ),

where Pk,`(X ) is a monic polynomial of degree k`, and the
arithmetic factor ak,` depends on the family.
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Using the “recipe” of Conrey, Farmer, Keating, Rubinstein and
Snaith, one can obtain the more precise conjecture〈

L(1/2, χ)kL(1/2, χ)
`
〉
X
∼

gk,`ak,`
k!`!

Pk,`(logX ),

where Pk,`(X ) is a monic polynomial of degree k`, and the
arithmetic factor ak,` depends on the family.

See “Conjectures for moments of cubic twists of elliptic curves
L-functions” by David, Lalin and Nam, where we also give a
formula for the coefficient of (logX )k`−1.



First moment of cubic Dirichlet twists

Theorem
(Baier and Young, 2010)
Let w : (0,∞)→ R be a smooth compactly supported function.
Then ∑

χ∈C(X )

L(1/2, χ)w
( q

X
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for some explicit constant c > 0.
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Theorem
(Baier and Young, 2010)
Let w : (0,∞)→ R be a smooth compactly supported function.
Then ∑

χ∈C(X )

L(1/2, χ)w
( q

X

)
= cŵ(0)X +

(
X 37/38+ε

)
.

for some explicit constant c > 0.

This is the case k = 1, ` = 0, and k` = 0, which gives a
polynomial of degree 0 when dividing by #C(X ).



Moments of quadratic Dirichlet twists

For the case of quadratic characters over Q, the first moment was
computed by Jutila, the second and third moments by
Soundararajan, and the fourth moment by Shen under GRH (July
2, 2019).

Over function fields, the first fourth moments were computed by
Florea, and the results over function fields improve the number
fields results (better error terms, a secondary term for the first
moment, and more terms of the polynomial P4(logX ) for the
fourth moment.



Moments of quadratic Dirichlet twists

For the case of quadratic characters over Q, the first moment was
computed by Jutila, the second and third moments by
Soundararajan, and the fourth moment by Shen under GRH (July
2, 2019).

Over function fields, the first fourth moments were computed by
Florea, and the results over function fields improve the number
fields results (better error terms, a secondary term for the first
moment, and more terms of the polynomial P4(logX ) for the
fourth moment.



Cubic characters over Q(
√
−3)

Let CK be the set of primitive cubic characters over K = Q(
√
−3)

of conductor prime to 3, and CK (X ) be the subset of those with
conductor smaller or equal to X .



Cubic characters over Q(
√
−3)

Let CK be the set of primitive cubic characters over K = Q(
√
−3)

of conductor prime to 3, and CK (X ) be the subset of those with
conductor smaller or equal to X .

The cubic characters are given by the cubic residue symbols. For
every prime π ∈ OK , we define

χπ(a) =
( a
π

)
3
≡ a(N(π)−1)/3 mod π.

There are 2 primitive cubic characters of conductor π, χπ and
χπ = χ2

π = χπ2 , and this choice is canonical.



Cubic characters over Q(
√
−3)

Let CK be the set of primitive cubic characters over K = Q(
√
−3)

of conductor prime to 3, and CK (X ) be the subset of those with
conductor smaller or equal to X .

The cubic characters are given by the cubic residue symbols. For
every prime π ∈ OK , we define

χπ(a) =
( a
π

)
3
≡ a(N(π)−1)/3 mod π.

There are 2 primitive cubic characters of conductor π, χπ and
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Extending by multiplicativity, we get all character modulo d ∈ OK .
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Moments of cubic Dirichlet twists over Q(
√
−3)

#CK (X ) ∼ a1X logX + a0X .

Theorem
(Luo, 2004) As X →∞ and for some explicit A > 0,∑

c∈OK
c square-free
c≡1 (mod 9)

L(1/2, χc)e (−N(c)/X ) = AX + O
(
X 21/22+ε

)
.

This give a polynomial of degree zero when dividing by
#L(X ) ∼ cX , which is density zero sub-family of CK (X ).



Number fields and function fields
Let q power of a prime, Fq finite field with q elements.

