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Central values of L-functions, non-vanishing

Some reasons for studying central values of L-functions:
I Lindelöf hypothesis: |ζ(1/2 + it)| � 1 + |t|ε? (. . . , Kolesnik,

Huxley, Bourgain 2015, t13/87+ε).
I Chowla conjecture: is L(χ, 1/2) 6= 0 for χ primitive? quadratic?

Results on average over χ (Balasubramanian-Murty, Iwaniec-Sarnak,
Soundararajan, . . . )

I Birch, Swinnerton-Dyer conjecture: E/Q elliptic curve. Count points
mod p, and build L(E , s). Then L(E , 1/2) should vanish at order
given by the rank of E .

Mazur-Rubin, Stein: fix E/Q. How large does rank(E/K ) get as K
varies among abelian extensions of Q?
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Central values of L-functions, distribution

We wish to understand these values. What is their size as complex
numbers?
I Selberg: ( log ζ(1/2+it)√

log log T
)t∈[T ,2T ] converges to a Gaussian,

meaning ∀R ⊂ C rectangle, as T →∞,

Pt∈[T ,2T ]

(
log ζ(1/2+it)√

log log T
∈ R

)
→ P(NC(0, 1) ∈ R).

Not much is yet proved in other families. Conjectures of
Keating-Snaith. Radziwiłł-Soundararajan ’17: one-sided bounds.

I Distribution happens in the log-scale, because of multiplicativity:

log ζ(1/2 + it) ≈
∑

p�tO(1)

p−it
√
p

+ [zeroes].

Sum of terms behaving independently.
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Additive twists - cuspidal case
For f a holomorphic eigen-cusp form, f (z) =

∑
n≥1 af (n)e(nz).

Define the twisted L-function

Lf (s, x) :=
∑
n≥1

af (n)e(nx)

ns
(<(s) > 1/2)

analytically continued to C. The value Lf (1/2, x) is one incarnation of
modular symbols (useful e.g. to compute with modular forms).

Conjecture (Mazur-Rubin, Stein 2015)
The values Lf (1/2, x) become Gaussian distributed: for some σf ,q > 0,
as q →∞, when x is picked at random among rationals in (0, 1] with
denominator = q,

P
( Lf (1/2, x)

σf ,q
√

log q
∈ R

)
→ P(NC(0, 1) ∈ R)

where R ⊂ C is any fixed rectangle.
First and second moment is known
(Blomer-Fouvry-Kowalski-Michel-Milićević-Sawin)
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Additive twists - cuspidal case

Lf (1/2, x) :=
∑
n≥1

af (n)e(nx)

n1/2 (<(s) > 0).

What about on average over q?

ΩQ := {x ∈ Q ∈ (0, 1], denom(x) ≤ Q}, EQ(f (x)) =
1
|ΩQ |

∑
x∈ΩQ

f (x).

Is it true that for any rectangle R ⊂ C, as Q →∞,

PQ

(Lf (1/2, x)√
σf logQ

∈ R
)
→ P(NC(0, 1) ∈ R

)
?

Theorem (Petridis-Risager ’17, Nordentoft)
Yes, in general, by automorphic methods (twisted Eisenstein series,
Goldfeld ’97)

Theorem (Lee-Sun, Bettin-D.)
Yes, by dynamical systems methods, if f has weight 2, or if f has level 1.
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Additive twists - Estermann function

Non-cuspidal analogue: for <(s) > 1, τ divisor function, let

D(s, x) :=
∑
n≥1

τ(n)e(nx)

ns
.

Meromorphically continued to C if x ∈ Q. The value D(1/2, x) is linked
(via orthogonality) to twisted moments of Dirichlet L-functions.

Theorem (Bettin-D.)
For all rectangle R ⊂ C, as Q →∞,

PQ

( D(1/2, x)√
σ(logQ)(log logQ)3

∈ R
)
→ P(NC(0, 1) ∈ R).

All moments are known by Bettin ’18 (with single average!), but don’t
tell about the limit law, because of few bad terms, e.g.
D(1/2, 1/q) � q1/2 log q.



