A new method to compute the Fourier coefficients of
Langlands Eisenstein series on GL(n)

(joint work with S5.D. Miller and M. Woodbury)

KEY IDEAS

The basic idea is to compute generic coefficients of general
Eisenstein series by reduction to Borel Eisenstein series. As is well
known the local calculation reaches a point where it depends only
on local data. Thus we see that the local factors for the
coefficients are mimicked by the local factors of the Borel series.

We call this the “Template Method.” The calculation for the
Borel Eisenstein series (which has a simpler solution) is used as a
template to obtain the Fourier coefficients for other Eisenstein
series.




The SL(2,7Z) non-holomorphic Eisenstein Series



The SL(2,7Z) non-holomorphic Eisenstein Series

SL(2,Z) Eisenstein Series:

h2::{z:x+iy‘x€R,y>0}.

Ezs)= y5d|5, (R(s) > 1).

cz
c,deZ | T
(c,d)=1




Fourier Expansion of the SL(2,Z) Eisenstein Series

E(z,5) = y°+¢(s)y' ™

Constant Term

271'5 .
f Zal 2a(m) 2K,y (2n]nly) - 77

nth Fourier Coefficient




Fourier Expansion of the SL(2,Z) Eisenstein Series

E(z,5) = y°+¢(s)y' ™

Constant Term

271'5 .
f Zal 2a(m) 2K,y (2n]nly) - 77

nth Fourier Coefficient

First Coefficient and the n" Hecke Eigenvalue

s 21°\/y 1
15t Coeff := r(s)C\(gs) K,_1(2mlnly) | | A(n.s) := o1-25(n)I| 2




The p Hecke eigenvalue is easy to compute

Action of p" Hecke operator T, on F(z)




The p" Hecke eigenvalue is easy to compute

Action of p" Hecke operator T, on F(z)

1 z+b
ToF() = 7= | Fle) +0<§bj<pF( . )

Easy way to compute Action of T, on E(z,s)

Ty = = [ (Fle2)py) + 3 <y>

ﬁ 0<b<p P

— (psi% _i_p%fs) ys




The p" Hecke eigenvalue is easy to compute

Action of p" Hecke operator T, on F(z)

1 z+b
ToF() = 7= | Fle) +0<§bj<pF( . )

Easy way to compute Action of T, on E(z,s)

Ty = = [ (Fle2)py) + 3 <y>

ﬁ 0<b<p P

— (psi% _i_p%fs) ys

ToE(z,s) = X(p,s) - E(z,s)

A(p,s) = (ps_% + pé*) :




Group theoretic definition of the SL(2,7Z) Eisenstein series



Group theoretic definition of the SL(2,7Z) Eisenstein series

Iwasawa decomposition

Upper half plane: b2 := GL(2,R)/0O(2,R) - R*

Is(g) :==y° (corresponds to Im(x + iy)®)
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Group theoretic definition of the SL(2,7Z) Eisenstein series

Iwasawa decomposition

Upper half plane: b2 := GL(2,R)/0O(2,R) - R*

Is(g) :==y° (corresponds to Im(x + iy)®)

E(g,s):== Y.  k(g)| (g€b?)

M= SL(2,Z), B .= {(0 :)} = Borel subgroup.



The SL(3,7Z) Eisenstein series
Observation: (g )1(> = (é )1<> (g g)



The SL(3,7Z) Eisenstein series

. [y x\ _ (1 x\(y O
Observation: (0 1>—<0 1> <0 1).

The upper half plane §3

Upper half plane: h3 := GL(3,R)/O(3,R) - R*




The SL(3,7Z) Eisenstein series

. [y x\ _ (1 x\(y O
Observation: (0 1>—<0 1> <0 1).

The upper half plane §3

Upper half plane: h3 := GL(3,R)/O(3,R) - R*
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The SL(3,7Z) Eisenstein series
. [y x\ _ (1 x\(y O
Observation: (0 1> = (0 1> <0 1) .

The upper half plane §3

Upper half plane: h3 := GL(3,R)/O(3,R) - R*

1x12 x1,3 yiy2 0 0
g€h3:>g:<01xz’3><0y10> (X;JGR,yk>0)
00 1 0 01

The Is function

s = (s1,5) € C2.

