Central values of additive twists of L functions via continued fractions

Sary Drappeau
joint with Sandro Bettin (Genova)

Univ. Aix-Marseille

July 15, 2019

Central values of L-functions, non-vanishing

Some reasons for studying central values of L-functions:

- Lindelöf hypothesis: $|\zeta(1 / 2+i t)| \ll 1+|t|^{\varepsilon}$? (..., Kolesnik, Huxley, Bourgain 2015, $\left.t^{13 / 87+\varepsilon}\right)$.
- Chowla conjecture: is $L(\chi, 1 / 2) \neq 0$ for χ primitive? quadratic? Results on average over χ (Balasubramanian-Murty, Iwaniec-Sarnak, Soundararajan, ...)
- Birch, Swinnerton-Dyer conjecture: E / \mathbb{Q} elliptic curve. Count points $\bmod p$, and build $L(E, s)$. Then $L(E, 1 / 2)$ should vanish at order given by the rank of E.

Central values of L-functions, non-vanishing

Some reasons for studying central values of L-functions:

- Lindelöf hypothesis: $|\zeta(1 / 2+i t)| \ll 1+|t|^{\varepsilon}$? (..., Kolesnik, Huxley, Bourgain 2015, $\left.t^{13 / 87+\varepsilon}\right)$.
- Chowla conjecture: is $L(\chi, 1 / 2) \neq 0$ for χ primitive? quadratic? Results on average over χ (Balasubramanian-Murty, Iwaniec-Sarnak, Soundararajan, ...)
- Birch, Swinnerton-Dyer conjecture: E / \mathbb{Q} elliptic curve. Count points $\bmod p$, and build $L(E, s)$. Then $L(E, 1 / 2)$ should vanish at order given by the rank of E.
Mazur-Rubin, Stein: fix E / \mathbb{Q}. How large does $\operatorname{rank}(E / K)$ get as K varies among abelian extensions of \mathbb{Q} ?

Central values of L-functions, distribution

We wish to understand these values. What is their size as complex numbers?

- Selberg: $\left(\frac{\log \zeta(1 / 2+i t)}{\sqrt{\log \log T}}\right)_{t \in[T, 2 T]}$ converges to a Gaussian, meaning $\forall R \subset \mathbb{C}$ rectangle, as $T \rightarrow \infty$,

$$
\mathbb{P}_{t \in[T, 2 T]}\left(\frac{\log \zeta(1 / 2+i t)}{\sqrt{\log \log T}} \in R\right) \rightarrow \mathbb{P}\left(\mathcal{N}_{\mathbb{C}}(0,1) \in R\right) .
$$

Not much is yet proved in other families. Conjectures of Keating-Snaith. Radziwiłł-Soundararajan '17: one-sided bounds.

Central values of L-functions, distribution

We wish to understand these values. What is their size as complex numbers?

- Selberg: $\left(\frac{\log \zeta(1 / 2+i t)}{\sqrt{\log \log T}}\right)_{t \in[T, 2 T]}$ converges to a Gaussian, meaning $\forall R \subset \mathbb{C}$ rectangle, as $T \rightarrow \infty$,

$$
\mathbb{P}_{t \in[T, 2 T]}\left(\frac{\log \zeta(1 / 2+i t)}{\sqrt{\log \log T}} \in R\right) \rightarrow \mathbb{P}\left(\mathcal{N}_{\mathbb{C}}(0,1) \in R\right)
$$

Not much is yet proved in other families. Conjectures of Keating-Snaith. Radziwiłł-Soundararajan '17: one-sided bounds.

- Distribution happens in the log-scale, because of multiplicativity:

$$
\log \zeta(1 / 2+i t) \approx \sum_{p \ll t^{o(1)}} \frac{p^{-i t}}{\sqrt{p}}+[\text { zeroes }] .
$$

Sum of terms behaving independently.

Additive twists - cuspidal case

For f a holomorphic eigen-cusp form, $f(z)=\sum_{n \geq 1} a_{f}(n) \mathrm{e}(n z)$.
Define the twisted L-function

$$
L_{f}(s, x):=\sum_{n \geq 1} \frac{a_{f}(n) \mathrm{e}(n x)}{n^{s}} \quad(\Re(s)>1 / 2)
$$

analytically continued to \mathbb{C}. The value $L_{f}(1 / 2, x)$ is one incarnation of modular symbols (useful e.g. to compute with modular forms).

