Probabilistic models for primes and large gaps

William Banks Kevin Ford Terence Tao

July, 2019

Large gaps between primes

Def: $G(x)=\max _{p_{n} \leqslant x}\left(p_{n}-p_{n-1}\right), \quad p_{n}$ is the $n^{t h}$ prime.

$$
2,3,5,7, \ldots, 109,113,127,131, \ldots, 9547,9551,9587,9601, \ldots
$$

Upper bound: $G(x)=O\left(x^{0.525}\right)$ (Baker-Harman-Pintz, 2001). Improve to $O\left(x^{1 / 2} \log x\right)$ on Riemann Hypothesis (Cramér, 1920).

Lower bound: $G(x) \gg(\log x) \frac{\log _{2} x \log _{4} x}{\log _{3} x}$
(F,Green,Konyagin,Maynard,Tao,2018)

$$
\log _{2} x=\log \log x, \quad \log _{3} x=\log \log \log x, \ldots
$$

Conjectures on large prime gaps

Cramér (1936): $\limsup _{x \rightarrow \infty} \frac{G(x)}{\log ^{2} x}=1$.

Shanks (1964): $G(x) \sim \log ^{2} x$.

Granville (1995): $\limsup _{x \rightarrow \infty} \frac{G(x)}{\log ^{2} x} \geqslant 2 e^{-\gamma}=1.1229 \ldots$

Computations: $\sup _{x \leqslant 10^{18}} \frac{G(x)}{\log ^{2} x} \approx 0.92$.

Computational evidence, up to 10^{18}

Cramér's model of large prime gaps

Random set $\mathcal{C}=\left\{C_{1}, C_{2}, \ldots\right\} \subset \mathbb{N}$, choose $n \geqslant 3$ to be in \mathcal{C} with probability

$$
\frac{1}{\log n}
$$

the $1 / \log n$ matches the density of primes near n.

Cramér's model of large prime gaps

Random set $\mathcal{C}=\left\{C_{1}, C_{2}, \ldots\right\} \subset \mathbb{N}$, choose $n \geqslant 3$ to be in \mathcal{C} with probability

$$
\frac{1}{\log n}
$$

the $1 / \log n$ matches the density of primes near n.
Theorem. (Cramér 1936)
With probability 1 ,

$$
\limsup _{m \rightarrow \infty} \frac{C_{m+1}-C_{m}}{\log ^{2} C_{m}}=1
$$

Cramér: "for the ordinary sequence of prime numbers p_{n}, some similar relation may hold".

Cramér model and large gaps

$$
\text { a.s. } \quad \limsup _{m \rightarrow \infty} \frac{C_{m+1}-C_{m}}{\log ^{2} C_{m}}=1
$$

Proof:

$$
\mathbb{P}(n+1, \ldots, n+k \notin \mathcal{C}) \sim\left(1-\frac{1}{\log n}\right)^{k} \sim e^{-k / \log n}
$$

$k>(1+\varepsilon) \log ^{2} n$, this is $\ll n^{-1-\varepsilon}$. Sum converges $k<(1-\varepsilon) \log ^{2} n$, this is $\gg n^{-1+\varepsilon}$. Sum diverges. Finish with Borel-Cantelli.

Cramér's model defect: global distribution

Theorem. (Cramér 1936 "Probabilistic RH"))
With probability $1, \pi_{\mathcal{C}}(x):=\#\{n \leqslant x: n \in \mathcal{C}\}=\operatorname{li}(x)+O\left(x^{1 / 2+\varepsilon}\right)$.

Theorem. (Pintz)

$$
\mathbb{E}\left(\pi_{\mathfrak{C}}(x)-\operatorname{li}(x)\right)^{2} \sim \frac{x}{\log x}
$$

Theorem. (Cramér 1920)
On R.H.,

$$
\frac{1}{x} \int_{x}^{2 x}|\pi(t)-\operatorname{li}(t)|^{2} d t \ll \frac{x}{\log ^{2} x}
$$

Cramér model defect: short intervals

Theorem. (Cramér model in short intervals)
With prob. 1, $\quad \pi_{\mathfrak{C}}(x+y)-\pi_{\mathcal{C}}(x) \sim \frac{y}{\log x} \quad\left(y / \log ^{2} x \rightarrow \infty\right)$