Is(g) =y PRyt

A\



SL(3,Z) Eisenstein series

SL(3,Z) Eisenstein Series

E(g,s):= Y. k(g)| (g€b’)

v € BAM\r




SL(3,Z) Eisenstein series

SL(3,Z) Eisenstein Series

E(g,s):= > I(ve)

v € BAM\r

Here

M:=SL(3,Z)

(g €b?)

ko ok X%
B .= 0 * = = Borel subgroup.
0 0 =«



Langlands SL(3,Z) Eisenstein series

Partition of 3:



Langlands SL(3,Z) Eisenstein series
Partition of 3:

Parabolic subgroup P> ;




Langlands SL(3,Z) Eisenstein series
Partition of 3:

Parabolic subgroup P> ;

SL(3,7Z) Eisenstein Series associated to Ps 1

EP2,1(g>5) o= Z Is(vg, P2,1) (g € []3)
’ye(Pg,lﬂF)\F

M= SL(3,Z).




Langlands SL(3,7Z) Eisenstein series twisted by an SL(2,7Z)

cusp form

We have the Langlands decomposition of the parabolic P 1:
7D:P271:M7’./\/7D

vl (T a))

Every g € b2 can be put in the form g = n(g) - m(g) with

_ (ma(g) 0
n(g) e N¥, m(g) = ( 0 m1(g)> e N”.

with



Langlands SL(3,Z) Eisenstein series twisted by an SL(2,7Z)

cusp form

We have the Langlands decomposition of the parabolic P 1:

P =Py =M -N

vl (T a))

Every g € b2 can be put in the form g = n(g) - m(g) with

_ (ma(g) 0
n(g) e N¥, m(g) = < 0 m1(g)> e N”.

with

Langlands SL(3,Z) Eisenstein Series twisted by SL(2,Z) cusp form

Ep,\(8:5,0):= >, (v Pa1)-d(ma(vg))-

ve(Paanr)\r




Cusp forms for GL(n,R)

A cusp form is a complex valued function

o: 5" —C

satisfying the following conditions:

o|0(v8) = 9(a),

(Vv € SL(n,Z), ge€hm);

e eigenfunction of invariant differential operators;
e has moderate growth;

e vanishes at the cusps.



Invariant Differential Operators on §”

Recall that h” which can be identified with the set of matrices xy:

1 Y1-'Yn—1
x € Up(R) = . .y =
T 1

(xij € R, y; > 0).



Invariant Differential Operators on §”

Recall that h” which can be identified with the set of matrices xy:

1 Y1 Yn—1

x € Up(R) = . , Y=

The space D" of invariant differential operators

The space D" consists of all polynomials (with complex

o o c . ) ) c - -
coefficients) in the variables {aT,-,p Tyk} which are invariant under
GL(n,R) transformations.




Langlands Parameters

’a:{al,ag,...,an}EC"

where a; + ap + -+ -+ a, = 0.




Langlands Parameters

’a:{al,azj...,an}EC"

where aiy + o + - -+ o, = 0.

Langlands parameters can be used to construct a character of the
torus which is an eigenfunction of all 6 € D".

Construction of an eigenfunction of D"

Definition: Let @ € C” denote a set of Langlands parameters. We
define a character I, : Up(R)\h” — C by

n—1n—1 Ttaj—ajyg

lo(g) = H Hyibi’jjf

i=1 j=1

ij ifi+j<n,

= (= n’ bI:
F=5 Sk J {(n—i)(n—j) if i+ > n.




The eigenfunction 1,

For Langlands parameters a € C" we have

Slo=Xs -l (V6D

and for the Laplacian A we have

n3—n_a§+a§+-~~—|—a,27

Aa =" 2




Character of the unipotent group

Let u € U, be given by

1 wmp w3z -+ wu,
1 w3 - w2
u =
1 Un—1,n
1
For L= (¢1,0,...,0,_1) € Z™ 1, we may define a character:

wL(U) o e27ri(€1u1,2+ +€,,_1un_1’n)‘




Character of the unipotent group
Let u € U, be given by

1 wmp w3z -+ wu,
1 w3 - w2
u =
1 Un—1,n
1
For L= (¢1,0,...,0,_1) € Z™ 1, we may define a character:

wL(U) o e27ri(€1u1,2+ +€,,_1un_1’n)‘

Here

Yo(u-u) =du(u)e(d),  (u, 0" € Up).