Number Fields Function Fields

Q ↔ Fq(T )

Z ↔ Fq[T ]

p positive prime ↔ P(T ) monic irreducible polynomial

|n| = |Z/nZ| = n ∈ Z≥0 ↔ |F (T )| = |Fq[T ]/(F (T ))| = qdeg F

ζ(s) =
∞∑
n=1

1

ns
↔ ζq(s) =

∑
F∈Fq [T ]
F monic

1

|F |s
= (1− qq−s)−1

Riemann Hypothesis ??? ↔ Riemann Hypothesis !!!



Moments of cubic Dirichlet twists over function fields

Let Fq be a finite field with q elements, and let χ be a primitive
cubic Dirichlet character over Fq[T ] with conductor h. Let L(s, χ)
be the L-function

L(s, χ) =
∑

f ∈Fq [T ]

χ(f )

qs deg(f )
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Let Fq be a finite field with q elements, and let χ be a primitive
cubic Dirichlet character over Fq[T ] with conductor h. Let L(s, χ)
be the L-function

L(s, χ) =
∑
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χ(f )

qs deg(f )
=

deg(h)−1∑
d=0

1

qds

∑
f ∈Fq [T ]
deg(F )=d

χ(f )

by the orthogonality relations.

We also use the notation

L(u, χ) =
∑

f ∈Fq [T ]

χ(f )udeg(f ),

such that L(q−s , χ) = L(s, χ).
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Moments of cubic Dirichlet twists

Let Cq be the set of primitive cubic Dirichlet characters over Fq[T ],
and Cq(d) the subset of characters with conductor of degree d .

The first moment is

1

#Cq(d)

∑
χ∈Cq(d)

L(1/2, χ) =
1

#Cq(d)

∑
χ∈Cq(d)

L(q−1/2, χ).

Again, the sum is real even if L(1/2, χ) ∈ C.



Kummer case: q ≡ 1 mod 3

Kummer case: Then µ3 ⊆ F∗q.

There are 2 characters modulo P for each irreducible polynomial
P ∈ Fq[T ] given by the cubic residue symbol

χP(a) ≡ a(q
deg(P)−1)/3 (modP), a ∈ Fq[T ], (a,P) = 1,

and
#Cq(d) ∼ a1q

dd + a0q
d .



Theorem
(D, Florea, Lalin, 2019)∑
χ∈Cq(d)
χ|F∗q=χ3

L(1/2, χ) =
∑

d1+d2=d
d1+2d2≡1 (mod 3)

∑
deg F1=d1,deg F2=d2

F1,F2 square-free
(F1,F2)=1

L(1/2, χF1χF2
)

= c1,K dqd + c0,K qd + O

(
q
d
(

1+
√
7

4
+ε

))
.

where 1+
√
7

4 ≈ 0.9114378 · · · > 0.875 = 7
8 .



Theorem
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)

= c1,K dqd + c0,K qd + O

(
q
d
(

1+
√
7

4
+ε

))
.

where 1+
√
7

4 ≈ 0.9114378 · · · > 0.875 = 7
8 .

Since χ restricts to a fixed non-trivial character of F∗q, the
characters are odd, and the finite field L-function is the function
field L-function. For odd characters, d = g + 1.



Non-Kummer case: q ≡ 2 mod 3

Non-Kummer case: Then µ3 6⊆ F∗q.

There are 2 characters modulo P for each irreducible polynomial
P ∈ Fq[T ] of even degree given by the cubic residue symbol

χP(a) ≡ a(q
deg(P)−1)/3 (modP), a ∈ Fq[T ], (a,P) = 1.

from the work of Bary-Soroker and Meisner, and

#Cq(d) ∼ a0q
d .