Additive twists - cuspidal case

For f a holomorphic eigen-cusp form, $f(z)=\sum_{n \geq 1} a_{f}(n) \mathrm{e}(n z)$.
Define the twisted L-function

$$
L_{f}(s, x):=\sum_{n \geq 1} \frac{a_{f}(n) \mathrm{e}(n x)}{n^{s}} \quad(\Re(s)>1 / 2)
$$

analytically continued to \mathbb{C}. The value $L_{f}(1 / 2, x)$ is one incarnation of modular symbols (useful e.g. to compute with modular forms).
Conjecture (Mazur-Rubin, Stein 2015)
The values $L_{f}(1 / 2, x)$ become Gaussian distributed: for some $\sigma_{f, q}>0$, as $q \rightarrow \infty$, when x is picked at random among rationals in $(0,1]$ with denominator $=q$,

$$
\mathbb{P}\left(\frac{L_{f}(1 / 2, x)}{\sigma_{f, q} \sqrt{\log q}} \in R\right) \rightarrow \mathbb{P}\left(\mathcal{N}_{\mathbb{C}}(0,1) \in R\right)
$$

where $R \subset \mathbb{C}$ is any fixed rectangle.
First and second moment is known
(Blomer-Fouvry-Kowalski-Michel-Milićević-Sawin)

Additive twists - cuspidal case

$$
L_{f}(1 / 2, x):=\sum_{n \geq 1} \frac{a_{f}(n) \mathrm{e}(n x)}{n^{1 / 2}} \quad(\Re(s)>0) .
$$

What about on average over q ?

$$
\Omega_{Q}:=\{x \in \mathbb{Q} \in(0,1], \operatorname{denom}(x) \leq Q\}, \quad \mathbb{E}_{Q}(f(x))=\frac{1}{\left|\Omega_{Q}\right|} \sum_{x \in \Omega_{Q}} f(x)
$$

Additive twists - cuspidal case

$$
L_{f}(1 / 2, x):=\sum_{n \geq 1} \frac{a_{f}(n) \mathrm{e}(n x)}{n^{1 / 2}} \quad(\Re(s)>0) .
$$

What about on average over q ?
$\Omega_{Q}:=\{x \in \mathbb{Q} \in(0,1], \operatorname{denom}(x) \leq Q\}, \quad \mathbb{E}_{Q}(f(x))=\frac{1}{\left|\Omega_{Q}\right|} \sum_{x \in \Omega_{Q}} f(x)$.
Is it true that for any rectangle $R \subset \mathbb{C}$, as $Q \rightarrow \infty$,

$$
\mathbb{P}_{Q}\left(\frac{L_{f}(1 / 2, x)}{\sqrt{\sigma_{f} \log Q}} \in R\right) \rightarrow \mathbb{P}\left(\mathcal{N}_{\mathbb{C}}(0,1) \in R\right) ?
$$

Additive twists - cuspidal case

$$
L_{f}(1 / 2, x):=\sum_{n \geq 1} \frac{a_{f}(n) \mathrm{e}(n x)}{n^{1 / 2}} \quad(\Re(s)>0)
$$

What about on average over q ?
$\Omega_{Q}:=\{x \in \mathbb{Q} \in(0,1]$, denom $(x) \leq Q\}, \quad \mathbb{E}_{Q}(f(x))=\frac{1}{\left|\Omega_{Q}\right|} \sum_{x \in \Omega_{Q}} f(x)$.

Is it true that for any rectangle $R \subset \mathbb{C}$, as $Q \rightarrow \infty$,

$$
\mathbb{P}_{Q}\left(\frac{L_{f}(1 / 2, x)}{\sqrt{\sigma_{f} \log Q}} \in R\right) \rightarrow \mathbb{P}\left(\mathcal{N}_{\mathbb{C}}(0,1) \in R\right) ?
$$

Theorem (Petridis-Risager '17, Nordentoft)
Yes, in general, by automorphic methods (twisted Eisenstein series, Goldfeld '97)

Additive twists - cuspidal case

$$
L_{f}(1 / 2, x):=\sum_{n \geq 1} \frac{a_{f}(n) \mathrm{e}(n x)}{n^{1 / 2}} \quad(\Re(s)>0)
$$

What about on average over q ?
$\Omega_{Q}:=\{x \in \mathbb{Q} \in(0,1]$, denom $(x) \leq Q\}, \quad \mathbb{E}_{Q}(f(x))=\frac{1}{\left|\Omega_{Q}\right|} \sum_{x \in \Omega_{Q}} f(x)$.

