Probabilistic models for primes and large gaps

William Banks Kevin Ford Terence Tao

July, 2019

Large gaps between primes

Def: $G(x) = \max_{p_n \leqslant x} (p_n - p_{n-1})$, p_n is the n^{th} prime.

 $2, 3, 5, 7, \ldots, 109, 113, 127, 131, \ldots, 9547, 9551, 9587, 9601, \ldots$

Upper bound: $G(x) = O(x^{0.525})$ (Baker-Harman-Pintz, 2001). Improve to $O(x^{1/2} \log x)$ on Riemann Hypothesis (Cramér, 1920).

Lower bound: $G(x) \gg (\log x) \frac{\log_2 x \log_4 x}{\log_3 x}$ (F,Green,Konyagin,Maynard,Tao,2018)

 $\log_2 x = \log \log x, \ \log_3 x = \log \log \log x, \dots$

Conjectures on large prime gaps

Cramér (1936): $\limsup_{x \to \infty} \frac{G(x)}{\log^2 x} = 1.$

Shanks (1964): $G(x) \sim \log^2 x$.

Granville (1995):
$$\limsup_{x \to \infty} \frac{G(x)}{\log^2 x} \ge 2e^{-\gamma} = 1.1229...$$

Computations:
$$\sup_{x \leq 10^{18}} \frac{G(x)}{\log^2 x} \approx 0.92.$$

Computational evidence, up to 10^{18}

Cramér's model of large prime gaps

Random set $\mathcal{C} = \{C_1, C_2, \ldots\} \subset \mathbb{N}$, choose $n \ge 3$ to be in \mathcal{C} with probability

 $\frac{1}{\log n},$

the $1/\log n$ matches the density of primes near *n*.

Cramér's model of large prime gaps

Random set $\mathcal{C} = \{C_1, C_2, \ldots\} \subset \mathbb{N}$, choose $n \ge 3$ to be in \mathcal{C} with probability

 $\frac{1}{\log n}$,

the $1/\log n$ matches the density of primes near *n*.

Theorem. (Cramér 1936)With probability 1, $\limsup_{m \to \infty} \frac{C_{m+1} - C_m}{\log^2 C_m} = 1.$ Cramér: "for the ordinary sequence of prime numbers p_n , some similar relation may hold".

Cramér model and large gaps

a.s.
$$\limsup_{m \to \infty} \frac{C_{m+1} - C_m}{\log^2 C_m} = 1.$$

Proof:

$$\mathbb{P}(n+1,\ldots,n+k \notin \mathbb{C}) \sim \left(1 - \frac{1}{\log n}\right)^k \sim e^{-k/\log n}.$$

 $k > (1 + \varepsilon) \log^2 n$, this is $\ll n^{-1-\varepsilon}$. Sum converges $k < (1 - \varepsilon) \log^2 n$, this is $\gg n^{-1+\varepsilon}$. Sum diverges. Finish with Borel-Cantelli.

Cramér's model defect: global distribution

Theorem. (Cramér 1936 "Probabilistic RH"))

With probability 1,
$$\pi_{\mathbb{C}}(x) := \#\{n \leq x : n \in \mathbb{C}\} = \operatorname{li}(x) + O(x^{1/2+\varepsilon}).$$

Theorem. (Cramér 1920)

On R.H.,

$$\frac{1}{x}\int_x^{2x}|\pi(t)-\operatorname{li}(t)|^2\,dt\ll \frac{x}{\log^2 x}$$

Cramér model defect: short intervals

Theorem. (Cramér model in short intervals)

With prob. 1,
$$\pi_{\mathcal{C}}(x+y) - \pi_{\mathcal{C}}(x) \sim \frac{y}{\log x} \quad (y/\log^2 x \to \infty)$$

Theorem (Selberg). Let $\frac{y}{\log^2 x} \to \infty$. On RH, for <u>almost all</u> *x*,

$$\pi(x+y) - \pi(x) \sim \frac{y}{\log x}$$

Cramér model defect: short intervals

Theorem. (Cramér model in short intervals)

With prob. 1,
$$\pi_{\mathbb{C}}(x+y) - \pi_{\mathbb{C}}(x) \sim \frac{y}{\log x} \quad (y/\log^2 x \to \infty)$$