Families of non-Kummer cubic twists

Lemma
Suppose q ≡ 2 (mod 3). Then, for d even,∑
χ∈Cq(d)

L(1/2, χ) =
∑

d1+d2=d

∑
F1,F2∈Fq [T ]

F1,F2 square-free, coprime
P|deg(Fi )⇒deg(P) even
deg(F1)=d1,deg(F2)=d2

L(1/2, χF1χF2)

=
∑

F∈Fq2 [T ] square-free

P|F⇒P 6∈Fq [T ]
deg(F )=d/2

L(1/2, χF )

Key: We count the primitive cubic characters over Fq2 [T ] which
restrict to a primitive cubic characters over Fq[T ].
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Approximate functional equation
Let χ be a primitive cubic character of modulus h. Then

L (u, χ) =
∑

f ∈Fq [T ]

χ(f )udeg(f ) =
∑

f ∈Fq [T ]
deg(f )≤deg(h)−1

χ(f )udeg(f ).

Proposition (Approximate Functional Equation)

Let χ be a primitive even cubic character of modulus h.Then,

L
(

1
√
q
, χ

)
=

∑
f ∈Fq [T ]
deg(f )≤A

χ(f )

qdeg(f )/2
+ ω(χ)

∑
f ∈Fq [T ]

deg(f )≤deg(h)−1−A

χ(f )

qdeg(f )/2

+
1

1−√q
∑

f ∈Fq [T ]
deg(f )=A+1

χ(f )

qdeg(f )/2
+

ω(χ)

1−√q
∑

f ∈Fq [T ]
deg(F )≤deg(h)−A

χ(f )

qdeg(f )/2
.

as principal sum + dual sum

.
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Approximate functional equation

The sign of the functional equation relating L (u, χ) to L (1/qu, χ)
is given by

ω(χ) = q− deg(h)/2G (χ),

where G (χ) is the cubic Gauss sum of the primitive character χ,
i.e.

G (χ) =
∑

a (mod h)

χ(a) eq
(a
h

)
∈ C∗

of size |G (χ)| = qdeg(h)/2.



Gauss sums

The exponential function eq was introduced by Carlitz and Hayes.
For any a ∈ Fq((1/T )), we define

eq(a) = exp

(
2πi trFq/Fp

(a1)

p

)
∈ µp ⊆ C∗,

with a1 the coefficient of 1/T in the Laurent expansion of a.

We then have that

• eq(a + b) = eq(a)eq(b)

• eq(a) = 1 for a ∈ Fq[T ]

• eq(a/h) = eq(b/h) for a, b, h ∈ Fq[T ] with a ≡ b (mod h).
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Generalized cubic Gauss sums
Recall that we are considering the characters over Fq2 [T ], sieving
out those which are not defined over Fq[T ], and those which are
not primitive.
Notice that q2 ≡ 1 (mod 3).

Let q ≡ 1 mod 3. Let χF be the cubic residue symbol defined
above for any F ∈ Fq[T ]. This is a character of modulus F , but
not necessarily primitive. We define the generalized cubic Gauss
sum by

Gq(V ,F ) =
∑

u (modF )

χF (u) eq

(
uV

F

)
.

If (a,F ) = 1, we have

Gq(aV ,F ) = χF (a)Gq(V ,F ).
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Generalized cubic Gauss sums

Suppose that q ≡ 1 (mod 3).

(i) If (F1,F2) = 1, then

Gq(V ,F1F2) = χF1(F2)2Gq(V ,F1)Gq(V ,F2)

= Gq(VF2,F1)Gq(V ,F2).

(ii) If V = V1P
α where P - V1, then

Gq(V ,P i ) =



0 if i ≤ α and i 6≡ 0 (mod 3),
φ(P i ) if i ≤ α and i ≡ 0 (mod 3),
−|P|i−1q if i = α + 1 and i ≡ 0 (mod 3),

ε(χP i )ω(χP i )χP i (V−11 )|P|i−
1
2

q

if i = α + 1 and i 6≡ 0 (mod 3),
0 if i ≥ α + 2,
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Main term of the principal sum

When f is a cube

χF (f ) =

{
1 (F , f ) = 1

0 (F , f ) 6= 1
,

and this gives the main term of the principal sum

Scube =
∑

deg(f )≤A/3

1

q3 deg(f )/2

∑
F∈Fq [T ] square-free

(F ,f )=1
deg F=d

P|F⇒2|deg(P)

2ω(F ).
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Main term of the principal sum
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F
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degP even
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deg F=d

P|F⇒2|deg(P)

2ω(F ) =
∑

deg F=d

af (F ) =
1

2πi
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Gf (u)

ud
du

u
,

and move from small circle |u| = q−2 to large circle |u| = q−1/2−ε.

