Central values of additive twists of *L* functions via continued fractions

Sary Drappeau joint with Sandro Bettin (Genova)

Univ. Aix-Marseille

July 15, 2019

Central values of L-functions, non-vanishing

Some reasons for studying central values of L-functions:

- Lindelöf hypothesis: |ζ(1/2 + it)| ≪ 1 + |t|^ε? (..., Kolesnik, Huxley, Bourgain 2015, t^{13/87+ε}).
- ▶ Chowla conjecture: is $L(\chi, 1/2) \neq 0$ for χ primitive? quadratic? Results on average over χ (Balasubramanian-Murty, Iwaniec-Sarnak, Soundararajan, ...)
- ▶ Birch, Swinnerton-Dyer conjecture: E/Q elliptic curve. Count points mod p, and build L(E, s). Then L(E, 1/2) should vanish at order given by the rank of E.

Central values of L-functions, non-vanishing

Some reasons for studying central values of L-functions:

- Lindelöf hypothesis: |ζ(1/2 + it)| ≪ 1 + |t|^ε? (..., Kolesnik, Huxley, Bourgain 2015, t^{13/87+ε}).
- ▶ Chowla conjecture: is $L(\chi, 1/2) \neq 0$ for χ primitive? quadratic? Results on average over χ (Balasubramanian-Murty, Iwaniec-Sarnak, Soundararajan, ...)

Birch, Swinnerton-Dyer conjecture: E/Q elliptic curve. Count points mod p, and build L(E, s). Then L(E, 1/2) should vanish at order given by the rank of E.
 Mazur-Rubin, Stein: fix E/Q. How large does rank(E/K) get as K varies among abelian extensions of Q?

Central values of L-functions, distribution

We wish to understand these values. What is their size as complex numbers?

► Selberg:
$$\left(\frac{\log \zeta(1/2+it)}{\sqrt{\log \log T}}\right)_{t \in [T,2T]}$$
 converges to a Gaussian,
meaning $\forall R \subset \mathbb{C}$ rectangle, as $T \to \infty$,
 $\mathbb{P}_{t \in [T,2T]}\left(\frac{\log \zeta(1/2+it)}{\sqrt{\log \log T}} \in R\right) \to \mathbb{P}(\mathcal{N}_{\mathbb{C}}(0,1) \in R).$

Not much is yet proved in other families. Conjectures of Keating-Snaith. Radziwiłł-Soundararajan '17: one-sided bounds.

Central values of L-functions, distribution

We wish to understand these values. What is their size as complex numbers?

► Selberg:
$$\left(\frac{\log \zeta(1/2+it)}{\sqrt{\log \log T}}\right)_{t \in [T,2T]}$$
 converges to a Gaussian,
meaning $\forall R \subset \mathbb{C}$ rectangle, as $T \to \infty$,
 $\mathbb{P}_{t \in [T,2T]}\left(\frac{\log \zeta(1/2+it)}{\sqrt{\log \log T}} \in R\right) \to \mathbb{P}(\mathcal{N}_{\mathbb{C}}(0,1) \in R).$

Not much is yet proved in other families. Conjectures of Keating-Snaith. Radziwiłł-Soundararajan '17: one-sided bounds.

Distribution happens in the log-scale, because of multiplicativity:

$$\log \zeta(1/2 + it) \approx \sum_{p \ll t^{O(1)}} \frac{p^{-it}}{\sqrt{p}} + [\text{zeroes}].$$

Sum of terms behaving independently.

For f a holomorphic eigen-cusp form, $f(z) = \sum_{n \ge 1} a_f(n) e(nz)$. Define the twisted L-function

$$L_f(s,x) := \sum_{n \ge 1} \frac{a_f(n) e(nx)}{n^s} \qquad (\Re(s) > 1/2)$$

analytically continued to \mathbb{C} . The value $L_f(1/2, x)$ is one incarnation of modular symbols (useful *e.g.* to compute with modular forms).