Whittaker Functions

Given Langlands parameters o € C" and a character ¥ of U,(R)
there is a unique Whittaker function

]Wa:h"—m\




Whittaker Functions

Given Langlands parameters o € C" and a character ¥ of U,(R)
there is a unique Whittaker function

| W :h"—C|

Whittaker Function Properties

o SW, = N5 Wa, (V6 eD"),
o Wo(ug) =¢(u) - Wa(g), (Vu€ Un(R), g € GL(n,R)),

e W, is invariant under all permutations of a = {a1,...,an},

e W, has holomorphic continuation to all « € C",

e W, (y) has rapid decay in y; — oo where y = diag(y1,y2," " ¥n),
e W, (y) has prescribed polynomial asymptotics as all y; — 0.

e Simpler but analogous situation over Q, by Casselman-Shalika.

e Here we have an additional normalization W, (e) = 1.




Example 1 (GL(2) Whittaker function)

(5 7)o

Langlands parameter: a = (v, —v) € C?

W) — T(1/2+ ) i y YA ~2miu
a(g) = xl/2+v (x + u)? + y2 € X

—00

=2/y K,(2mry) - €™




Example 1 (GL(2) Whittaker function)

(5 3)ev

Langlands parameter: a = (v, —v) € C?

o0
r(1/2+v) y P
Wa(g) = = 7T1/2+V / <(X + u)2 +y2 e o dfx

—00

=2/y K,(2mry) - €™

e W, (g) is an explicit product of I''s times the “Jacquet integral”.

e The small y asymptotics have leading terms m=*T (Fv)y*/?*.

e These facts easily generalize to general Chevalley groups.



Fourier-Whittaker expansion of cusp forms ¢

(Shalika-Piatetski-Shapiro)

Assume § ¢ = A, - ¢ for all 6 € D".

Let M = (my,...,mp_1) €Z" Y and T,_1 =SL(n—1,7Z).

o) = 3 3 —AM

V€U Tt MZO T || 7
k=1

(v (

v 0
0 1

)¢)




Fourier-Whittaker expansion of cusp forms ¢

(Shalika-Piatetski-Shapiro)

Assume § ¢ = A, - ¢ for all 6 € D".
Let M = (my,...,mp_1) €Z" Y and T,_1 =SL(n—1,7Z).

- = S 5)s)
FEUp \Tnt MO ] |mk|k(" =
k=1

where g € h” and

my---mp_2|mg_1|
M* =
.
1

A(my,...,m,_1) is called the M Fourier coefficient of ¢.




L-function associated to a Hecke cusp form ¢



L-function associated to a Hecke cusp form ¢




L-function associated to a Hecke cusp form ¢

Euler Product

L(S, ¢) =
p

(AL 1) ALpL.1)  ALLp..1)
_H B ps + p2s B p3s

Eoees A (T

AL, 1,p) (—1)")1

p(n— 1)s + pns



Functional Equation of L(s, ¢)

L(s, ¢) is a degree n L-function. This means the completed
L-function has n Gamma factors and satisfies the functional
equation

n

L¥( wzHr<

where 5 denotes the dual form which has M Fourier coefficient
(for M = (my,my, ..., my_1)) given by A(mp_1, Mp_2,...,m1).

> 5,0) =L (1—5,0)




Fourier coefficients of a cusp form



Fourier coefficients of a cusp form

Let M =(mq,...,mp_1) and 1 = (1,...,1). Then

Ap(M) = Ag(1) - Ag(M)
—_—— N —
first coeff.  Mth Hecke coeff.

where A\y4(1) = 1.




Fourier coefficients of a cusp form

Let M =(mq,...,mp_1) and 1 = (1,...,1). Then

Ap(M) = Ag(1) - Ag(M)
—_—— N —
first coeff.  Mth Hecke coeff.

where A\y4(1) = 1.