Theorem (Selberg). Let $\frac{y}{\log ^{2} x} \rightarrow \infty$. On RH, for almost all x,

$$
\pi(x+y)-\pi(x) \sim \frac{y}{\log x}
$$

Cramér model defect: short intervals

Theorem. (Cramér model in short intervals)
With prob. 1, $\quad \pi_{\mathfrak{C}}(x+y)-\pi_{\mathfrak{C}}(x) \sim \frac{y}{\log x} \quad\left(y / \log ^{2} x \rightarrow \infty\right)$
Theorem (Selberg). Let $\frac{y}{\log ^{2} x} \rightarrow \infty$. On RH, for almost all x,

$$
\pi(x+y)-\pi(x) \sim \frac{y}{\log x}
$$

Theorem. (Maier 1985)

$$
\begin{aligned}
\forall M>1, & \limsup _{x \rightarrow \infty} \frac{\pi\left(x+\log ^{M} x\right)-\pi(x)}{\log ^{M-1} x}>1 \\
\text { and } & \quad \liminf _{x \rightarrow \infty} \frac{\pi\left(x+\log ^{M} x\right)-\pi(x)}{\log ^{M-1} x}<1 .
\end{aligned}
$$

Cramér's model defect: k-correlations

Theorem. (k-correlations in Cramér's model)
Let \mathcal{H} be a finite set of integers. With probability 1 ,

$$
\#\{n \leqslant x: n+h \in \mathcal{C} \forall h \in \mathcal{H}\} \sim \frac{x}{(\log x)^{|\mathcal{H}|}} .
$$

Cramér's model defect: k-correlations

Theorem. (k-correlations in Cramér's model)
Let \mathcal{H} be a finite set of integers. With probability 1 ,

$$
\#\{n \leqslant x: n+h \in \mathcal{C} \forall h \in \mathcal{H}\} \sim \frac{x}{(\log x)^{|\mathcal{H}|}} .
$$

This fails for primes, e.g. $\mathcal{H}=\{0,1\}$, because the primes are biased

For each prime p, all but one prime in $\in\{1, . ., p-1\}$ modulo p; But \mathcal{C} is equidistributed in $\{0,1, \ldots, p-1\} \bmod p$.

Even for sets \mathcal{H} where we expect many prime patterns, e.g. $\mathcal{H}=\{0,2\}$ (twin primes), Cramér's model gives the wrong prediction.

Hardy-Littlewood conjectures for primes

Cramér: $\#\{n \leqslant x: n+h \in \mathcal{C} \forall h \in \mathcal{H}\} \sim \frac{x}{(\log x)^{|\mathcal{H}|}}$.

Prime k-tuples Conjecture (Hardy-Littlewood, 1922)

$$
\#\{n \leqslant x: n+h \text { prime } \forall h \in \mathcal{H}\} \sim \mathfrak{S}(\mathcal{H}) \frac{x}{(\log x)^{|\mathcal{H}|}} \quad(x \rightarrow \infty)
$$

where

$$
\mathfrak{S}(\mathcal{H}):=\prod_{p}\left(1-\frac{|\mathcal{H} \bmod p|}{p}\right)\left(1-\frac{1}{p}\right)^{-|\mathcal{H}|}
$$

The factor $\mathfrak{S}(\mathcal{H})$ captures the bias of real primes; For each p, \mathcal{H} must avoid the forbidden residue class $0 \bmod p$. \mathcal{H} is admissible if $|\mathcal{H} \bmod p|<p$ for all p.

Cramér model defect: gaps

Theorem: With probability 1 ,

$$
\frac{\#\left\{C_{n} \leqslant N: C_{n+1}-C_{n}=k\right\}}{\#\left\{C_{n} \leqslant N\right\}} \sim \frac{e^{-k / \log N}}{\log N} \quad(N \rightarrow \infty)
$$

Actual prime gap statistics, $p_{n}<4 \cdot 10^{18}$

Granville's refinement of Cramér's model

$$
T=o(\log x) \quad Q=\prod_{p \leqslant T} p=x^{o(1)}
$$

Real primes live in $\mathcal{U}_{T}:=\{n \in \mathbb{Z}: \operatorname{gcd}(n, Q)=1\}$, the integers not divisible by any prime $p \leqslant T$. The set \mathcal{U}_{T} has density $\theta=\prod_{p \leqslant T}(1-1 / p)$.