For f a holomorphic eigen-cusp form, $f(z) = \sum_{n \ge 1} a_f(n) e(nz)$. Define the twisted L-function

$$L_f(s,x) := \sum_{n \ge 1} \frac{a_f(n) e(nx)}{n^s} \qquad (\Re(s) > 1/2)$$

analytically continued to \mathbb{C} . The value $L_f(1/2, x)$ is one incarnation of modular symbols (useful *e.g.* to compute with modular forms).

Conjecture (Mazur-Rubin, Stein 2015)

The values $L_f(1/2, x)$ become Gaussian distributed: for some $\sigma_{f,q} > 0$, as $q \to \infty$, when x is picked at random among rationals in (0, 1] with denominator = q,

$$\mathbb{P}\Big(\frac{L_f(1/2,x)}{\sigma_{f,q}\sqrt{\log q}} \in R\Big) \to \mathbb{P}(\mathcal{N}_{\mathbb{C}}(0,1) \in R)$$

where $R \subset \mathbb{C}$ is any fixed rectangle. First and second moment is known (Blomer-Fouvry-Kowalski-Michel-Milićević-Sawin)

$$L_f(1/2,x) := \sum_{n \ge 1} \frac{a_f(n) e(nx)}{n^{1/2}} \qquad (\Re(s) > 0).$$

What about on average over q?

 $\Omega_Q := \{x \in \mathbb{Q} \in (0,1], \operatorname{denom}(x) \leq Q\},$

$$\mathbb{E}_Q(f(x)) = \frac{1}{|\Omega_Q|} \sum_{x \in \Omega_Q} f(x).$$

$$L_f(1/2,x) := \sum_{n \ge 1} \frac{a_f(n) e(nx)}{n^{1/2}} \qquad (\Re(s) > 0).$$

What about on average over q?

$$\Omega_Q := \{x \in \mathbb{Q} \in (0,1], \operatorname{denom}(x) \leq Q\}, \qquad \mathbb{E}_Q(f(x)) = rac{1}{|\Omega_Q|} \sum_{x \in \Omega_Q} f(x).$$

Is it true that for any rectangle $R \subset \mathbb{C}$, as $Q \to \infty$,

$$\mathbb{P}_{Q}\Big(\frac{L_{f}(1/2,x)}{\sqrt{\sigma_{f}\log Q}}\in R\Big)\to \mathbb{P}(\mathcal{N}_{\mathbb{C}}(0,1)\in R)?$$

$$L_f(1/2,x) := \sum_{n \ge 1} \frac{a_f(n) e(nx)}{n^{1/2}} \qquad (\Re(s) > 0).$$

What about on average over q?

 $\Omega_Q := \{x \in \mathbb{Q} \in (0,1], \operatorname{denom}(x) \leq Q\}, \qquad \mathbb{E}_Q(f(x)) = \frac{1}{|\Omega_Q|} \sum_{x \in \Omega_Q} f(x).$

Is it true that for any rectangle $R \subset \mathbb{C}$, as $Q \to \infty$,

$$\mathbb{P}_Q\Big(rac{L_f(1/2,x)}{\sqrt{\sigma_f\log Q}}\in R\Big) o \mathbb{P}(\mathcal{N}_\mathbb{C}(0,1)\in R)?$$

Theorem (Petridis-Risager '17, Nordentoft) Yes, in general, by automorphic methods (twisted Eisenstein series, Goldfeld '97)

$$L_f(1/2,x) := \sum_{n \ge 1} \frac{a_f(n) e(nx)}{n^{1/2}} \qquad (\Re(s) > 0).$$

What about on average over q?

 $\Omega_Q := \{x \in \mathbb{Q} \in (0,1], \operatorname{denom}(x) \leq Q\}, \qquad \mathbb{E}_Q(f(x)) = \frac{1}{|\Omega_Q|} \sum_{x \in \Omega_Q} f(x).$

Is it true that for any rectangle $R \subset \mathbb{C}$, as $Q \to \infty$,

$$\mathbb{P}_Q\Big(rac{L_f(1/2,x)}{\sqrt{\sigma_f\log Q}}\in R\Big) o \mathbb{P}(\mathcal{N}_\mathbb{C}(0,1)\in R)?$$

Theorem (Petridis-Risager '17, Nordentoft) Yes, in general, by automorphic methods (twisted Eisenstein series, Goldfeld '97)

Theorem (Lee-Sun, Bettin-D.) Yes, by dynamical systems methods,

$$L_f(1/2,x) := \sum_{n \ge 1} \frac{a_f(n) e(nx)}{n^{1/2}} \qquad (\Re(s) > 0).$$

What about on average over q?