Theorem (Selberg). Let $\frac{y}{\log^2 x} \to \infty$. On RH, for <u>almost all</u> *x*,

$$\pi(x+y) - \pi(x) \sim \frac{y}{\log x}$$

Theorem. (Maier 1985)

$$\begin{split} \forall M>1, \quad \limsup_{x\to\infty} \frac{\pi(x+\log^M x)-\pi(x)}{\log^{M-1}x}>1\\ \text{and} \quad \liminf_{x\to\infty} \frac{\pi(x+\log^M x)-\pi(x)}{\log^{M-1}x}<1. \end{split}$$

Cramér's model defect: *k*-correlations

Theorem. (*k*-correlations in Cramér's model) Let \mathcal{H} be a finite set of integers. With probability 1, $\#\{n \leq x : n + h \in \mathbb{C} \ \forall h \in \mathcal{H}\} \sim \frac{x}{(\log x)^{|\mathcal{H}|}}.$

Cramér's model defect: k-correlations

Theorem. (*k*-correlations in Cramér's model) Let \mathcal{H} be a finite set of integers. With probability 1, $\#\{n \leq x : n + h \in \mathbb{C} \ \forall h \in \mathcal{H}\} \sim \frac{x}{(\log x)^{|\mathcal{H}|}}.$

This fails for primes, e.g. $\mathcal{H} = \{0, 1\}$, because the primes are *biased*

For each prime p, all but one prime in $\in \{1, ..., p-1\}$ modulo p; But C is equidistributed in $\{0, 1, ..., p-1\}$ mod p.

Even for sets \mathcal{H} where we expect many prime patterns, e.g. $\mathcal{H} = \{0, 2\}$ (twin primes), Cramér's model gives the wrong prediction.

Hardy-Littlewood conjectures for primes

Cramér: #
$$\{n \leq x : n+h \in \mathbb{C} \ \forall h \in \mathcal{H}\} \sim \frac{x}{(\log x)^{|\mathcal{H}|}}.$$

Prime *k*-tuples Conjecture (Hardy-Littlewood, 1922)

$$\#\{n\leqslant x:n+h \text{ prime } \forall h\in \mathcal{H}\}\sim \mathfrak{S}(\mathcal{H})\frac{x}{(\log x)^{|\mathcal{H}|}} \quad (x\to\infty)$$

where

$$\mathfrak{S}(\mathcal{H}) := \prod_{p} \left(1 - \frac{|\mathcal{H} \bmod p|}{p} \right) \left(1 - \frac{1}{p} \right)^{-|\mathcal{H}|}$$

The factor $\mathfrak{S}(\mathcal{H})$ captures the bias of real primes; For each p, \mathcal{H} must avoid the forbidden residue class $0 \mod p$. \mathcal{H} is admissible if $|\mathcal{H} \mod p| < p$ for all p.

Banks, Ford, Tao

Cramér model defect: gaps

Theorem: With probability 1,

Actual prime gap statistics, $p_n < 4 \cdot 10^{18}$

Banks, Ford, Tao

Probabilistic models for primes 11/28

Granville's refinement of Cramér's model

$$T = o(\log x) \qquad Q = \prod_{p \leqslant T} p = x^{o(1)}$$

Real primes live in $\mathcal{U}_T := \{n \in \mathbb{Z} : \gcd(n, Q) = 1\}$, the integers not divisible by any prime $p \leq T$. The set \mathcal{U}_T has density $\theta = \prod_{p \leq T} (1 - 1/p)$.

Granville's random model:

For $x < n \leq 2x$, choose n in \mathcal{G} with probability

$$\begin{array}{ll} 0 & \text{ if } \gcd(n,Q) > 1 \ (\text{i.e.}, n \not\in \mathcal{U}_T) \\ \frac{1/\theta}{\log n} & \text{ if } \gcd(n,Q) = 1 \ (\text{i.e.}, n \in \mathcal{U}_T). \end{array}$$

k-correlations. For all \mathcal{H} , with probability 1 we have

 $\#\{n\leqslant x:n+h\in \mathfrak{G}\;\forall h\in \mathcal{H}\}\sim \mathfrak{S}(\mathcal{H})\frac{x}{(\log x)^{|\mathcal{H}|}}, x\rightarrow\infty.$

Granville's refinement of Cramér's model, II

 $\mathcal{U}_T := \{n \in \mathbb{Z} : (n, Q) = 1\}$, (integers with no prime factor $\leqslant T$)

Theorem. (Granville 1995)