Granville's random model:

For $x<n \leqslant 2 x$, choose n in \mathcal{G} with probability

$$
\begin{cases}0 & \text { if } \left.\operatorname{gcd}(n, Q)>1 \text { (i.e., } n \notin \mathcal{U}_{T}\right) \\ \frac{1 / \theta}{\log n} & \text { if } \left.\operatorname{gcd}(n, Q)=1 \text { (i.e., } n \in \mathcal{U}_{T}\right)\end{cases}
$$

k-correlations. For all \mathcal{H}, with probability 1 we have

$$
\#\{n \leqslant x: n+h \in \mathcal{G} \forall h \in \mathcal{H}\} \sim \mathfrak{S}(\mathcal{H}) \frac{x}{(\log x)^{|\mathcal{H}|}}, x \rightarrow \infty .
$$

Granville’s refinement of Cramér's model, II

$\mathcal{U}_{T}:=\{n \in \mathbb{Z}:(n, Q)=1\}$, (integers with no prime factor $\leqslant T$)
Theorem. (Granville 1995)
Write $\mathcal{G}=\left\{G_{1}, G_{2}, \ldots\right\}$. With probability 1 ,

$$
\limsup _{n \rightarrow \infty} \frac{G_{n+1}-G_{n}}{\log ^{2} G_{n}} \geqslant 2 e^{-\gamma}=1.1229 \ldots
$$

Idea: with $y=c \log ^{2} x, T=y^{1 / 2+o(1)}$,

$$
\#\left([Q m, Q m+y] \cap \mathcal{U}_{T}\right)=\#\left([0, y] \cap \mathcal{U}_{T}\right) \sim \frac{y}{\log y} .
$$

By contrast, for a typical $a \in \mathbb{Z}$,

$$
\begin{equation*}
\#\left([a, a+y] \cap \mathcal{U}_{T}\right) \sim y \prod_{p \leqslant T}\left(1-\frac{1}{p}\right) \sim 2 e^{-\gamma} \frac{y}{\log y} \tag{Mertens}
\end{equation*}
$$

Minor flaw in Granville’s model

Hardy-Littlewood statistics:

$$
\#\{n \leqslant x: n+h \in \mathcal{G} \forall h \in \mathcal{H}\}=\mathfrak{S}(\mathcal{H}) \int_{2}^{x} \frac{d t}{(\log t)^{|\mathcal{H}|}}+E_{\mathcal{G}}(x ; \mathcal{H})
$$

where

$$
E_{\mathcal{G}}(x ; \mathcal{H})=\Omega\left(x /(\log x)^{|\mathcal{H}|+1}\right)
$$

Conjecture

For any admissible \mathcal{H}, we have

$$
\#\{n \leqslant x: n+h \text { prime } \forall h \in \mathcal{H}\}=\mathfrak{S}(\mathcal{H}) \int_{2}^{x} \frac{d t}{(\log t)^{|\mathcal{H}|}}+O\left(x^{1 / 2+\varepsilon}\right)
$$

Much numerical evidence for this, especially for $\mathcal{H}=\{0,2\},\{0,2,6\},\{0,4,6\},\{0,2,6,8\}$.

A new "random sieve" model of primes

Random set $\mathcal{B} \subset \mathbb{N}$:

- For prime p, take a random residue class $a_{p} \in\{0, \ldots, p-1\}$, uniform probability, independent for different p;
- Let $\mathcal{S}_{z}=\left\{n \in \mathbb{Z}: n \not \equiv a_{p}(\bmod p), p \leqslant z\right\}$, random sieved set with

$$
\operatorname{density}\left(\mathcal{S}_{z}\right)=\theta_{z}=\prod_{p \leqslant z}(1-1 / p) \sim \frac{e^{-\gamma}}{\log z}
$$

- Take $z=z(n) \sim n^{1 / e^{\gamma}}=n^{0.56 \ldots}$ so that $\theta_{z(n)} \sim \frac{1}{\log n}$, density of primes.
- Define $\mathcal{B}=\left\{n \in \mathbb{N}: n \notin \mathcal{S}_{z(n)}\right\}$.