 $\Omega_Q := \{x \in \mathbb{Q} \in (0,1], \operatorname{denom}(x) \leq Q\}, \qquad \mathbb{E}_Q(f(x)) = \frac{1}{|\Omega_Q|} \sum_{x \in \Omega_Q} f(x).$

Is it true that for any rectangle $R \subset \mathbb{C}$, as $Q \to \infty$,

$$\mathbb{P}_Q\Big(rac{L_f(1/2,x)}{\sqrt{\sigma_f\log Q}}\in R\Big) o \mathbb{P}(\mathcal{N}_\mathbb{C}(0,1)\in R)?$$

Theorem (Petridis-Risager '17, Nordentoft) Yes, in general, by automorphic methods (twisted Eisenstein series, Goldfeld '97)

Theorem (Lee-Sun, Bettin-D.)

Yes, by dynamical systems methods, if f has weight 2,

$$L_f(1/2,x) := \sum_{n \ge 1} \frac{a_f(n) e(nx)}{n^{1/2}} \qquad (\Re(s) > 0).$$

What about on average over q?

 $\Omega_Q := \{x \in \mathbb{Q} \in (0,1], \operatorname{denom}(x) \leq Q\}, \qquad \mathbb{E}_Q(f(x)) = \frac{1}{|\Omega_Q|} \sum_{x \in \Omega_Q} f(x).$

Is it true that for any rectangle $R \subset \mathbb{C}$, as $Q \to \infty$,

$$\mathbb{P}_Q\Big(rac{L_f(1/2,x)}{\sqrt{\sigma_f\log Q}}\in R\Big) o \mathbb{P}(\mathcal{N}_\mathbb{C}(0,1)\in R)?$$

Theorem (Petridis-Risager '17, Nordentoft) Yes, in general, by automorphic methods (twisted Eisenstein series, Goldfeld '97)

Theorem (Lee-Sun, Bettin-D.)

Yes, by dynamical systems methods, if f has weight 2, or if f has level 1.

Additive twists - Estermann function

Non-cuspidal analogue: for $\Re(s) > 1$, au divisor function, let

$$D(s,x) := \sum_{n\geq 1} \frac{\tau(n) e(nx)}{n^s}.$$

Additive twists - Estermann function

Non-cuspidal analogue: for $\Re(s) > 1$, au divisor function, let

$$D(s,x) := \sum_{n \ge 1} \frac{\tau(n) e(nx)}{n^s}$$

Meromorphically continued to \mathbb{C} if $x \in \mathbb{Q}$. The value D(1/2, x) is linked (via orthogonality) to twisted moments of Dirichlet *L*-functions.

Additive twists - Estermann function

Non-cuspidal analogue: for $\Re(s) > 1$, au divisor function, let

$$D(s,x) := \sum_{n \ge 1} \frac{\tau(n) e(nx)}{n^s}$$

Meromorphically continued to \mathbb{C} if $x \in \mathbb{Q}$. The value D(1/2, x) is linked (via orthogonality) to twisted moments of Dirichlet *L*-functions.

Theorem (Bettin-D.) For all rectangle $R \subset \mathbb{C}$, as $Q \to \infty$, $\mathbb{P}_Q\Big(\frac{D(1/2, x)}{\sqrt{\sigma(\log Q)(\log \log Q)^3}} \in R\Big) \to \mathbb{P}(\mathcal{N}_{\mathbb{C}}(0, 1) \in R).$

All moments are known by Bettin '18 (with single average!), but don't tell about the limit law, because of few bad terms, *e.g.* $D(1/2, 1/q) \simeq q^{1/2} \log q$.