Is it true that for any rectangle $R \subset \mathbb{C}$, as $Q \rightarrow \infty$,

$$
\mathbb{P}_{Q}\left(\frac{L_{f}(1 / 2, x)}{\sqrt{\sigma_{f} \log Q}} \in R\right) \rightarrow \mathbb{P}\left(\mathcal{N}_{\mathbb{C}}(0,1) \in R\right) ?
$$

Theorem (Petridis-Risager '17, Nordentoft)
Yes, in general, by automorphic methods (twisted Eisenstein series, Goldfeld '97)

Theorem (Lee-Sun, Bettin-D.)
Yes, by dynamical systems methods,

Additive twists - cuspidal case

$$
L_{f}(1 / 2, x):=\sum_{n \geq 1} \frac{a_{f}(n) \mathrm{e}(n x)}{n^{1 / 2}} \quad(\Re(s)>0)
$$

What about on average over q ?
$\Omega_{Q}:=\{x \in \mathbb{Q} \in(0,1]$, denom $(x) \leq Q\}, \quad \mathbb{E}_{Q}(f(x))=\frac{1}{\left|\Omega_{Q}\right|} \sum_{x \in \Omega_{Q}} f(x)$.
Is it true that for any rectangle $R \subset \mathbb{C}$, as $Q \rightarrow \infty$,

$$
\mathbb{P}_{Q}\left(\frac{L_{f}(1 / 2, x)}{\sqrt{\sigma_{f} \log Q}} \in R\right) \rightarrow \mathbb{P}\left(\mathcal{N}_{\mathbb{C}}(0,1) \in R\right) ?
$$

Theorem (Petridis-Risager '17, Nordentoft)
Yes, in general, by automorphic methods (twisted Eisenstein series, Goldfeld '97)

Theorem (Lee-Sun, Bettin-D.)
Yes, by dynamical systems methods, if f has weight 2,

Additive twists - cuspidal case

$$
L_{f}(1 / 2, x):=\sum_{n \geq 1} \frac{a_{f}(n) \mathrm{e}(n x)}{n^{1 / 2}} \quad(\Re(s)>0)
$$

What about on average over q ?
$\Omega_{Q}:=\{x \in \mathbb{Q} \in(0,1], \operatorname{denom}(x) \leq Q\}, \quad \mathbb{E}_{Q}(f(x))=\frac{1}{\left|\Omega_{Q}\right|} \sum_{x \in \Omega_{Q}} f(x)$.

Is it true that for any rectangle $R \subset \mathbb{C}$, as $Q \rightarrow \infty$,

$$
\mathbb{P}_{Q}\left(\frac{L_{f}(1 / 2, x)}{\sqrt{\sigma_{f} \log Q}} \in R\right) \rightarrow \mathbb{P}\left(\mathcal{N}_{\mathbb{C}}(0,1) \in R\right) ?
$$

Theorem (Petridis-Risager '17, Nordentoft)
Yes, in general, by automorphic methods (twisted Eisenstein series, Goldfeld '97)

Theorem (Lee-Sun, Bettin-D.)
Yes, by dynamical systems methods, if f has weight 2 , or if f has level 1.

Additive twists - Estermann function

Non-cuspidal analogue: for $\Re(s)>1, \tau$ divisor function, let

$$
D(s, x):=\sum_{n \geq 1} \frac{\tau(n) \mathrm{e}(n x)}{n^{s}}
$$

Additive twists - Estermann function

Non-cuspidal analogue: for $\Re(s)>1, \tau$ divisor function, let

$$
D(s, x):=\sum_{n \geq 1} \frac{\tau(n) \mathrm{e}(n x)}{n^{s}} .
$$

Meromorphically continued to \mathbb{C} if $x \in \mathbb{Q}$. The value $D(1 / 2, x)$ is linked (via orthogonality) to twisted moments of Dirichlet L-functions.

Additive twists - Estermann function

Non-cuspidal analogue: for $\Re(s)>1, \tau$ divisor function, let

$$
D(s, x):=\sum_{n \geq 1} \frac{\tau(n) \mathrm{e}(n x)}{n^{s}}
$$

Meromorphically continued to \mathbb{C} if $x \in \mathbb{Q}$. The value $D(1 / 2, x)$ is linked (via orthogonality) to twisted moments of Dirichlet L-functions.
Theorem (Bettin-D.)
For all rectangle $R \subset \mathbb{C}$, as $Q \rightarrow \infty$,

$$
\mathbb{P}_{Q}\left(\frac{D(1 / 2, x)}{\sqrt{\sigma(\log Q)(\log \log Q)^{3}}} \in R\right) \rightarrow \mathbb{P}\left(\mathcal{N}_{\mathbb{C}}(0,1) \in R\right) .
$$

All moments are known by Bettin '18 (with single average!), but don't tell about the limit law, because of few bad terms, e.g. $D(1 / 2,1 / q) \asymp q^{1 / 2} \log q$.