Since u = q−s , it is moving from Re(s) = 2 to Re(s) = 1/2 + ε.



Main term of the principal sum

Let G f (u) =
∑
F

af (F )udeg(F ) =
∏

degP even
P-f

(
1 + u2 degP

)
,

where af (F ) is the number of primitive cubic characters of
conductor F with (F , f ) = 1.

By Perron’s formula,∑
F∈Fq [T ] square-free

(F ,f )=1
deg F=d

P|F⇒2|deg(P)

2ω(F ) =
∑

deg F=d

af (F ) =
1

2πi

∮
|u|=q−2

Gf (u)

ud
du

u
,

and move from small circle |u| = q−2 to large circle |u| = q−1/2−ε.

Since u = q−s , it is moving from Re(s) = 2 to Re(s) = 1/2 + ε.



Main term of the principal sum

Let G f (u) =
∑
F

af (F )udeg(F ) =
∏

degP even
P-f

(
1 + u2 degP

)
,

where af (F ) is the number of primitive cubic characters of
conductor F with (F , f ) = 1.

By Perron’s formula,∑
F∈Fq [T ] square-free

(F ,f )=1
deg F=d

P|F⇒2|deg(P)

2ω(F ) =
∑

deg F=d

af (F ) =
1

2πi

∮
|u|=q−2

Gf (u)

ud
du

u
,

and move from small circle |u| = q−2 to large circle |u| = q−1/2−ε.

Since u = q−s , it is moving from Re(s) = 2 to Re(s) = 1/2 + ε.



Main term of the principal sum

Let G f (u) =
∑
F

af (F )udeg(F ) =
∏

degP even
P-f

(
1 + u2 degP

)
,

where af (F ) is the number of primitive cubic characters of
conductor F with (F , f ) = 1.

By Perron’s formula,∑
F∈Fq [T ] square-free

(F ,f )=1
deg F=d

P|F⇒2|deg(P)

2ω(F ) =
∑

deg F=d

af (F ) =
1

2πi

∮
|u|=q−2

Gf (u)

ud
du

u
,

and move from small circle |u| = q−2 to large circle |u| = q−1/2−ε.

Since u = q−s , it is moving from Re(s) = 2 to Re(s) = 1/2 + ε.



Perron’s formula

 
  |u|=q-2

  |u|=q-4/3

  |u|=q-σ

s=2s=4/3s=σs=0



Main term of the principal sum

1

2πi

∮
|u|=q−2

Gf (u)

ud
du

u

=
1

2πi

∮
|u|=q−2

∏
2|deg(P),P-f

(
1 + 2udeg(P)

)
ud

du

u

=
1

2πi

∮
|u|=q−2

∏
2|degP,P|f

(
1 + 2udeg(P)

)−1Zq(u)F (u)

ud
du

u

= F (1/q)qd
∏

2|degP,P|f

(
1 + 2q− deg(P)

)−1
+ O

(
q(1/2+ε)d

)
where Zq(u) = (1− qu)−1 has a simple pole at u = q−1 with
residue −1/q, and d is even.
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Main term of the principal sum

Then, the contribution due to f cubes to principal sum is
asymptotic to

Scube = F (1/q)qd
∑

deg(f )≤A/3

1

q3 deg(f )/2

∏
2|degP,P|f

(
1 + 2q− deg(P)

)−1
,

where the number of characters is asymptotic to F (1/q)qd .
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du

u
,
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)−1
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(
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Main term of the principal sum

Using Perron’s formula

∑
deg(f )≤A/3

=
1

2πi

∮
|u|=q−2

Zq(u/q3/2)H(u)

uA/3(u − 1)

du

u
.