A new "random sieve" model of primes

Random set $\mathcal{B} \subset \mathbb{N}$:

- For prime p, take a random residue class $a_{p} \in\{0, \ldots, p-1\}$, uniform probability, independent for different p;
- Let $\mathcal{S}_{z}=\left\{n \in \mathbb{Z}: n \not \equiv a_{p}(\bmod p), p \leqslant z\right\}$, random sieved set with

$$
\operatorname{density}\left(\mathcal{S}_{z}\right)=\theta_{z}=\prod_{p \leqslant z}(1-1 / p) \sim \frac{e^{-\gamma}}{\log z}
$$

- Take $z=z(n) \sim n^{1 / e^{\gamma}}=n^{0.56 \ldots}$ so that $\theta_{z(n)} \sim \frac{1}{\log n}$, density of primes.
- Define $\mathcal{B}=\left\{n \in \mathbb{N}: n \notin \mathcal{S}_{z(n)}\right\}$.

Global density: $\mathbb{P}(n \in \mathcal{B})=\mathbb{P}\left(n \notin \mathcal{S}_{z(n)}\right) \sim \frac{1}{\log n}$. Matches primes. Difficulty: $n_{1} \in \mathcal{B}, n_{2} \in \mathcal{B}$ not independent.

We conjecture that the primes and \mathcal{B} share similar local statistics.

New model \mathcal{B} and Hardy-Littlewood conjectures

Strong Hardy-Littlewood conjecture (standard version)

$$
\#\{n \leqslant x: n+h \text { prime } \forall h \in \mathcal{H}\}=\mathfrak{S}(\mathcal{H}) \int_{2}^{x} \frac{d t}{(\log t)^{|\mathcal{H}|}}+O\left(x^{1 / 2+\varepsilon}\right)
$$

$$
\mathfrak{S}(\mathcal{H}) \approx \underbrace{\prod_{p \leqslant z(t)}\left(1-\frac{|\mathcal{H} \bmod p|}{p}\right)}_{=\mathbb{P}\left(\mathcal{H} \subset \mathcal{S}_{z(t)}\right)} \underbrace{\prod_{p \leqslant z(t)}\left(1-\frac{1}{p}\right)^{-|\mathcal{H}|}}_{\approx(\log t)^{|\mathcal{H}|}} .
$$

New model \mathcal{B} and Hardy-Littlewood conjectures

Strong Hardy-Littlewood conjecture (standard version)

$$
\#\{n \leqslant x: n+h \text { prime } \forall h \in \mathcal{H}\}=\mathfrak{S}(\mathcal{H}) \int_{2}^{x} \frac{d t}{(\log t)^{|\mathcal{H}|}}+O\left(x^{1 / 2+\varepsilon}\right)
$$

$$
\mathfrak{S}(\mathcal{H}) \approx \underbrace{\prod_{p \leqslant z(t)}\left(1-\frac{|\mathcal{H} \bmod p|}{p}\right)}_{=\mathbb{P}\left(\mathcal{H} \subset \mathcal{S}_{z(t)}\right)} \underbrace{\prod_{p \leqslant z(t)}\left(1-\frac{1}{p}\right)^{-|\mathcal{H}|}}_{\approx(\log t)^{|\mathcal{H}|}} .
$$

Strong Hardy-Littlewood conjecture (probabilistic version)

$$
\#\{n \leqslant x: n+h \text { prime } \forall h \in \mathcal{H}\}=\int_{2}^{x} \mathbb{P}\left(\mathcal{H} \subset \mathcal{S}_{z(t)}\right) d t+O\left(x^{1 / 2+\varepsilon}\right)
$$

New model and Hardy-Littlewood, II

Theorem. (BFT 2019)

Fix $\frac{1}{2} \leqslant c<1, \varepsilon>0$. With probability 1 ,
$\#\{n \leqslant x: n+h \in \mathcal{B} \forall h \in \mathcal{H}\}=\int_{2}^{x} \mathbb{P}\left(\mathcal{H} \subset \mathcal{S}_{z(t)}\right) d t+O\left(x^{1 / 2+\delta(c)+o(1)}\right)$
uniformly for $\mathcal{H} \subset\left[0, \exp \left\{(\log x)^{c-\varepsilon}\right\}\right]$ and $|\mathcal{H}| \leqslant(\log x)^{c}$, where

$$
\delta(1 / 2)=0, \quad \delta(c)<1 / 2 \quad(c>1 / 2)
$$

Notes. Best possible when $c=1 / 2$, matches strongest conjectured HL. When $|\mathcal{H}| \geqslant \frac{\log x}{\log \log x}, \mathbb{P}\left(\mathcal{H} \subset \mathcal{S}_{z(t)}\right)$ is very tiny $(<1 / x)$, and we cannot expect a result uniformly for such \mathcal{H}.