Symmetries

Abbreviate $L_{f}(x):=L_{f}(1 / 2, x), L_{\tau}(x):=D(1 / 2, x)$.
Claim (Bettin '17)
Both functions above satisfy symmetries of the following kind

$$
L(1+x)=L(x), \quad L(x)=L(1 / x)+\phi_{*}(x)
$$

where ϕ_{f} and ϕ_{τ} are analytically nice, meaning that they can be continued to \mathbb{R}, with some regularity.

Symmetries

Abbreviate $L_{f}(x):=L_{f}(1 / 2, x), L_{\tau}(x):=D(1 / 2, x)$.

Claim (Bettin '17)

Both functions above satisfy symmetries of the following kind

$$
L(1+x)=L(x), \quad L(x)=L(1 / x)+\phi_{*}(x)
$$

where ϕ_{f} and ϕ_{τ} are analytically nice, meaning that they can be continued to \mathbb{R}, with some regularity.
This is what Zagier calls "quantum modular forms" (some exotic examples came from quantum algebra).

Symmetries

Abbreviate $L_{f}(x):=L_{f}(1 / 2, x), L_{\tau}(x):=D(1 / 2, x)$.
Claim (Bettin '17)
Both functions above satisfy symmetries of the following kind

$$
L(1+x)=L(x), \quad L(x)=L(1 / x)+\phi_{*}(x)
$$

where ϕ_{f} and ϕ_{τ} are analytically nice, meaning that they can be continued to \mathbb{R}, with some regularity.
This is what Zagier calls "quantum modular forms" (some exotic examples came from quantum algebra).
The symmetries above are all one needs to get a limit law.

Heuristics and continued fractions

Let $T(x)=\{1 / x\}$ be the Gauss map.

Heuristics and continued fractions

Let $T(x)=\{1 / x\}$ be the Gauss map.

$$
\begin{aligned}
L(x) & =L(T(x))+\phi(x) \\
& =L\left(T^{2}(x)\right)+\phi(x)+\phi(T(x)) \\
& =\cdots \\
& =L(0)+S_{\phi}(x),
\end{aligned}
$$

where

$$
S_{\phi}(x):=\phi(x)+\phi(T(x))+\cdots+\phi\left(T^{N-1}(x)\right),
$$

and $N=N(x)$ is minimal with $T^{N}(x)=0(N(a / q) \ll \log q)$.

Heuristics and continued fractions

$$
S_{\phi}(x):=\phi(x)+\phi(T(x))+\cdots+\phi\left(T^{N-1}(x)\right)
$$

where $N=N(x)$ minimal with $T^{N}(x)=0(N(a / q) \ll \log q)$.

Heuristics and continued fractions

$$
S_{\phi}(x):=\phi(x)+\phi(T(x))+\cdots+\phi\left(T^{N-1}(x)\right)
$$

where $N=N(x)$ minimal with $T^{N}(x)=0(N(a / q) \ll \log q)$.
The map T is ergodic, exponentially mixing: terms far apart in the sum behave independently.

Heuristics and continued fractions

$$
S_{\phi}(x):=\phi(x)+\phi(T(x))+\cdots+\phi\left(T^{N-1}(x)\right)
$$

where $N=N(x)$ minimal with $T^{N}(x)=0(N(a / q) \ll \log q)$.
The map T is ergodic, exponentially mixing: terms far apart in the sum behave independently.
Pick $x \in \Omega_{Q}$ randomly, then we expect

$$
S_{\phi}(x) \approx \phi\left(X_{1}\right)+\cdots+\phi\left(X_{N}\right)
$$

Heuristics and continued fractions

$$
S_{\phi}(x):=\phi(x)+\phi(T(x))+\cdots+\phi\left(T^{N-1}(x)\right)
$$

where $N=N(x)$ minimal with $T^{N}(x)=0(N(a / q) \ll \log q)$.
The map T is ergodic, exponentially mixing: terms far apart in the sum behave independently.
Pick $x \in \Omega_{Q}$ randomly, then we expect

$$
S_{\phi}(x) \approx \phi\left(X_{1}\right)+\cdots+\phi\left(X_{N}\right)
$$

- X_{j} iid according to $\frac{\mathrm{d} x}{(1+x) \log 2}$ (Gauss, Khintchine, Wirsing, Kuzmin...)

Heuristics and continued fractions

$$
S_{\phi}(x):=\phi(x)+\phi(T(x))+\cdots+\phi\left(T^{N-1}(x)\right)
$$

where $N=N(x)$ minimal with $T^{N}(x)=0(N(a / q) \ll \log q)$.
The map T is ergodic, exponentially mixing: terms far apart in the sum behave independently.
Pick $x \in \Omega_{Q}$ randomly, then we expect

$$
S_{\phi}(x) \approx \phi\left(X_{1}\right)+\cdots+\phi\left(X_{N}\right)
$$

- X_{j} iid according to $\frac{\mathrm{d} x}{(1+x) \log 2}$ (Gauss, Khintchine, Wirsing, Kuzmin...)
- N is distributed according to a normal, mean $N_{\mu}:=\frac{12 \log 2}{\pi^{2}} \log Q$ and variance $\asymp \log Q$ (Heilbronn, ..., Hensley 1994).

