
Probabilistic models for primes and large gaps

William Banks Kevin Ford Terence Tao

July, 2019

Banks, Ford, Tao Probabilistic models for primes 1 / 28 July, 2019 1 / 28



Large gaps between primes

Def: G(x) = max
pn6x

(pn − pn−1), pn is the nth prime.

2, 3, 5, 7, . . . , 109, 113, 127, 131, . . . , 9547, 9551, 9587, 9601, . . .

Upper bound: G(x) = O(x0.525) (Baker-Harman-Pintz, 2001).

Improve to O(x1/2 logx) on Riemann Hypothesis (Cramér, 1920).

Lower bound: G(x)� (logx)
log2 x log4 x

log3 x

(F,Green,Konyagin,Maynard,Tao,2018)

log2 x = log logx, log3 x = log log logx, ...
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Conjectures on large prime gaps

Cramér (1936): lim sup
x→∞

G(x)

log2 x
= 1.

Shanks (1964): G(x) ∼ log2 x.

Granville (1995): lim sup
x→∞

G(x)

log2 x
> 2e−γ = 1.1229 . . .

Computations: sup
x61018

G(x)

log2 x
≈ 0.92.
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Computational evidence, up to 1018
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Cramér’s model of large prime gaps

Random set C = {C1, C2, . . .} ⊂ N, choose n > 3 to be in C with probability

1

logn
,

the 1/ logn matches the density of primes near n.

Theorem. (Cramér 1936)

With probability 1,

lim sup
m→∞

Cm+1 − Cm

log2Cm

= 1.

Cramér: “for the ordinary sequence of prime numbers pn, some similar
relation may hold”.
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Cramér model and large gaps

a.s. lim sup
m→∞

Cm+1 − Cm

log2Cm

= 1.

Proof:

P(n+ 1, . . . , n+ k 6∈ C) ∼
(
1− 1

logn

)k

∼ e−k/ log n.

k > (1 + ε) log2 n, this is� n−1−ε. Sum converges

k < (1− ε) log2 n, this is� n−1+ε. Sum diverges.

Finish with Borel-Cantelli.
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Cramér’s model defect: global distribution

Theorem. (Cramér 1936 “Probabilistic RH”))

With probability 1, πC(x) := #{n 6 x : n ∈ C} = li(x) +O(x1/2+ε).

Theorem. (Pintz)

E(πC(x)− li(x))2 ∼ x

logx
,

Theorem. (Cramér 1920)

On R.H.,
1

x

∫ 2x

x
|π(t)− li(t)|2 dt� x

log2 x
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Cramér model defect: short intervals

Theorem. (Cramér model in short intervals)

With prob. 1, πC(x+ y)− πC(x) ∼
y

logx
(y/ log2 x→∞)

Theorem (Selberg). Let y
log2 x

→∞. On RH, for almost all x,

π(x+ y)− π(x) ∼ y

logx
.

Theorem. (Maier 1985)

∀M > 1, lim sup
x→∞

π(x+ logM x)− π(x)

logM−1 x
> 1

and lim inf
x→∞

π(x+ logM x)− π(x)

logM−1 x
< 1.
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Cramér’s model defect: k-correlations

Theorem. (k-correlations in Cramér’s model)

LetH be a finite set of integers. With probability 1,

#{n 6 x : n+ h ∈ C ∀h ∈ H} ∼ x

(logx)|H| .

This fails for primes, e.g. H = {0, 1}, because the primes are biased

For each prime p, all but one prime in ∈ {1, .., p− 1} modulo p;
But C is equidistributed in {0, 1, . . . , p− 1} mod p.

Even for setsH where we expect many prime patterns, e.g. H = {0, 2} (twin
primes), Cramér’s model gives the wrong prediction.
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Hardy-Littlewood conjectures for primes

Cramér: #{n 6 x : n+ h ∈ C ∀h ∈ H} ∼ x

(logx)|H| .

Prime k-tuples Conjecture (Hardy-Littlewood, 1922)

#{n 6 x : n+ h prime ∀h ∈ H} ∼ S(H) x

(logx)|H| (x→∞),

where

S(H) :=
∏
p

(
1− |H mod p|

p

)(
1− 1

p

)−|H|
.