First Coefficient of a cusp form ¢

| \

(¢, ¢)
Vol (M\h") - L(1,¢;,Ad) ] F(H%f;aq

1<j#k<n

|As(1)|* =

where L(s, ¢;,Ad) := w




Langlands Eisenstein Series for GL(n, R)

Parabolic subgroups

Associated to a partition n = n; + --- + n,, we have a standard
parabolic subgroup

GLn1 * *
0 GL,12 *
. . P P
7) o= Pn17n27__.7nr o= ) . . ) S N . M




Langlands Eisenstein Series for GL(n, R)

Parabolic subgroups

Associated to a partition n = n; + --- + n,, we have a standard
parabolic subgroup

GLn1 * *
0 Gln, - *
. . P P
P = Pm,nz,--.,nr = . . . =N"-M
0 0 - Gl

with nilpotent radical and Levi subgroup

Iy Gl O = 0

P 0 lny - * WP — 0 Gln, ~ 0
T . o o a ) L




Langlands Eisenstein Series for GL(n, R)

Fix a parabolic subgroup P. Every g € h” can be put in the form

[e=ne) m(@)] (o) € V", m(g) e MP).

Here

where m;(g) € GL,,.




Langlands Eisenstein Series for GL(n, R)

Letn>2, n=n+nm+--+n and P := Pn1,n2,-..,nr'

.
Let s = (s1,52,...,5-) € C where ) njs; = 0.
i=1



Langlands Eisenstein Series for GL(n, R)

Letn>2, n=n+n+---+n-and P:="Pp pn, . n,-

.
Let s = (s1,52,...,5-) € C where ) njs; = 0.
i=1

Multiplicative character on a parabolic subgroup

Define the function | |5 : " — C by

el =TT |aetm@)|”| (¢ = nle)m(e) k € GL(n.B)).

=i

,
Here K = O(n,R). Note that 21 nis; = 0 guarantees that | [° is
1=

invariant under scalar multiplication.




Langlands Eisenstein Series for GL(n, R)

Let ¢; : b — C be automorphic forms for SL(n;, Z) for
i=1,2,...,r.



Langlands Eisenstein Series for GL(n, R)

Let ¢; : b — C be automorphic forms for SL(n;, Z) for
i=1,2,...,r.

(Automorphic form & associated to a parabolic P)

Define an automorphic form ® := (¢1,...,¢,) on h” by the recipe

d(nmk) = H oi(m;)

=1

where n € N7, m € M”, k € K = O(n,R), and

=

&

o
co

m=| :_"_:: . (mie6L(n,R)),
6 6 - m




Langlands Eisenstein Series for GL(n, R)

DEFINITION: Langlands Eisenstein Series

Let I = SL(n,Z) with n > 2. Consider a partition

n=n +---+ n, with associated parabolic subgroup P. Let
r

s=(s1,%,...,5) € C" where > n;s; = 0.

i=1
The Langlands Eisenstein series determined by this data is defined
by:

Epol(g,s)= Y  o(yg)- el
v € (PNN\T




Langlands Spectral Decomposition

Theorem (Langlands)

Let ¢1, @2, ... denote an orthogonal basis of Maass forms for
SL(n,Z). Assume that F € L2(SL(n,Z)\b") is orthogonal to the
residual spectrum. Then for g € GL(n,R) we have

o0

Fle) =2 (F. e + L

/ / F Ep o *75)>E73‘,¢°(g,5) dsy---ds,_1

Re(51 =0 Re(s, 1) 0

where the sum over P ranges over parabolics associated to
partitions ny + - -- 4+ n, = n, and the sum over ® ranges over an
orthonormal basis of Maass forms associated to P. Here

r r

s =(s1,...,s) where > ngsx =0 for the partition > nx = n.
k=1 k=1



Minimal Parabolic Eisenstein Series

Pwmin corresponds to the partition n=1+4+1+---+ 1. Let
n

s=(s1,...,5n) with > 5, =0.
i=1

Epyi.(8:5) = Z el

PMin (g E GL(n’ R)’ %(S) >> 1)
v € (PminNO\F




Minimal Parabolic Eisenstein Series

Pwmin corresponds to the partition n=1+4+1+---+ 1. Let
n

s=(s1,...,5n) with > 5, =0.
i=1
Ep,..(g,s) := Z |7g\;Mm (g € GL(n,R), R(s)> 1).

v E (PMinmr)\I’

Non-constant Fourier coefficients of Ep,,

Let M = (m1,..

APMin(M7 S) = APMin ((17 ooog 1)7 S) ’ )\PMin(M7 5)7

APMin(M?s) = APMm(las) ')‘PMin(Mvs)

.,mp_1). Then

-

first coeff. Mth Hecke coeff.