Heuristics and continued fractions

$$
S_{\phi}(x):=\phi(x)+\phi(T(x))+\cdots+\phi\left(T^{N-1}(x)\right)
$$

where $N=N(x)$ minimal with $T^{N}(x)=0(N(a / q) \ll \log q)$.
The map T is ergodic, exponentially mixing: terms far apart in the sum behave independently.
Pick $x \in \Omega_{Q}$ randomly, then we expect

$$
S_{\phi}(x) \approx \phi\left(X_{1}\right)+\cdots+\phi\left(X_{N}\right)
$$

- X_{j} iid according to $\frac{\mathrm{d} x}{(1+x) \log 2}$ (Gauss, Khintchine, Wirsing, Kuzmin...)
- N is distributed according to a normal, mean $N_{\mu}:=\frac{12 \log 2}{\pi^{2}} \log Q$ and variance $\asymp \log Q$ (Heilbronn, ..., Hensley 1994).

$$
\begin{aligned}
\mathbb{E}_{Q}\left(\mathrm{e}^{\mathrm{i} t S_{\phi}(x)}\right) \stackrel{?}{\approx} \mathbb{E}\left(\mathrm{e}^{i t \phi(X)}\right)^{N_{\mu}} & =\exp \left\{N_{\mu} \log \left(1+\mathbb{E}\left(\mathrm{e}^{i t \phi(X)}-1\right)\right)\right\} \\
& \approx \exp \left\{N_{\mu} \mathbb{E}\left(\mathrm{e}^{i t \phi(X)}-1\right)\right\}
\end{aligned}
$$

Limit theorem for rational CF

$$
\mathbb{E}_{Q}\left(\mathrm{e}^{i t S_{\phi}(x)}\right) \stackrel{?}{\approx} \exp \left\{N_{\mu} \mathbb{E}\left(\mathrm{e}^{i t \phi(X)}-1\right)\right\}
$$

Limit theorem for rational CF

$$
\mathbb{E}_{Q}\left(\mathrm{e}^{i t S_{\phi}(x)}\right) \stackrel{?}{\approx} \exp \left\{N_{\mu} \mathbb{E}\left(\mathrm{e}^{i t \phi(X)}-1\right)\right\}
$$

Theorem (Bettin-D.)
Let $\alpha, \kappa>0$. Suppose $\phi:[0,1] \rightarrow \mathbb{C}$ is κ-Hölder on $\left(\frac{1}{n+1}, \frac{1}{n}\right), \forall n \geq 1$, and suppose $\int_{[0,1]}|\phi|^{\alpha}<\infty$.

Limit theorem for rational CF

$$
\mathbb{E}_{Q}\left(\mathrm{e}^{i t S_{\phi}(x)}\right) \stackrel{?}{\approx} \exp \left\{N_{\mu} \mathbb{E}\left(\mathrm{e}^{i t \phi(X)}-1\right)\right\}
$$

Theorem (Bettin-D.)
Let $\alpha, \kappa>0$. Suppose $\phi:[0,1] \rightarrow \mathbb{C}$ is κ-Hölder on $\left(\frac{1}{n+1}, \frac{1}{n}\right), \forall n \geq 1$, and suppose $\int_{[0,1]}|\phi|^{\alpha}<\infty$.
For some $\delta>0$ and small $t \in \mathbb{R}$,

$$
\mathbb{E}_{Q}\left(\mathrm{e}^{i t S_{\phi}(x)}\right)=\exp \left\{\frac{12 \log 2}{\pi^{2}}(\log Q) I_{\phi}(t)+O\left(\left(t^{2}+t^{2 \alpha}\right) \log Q+Q^{-\delta}\right)\right\}
$$

where $I_{\phi}(t)=\int_{0}^{1}\left(\mathrm{e}^{i t \phi(x)}-1\right) \frac{\mathrm{d} x}{(1+x) \log 2}$.