Write $\mathcal{G} = \{G_1, G_2, \ldots\}$. With probability 1,

$$\limsup_{n \to \infty} \frac{G_{n+1} - G_n}{\log^2 G_n} \ge 2e^{-\gamma} = 1.1229\dots$$

Idea: with $y = c \log^2 x$, $T = y^{1/2+o(1)}$,

$$\#([\mathbf{Q}m,\mathbf{Q}m+y]\cap\mathcal{U}_T)=\#([0,y]\cap\mathcal{U}_T)\sim\frac{y}{\log y}.$$

By contrast, for a *typical* $a \in \mathbb{Z}$,

$$\#\left([a,a+y] \cap \mathcal{U}_T\right) \sim y \prod_{p \leqslant T} \left(1 - \frac{1}{p}\right) \sim \frac{2e^{-\gamma} \frac{y}{\log y}}{\log y} \qquad \text{(Mertens)}$$

Minor flaw in Granville's model

Hardy-Littlewood statistics:

$$\#\{n \leqslant x : n+h \in \mathcal{G} \ \forall h \in \mathcal{H}\} = \mathfrak{S}(\mathcal{H}) \int_2^x \frac{dt}{(\log t)^{|\mathcal{H}|}} + E_{\mathcal{G}}(x; \mathcal{H}),$$

where

$$E_{\mathfrak{S}}(x;\mathcal{H}) = \Omega(x/(\log x)^{|\mathcal{H}|+1}).$$

Conjecture

For any admissible \mathcal{H} , we have

$$\#\{n\leqslant x:n+h \text{ prime }\forall h\in \mathcal{H}\}=\mathfrak{S}(\mathcal{H})\int_2^x \frac{dt}{(\log t)^{|\mathcal{H}|}}+O(x^{1/2+\varepsilon}).$$

Much numerical evidence for this, especially for $\mathcal{H} = \{0, 2\}, \{0, 2, 6\}, \{0, 4, 6\}, \{0, 2, 6, 8\}.$

Banks, Ford, Tao

A new "random sieve" model of primes

Random set $\mathcal{B} \subset \mathbb{N}$:

- For prime p, take a random residue class $a_p \in \{0, ..., p-1\}$, uniform probability, independent for different p;
- Let $S_z = \{n \in \mathbb{Z} : n \not\equiv a_p \pmod{p}, p \leqslant z\}$, random sieved set with

density
$$(\mathcal{S}_z) = \theta_z = \prod_{p \leq z} (1 - 1/p) \sim \frac{e^{-\gamma}}{\log z}.$$

- Take $z = z(n) \sim n^{1/e^{\gamma}} = n^{0.56...}$ so that $\theta_{z(n)} \sim \frac{1}{\log n}$, density of primes.
- Define $\mathcal{B} = \{n \in \mathbb{N} : n \notin \mathcal{S}_{z(n)}\}.$

A new "random sieve" model of primes

Random set $\mathcal{B} \subset \mathbb{N}$:

- For prime p, take a random residue class $a_p \in \{0, ..., p-1\}$, uniform probability, independent for different p;
- Let $S_z = \{n \in \mathbb{Z} : n \not\equiv a_p \pmod{p}, p \leqslant z\}$, random sieved set with

density(
$$S_z$$
) = $\theta_z = \prod_{p \leq z} (1 - 1/p) \sim \frac{e^{-\gamma}}{\log z}$.

- Take $z = z(n) \sim n^{1/e^{\gamma}} = n^{0.56...}$ so that $\theta_{z(n)} \sim \frac{1}{\log n}$, density of primes.
- Define $\mathcal{B} = \{n \in \mathbb{N} : n \notin \mathcal{S}_{z(n)}\}.$

Global density: $\mathbb{P}(n \in \mathcal{B}) = \mathbb{P}(n \notin S_{z(n)}) \sim \frac{1}{\log n}$. Matches primes. **Difficulty:** $n_1 \in \mathcal{B}$, $n_2 \in \mathcal{B}$ not independent.

We conjecture that the primes and \mathcal{B} share similar *local statistics*.