Symmetries

Abbreviate $L_f(x) := L_f(1/2, x), L_\tau(x) := D(1/2, x).$ Claim (Bettin '17)

Both functions above satisfy symmetries of the following kind $L(1 + x) = L(x), \qquad L(x) = L(1/x) + \phi_*(x)$

where ϕ_f and ϕ_{τ} are analytically nice, meaning that they can be continued to \mathbb{R} , with some regularity.

Symmetries

Abbreviate $L_f(x) := L_f(1/2, x), L_\tau(x) := D(1/2, x).$ Claim (Bettin '17)

Both functions above satisfy symmetries of the following kind $L(1 + x) = L(x), \qquad L(x) = L(1/x) + \phi_*(x)$

where ϕ_f and ϕ_{τ} are analytically nice, meaning that they can be continued to \mathbb{R} , with some regularity.

This is what Zagier calls "quantum modular forms" (some exotic examples came from quantum algebra).

Symmetries

Abbreviate $L_f(x) := L_f(1/2, x), L_\tau(x) := D(1/2, x).$ Claim (Bettin '17)

Both functions above satisfy symmetries of the following kind

L(1 + x) = L(x), $L(x) = L(1/x) + \phi_*(x)$

where ϕ_f and ϕ_{τ} are analytically nice, meaning that they can be continued to \mathbb{R} , with some regularity.

This is what Zagier calls "quantum modular forms" (some exotic examples came from quantum algebra).

The symmetries above are all one needs to get a limit law.

Let $T(x) = \{1/x\}$ be the Gauss map.

where

$$\mathcal{S}_{\phi}(x) := \phi(x) + \phi(\mathcal{T}(x)) + \dots + \phi(\mathcal{T}^{N-1}(x)),$$

and $N = N(x)$ is minimal with $\mathcal{T}^N(x) = 0$ $(N(a/q) \ll \log q).$

 $S_{\phi}(x) := \phi(x) + \phi(T(x)) + \dots + \phi(T^{N-1}(x))$ where N = N(x) minimal with $T^N(x) = 0$ $(N(a/q) \ll \log q)$.

 $S_{\phi}(x) := \phi(x) + \phi(T(x)) + \cdots + \phi(T^{N-1}(x))$

where N = N(x) minimal with $T^N(x) = 0$ ($N(a/q) \ll \log q$). The map T is ergodic, exponentially mixing: terms far apart in the sum behave independently.

 $S_{\phi}(x) := \phi(x) + \phi(T(x)) + \cdots + \phi(T^{N-1}(x))$

where N = N(x) minimal with $T^N(x) = 0$ ($N(a/q) \ll \log q$). The map T is ergodic, exponentially mixing: terms far apart in the sum behave independently.

Pick $x \in \Omega_Q$ randomly, then we expect

$$S_{\phi}(x) \approx \phi(X_1) + \cdots + \phi(X_N)$$

 $S_{\phi}(x) := \phi(x) + \phi(T(x)) + \cdots + \phi(T^{N-1}(x))$

where N = N(x) minimal with $T^N(x) = 0$ ($N(a/q) \ll \log q$). The map T is ergodic, exponentially mixing: terms far apart in the sum behave independently.

Pick $x \in \Omega_Q$ randomly, then we expect

$$S_{\phi}(x) \approx \phi(X_1) + \cdots + \phi(X_N)$$

X_j iid according to dx/(1+x)log 2 (Gauss, Khintchine, Wirsing, Kuzmin...)

 $S_{\phi}(x) := \phi(x) + \phi(T(x)) + \cdots + \phi(T^{N-1}(x))$

where N = N(x) minimal with $T^N(x) = 0$ ($N(a/q) \ll \log q$). The map T is ergodic, exponentially mixing: terms far apart in the sum behave independently.

Pick $x \in \Omega_Q$ randomly, then we expect

$$S_{\phi}(x) \approx \phi(X_1) + \cdots + \phi(X_N)$$

- ► X_j iid according to dx/(1+x)log 2 (Gauss, Khintchine, Wirsing, Kuzmin...)
- ► *N* is distributed according to a normal, mean $N_{\mu} := \frac{12 \log 2}{\pi^2} \log Q$ and variance $\approx \log Q$ (Heilbronn, ..., Hensley 1994).