Additive twists - Estermann function

Non-cuspidal analogue: for <(s) > 1, τ divisor function, let

D(s, x) :=
∑
n≥1

τ(n)e(nx)

ns
.

Meromorphically continued to C if x ∈ Q. The value D(1/2, x) is linked
(via orthogonality) to twisted moments of Dirichlet L-functions.

Theorem (Bettin-D.)
For all rectangle R ⊂ C, as Q →∞,

PQ

( D(1/2, x)√
σ(logQ)(log logQ)3

∈ R
)
→ P(NC(0, 1) ∈ R).

All moments are known by Bettin ’18 (with single average!), but don’t
tell about the limit law, because of few bad terms, e.g.
D(1/2, 1/q) � q1/2 log q.



Additive twists - Estermann function

Non-cuspidal analogue: for <(s) > 1, τ divisor function, let

D(s, x) :=
∑
n≥1

τ(n)e(nx)

ns
.

Meromorphically continued to C if x ∈ Q. The value D(1/2, x) is linked
(via orthogonality) to twisted moments of Dirichlet L-functions.

Theorem (Bettin-D.)
For all rectangle R ⊂ C, as Q →∞,

PQ

( D(1/2, x)√
σ(logQ)(log logQ)3

∈ R
)
→ P(NC(0, 1) ∈ R).

All moments are known by Bettin ’18 (with single average!), but don’t
tell about the limit law, because of few bad terms, e.g.
D(1/2, 1/q) � q1/2 log q.



Symmetries

Abbreviate Lf (x) := Lf (1/2, x), Lτ (x) := D(1/2, x).

Claim (Bettin ’17)
Both functions above satisfy symmetries of the following kind

L(1 + x) = L(x), L(x) = L(1/x) + φ∗(x)

where φf and φτ are analytically nice, meaning that they can be
continued to R, with some regularity.

This is what Zagier calls “quantum modular forms” (some exotic
examples came from quantum algebra).
The symmetries above are all one needs to get a limit law.
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Heuristics and continued fractions

Let T (x) = {1/x} be the Gauss map.

L(x) = L(T (x)) + φ(x)

= L(T 2(x)) + φ(x) + φ(T (x))

= · · ·
= L(0) + Sφ(x),

where

Sφ(x) := φ(x) + φ(T (x)) + · · ·+ φ(TN−1(x)),

and N = N(x) is minimal with TN(x) = 0 (N(a/q)� log q).
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Heuristics and continued fractions

Sφ(x) := φ(x) + φ(T (x)) + · · ·+ φ(TN−1(x))

where N = N(x) minimal with TN(x) = 0 (N(a/q)� log q).

The map T is ergodic, exponentially mixing: terms far apart in the sum
behave independently.
Pick x ∈ ΩQ randomly, then we expect

Sφ(x) ≈ φ(X1) + · · ·+ φ(XN)

I Xj iid according to dx
(1+x) log 2 (Gauss, Khintchine, Wirsing,

Kuzmin. . . )
I N is distributed according to a normal, mean Nµ := 12 log 2

π2 logQ and
variance � logQ (Heilbronn, . . . , Hensley 1994).

EQ(eitSφ(x))
?
≈ E(eitφ(X ))Nµ = exp

{
Nµ log(1 + E(eitφ(X ) − 1))

}
≈ exp

{
NµE(eitφ(X ) − 1)

}
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Limit theorem for rational CF

EQ(eitSφ(x))
?
≈ exp

{
NµE(eitφ(X ) − 1)

}

Theorem (Bettin-D.)
Let α, κ > 0. Suppose φ : [0, 1]→ C is κ-Hölder on ( 1

n+1 ,
1
n ), ∀n ≥ 1,

and suppose
∫

[0,1]
|φ|α <∞.