New model $\ensuremath{\mathcal{B}}$ and Hardy-Littlewood conjectures

Strong Hardy-Littlewood conjecture (standard version)

$$\#\{n\leqslant x:n+h \text{ prime } \forall h\in \mathcal{H}\}=\mathfrak{S}(\mathcal{H})\int_{2}^{x}\frac{dt}{(\log t)^{|\mathcal{H}|}}+O(x^{1/2+\varepsilon}).$$

$$\mathfrak{S}(\mathcal{H}) \approx \prod_{\substack{p \leq z(t) \\ = \mathbb{P}(\mathcal{H} \subset \mathcal{S}_{z(t)})}} \left(\frac{|\mathcal{H} \mod p|}{p} \right) \prod_{\substack{p \leq z(t) \\ \approx (\log t)^{|\mathcal{H}|}}} \left(\frac{1 - \frac{1}{p} \right)^{-|\mathcal{H}|}}{\approx (\log t)^{|\mathcal{H}|}}$$

New model $\ensuremath{\mathcal{B}}$ and Hardy-Littlewood conjectures

Strong Hardy-Littlewood conjecture (standard version)

$$\#\{n\leqslant x:n+h \text{ prime } \forall h\in \mathcal{H}\} = \mathfrak{S}(\mathcal{H})\int_2^x \frac{dt}{(\log t)^{|\mathcal{H}|}} + O(x^{1/2+\varepsilon}).$$

$$\mathfrak{S}(\mathcal{H}) \approx \underbrace{\prod_{p \leq z(t)} \left(1 - \frac{|\mathcal{H} \mod p|}{p}\right)}_{=\mathbb{P}(\mathcal{H} \subset \mathcal{S}_{z(t)})} \quad \underbrace{\prod_{p \leq z(t)} \left(1 - \frac{1}{p}\right)^{-|\mathcal{H}|}}_{\approx (\log t)^{|\mathcal{H}|}}.$$

Strong Hardy-Littlewood conjecture (probabilistic version)

$$\#\{n \leqslant x : n+h \text{ prime } \forall h \in \mathcal{H}\} = \int_2^x \mathbb{P}(\mathcal{H} \subset \mathcal{S}_{\boldsymbol{z}(t)}) \, dt + O(x^{1/2+\varepsilon}).$$

New model and Hardy-Littlewood, II

Theorem. (BFT 2019) Fix $\frac{1}{2} \leq c < 1$, $\varepsilon > 0$. With probability 1, $\#\{n \leq x : n+h \in \mathfrak{B} \ \forall h \in \mathcal{H}\} = \int_{2}^{x} \mathbb{P}(\mathcal{H} \subset \mathcal{S}_{z(t)}) dt + O(x^{1/2+\delta(c)+o(1)})$ uniformly for $\mathcal{H} \subset [0, \exp\{(\log x)^{c-\varepsilon}\}]$ and $|\mathcal{H}| \leq (\log x)^{c}$, where $\delta(1/2) = 0, \qquad \delta(c) < 1/2 \quad (c > 1/2).$

Notes. Best possible when c = 1/2, matches strongest conjectured HL. When $|\mathcal{H}| \ge \frac{\log x}{\log \log x}$, $\mathbb{P}(\mathcal{H} \subset \mathcal{S}_{z(t)})$ is very tiny (< 1/*x*), and we cannot expect a result uniformly for such \mathcal{H} .

New model and large gaps: Interval sieve

Known bounds:

$$\frac{4y\log_2 y}{\log^2 y} \lesssim W_y \lesssim \frac{y}{\log y}.$$

Upper bound: u = 0 and $a_p = 0$ $\forall p$. **Lower bound:** Iwaniec, linear sieve.

Folklore conjecture

$$W_y \sim y/\log y$$
 as $y \to \infty$.

New model and large gaps

Def: $G_{\mathcal{B}}(x)$ is largest gap between consec. elements of \mathcal{B} that are $\leq x$.

 $W_y := \min \left| [0, y] \cap \mathcal{S}_{(y/\log y)^{1/2}} \right|. \qquad g(u) := \max\{y : W_y \log y \leqslant u\}.$

Then

$$\frac{4y\log_2 y}{\log^2 y} \lesssim W_y \lesssim \frac{y}{\log y} \quad \Rightarrow \quad u \lesssim g(u) \lesssim \frac{u\log u}{4\log_2 u}.$$

Theorem. (BFT 2019)

Let $\xi = 2e^{-\gamma}$. For all $\varepsilon > 0$, with probability 1 there is x_0 s.t.