 $S_{\phi}(x) := \phi(x) + \phi(T(x)) + \cdots + \phi(T^{N-1}(x))$

where N = N(x) minimal with $T^N(x) = 0$ ($N(a/q) \ll \log q$). The map T is ergodic, exponentially mixing: terms far apart in the sum behave independently.

Pick $x \in \Omega_Q$ randomly, then we expect

$$S_{\phi}(x) \approx \phi(X_1) + \cdots + \phi(X_N)$$

- ► X_j iid according to dx/((1+x)log 2) (Gauss, Khintchine, Wirsing, Kuzmin...)
- ► *N* is distributed according to a normal, mean $N_{\mu} := \frac{12 \log 2}{\pi^2} \log Q$ and variance $\approx \log Q$ (Heilbronn, ..., Hensley 1994).

$$\begin{split} \mathbb{E}_{\mathcal{Q}}(\mathrm{e}^{it\mathcal{S}_{\phi}(x)}) &\stackrel{?}{\approx} \mathbb{E}(\mathrm{e}^{it\phi(X)})^{\mathcal{N}_{\mu}} = \exp\left\{\mathcal{N}_{\mu}\log(1 + \mathbb{E}(\mathrm{e}^{it\phi(X)} - 1))\right\} \\ &\approx \exp\left\{\mathcal{N}_{\mu}\mathbb{E}(\mathrm{e}^{it\phi(X)} - 1)\right\} \end{split}$$

$$\mathbb{E}_{Q}(\mathrm{e}^{itS_{\phi}(x)}) \stackrel{?}{\approx} \exp\left\{N_{\mu}\mathbb{E}(\mathrm{e}^{it\phi(X)}-1)\right\}$$

$$\mathbb{E}_{\mathcal{Q}}(\mathrm{e}^{it\mathcal{S}_{\phi}(\mathbf{x})}) \stackrel{?}{pprox} \exp\left\{ \mathcal{N}_{\mu}\mathbb{E}(\mathrm{e}^{it\phi(\mathbf{X})}-1)
ight\}$$

Theorem (Bettin-D.) Let $\alpha, \kappa > 0$. Suppose $\phi : [0,1] \to \mathbb{C}$ is κ -Hölder on $(\frac{1}{n+1}, \frac{1}{n}), \forall n \ge 1$, and suppose $\int_{[0,1]} |\phi|^{\alpha} < \infty$.

$$\mathbb{E}_{\boldsymbol{Q}}(\mathrm{e}^{it\mathcal{S}_{\phi}(\mathbf{X})}) \stackrel{?}{pprox} \exp\left\{N_{\mu}\mathbb{E}(\mathrm{e}^{it\phi(\mathbf{X})}-1)
ight\}$$

Theorem (Bettin-D.) Let $\alpha, \kappa > 0$. Suppose $\phi : [0,1] \to \mathbb{C}$ is κ -Hölder on $(\frac{1}{n+1}, \frac{1}{n}), \forall n \ge 1$, and suppose $\int_{[0,1]} |\phi|^{\alpha} < \infty$. For some $\delta > 0$ and small $t \in \mathbb{R}$,

$$\mathbb{E}_Q(\mathrm{e}^{itS_\phi(x)}) = \exp\left\{\frac{12\log 2}{\pi^2}(\log Q)I_\phi(t) + O((t^2 + t^{2\alpha})\log Q + Q^{-\delta})\right\}$$

where $I_{\phi}(t) = \int_0^1 (e^{it\phi(x)} - 1) \frac{dx}{(1+x)\log 2}$.

$$\mathbb{E}_{\boldsymbol{Q}}(\mathrm{e}^{it\mathcal{S}_{\phi}(\mathsf{X})}) \stackrel{?}{pprox} \exp\left\{N_{\mu}\mathbb{E}(\mathrm{e}^{it\phi(\mathsf{X})}-1)
ight\}$$