Limit theorem for rational CF

$$
\mathbb{E}_{Q}\left(\mathrm{e}^{i t S_{\phi}(x)}\right) \stackrel{?}{\sim} \exp \left\{N_{\mu} \mathbb{E}\left(\mathrm{e}^{i t \phi(X)}-1\right)\right\}
$$

Theorem (Bettin-D.)
Let $\alpha, \kappa>0$. Suppose $\phi:[0,1] \rightarrow \mathbb{C}$ is κ-Hölder on $\left(\frac{1}{n+1}, \frac{1}{n}\right), \forall n \geq 1$, and suppose $\int_{[0,1]}|\phi|^{\alpha}<\infty$.
For some $\delta>0$ and small $t \in \mathbb{R}$,

$$
\mathbb{E}_{Q}\left(\mathrm{e}^{i t S_{\phi}(x)}\right)=\exp \left\{\frac{12 \log 2}{\pi^{2}}(\log Q) I_{\phi}(t)+O\left(\left(t^{2}+t^{2 \alpha}\right) \log Q+Q^{-\delta}\right)\right\}
$$

where $I_{\phi}(t)=\int_{0}^{1}\left(\mathrm{e}^{i t \phi(x)}-1\right) \frac{\mathrm{dx}}{(1+x) \log 2}$. Moreover, if $\alpha>1$,
$\mathbb{E}_{Q}\left(\mathrm{e}^{i t S_{\phi}(x)}\right)=\exp \left\{\frac{12 \log 2}{\pi^{2}}(\log Q)\left(I_{\phi}(t)+C_{\phi} t^{2}\right)+O\left(\left(t^{3}+t^{1+\alpha}\right) \log Q+Q^{-\delta}\right)\right\}$

Previous work by Vallée '02 and Baladi-Vallée '05 $(\phi(x)=f(\lfloor 1 / x\rfloor) \ll|\log 1 / x|$, Gaussian).
In the continuous case: many works (..., Aaronson-Denker). Limit law is not necessarily Gaussian: stable law (Levy, Cauchy, ...)

Applications to additive twists (cusp case)

Case when f is a cuspidal eigen-cusp form.

$$
L_{f}(x):=\sum_{n \geq 1} \frac{a_{f}(n) \mathrm{e}(n x)}{n^{1 / 2}}
$$

Applications to additive twists (cusp case)

Case when f is a cuspidal eigen-cusp form.

$$
\begin{aligned}
L_{f}(x) & =\sum_{n \geq 1} \frac{a_{f}(n) \mathrm{e}(n x)}{n^{1 / 2}} . \\
L_{f}(x) & =L_{f}(1 / x)+\phi(x),
\end{aligned}
$$

Here ϕ is $(1-\varepsilon)$-Hölder on \mathbb{R} and bounded.

Applications to additive twists (cusp case)

Case when f is a cuspidal eigen-cusp form.

$$
\begin{aligned}
L_{f}(x) & =\sum_{n \geq 1} \frac{a_{f}(n) \mathrm{e}(n x)}{n^{1 / 2}} . \\
L_{f}(x) & =L_{f}(1 / x)+\phi(x)
\end{aligned}
$$

Here ϕ is $(1-\varepsilon)$-Hölder on \mathbb{R} and bounded.

$$
\begin{aligned}
I_{\phi}(t)+C_{\phi} t^{2} & =\int_{0}^{1}\left(\mathrm{e}^{i t \phi(x)}-1\right) \mathrm{d} \mu(x)+C_{\phi} t^{2} \\
& =i \mu t-\frac{1}{2} \sigma^{2} t^{2}+O\left(t^{3}\right)
\end{aligned}
$$

In fact $\mu=0$ and σ is related to the Petersson norm of f (not seen from dynamics!).

Applications to additive twists (cusp case)

Case when f is a cuspidal eigen-cusp form.

$$
\begin{aligned}
L_{f}(x) & =\sum_{n \geq 1} \frac{a_{f}(n) \mathrm{e}(n x)}{n^{1 / 2}} . \\
L_{f}(x) & =L_{f}(1 / x)+\phi(x)
\end{aligned}
$$

Here ϕ is $(1-\varepsilon)$-Hölder on \mathbb{R} and bounded.

$$
\begin{aligned}
I_{\phi}(t)+C_{\phi} t^{2} & =\int_{0}^{1}\left(\mathrm{e}^{i t \phi(x)}-1\right) \mathrm{d} \mu(x)+C_{\phi} t^{2} \\
& =i \mu t-\frac{1}{2} \sigma^{2} t^{2}+O\left(t^{3}\right) .
\end{aligned}
$$

In fact $\mu=0$ and σ is related to the Petersson norm of f (not seen from dynamics!).
This implies the Gaussian behaviour with variance $\sigma^{2} \log Q$.