The factor S(H) captures the bias of real primes;

For each p,H must avoid the forbidden residue class 0 mod p.
H is admissible if |H mod p| < p for all p.
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Cramér model defect: gaps

Theorem: With probability 1,

#{Cn 6 N : Cn+1 − Cn = k}
#{Cn 6 N}

∼ e−k/ logN

logN
(N →∞)

Actual prime gap statistics, pn < 4 · 1018
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Granville’s refinement of Cramér’s model

T = o(logx) Q =
∏
p6T

p = xo(1)

Real primes live in UT := {n ∈ Z : gcd(n,Q) = 1}, the integers not divisible
by any prime p 6 T . The set UT has density θ =

∏
p6T (1− 1/p).

Granville’s random model:

For x < n 6 2x, choose n in G with probability{
0 if gcd(n,Q) > 1 (i.e.,n 6∈ UT )
1/θ
log n if gcd(n,Q) = 1 (i.e.,n ∈ UT ).

k-correlations. For allH, with probability 1 we have

#{n 6 x : n+ h ∈ G ∀h ∈ H} ∼ S(H) x

(logx)|H| , x→∞.
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Granville’s refinement of Cramér’s model, II

UT := {n ∈ Z : (n,Q) = 1}, (integers with no prime factor 6 T )

Theorem. (Granville 1995)

Write G = {G1, G2, . . .}. With probability 1,

lim sup
n→∞

Gn+1 −Gn

log2Gn

> 2e−γ = 1.1229 . . .

Idea: with y = c log2 x, T = y1/2+o(1),

# ([Qm,Qm+ y] ∩ UT ) = # ([0, y] ∩ UT ) ∼
y

log y
.

By contrast, for a typical a ∈ Z,

# ([a, a+ y] ∩ UT ) ∼ y
∏
p6T

(
1− 1

p

)
∼ 2e−γ y

log y
(Mertens)
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Minor flaw in Granville’s model

Hardy-Littlewood statistics:

#{n 6 x : n+ h ∈ G ∀h ∈ H} = S(H)
∫ x

2

dt

(log t)|H| + EG(x;H),

where

EG(x;H) = Ω(x/(logx)|H|+1).

Conjecture

For any admissibleH, we have

#{n 6 x : n+h prime ∀h ∈ H} = S(H)
∫ x

2

dt

(log t)|H| +O(x1/2+ε).

Much numerical evidence for this, especially for

H = {0, 2}, {0, 2, 6}, {0, 4, 6}, {0, 2, 6, 8}.
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A new “random sieve” model of primes

Random set B ⊂ N:

• For prime p, take a random residue class ap ∈ {0, . . . , p− 1}, uniform
probability, independent for different p;

• Let Sz = {n ∈ Z : n 6≡ ap (mod p), p 6 z}, random sieved set with

density(Sz) = θz =
∏
p6z

(1− 1/p) ∼ e−γ

log z
.

• Take z = z(n) ∼ n1/eγ = n0.56... so that θz(n) ∼ 1
log n , density of primes.

• Define B = {n ∈ N : n 6∈ Sz(n)}.

Global density: P(n ∈ B) = P(n 6∈ Sz(n)) ∼ 1
log n .Matches primes.

Difficulty: n1 ∈ B, n2 ∈ B not independent.

We conjecture that the primes and B share similar local statistics.
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New model B and Hardy-Littlewood conjectures

Strong Hardy-Littlewood conjecture (standard version)

#{n 6 x : n+h prime ∀h ∈ H} = S(H)
∫ x

2

dt

(log t)|H| +O(x1/2+ε).

S(H) ≈
∏

p6z(t)

(
1− |H mod p|

p

)
︸ ︷︷ ︸

=P(H⊂Sz(t))

∏
p6z(t)

(
1− 1

p

)−|H|

︸ ︷︷ ︸
≈(log t)|H|

.