New model and large gaps: Interval sieve

Interval sieve extremal bound

Define

$$
\begin{aligned}
W_{y} & :=\min _{\left(a_{p}\right)}\left|[0, y] \cap \mathcal{S}_{(y / \log y)^{1 / 2}}\right| \\
& =\min _{u} \#\left\{n \in(u, u+y]: n \text { has no prime factor } \leqslant\left(\frac{y}{\log y}\right)^{1 / 2}\right\} .
\end{aligned}
$$

Known bounds:

$$
\frac{4 y \log _{2} y}{\log ^{2} y} \lesssim W_{y} \lesssim \frac{y}{\log y} .
$$

Upper bound: $u=0$ and $a_{p}=0 \forall p$. Lower bound: Iwaniec, linear sieve.

Folklore conjecture

$W_{y} \sim y / \log y$ as $y \rightarrow \infty$.

New model and large gaps

Def: $G_{\mathcal{B}}(x)$ is largest gap between consec. elements of \mathcal{B} that are $\leqslant x$.

$$
W_{y}:=\min \left|[0, y] \cap \mathcal{S}_{(y / \log y)^{1 / 2}}\right| . \quad g(u):=\max \left\{y: W_{y} \log y \leqslant u\right\}
$$

Then

$$
\frac{4 y \log _{2} y}{\log ^{2} y} \lesssim W_{y} \lesssim \frac{y}{\log y} \quad \Rightarrow \quad u \lesssim g(u) \lesssim \frac{u \log u}{4 \log _{2} u}
$$

Theorem. (BFT 2019)
Let $\xi=2 e^{-\gamma}$. For all $\varepsilon>0$, with probability 1 there is x_{0} s.t.

$$
g\left((1-\varepsilon) \xi \log ^{2} x\right) \leqslant G_{\mathcal{B}}(x) \leqslant g\left((1+\varepsilon) \xi \log ^{2} x\right) \quad\left(x>x_{0}\right)
$$

Proof tools: Small sieve, large sieve, large deviation inequalities (Bennett's inequality, Azuma's martingale inequality), combinatorics, ...

New model and large gaps

Theorem. (BFT 2019)
Let $\xi=2 e^{-\gamma}$. For all $\varepsilon>0$, with probability 1 there is x_{0} s.t.

$$
g\left((1-\varepsilon) \xi \log ^{2} x\right) \leqslant G_{\mathcal{B}}(x) \leqslant g\left((1+\varepsilon) \xi \log ^{2} x\right) \quad\left(x>x_{0}\right)
$$

Conjecture. (BFT 2019)
For the largest gap $G(x)$ between primes $\leqslant x$,

$$
G(x) \sim g\left(\xi \log ^{2} x\right) \quad(x \rightarrow \infty)
$$

New model and large gaps

Theorem. (BFT 2019)
Let $\xi=2 e^{-\gamma}$. For all $\varepsilon>0$, with probability 1 there is x_{0} s.t.

$$
g\left((1-\varepsilon) \xi \log ^{2} x\right) \leqslant G_{\mathcal{B}}(x) \leqslant g\left((1+\varepsilon) \xi \log ^{2} x\right) \quad\left(x>x_{0}\right)
$$

Conjecture. (BFT 2019)

For the largest gap $G(x)$ between primes $\leqslant x$,

$$
G(x) \sim g\left(\xi \log ^{2} x\right) \quad(x \rightarrow \infty)
$$

Possible range of $g()$ implies

$$
\underbrace{\xi \log ^{2} x} \lesssim g\left(\xi \log ^{2} x\right) \lesssim \xi \log ^{2} x \frac{\log _{2} x}{2 \log _{3} x} .
$$