Applications to additive twists (Estermann case)

Case of the Estermann function.

$$
L_{\tau}(x):=\sum_{n \geq 1} \frac{\tau(n) \mathrm{e}(n x)}{n^{1 / 2}}
$$

Applications to additive twists (Estermann case)

Case of the Estermann function.

$$
\begin{aligned}
& L_{\tau}(x):=\sum_{n \geq 1} \frac{\tau(n) \mathrm{e}(n x)}{n^{1 / 2}} . \\
& L_{\tau}(x)=L_{\tau}(1 / x)+\phi(x),
\end{aligned}
$$

Now ϕ is $\left(\frac{1}{2}-\varepsilon\right)$-Hölder on $\mathbb{R} \backslash \mathbb{Z}$ and not bounded! By Bettin '16: $\phi(x) \sim c x^{-1 / 2} \log x$ as $x \rightarrow 0$.

Applications to additive twists (Estermann case)

Case of the Estermann function.

$$
\begin{aligned}
& L_{\tau}(x):=\sum_{n \geq 1} \frac{\tau(n) \mathrm{e}(n x)}{n^{1 / 2}} . \\
& L_{\tau}(x)=L_{\tau}(1 / x)+\phi(x),
\end{aligned}
$$

Now ϕ is $\left(\frac{1}{2}-\varepsilon\right)$-Hölder on $\mathbb{R} \backslash \mathbb{Z}$ and not bounded! By Bettin '16: $\phi(x) \sim c x^{-1 / 2} \log x$ as $x \rightarrow 0$.

$$
\begin{aligned}
I_{\phi}(t) & =\int_{0}^{1}\left(\mathrm{e}^{i t \phi(x)}-1\right) \mathrm{d} \mu(x) \\
& =i \mu t-\frac{1}{2} \sigma^{2} t^{2}(\log t)^{3}+o\left(t^{2}(\log t)^{3}\right)
\end{aligned}
$$

In fact $\mu=0$ and $\sigma=\pi$.

Applications to additive twists (Estermann case)

Case of the Estermann function.

$$
\begin{aligned}
& L_{\tau}(x):=\sum_{n \geq 1} \frac{\tau(n) \mathrm{e}(n x)}{n^{1 / 2}} . \\
& L_{\tau}(x)=L_{\tau}(1 / x)+\phi(x),
\end{aligned}
$$

Now ϕ is $\left(\frac{1}{2}-\varepsilon\right)$-Hölder on $\mathbb{R} \backslash \mathbb{Z}$ and not bounded! By Bettin '16: $\phi(x) \sim c x^{-1 / 2} \log x$ as $x \rightarrow 0$.

$$
\begin{aligned}
I_{\phi}(t) & =\int_{0}^{1}\left(\mathrm{e}^{i t \phi(x)}-1\right) \mathrm{d} \mu(x) \\
& =i \mu t-\frac{1}{2} \sigma^{2} t^{2}(\log t)^{3}+o\left(t^{2}(\log t)^{3}\right)
\end{aligned}
$$

In fact $\mu=0$ and $\sigma=\pi$.
This implies the Gaussian behaviour with variance $\sigma^{2} \log Q(\log \log Q)^{3}$.

Applications to sum of CF coefficients

The law is not in general Gaussian: stable laws.

Applications to sum of CF coefficients

The law is not in general Gaussian: stable laws.
Example: sum of continued fractions coefficients.

$$
\Sigma(x):=\sum_{j=1}^{r} a_{j}(x) \quad \text { if } \quad x=\frac{1}{a_{1}+\frac{1}{a_{2}+\cdots}}
$$

Applications to sum of CF coefficients

The law is not in general Gaussian: stable laws.
Example: sum of continued fractions coefficients.

$$
\Sigma(x):=\sum_{j=1}^{r} a_{j}(x) \quad \text { if } \quad x=\frac{1}{a_{1}+\frac{1}{a_{2}+\cdots}}
$$

Theorem (Bettin-D.)
As $Q \rightarrow \infty, \Sigma(x)=(1+o(1)) \frac{12}{\pi^{2}} \log Q \log \log Q$ a.s. for $x \in \Omega_{Q}$. (Proof: take $\phi(x)=\lfloor 1 / x\rfloor$, then $I_{\phi}(t) \sim c t \log t$)

Applications to sum of CF coefficients

The law is not in general Gaussian: stable laws.
Example: sum of continued fractions coefficients.

$$
\Sigma(x):=\sum_{j=1}^{r} a_{j}(x) \quad \text { if } \quad x=\frac{1}{a_{1}+\frac{1}{a_{2}+\cdots}}
$$

Theorem (Bettin-D.)
As $Q \rightarrow \infty, \Sigma(x)=(1+o(1)) \frac{12}{\pi^{2}} \log Q \log \log Q$ a.s. for $x \in \Omega_{Q}$.
(Proof: take $\phi(x)=\lfloor 1 / x\rfloor$, then $I_{\phi}(t) \sim c t \log t$)
This applies to a class of knot invariants, the Kashaev's invariants
(Zagier's modularity conjecture '08).
Theorem (Bettin-D.)
For $x \in \mathbb{Q}$, let $J(x):=\sum_{n=0}^{\infty} \prod_{r=1}^{n}\left|1-\mathrm{e}^{2 \pi i r x}\right|^{2}$. Then for some $\mu>0$, $\log J(x) \sim \mu \Sigma(x) \sim \mu \frac{12}{\pi^{2}} \log Q \log \log Q \quad$ a.s. for $x \in \Omega_{Q}$.