Strong Hardy-Littlewood conjecture (probabilistic version)

#{n 6 x : n+h prime ∀h ∈ H} =
∫ x

2
P(H ⊂ Sz(t)) dt+O(x1/2+ε).
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New model and Hardy-Littlewood, II

Theorem. (BFT 2019)

Fix 1
2 6 c < 1, ε > 0. With probability 1,

#{n 6 x : n+h ∈ B ∀h ∈ H} =
∫ x

2
P(H ⊂ Sz(t)) dt+O(x1/2+δ(c)+o(1))

uniformly forH ⊂ [0, exp{(logx)c−ε}] and |H| 6 (logx)c, where

δ(1/2) = 0, δ(c) < 1/2 (c > 1/2).

Notes. Best possible when c = 1/2, matches strongest conjectured HL.

When |H| > log x
log log x , P(H ⊂ Sz(t)) is very tiny (< 1/x), and we cannot

expect a result uniformly for suchH.

Banks, Ford, Tao Probabilistic models for primes 17 / 28 July, 2019 17 / 28



New model and large gaps: Interval sieve

Interval sieve extremal bound

Define

Wy := min
(ap)

∣∣[0, y] ∩ S(y/ log y)1/2

∣∣
= min

u
#
{
n ∈ (u, u+ y] : n has no prime factor 6

(
y

log y

)1/2 }
.

Known bounds:
4y log2 y

log2 y
. Wy .

y

log y
.

Upper bound: u = 0 and ap = 0 ∀p. Lower bound: Iwaniec, linear sieve.

Folklore conjecture

Wy ∼ y/ log y as y →∞.
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New model and large gaps

Def: GB(x) is largest gap between consec. elements of B that are 6 x.

Wy := min
∣∣[0, y] ∩ S(y/ log y)1/2

∣∣. g(u) := max{y : Wy log y 6 u}.

Then
4y log2 y

log2 y
. Wy .

y

log y
⇒ u . g(u) .

u logu

4 log2 u
.

Theorem. (BFT 2019)

Let ξ = 2e−γ . For all ε > 0, with probability 1 there is x0 s.t.

g((1− ε)ξ log2 x) 6 GB(x) 6 g((1 + ε)ξ log2 x) (x > x0).

Proof tools: Small sieve, large sieve, large deviation inequalities (Bennett’s

inequality, Azuma’s martingale inequality), combinatorics, ...
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New model and large gaps

Theorem. (BFT 2019)

Let ξ = 2e−γ . For all ε > 0, with probability 1 there is x0 s.t.

g((1− ε)ξ log2 x) 6 GB(x) 6 g((1 + ε)ξ log2 x) (x > x0).

Conjecture. (BFT 2019)

For the largest gap G(x) between primes 6 x,

G(x) ∼ g(ξ log2 x) (x→∞).

Possible range of g() implies

ξ log2 x︸ ︷︷ ︸
Granville’s lower bound

. g(ξ log2 x) . ξ log2 x
log2 x

2 log3 x
.
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Gallagher: HL implies Poisson gaps

Theorem. (Gallagher 1976)

Assume:

#{n 6 x : n+ h prime ∀h ∈ H} ∼ S(H)
∫ x

2

dt

log|H| t

uniformly for |H| 6 k (k fixed) and H ⊂ [0, log2 x]. Then

π(x+ λ logx)− π(x)
d
= Poisson(λ) , e.g.,

#{n 6 x : pn+1 − pn > λ logx} ∼ e−λπ(x)

Main tool:
∑

H⊂[0,y]
|H|=k

S(H) ∼ yk/k!.

Montgomery-Soundararajan improvement (2004). Poor uniformity in k.
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Hardy-Littlewood implies large gaps

Theorem. (BFT 2019)

Let 1A be the indicator function of A. If A ⊂ N satisfies∑
n6x

∏
h∈H

1A(n+ h) = S(H)
∫ x

2

dt

log|H| t
+O(x2/3)

=

∫ x

2
P(H ⊂ Sz(t)) dt+O(x2/3)

uniformly over all tuplesH ⊂ [0, log2 x] with |H| 6 log x
6 log2 x , then

GA(x) := max{b− a : 1 6 a < b 6 x, (a, b] ∩ A = ∅} > c
log2 x

log2 x
.
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Averaged Hardy-Littlewood implies large gaps

Theorem. (BFT 2019)

Fix 0 < c < 1. Suppose that A ⊂ N satisfies the averaged Hardy-

Littlewood type conjecture

∑
H⊂[0,y]
|H|=k

∑
n6x

∏
h∈H

1A(n+ h) =
∑

H⊂[0,y]
|H|=k

∫ x

2

Sz(t)(H)
logk t

dt+O(x1−c)

uniformly for k 6 Cy
log x and logx 6 y 6 (log2 x) log2 x. Then

GA(x) & g(cξ log2 x).