Moving the integral from u = q−2 to u = q3/2−ε, we encounter
the poles at u = 1 = q0 and u = q1/2, and the contribution from f
a cube is

F (1/q)H(1)qd + q1/2F (1/q)H(q1/2)qd−A/6 + ET

Key point: Since A ≤ d , to get an error term of size q5d/6, we
have to cancel the qd−A/6 with some other contribution. We
believe that there could be a secondary term of size q5d/6.
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Dual sum

After Poisson summation and various reductions, we have to study

Sdual = q−
d
2

∑
deg(f )≤d−A−1

1

qdeg(f )/2

∑
F∈Fq2 [T ] square-free

deg(F )=d/2
(F ,f )=1

P|F⇒P 6∈Fq [T ]

Gq2(f ,F ) + OT

= q−
d
2

∑
deg(f )≤d−A−1

1

qdeg(f )/2

∑
D∈Fq [T ]

deg(D)≤d/2
(D,f )=1

µq(D)Gq2(f ,D)×

×
∑

F∈Fq2 [T ]

deg(F )=d/2−deg(D)
(F ,Df )=1

Gq2(fD,F ) + OT .
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deg(D)≤d/2
(D,f )=1

µq(D)Gq2(f ,D)×

×
∑
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deg(F )=d/2−deg(D)
(F ,Df )=1

Gq2(fD,F ) + OT .



Dual sum: Evaluating sums of cubic Gauss sums

To study ∑
deg F=d

Gq2(f ,F ) and
∑

deg F=d
(F ,f )=1

Gq2(f ,F ),

we need the analytic properties of the generating series

Ψ(f , u) =
∑
F

Gq2(f ,F )udeg F and Ψ̃(f , u) =
∑

(F ,f )=1

Gq2(f ,F )udeg F .

Recall that the Gauss sums are NOT multiplicative. By the work of
Kubota and Patterson, the generating series above correspond to
forms on the metaplectic group, and one can deduce a functional
equation from there.



Dual sum: Evaluating sums of cubic Gauss sums

Let q ≡ 1 mod 3. In the case of function fields, it follows from the
work of Kazhdan and Patterson [1984], Hoffstein [1992] and
Patterson [2007] that

ψ(f , i , u) =
∑

deg(F )≡i (mod 3)

Gq(f ,F )udeg(P) =
uiP(f , i , u3)

1− q4u3

where P(f , i , x) is a polynomial of x-degree ≤ b(1 + deg f − i)/3c.
It follows that

Ψ(f , u) = (1− u3q3)
3∑

i=1

ψ(f , i , u)

is analytic for all u, except for a simple pole at u = q−4/3.



Dual sum: Evaluating sums of cubic Gauss sums

We are interested in the residue at u = q−4/3 i.e. s = 4/3. Let

ρ(f , i) = lim
u→q−4/3

(1− q4u3)u−iψ(f , i , u) = P(f , i , q−4/3).

Let π be a prime such that π - f . Then,

• Periodicity Theorem ρ(f π3, i) = ρ(f , i).

• ρ(f π2, i) = 0.

• ρ(f π, i) = Gq(f , π)|π|−2/3q q8 deg(π)/3ρ(f , [i − 2 deg(π)]3).



Computing the residues

Lemma
Let f = f1f

2
2 f

3
3 with f1, f2 square-free and co-prime. Then,

ρ(f , i) = 0 if f2 6= 1, and for f2 = 1,

ρ(f , i) = Gq(1, f1)|f1|−2/3q q4i/3−4/3[i−2 deg(f )]3ρ(1, [i − 2 deg(π)]3).

Furthermore,

ρ(1, 0) = 1, ρ(1, 1) = τ(χ3)q, ρ(1, 2) = 0,

where τ(χ3) is the Gauss sum of the cubic character χ3 of F∗q.