For some δ > 0 and small t ∈ R,

EQ(eitSφ(x)) = exp
{

12 log 2
π2 (logQ)Iφ(t) + O((t2 + t2α) logQ + Q−δ)

}
where Iφ(t) =

∫ 1
0 (eitφ(x) − 1) dx

(1+x) log 2 . Moreover, if α > 1,

EQ(eitSφ(x)) = exp
{

12 log 2
π2 (logQ)(Iφ(t) + Cφt

2)+O((t3+t1+α) logQ+Q−δ)
}

Previous work by Vallée ’02 and Baladi-Vallée ’05
(φ(x) = f (b1/xc)� | log 1/x |, Gaussian).
In the continuous case: many works (. . . , Aaronson-Denker).
Limit law is not necessarily Gaussian: stable law (Levy, Cauchy, . . . )
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Applications to additive twists (cusp case)

Case when f is a cuspidal eigen-cusp form.

Lf (x) :=
∑
n≥1

af (n)e(nx)

n1/2 .

Lf (x) = Lf (1/x) + φ(x),

Here φ is (1− ε)-Hölder on R and bounded.

Iφ(t) + Cφt
2 =

∫ 1

0
(eitφ(x) − 1) dµ(x) + Cφt

2

= iµt − 1
2σ

2t2 + O(t3).

In fact µ = 0 and σ is related to the Petersson norm of f (not seen from
dynamics!).
This implies the Gaussian behaviour with variance σ2 logQ.
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Applications to additive twists (Estermann case)

Case of the Estermann function.

Lτ (x) :=
∑
n≥1

τ(n)e(nx)

n1/2 .

Lτ (x) = Lτ (1/x) + φ(x),

Now φ is ( 1
2 − ε)-Hölder on Rr Z and not bounded! By Bettin ’16 :

φ(x) ∼ cx−1/2 log x as x → 0.

Iφ(t) =

∫ 1

0
(eitφ(x) − 1) dµ(x)

= iµt − 1
2σ

2t2(log t)3 + o(t2(log t)3)

In fact µ = 0 and σ = π.
This implies the Gaussian behaviour with variance σ2 logQ(log logQ)3.
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Applications to sum of CF coefficients

The law is not in general Gaussian: stable laws.

Example: sum of continued fractions coefficients.

Σ(x) :=
r∑

j=1

aj(x) if x =
1

a1 + 1
a2+···

Theorem (Bettin-D.)
As Q →∞, Σ(x) = (1 + o(1)) 12

π2 logQ log logQ a.s. for x ∈ ΩQ .
(Proof: take φ(x) = b1/xc, then Iφ(t) ∼ ct log t)
This applies to a class of knot invariants, the Kashaev’s invariants
(Zagier’s modularity conjecture ’08).

Theorem (Bettin-D.)
For x ∈ Q, let J(x) :=

∑∞
n=0
∏n

r=1 |1− e2πirx |2. Then for some µ > 0,

log J(x) ∼ µΣ(x) ∼ µ 12
π2 logQ log logQ a.s. for x ∈ ΩQ .
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Another application: Dedekind sums

Define the Dedekind sums:

s
( a
q

)
:=

q−1∑
h=1

((
ha

q

))((
h

q

))
, ((x)) :=

{
{x} − 1/2 (x 6∈ Z),

0 (otherwise).

Theorem (Vardi ’93)
As Q →∞,

PQ

( s(x)

logQ
≤ v

2π

)
→ 1

π

∫ v

−∞

dy

1 + y2

Achieved by Vardi ’93 using trace formulas, twisted Eisenstein series. . .
Or: by Dedekind ’53, s(x) = s(−1/x) + φ(x) where φ(x) ≈ 1/x .
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Glimpse of the proof

Following Vallée ’02, Baladi-Vallée ’05, express things in term of a
transfer operator. This means replacing the map T (which has T ′ > 1)
by its adjoint

H[f ](x) =
∞∑
n=1

1
(n + x)2 f

( 1
n + x

)
.

Which has much nicer properties.

More precisely, we need to study
(perturbations of)

Hτ [f ](x) =
∞∑
n=1

1
(n + x)2+iτ

f
( 1
n + x

)
.

Methods of Dolgopyat ’98. Main challenge is to adapt this when very
little is known on φ.
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Thanks for your attention!