Theorem (Bettin-D.) Let $\alpha, \kappa > 0$. Suppose $\phi : [0, 1] \to \mathbb{C}$ is κ -Hölder on $(\frac{1}{n+1}, \frac{1}{n}), \forall n \ge 1$, and suppose $\int_{[0,1]} |\phi|^{\alpha} < \infty$. For some $\delta > 0$ and small $t \in \mathbb{R}$,

$$\mathbb{E}_{Q}(e^{itS_{\phi}(x)}) = \exp\left\{\frac{12\log 2}{\pi^{2}}(\log Q)I_{\phi}(t) + O((t^{2} + t^{2\alpha})\log Q + Q^{-\delta})\right\}$$

where
$$I_{\phi}(t) = \int_{0}^{1} (e^{it\phi(x)} - 1) \frac{dx}{(1+x)\log 2}$$
. Moreover, if $\alpha > 1$,
 $\mathbb{E}_{Q}(e^{itS_{\phi}(x)}) = \exp\left\{\frac{12\log 2}{\pi^{2}}(\log Q)(I_{\phi}(t) + C_{\phi}t^{2}) + O((t^{3}+t^{1+\alpha})\log Q + Q^{-\delta})\right\}$

Previous work by Vallée '02 and Baladi-Vallée '05 $(\phi(x) = f(\lfloor 1/x \rfloor) \ll |\log 1/x|$, Gaussian). In the continuous case: many works (..., Aaronson-Denker). Limit law is not necessarily Gaussian: stable law (Levy, Cauchy, ...)

Case when f is a cuspidal eigen-cusp form.

$$L_f(x) := \sum_{n \ge 1} \frac{a_f(n) e(nx)}{n^{1/2}}.$$

Case when f is a cuspidal eigen-cusp form.

$$L_f(x) := \sum_{n\geq 1} \frac{a_f(n) \mathrm{e}(nx)}{n^{1/2}}.$$

$$L_f(x) = L_f(1/x) + \phi(x),$$

Here ϕ is $(1 - \varepsilon)$ -Hölder on \mathbb{R} and bounded.

Case when f is a cuspidal eigen-cusp form.

$$L_f(x) := \sum_{n\geq 1} \frac{a_f(n)\mathbf{e}(nx)}{n^{1/2}}.$$

$$L_f(x) = L_f(1/x) + \phi(x),$$

Here ϕ is $(1 - \varepsilon)$ -Hölder on \mathbb{R} and bounded.

$$egin{aligned} &I_{\phi}(t)+C_{\phi}t^2=\,\int_0^1(\mathrm{e}^{it\phi(x)}-1)\,\mathrm{d}\mu(x)+C_{\phi}t^2\ &=i\mu t-rac{1}{2}\sigma^2t^2+O(t^3). \end{aligned}$$

In fact $\mu = 0$ and σ is related to the Petersson norm of f (not seen from dynamics!).

Case when f is a cuspidal eigen-cusp form.

$$L_f(x) := \sum_{n\geq 1} \frac{a_f(n)\mathbf{e}(nx)}{n^{1/2}}.$$

$$L_f(x) = L_f(1/x) + \phi(x),$$

Here ϕ is $(1 - \varepsilon)$ -Hölder on \mathbb{R} and bounded.

$$egin{aligned} &I_{\phi}(t)+C_{\phi}t^2 = \ \int_0^1 (\mathrm{e}^{it\phi(x)}-1)\,\mathrm{d}\mu(x)+C_{\phi}t^2\ &=i\mu t-rac{1}{2}\sigma^2t^2+O(t^3). \end{aligned}$$

In fact $\mu = 0$ and σ is related to the Petersson norm of f (not seen from dynamics!). This implies the Gaussian behaviour with variance $\sigma^2 \log Q$.

Case of the Estermann function.

$$L_{\tau}(x) := \sum_{n \ge 1} \frac{\tau(n) \mathrm{e}(nx)}{n^{1/2}}.$$

Case of the Estermann function.

$$L_{\tau}(x) := \sum_{n \ge 1} \frac{\tau(n) \mathrm{e}(nx)}{n^{1/2}}$$

$$L_{\tau}(x) = L_{\tau}(1/x) + \phi(x),$$

Now ϕ is $(\frac{1}{2} - \varepsilon)$ -Hölder on $\mathbb{R} \setminus \mathbb{Z}$ and not bounded! By Bettin '16 : $\phi(x) \sim cx^{-1/2} \log x$ as $x \to 0$.