 $g((1-\varepsilon)\xi \log^2 x) \leqslant G_{\mathfrak{B}}(x) \leqslant g((1+\varepsilon)\xi \log^2 x) \quad (x > x_0).$

Proof tools: Small sieve, large sieve, large deviation inequalities (Bennett's inequality, Azuma's martingale inequality), combinatorics, ...

New model and large gaps

Theorem. (BFT 2019)

Let $\xi = 2e^{-\gamma}$. For all $\varepsilon > 0$, with probability 1 there is x_0 s.t.

 $g((1-\varepsilon)\xi\log^2 x)\leqslant G_{\mathbb{B}}(x)\leqslant g((1+\varepsilon)\xi\log^2 x)\quad (x>x_0).$

Conjecture. (BFT 2019)

For the largest gap G(x) between primes $\leq x$,

$$G(x) \sim g(\xi \log^2 x) \qquad (x \to \infty).$$

New model and large gaps

Theorem. (BFT 2019)

Let $\xi = 2e^{-\gamma}$. For all $\varepsilon > 0$, with probability 1 there is x_0 s.t.

 $g((1-\varepsilon)\xi\log^2 x)\leqslant G_{\mathbb{B}}(x)\leqslant g((1+\varepsilon)\xi\log^2 x)\quad (x>x_0).$

Conjecture. (BFT 2019)

For the largest gap G(x) between primes $\leq x$,

$$G(x) \sim g(\xi \log^2 x) \qquad (x \to \infty).$$

Possible range of g() implies

$$\underbrace{\xi \log^2 x}_{\xi \log^2 x} \lesssim g(\xi \log^2 x) \lesssim \xi \log^2 x \frac{\log_2 x}{2 \log_3 x}.$$

Granville's lower bound

Gallagher: HL implies Poisson gaps

Theorem. (Gallagher 1976)
Assume:

$$\#\{n \leq x : n + h \text{ prime } \forall h \in \mathcal{H}\} \sim \mathfrak{S}(\mathcal{H}) \int_{2}^{x} \frac{dt}{\log^{|\mathcal{H}|} t}$$

uniformly for $|\mathcal{H}| \leq k$ (k fixed) and $\mathcal{H} \subset [0, \log^{2} x]$. Then
 $\pi(x + \lambda \log x) - \pi(x) \stackrel{d}{=} \text{Poisson}(\lambda)$, e.g.,
 $\#\{n \leq x : p_{n+1} - p_n > \lambda \log x\} \sim e^{-\lambda}\pi(x)$

Main tool: $\sum_{\substack{\mathcal{H} \subset [0,y] \\ |\mathcal{H}| = k}} \mathfrak{S}(\mathcal{H}) \sim y^k / k!.$

Montgomery-Soundararajan improvement (2004). Poor uniformity in k.

Hardy-Littlewood implies large gaps

Theorem. (BFT 2019) Let $\mathbf{1}_{\mathcal{A}}$ be the indicator function of \mathcal{A} . If $\mathcal{A} \subset \mathbb{N}$ satisfies $\sum_{n \leqslant x} \prod_{h \in \mathcal{H}} \mathbf{1}_{\mathcal{A}}(n+h) = \mathfrak{S}(\mathcal{H}) \int_{2}^{x} \frac{dt}{\log^{|\mathcal{H}|} t} + O(x^{2/3})$ $= \int_{0}^{x} \mathbb{P}(\mathcal{H} \subset \mathcal{S}_{z(t)}) dt + O(x^{2/3})$ uniformly over all tuples $\mathcal{H} \subset [0, \log^2 x]$ with $|\mathcal{H}| \leq \frac{\log x}{6 \log_2 x}$, then $G_{\mathcal{A}}(x) := \max\{b - a : 1 \leq a < b \leq x, (a, b] \cap \mathcal{A} = \emptyset\} \ge c \frac{\log^2 x}{\log x}.$

Averaged Hardy-Littlewood implies large gaps

Recall: $G_{\mathcal{B}}(x) \approx g(\xi \log^2 x)$, and $u \leq g(u) \ll u(\log u)^{1-o(1)}$.