Another application: Dedekind sums

Define the Dedekind sums:

$$
s\left(\frac{a}{q}\right):=\sum_{h=1}^{q-1}\left(\left(\frac{h a}{q}\right)\right)\left(\left(\frac{h}{q}\right)\right), \quad((x)):= \begin{cases}\{x\}-1 / 2 & (x \notin \mathbb{Z}) \\ 0 & \text { (otherwise) }\end{cases}
$$

Another application: Dedekind sums

Define the Dedekind sums:

$$
s\left(\frac{a}{q}\right):=\sum_{h=1}^{q-1}\left(\left(\frac{h a}{q}\right)\right)\left(\left(\frac{h}{q}\right)\right), \quad((x)):= \begin{cases}\{x\}-1 / 2 & (x \notin \mathbb{Z}) \\ 0 & \text { (otherwise) }\end{cases}
$$

Theorem (Vardi '93)
As $Q \rightarrow \infty$,

$$
\mathbb{P}_{Q}\left(\frac{s(x)}{\log Q} \leq \frac{v}{2 \pi}\right) \rightarrow \frac{1}{\pi} \int_{-\infty}^{v} \frac{\mathrm{~d} y}{1+y^{2}}
$$

Achieved by Vardi '93 using trace formulas, twisted Eisenstein series. . .

Another application: Dedekind sums

Define the Dedekind sums:

$$
s\left(\frac{a}{q}\right):=\sum_{h=1}^{q-1}\left(\left(\frac{h a}{q}\right)\right)\left(\left(\frac{h}{q}\right)\right), \quad((x)):= \begin{cases}\{x\}-1 / 2 & (x \notin \mathbb{Z}) \\ 0 & \text { (otherwise) }\end{cases}
$$

Theorem (Vardi '93)
As $Q \rightarrow \infty$,

$$
\mathbb{P}_{Q}\left(\frac{s(x)}{\log Q} \leq \frac{v}{2 \pi}\right) \rightarrow \frac{1}{\pi} \int_{-\infty}^{v} \frac{\mathrm{~d} y}{1+y^{2}}
$$

Achieved by Vardi '93 using trace formulas, twisted Eisenstein series... Or: by Dedekind '53, $s(x)=s(-1 / x)+\phi(x)$ where $\phi(x) \approx 1 / x$.

Glimpse of the proof

Following Vallée '02, Baladi-Vallée '05, express things in term of a transfer operator. This means replacing the map T (which has $T^{\prime}>1$) by its adjoint

$$
H[f](x)=\sum_{n=1}^{\infty} \frac{1}{(n+x)^{2}} f\left(\frac{1}{n+x}\right) .
$$

Which has much nicer properties.

Glimpse of the proof

Following Vallée '02, Baladi-Vallée '05, express things in term of a transfer operator. This means replacing the map T (which has $T^{\prime}>1$) by its adjoint

$$
H[f](x)=\sum_{n=1}^{\infty} \frac{1}{(n+x)^{2}} f\left(\frac{1}{n+x}\right) .
$$

Which has much nicer properties. More precisely, we need to study (perturbations of)

$$
H_{\tau}[f](x)=\sum_{n=1}^{\infty} \frac{1}{(n+x)^{2+i \tau}} f\left(\frac{1}{n+x}\right)
$$

Glimpse of the proof

Following Vallée ' 02 , Baladi-Vallée ' 05 , express things in term of a transfer operator. This means replacing the map T (which has $T^{\prime}>1$) by its adjoint

$$
H[f](x)=\sum_{n=1}^{\infty} \frac{1}{(n+x)^{2}} f\left(\frac{1}{n+x}\right) .
$$

Which has much nicer properties. More precisely, we need to study (perturbations of)

$$
H_{\tau}[f](x)=\sum_{n=1}^{\infty} \frac{1}{(n+x)^{2+i \tau}} f\left(\frac{1}{n+x}\right) .
$$

Methods of Dolgopyat '98. Main challenge is to adapt this when very little is known on ϕ.

Thanks for your attention!