Granville’s lower bound

Gallagher: HL implies Poisson gaps

Theorem. (Gallagher 1976)
Assume:

$$
\#\{n \leqslant x: n+h \text { prime } \forall h \in \mathcal{H}\} \sim \mathfrak{S}(\mathcal{H}) \int_{2}^{x} \frac{d t}{\log ^{\mid \mathcal{H |}} t}
$$

uniformly for $|\mathcal{H}| \leqslant k$ (k fixed) and $\mathcal{H} \subset\left[0, \log ^{2} x\right]$. Then $\pi(x+\lambda \log x)-\pi(x) \stackrel{d}{=} \operatorname{Poisson}(\lambda)$, e.g.,

$$
\#\left\{n \leqslant x: p_{n+1}-p_{n}>\lambda \log x\right\} \sim e^{-\lambda} \pi(x)
$$

Main tool: $\sum_{\substack{\mathcal{H} \subset[0, y] \\|\mathcal{H}|=k}} \mathfrak{S}(\mathcal{H}) \sim y^{k} / k!$.
Montgomery-Soundararajan improvement (2004). Poor uniformity in k.

Hardy-Littlewood implies large gaps

Theorem. (BFT 2019)

Let $\mathbf{1}_{\mathcal{A}}$ be the indicator function of \mathcal{A}. If $\mathcal{A} \subset \mathbb{N}$ satisfies

$$
\begin{aligned}
\sum_{n \leqslant x} \prod_{h \in \mathcal{H}} \mathbf{1}_{\mathcal{A}}(n+h) & =\mathfrak{S}(\mathcal{H}) \int_{2}^{x} \frac{d t}{\log ^{|\mathcal{H}|} t}+O\left(x^{2 / 3}\right) \\
& =\int_{2}^{x} \mathbb{P}\left(\mathcal{H} \subset \mathcal{S}_{z(t)}\right) d t+O\left(x^{2 / 3}\right)
\end{aligned}
$$

uniformly over all tuples $\mathcal{H} \subset\left[0, \log ^{2} x\right]$ with $|\mathcal{H}| \leqslant \frac{\log x}{6 \log _{2} x}$, then

$$
G_{\mathcal{A}}(x):=\max \{b-a: 1 \leqslant a<b \leqslant x,(a, b] \cap \mathcal{A}=\emptyset\} \geqslant c \frac{\log ^{2} x}{\log _{2} x}
$$

Averaged Hardy-Littlewood implies large gaps

Theorem. (BFT 2019)

Fix $0<c<1$. Suppose that $\mathcal{A} \subset \mathbb{N}$ satisfies the averaged HardyLittlewood type conjecture

$$
\sum_{\substack{\mathcal{H} \subset[0, y] \\|\mathcal{H}|=k}} \sum_{n \leqslant x} \prod_{h \in \mathcal{H}} \mathbf{1}_{\mathcal{A}}(n+h)=\sum_{\substack{\mathcal{H} \subset[0, y] \\|\mathcal{H}|=k}} \int_{2}^{x} \frac{\mathfrak{S}_{z(t)}(\mathcal{H})}{\log ^{k} t} d t+O\left(x^{1-c}\right)
$$

uniformly for $k \leqslant \frac{C y}{\log x}$ and $\log x \leqslant y \leqslant\left(\log ^{2} x\right) \log _{2} x$. Then

$$
G_{\mathcal{A}}(x) \gtrsim g\left(c \xi \log ^{2} x\right)
$$

Recall: $G_{\mathcal{B}}(x) \approx g\left(\xi \log ^{2} x\right)$, and $u \lesssim g(u) \ll u(\log u)^{1-o(1)}$.

Large gaps from Hardy-Littlewood

Proof sketch: Weighted count of gaps of size $\geqslant y$:

$$
\begin{aligned}
\#\{n \leqslant x:[n, n+y] \cap \mathcal{A}=\emptyset\} & =\sum_{n \leqslant x} \underbrace{\prod_{0 \leqslant h \leqslant y}\left(1-\mathbf{1}_{\mathcal{A}}(n+h)\right)}_{\text {gap detector }} \\
& =\sum_{k=0}^{y}(-1)^{k} \sum_{\substack{\mathcal{H} \subset[0, y] \\
|\mathcal{H}|=k}} \sum_{\text {nsx }} \prod_{h \in \mathcal{H}} \mathbf{1}_{\mathcal{A}}(n+h) \\
& \approx \sum_{k=0}^{y}(-1)^{k} \sum_{\substack{\mathcal{H} \subset[0, y] \\
|\mathcal{H}|=k}} \int_{2}^{x} \mathbb{P}\left(\mathcal{H} \subset \mathcal{S}_{z(t)}\right) d t \\
& =\int_{2}^{x} \mathbb{E} \sum_{k=0}^{y}(-1)^{k}\binom{\left|\mathcal{S}_{z(t)} \cap[0, y]\right|}{k} d t \\
& =\int_{2}^{x} \mathbb{P}\left(\mathcal{S}_{z(t)} \cap[0, y]=\emptyset\right) d t .
\end{aligned}
$$

HL imlies no super-large gaps?