Large gaps from Hardy-Littlewood

Proof sketch: Weighted count of gaps of size $\ge y$:

 $#\{n \leq x : [n, n+y] \cap \mathcal{A} = \emptyset\} = \sum \prod (1 - \mathbf{1}_{\mathcal{A}}(n+h))$ $n \leq x \leq h \leq y$ gap detector $=\sum_{k=1}^{\infty}(-1)^{k}\sum_{k=1}^{\infty}\sum_{k=1}^{\infty}\mathbf{1}_{\mathcal{A}}(n+h)$ $\mathcal{H}_{\subset}[0,y] \underbrace{\underset{|\mathcal{H}|=k}{\overset{n \leqslant x \ h \in \mathcal{H}}{\overset{n \leqslant x \ h \in \mathcal{H}}{\overset{}}}}_{\text{HL assumption}}$ $\approx \sum_{k=0}^{s} (-1)^k \sum_{\mathcal{H} \subset [0,y]} \int_2^x \mathbb{P}(\mathcal{H} \subset \mathcal{S}_{z(t)}) \, dt$ $= \int_{2}^{x} \mathbb{E} \sum_{i=1}^{y} (-1)^{k} \binom{|\mathcal{S}_{z(t)} \cap [0, y]|}{k} dt$ $= \int_{0}^{x} \mathbb{P}(\mathcal{S}_{z(t)} \cap [0, y] = \emptyset) \, dt.$

Banks, Ford, Tao

Probabilistic models for primes 24/28

HL imlies no super-large gaps?

Does a uniform HL for A imply an *upper bound* on large gaps?

Does a uniform HL for \mathcal{A} imply an *upper bound* on large gaps?

Answer: NO!

Removal of all elements of A in an interval $(y, y + \sqrt{y})$, for an infinite sequence of y's, does not affect the HL statistics but creates a very large gap.

Longer intervals (D. Koukoulopoulos)

Definition

$$\begin{split} \beta^+(u) &= \limsup_{y \to \infty} \max_{(a_p)} \left(\left| [0, y] \cap S_{y^{1/u}} \right| \frac{\log(y^{1/u})}{e^{-\gamma} y} \right), \\ \beta^-(u) &= \liminf_{y \to \infty} \min_{(a_p)} \left(\left| [0, y] \cap S_{y^{1/u}} \right| \frac{\log(y^{1/u})}{e^{-\gamma} y} \right). \end{split}$$

Conjecture

$$\begin{aligned} \forall u>2, \quad \limsup_{x\to\infty} \frac{\pi(x+\log^u x)-\pi(x)}{\log^{u-1}x} &= \beta^+(u)\\ \text{and} \quad \liminf_{x\to\infty} \frac{\pi(x+\log^u x)-\pi(x)}{\log^{u-1}x} &= \beta^-(u). \end{aligned}$$

Linear sieve + Maier: $0 < \beta^{-}(u) < 1 < \beta^{+}(u)$ for u > 2.

Set	Hardy-Littlewood conjecture?	Asymptotic largest gap up to x
C	No (singular series is missing)	$\log^2 x$
G	Yes (with weak error term)	$\xi \log^2 x \leqslant \cdot \leqslant \frac{\xi}{2} \frac{(\log^2 x) \log_2 x}{\log_3 x}$
B	Yes (with error $O(x^{1-c})$)	$\xi \log^2 x \leqslant \cdot \leqslant \frac{\xi}{2} \frac{(\log^2 x) \log_2 x}{\log_2 x}$
Primes	Yes (conjecturally)	$\xi \log^2 x$ (conjecturally)
\mathcal{A}	Assumed (error $O(x^{1-c})$)	$\gg c \frac{\log^2 x}{\log_2 x}$
\mathcal{A}	Assumed on avg. (error $O(x^{1-c})$)	$\geqslant g(\tilde{c\xi}\log^2 x)$

References

- H. Cramér, *Some theorems concerning prime numbers*, Ark. Mat. Astr. Fys. **15** (1920), 1–33.
- H. Cramér, On the order of magnitude of the difference between consecutive prime numbers, Acta Arith. 2 (1936), 396–403.
- Andrew Granville, *Harald Cramér and the distribution of prime numbers*, Scandanavian Actuarial J. **1** (1995), 12–28.
- H. L. Montgomery and K. Soundararajan, *Primes in short intervals*, Comm. Math. Phys. **252** (2004), 589–617.
- T. R. Nicely, *First occurrence prime gaps*, web page: http://www.trnicely.net/gaps/gaplist.html
- J. Pintz, *Cramér vs. Cramér. On Cramér's Probabilistic Model for primes*, Func. Approx. Comment. Math. **37** (2007), 361–376.
 - T. Oliveira e Silva, *Gaps between consecutive primes* (web page), http://sweet.ua.pt/tos/gaps.html