Properties of the residues

Then, we can evaluate∑
deg F=d

Gq(f ,F ) =
1

2πi

∫
q−10

Ψ(f , u)

ud
du

u

= −q
4
3
(d+1)Resu=q−4/3Ψ(f , u) +

∫
|u|=q−σ

Ψ(f , u)

ud
du

u
.

For the bounds on Ψ(f , u) for |u| = q−σ for σ < 4/3, the best
that we can do is apply the Maximum Modulus Principle
(Phragmen-Lindelof) to get the convexity bound.



Convexity Bound

The trivial bound is given by |Gq(f ,F )| ≤ qdeg F/2 when
(f ,F ) = 1, and the appropriate results in the other cases.

Lemma
If 1/2 ≤ σ ≤ 3/2, and |u3 − q−4|, |u3 − q−2| > δ, then

Ψ(f , u)�δ |f |
1
2( 3

2
−σ)+ε

q .



Dual sum: From Ψ(f , u) to Ψ̃(f , u)

Recall that we defined

Ψ(f , u) =
∑
F

Gq2(f ,F )udeg F

Ψ̃(f , u) =
∑

(F ,f )=1

Gq2(f ,F )udeg F .

We know from the study of metaplectic forms that Ψ(f , u) is
analytic for all u, except for a simple pole at u = q−4/3. We want
to deduce the analytic properties of Ψ̃(f , u).



Dual sum: From Ψ(f , u) to Ψ̃(f , u)

Let f = f1f
2
2 f

3
3 with f1, f2 square-free and co-prime, and let f ∗3 be

the product of the primes dividing f3 but not dividing f1f2 Then,
Ψ̃(f , u)

=
∏
P|f1f2

(
1− (u3q2)deg(P)

)−1∑
a|f ∗3

µ(a)Gq(f1f
2
2 , a)udeg(a) ×

×
∏
P|a

(1− (u3q2)deg(P))−1 ×

×
∑
`|af1

µ(`)(u2q)deg(`)Gq(1, `)χ`(af1f
2
2 /`)Ψ(af1f

2
2 /`, u).

Then, we can compute the residue of Ψ̃(f , u) at q−4/3.

Notice that contrary to Ψ(f , u), Ψ̃(f , u) has poles at u = q−2/3

(of high multiplicity).



Dual sum: Ready for Perron’s formula
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Dual sum: After Perron’s formula

Sdual = −qd−
A
6 H(q−1/6)Zq(q−1/2)

Zq2(q−4)

+ q−d
1

2πi

∮
|u|=q−2σ

∑
deg(f )≤d−A−1

1

qdeg(f )/2
×

×
∑

D∈Fq [T ]
deg(D)≤d/2+1

(D,f )=1

µ(D)Gq2(f ,D)
Ψ̃q2(fD, u)

ud/2+1−deg(D)

du

u

+ ET

for some function H(u) which is analytic at u = q−1/6.



Cancellation between principal sum and dual sum

Scube + Sdual

= F (1/q)G (1)qd

+ q1/2F (1/q)G (q1/2)qd−A/6 − qd−A/6H(q−1/6)Zq(q−1/2)

Zq2(q−4)

+q−d
1

2πi

∮
|u|=q−2σ

∑
deg(f )≤d−A−1

1

qdeg(f )/2
×

×
∑

D∈Fq [T ]
deg(D)≤d/2+1

(D,f )=1

µ(D)Gq2(f ,D)
Ψ̃q2(fD, u)

ud/2+1−deg(D)

du

u

+ET
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+q−d
1

2πi
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deg(f )≤d−A−1

1

qdeg(f )/2
×

×
∑

D∈Fq [T ]
deg(D)≤d/2+1

(D,f )=1

µ(D)Gq2(f ,D)
Ψ̃q2(fD, u)

ud/2+1−deg(D)

du

u

+ET



Final Result

Let q ≡ 2 mod 3 and let Cq(d) be the set of primitive cubic
characters over Fq[T ] with conductor of degree d . Then,

∑
χ∈Cq(d)

L(1/2, χ) = c3q
d + O

(
q7d/8+ε

)