Recall: GB(x) ≈ g(ξ log2 x), and u . g(u)� u(logu)1−o(1).
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Large gaps from Hardy-Littlewood

Proof sketch: Weighted count of gaps of size > y:

#{n 6 x : [n, n+ y] ∩ A = ∅} =
∑
n6x

∏
06h6y

(1− 1A(n+ h))︸ ︷︷ ︸
gap detector

=

y∑
k=0

(−1)k
∑

H⊂[0,y]
|H|=k

∑
n6x

∏
h∈H

1A(n+ h)︸ ︷︷ ︸
HL assumption

≈
y∑

k=0

(−1)k
∑

H⊂[0,y]
|H|=k

∫ x

2
P(H ⊂ Sz(t)) dt

=

∫ x

2
E

y∑
k=0

(−1)k
(
|Sz(t) ∩ [0, y]|

k

)
dt

=

∫ x

2
P(Sz(t) ∩ [0, y] = ∅) dt.
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HL imlies no super-large gaps?

Does a uniform HL for A imply an upper bound on large gaps?

Answer: NO!

Removal of all elements of A in an interval (y, y +
√
y), for an infinite

sequence of y’s, does not affect the HL statistics but creates a very large gap.
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Longer intervals (D. Koukoulopoulos)

Definition

β+(u) = lim sup
y→∞

max
(ap)

(∣∣∣[0, y] ∩ Sy1/u

∣∣∣ log(y1/u)
e−γy

)
,

β−(u) = lim inf
y→∞

min
(ap)

(∣∣∣[0, y] ∩ Sy1/u

∣∣∣ log(y1/u)
e−γy

)
.

Conjecture

∀u > 2, lim sup
x→∞

π(x+ logu x)− π(x)

logu−1 x
= β+(u)

and lim inf
x→∞

π(x+ logu x)− π(x)

logu−1 x
= β−(u).

Linear sieve +Maier: 0 < β−(u) < 1 < β+(u) for u > 2.
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Summary

Set Hardy-Littlewood conjecture? Asymptotic largest gap up to x

C No (singular series is missing) log2 x

G Yes (with weak error term) ξ log2 x 6 · 6 ξ
2
(log2 x) log2 x

log3 x

B Yes (with error O(x1−c)) ξ log2 x 6 · 6 ξ
2
(log2 x) log2 x

log3 x

Primes Yes (conjecturally) ξ log2 x (conjecturally)

A Assumed (error O(x1−c)) � c log
2 x

log2 x

A Assumed on avg. (error O(x1−c)) > g(cξ log2 x)

Banks, Ford, Tao Probabilistic models for primes 27 / 28 July, 2019 27 / 28



References

H. Cramér, Some theorems concerning prime numbers, Ark. Mat. Astr. Fys. 15

(1920), 1–33.

H. Cramér, On the order of magnitude of the difference between consecutive

prime numbers, Acta Arith. 2 (1936), 396–403.

Andrew Granville, Harald Cramér and the distribution of prime numbers,

Scandanavian Actuarial J. 1 (1995), 12–28.

H. L. Montgomery and K. Soundararajan, Primes in short intervals, Comm.

Math. Phys. 252 (2004), 589–617.

T. R. Nicely, First occurrence prime gaps, web page:

http://www.trnicely.net/gaps/gaplist.html

J. Pintz, Cramér vs. Cramér. On Cramér’s Probabilistic Model for primes, Func.

Approx. Comment. Math. 37 (2007), 361–376.

T. Oliveira e Silva, Gaps between consecutive primes (web page),

http://sweet.ua.pt/tos/gaps.html

Banks, Ford, Tao Probabilistic models for primes 28 / 28 July, 2019 28 / 28

http://www.trnicely.net/gaps/gaplist.html