Case of the Estermann function.

$$L_{\tau}(x) := \sum_{n \ge 1} \frac{\tau(n) \mathrm{e}(nx)}{n^{1/2}}$$

$$L_{\tau}(x) = L_{\tau}(1/x) + \phi(x),$$

Now ϕ is $(\frac{1}{2} - \varepsilon)$ -Hölder on $\mathbb{R} \setminus \mathbb{Z}$ and not bounded! By Bettin '16 : $\phi(x) \sim cx^{-1/2} \log x$ as $x \to 0$.

$$\begin{split} I_{\phi}(t) &= \int_{0}^{1} (\mathrm{e}^{it\phi(x)} - 1) \, \mathrm{d}\mu(x) \\ &= i\mu t - \frac{1}{2}\sigma^{2}t^{2}(\log t)^{3} + o(t^{2}(\log t)^{3}) \end{split}$$

In fact $\mu = 0$ and $\sigma = \pi$.

Case of the Estermann function.

$$L_{\tau}(x) := \sum_{n \ge 1} \frac{\tau(n) \mathrm{e}(nx)}{n^{1/2}}$$

$$L_{\tau}(x) = L_{\tau}(1/x) + \phi(x),$$

Now ϕ is $(\frac{1}{2} - \varepsilon)$ -Hölder on $\mathbb{R} \setminus \mathbb{Z}$ and not bounded! By Bettin '16 : $\phi(x) \sim cx^{-1/2} \log x$ as $x \to 0$.

$$egin{aligned} &I_{\phi}(t) = \ \int_{0}^{1} (\mathrm{e}^{it\phi(x)} - 1) \, \mathsf{d} \mu(x) \ &= i \mu t - rac{1}{2} \sigma^2 t^2 (\log t)^3 + o(t^2 (\log t)^3) \end{aligned}$$

In fact $\mu = 0$ and $\sigma = \pi$. This implies the Gaussian behaviour with variance $\sigma^2 \log Q(\log \log Q)^3$.

The law is not in general Gaussian: stable laws.

The law is not in general Gaussian: stable laws. Example: sum of continued fractions coefficients.

$$\Sigma(x) := \sum_{j=1}^{r} a_j(x)$$
 if $x = \frac{1}{a_1 + \frac{1}{a_2 + \cdots}}$

The law is not in general Gaussian: stable laws. Example: sum of continued fractions coefficients.

$$\Sigma(x) := \sum_{j=1}^{r} a_j(x)$$
 if $x = \frac{1}{a_1 + \frac{1}{a_2 + \cdots}}$

Theorem (Bettin-D.)

As
$$Q \to \infty$$
, $\Sigma(x) = (1 + o(1))\frac{12}{\pi^2} \log Q \log \log Q$ a.s. for $x \in \Omega_Q$.
(Proof: take $\phi(x) = \lfloor 1/x \rfloor$, then $I_{\phi}(t) \sim ct \log t$)

The law is not in general Gaussian: stable laws. Example: sum of continued fractions coefficients.

$$\Sigma(x) := \sum_{j=1}^{r} a_j(x)$$
 if $x = \frac{1}{a_1 + \frac{1}{a_2 + \cdots}}$

Theorem (Bettin-D.)

As $Q \to \infty$, $\Sigma(x) = (1 + o(1))\frac{12}{\pi^2} \log Q \log \log Q$ a.s. for $x \in \Omega_Q$. (Proof: take $\phi(x) = \lfloor 1/x \rfloor$, then $I_{\phi}(t) \sim ct \log t$) This applies to a class of knot invariants, the Kashaev's invariants (Zagier's modularity conjecture '08).

Theorem (Bettin-D.)