Does a uniform HL for \mathcal{A} imply an upper bound on large gaps?

HL imlies no super-large gaps?

Does a uniform HL for \mathcal{A} imply an upper bound on large gaps?

Answer: NO!

Removal of all elements of \mathcal{A} in an interval $(y, y+\sqrt{y})$, for an infinite sequence of y 's, does not affect the HL statistics but creates a very large gap.

Longer intervals (D. Koukoulopoulos)

Definition

$$
\begin{aligned}
& \beta^{+}(u)=\limsup _{y \rightarrow \infty} \max _{\left(a_{p}\right)}\left(\left|[0, y] \cap S_{y^{1 / u}}\right| \frac{\log \left(y^{1 / u}\right)}{e^{-\gamma} y}\right), \\
& \beta^{-}(u)=\liminf _{y \rightarrow \infty} \min _{\left(a_{p}\right)}\left(\left|[0, y] \cap S_{y^{1 / u}}\right| \frac{\log \left(y^{1 / u}\right)}{e^{-\gamma} y}\right) .
\end{aligned}
$$

Conjecture

$$
\begin{aligned}
& \forall u>2, \quad \quad \limsup \\
& x \rightarrow \infty \\
& \text { and } \quad \quad \liminf _{x \rightarrow \infty} \frac{\pi\left(x+\log ^{u} x\right)-\pi(x)}{\log ^{u-1} x}=\beta^{+}(u) \\
& \log ^{u-1} x \pi(x) \\
&=\beta^{-}(u)
\end{aligned}
$$

Linear sieve + Maier: $0<\beta^{-}(u)<1<\beta^{+}(u)$ for $u>2$.

Summary

Set	Hardy-Littlewood conjecture?	Asymptotic largest gap up to x
\mathcal{C}	No (singular series is missing)	$\log ^{2} x$
\mathcal{G}	Yes (with weak error term)	$\xi \log ^{2} x \leqslant \cdot \leqslant \frac{\xi}{2} \frac{\left(\log ^{2} x\right) \log _{2} x}{\log _{3} x}$
\mathcal{B}	Yes (with error $\left.O\left(x^{1-c}\right)\right)$	$\xi \log ^{2} x \leqslant \cdot \leqslant \frac{\xi}{2} \frac{\left(\log ^{2} x\right) \log _{2} x}{\log _{3} x}$
Primes	Yes (conjecturally)	$\xi \log ^{2} x(\operatorname{conjecturally)}$
\mathcal{A}	Assumed (error $\left.O\left(x^{1-c}\right)\right)$	$>c \frac{\log ^{2} x}{\log _{2} x}$
\mathcal{A}	Assumed on avg. (error $\left.O\left(x^{1-c}\right)\right)$	$\geqslant g\left(c \xi \log ^{2} x\right)$

References

㵢
H．Cramér，Some theorems concerning prime numbers，Ark．Mat．Astr．Fys． 15 （1920），1－33．
显
H．Cramér，On the order of magnitude of the difference between consecutive prime numbers，Acta Arith． 2 （1936），396－403．
－Andrew Granville，Harald Cramér and the distribution of prime numbers， Scandanavian Actuarial J． 1 （1995），12－28．

國 H．L．Montgomery and K．Soundararajan，Primes in short intervals，Comm． Math．Phys． 252 （2004），589－617．

Tivin T．R．Nicely，First occurrence prime gaps，web page： http：／／www．trnicely．net／gaps／gaplist．html

國 J．Pintz，Cramér vs．Cramér．On Cramér＇s Probabilistic Model for primes，Func． Approx．Comment．Math． 37 （2007），361－376．

T．Oliveira e Silva，Gaps between consecutive primes（web page）， http：／／sweet．ua．pt／tos／gaps．html