For
$$x \in \mathbb{Q}$$
, let $J(x) := \sum_{n=0}^{\infty} \prod_{r=1}^{n} |1 - e^{2\pi i r x}|^2$. Then for some $\mu > 0$,
 $\log J(x) \sim \mu \Sigma(x) \sim \mu \frac{12}{\pi^2} \log Q \log \log Q$ a.s. for $x \in \Omega_Q$.

Another application: Dedekind sums

Define the Dedekind sums:

$$s\left(\frac{a}{q}\right) := \sum_{h=1}^{q-1} \left(\left(\frac{ha}{q}\right) \right) \left(\left(\frac{h}{q}\right) \right), \qquad ((x)) := \begin{cases} \{x\} - 1/2 & (x \notin \mathbb{Z}), \\ 0 & (\text{otherwise}). \end{cases}$$

Another application: Dedekind sums

Define the Dedekind sums:

$$s\left(\frac{a}{q}\right) := \sum_{h=1}^{q-1} \left(\left(\frac{ha}{q}\right) \right) \left(\left(\frac{h}{q}\right) \right), \qquad ((x)) := \begin{cases} \{x\} - 1/2 & (x \notin \mathbb{Z}), \\ 0 & (\text{otherwise}). \end{cases}$$

Theorem (Vardi '93)
As
$$Q \to \infty$$
,

$$\mathbb{P}_Q\left(\frac{s(x)}{\log Q} \le \frac{v}{2\pi}\right) \to \frac{1}{\pi} \int_{-\infty}^{v} \frac{\mathrm{d}y}{1+y^2}$$

Achieved by Vardi '93 using trace formulas, twisted Eisenstein series...

Another application: Dedekind sums

Define the Dedekind sums:

$$s\left(\frac{a}{q}\right) := \sum_{h=1}^{q-1} \left(\left(\frac{ha}{q}\right) \right) \left(\left(\frac{h}{q}\right) \right), \qquad ((x)) := \begin{cases} \{x\} - 1/2 & (x \notin \mathbb{Z}), \\ 0 & (\text{otherwise}). \end{cases}$$

Theorem (Vardi '93) As $Q \to \infty$,

$$\mathbb{P}_Q\Big(rac{s(x)}{\log Q} \leq rac{v}{2\pi}\Big) o rac{1}{\pi}\int_{-\infty}^v rac{\mathrm{d}y}{1+y^2}$$

Achieved by Vardi '93 using trace formulas, twisted Eisenstein series... Or: by Dedekind '53, $s(x) = s(-1/x) + \phi(x)$ where $\phi(x) \approx 1/x$.

Glimpse of the proof

Following Vallée '02, Baladi-Vallée '05, express things in term of a transfer operator. This means replacing the map T (which has T' > 1) by its adjoint

$$H[f](x) = \sum_{n=1}^{\infty} \frac{1}{(n+x)^2} f\left(\frac{1}{n+x}\right).$$

Which has much nicer properties.

Glimpse of the proof

Following Vallée '02, Baladi-Vallée '05, express things in term of a transfer operator. This means replacing the map T (which has T' > 1) by its adjoint

$$H[f](x) = \sum_{n=1}^{\infty} \frac{1}{(n+x)^2} f\left(\frac{1}{n+x}\right).$$

Which has much nicer properties. More precisely, we need to study (perturbations of)

$$H_{\tau}[f](x) = \sum_{n=1}^{\infty} \frac{1}{(n+x)^{2+i\tau}} f\left(\frac{1}{n+x}\right).$$

Glimpse of the proof

Following Vallée '02, Baladi-Vallée '05, express things in term of a transfer operator. This means replacing the map T (which has T' > 1) by its adjoint

$$H[f](x) = \sum_{n=1}^{\infty} \frac{1}{(n+x)^2} f\left(\frac{1}{n+x}\right).$$

Which has much nicer properties. More precisely, we need to study (perturbations of)

$$H_{\tau}[f](x) = \sum_{n=1}^{\infty} \frac{1}{(n+x)^{2+i\tau}} f\left(\frac{1}{n+x}\right).$$

Methods of Dolgopyat '98. Main challenge is to adapt this when very little is known on ϕ .

Thanks for your attention!