Fourier coefficients of Minimal Parabolic Eisenstein Series

Theorem (Selberg, Maass, Terras, Langlands, Shahidi)

Let Ep,,. (g,s) have Langlands parameters
a = (a1(s),...,an(s)). Then

Apys, ((m’ 1,...,1), S) _ Z Clal(s)C2a2(S) . C,?é,,(s)

C1Co++Ch=m

form=20,1,2,3,..., and

Apyn ((1,--1),8) = T ¢ (1 +as(s) — auls)) ™

where

for w € C.



The m'" Hecke eigenvalue of Ep (g, s)

Theorem (G)

e Partition: n=n1 +---n,.
es=((sy,...,s)€C" with nys; +---+ n,s, = 0.
e Hecke operator: T, for m=1,2.3,...

Then

Tm EP,¢(g,5) — )\Ep@ ((m7 17 D 1)75) . E'P,¢’(g7 S)




The m'" Hecke eigenvalue of Ep (g, s)

Theorem (G)

e Partition: n=n1 +---n,.
es=((sy,...,s)€C" with nys; +---+ n,s, = 0.
e Hecke operator: T, for m=1,2.3,...

Then

Tm EP,¢(g,5) — )\Ep@ ((m7 17 D 1)75) . E'P,¢’(g7 S)

where
Mepo (M1, 1),8) = D Ag(ar) Mg, (cr)

1<c1,c2,...,cr €EZ
C1C:Cr=mMm
si+Ni+75" s No 220 e+ N+ 2070
. C]_ C2 DR Cr
and Ny =0, N; =ny +no+---nj_q for i > 1. In the above Ay (c;)
denotes the eigenvalue of the SL(n;,Z) Hecke operator T, acting
on ¢; which may also be viewed as the (¢;,1,1,...,1) Fourier

coefficient of ¢;.

)



Langlands Eisenstein series for SL(4, Z)

There are 4 standard non-associate parabolic subgroups associated
to the partitions:

4=3+1=242=24+1+1=1+1+1+1.



Langlands Eisenstein series for SL(4, Z)

There are 4 standard non-associate parabolic subgroups associated
to the partitions:

4=3+1=242=24+14+1=1+1+1+1.
Let Ep o(*,s) have Langlands parameters
a = (a1, 0, 03,04)

which depend on s and the Langlands parameters of ®.



Langlands Eisenstein series for SL(4, Z)

There are 4 standard non-associate parabolic subgroups associated
to the partitions:

4=3+1=242=24+14+1=1+1+1+1.
Let Ep o(*,s) have Langlands parameters
a = (a1, 0, 03,04)

which depend on s and the Langlands parameters of ®. Set
M = (m1, my, m3). Then

- Ae, o (M.5)
| B i@ = e

|| 2[maf?m3]2
U@ Ue)

W, (Mg).

AEP,o(Mv s) = AE’P,(D ((17 1,1), 5) : )‘Ep,¢(M’ s)




Notation for L-functions on GL(1), GL(2), GL(2) x GL(2)

Cw) =72 (3) W) =¢'a-w), (weO).




Notation for L-functions on GL(1), GL(2), GL(2) x GL(2)

GL(1)
C(w) =751 (5 ) Cw) = ¢ (1 —w),  (weO).
GL(2)

¢ = Masss cusp form on GL(2) with Laplace eigenvalue
1 —v2 (v € C) and Langlands parameter a = {ag,az} = {v, —v).

)= () (M) Lwio) = U (1-we0)




Notation for L-functions on GL(1), GL(2), GL(2) x GL(2)

GL(1)
C(w) =751 (5 ) Cw) = ¢ (1 —w),  (weO).

GL(2)

¢ = Masss cusp form on GL(2) with Laplace eigenvalue
1 —v2 (v € C) and Langlands parameter a = {ag,az} = {v, —v).

)= () (M) Lwio) = U (1-we0) |

GL(2) x GL(2) (Rankin-Selberg convolution)

é1, ¢ with Laplace eigenvalues 1 7= v2, % — V2, respectively.
o _ W+ o + o
L*(w, ¢1 X ¢p) =72 (1_[11_I1r (2’J>) L(w, ¢1 X ¢2)
i=1j=

= L*(l - W7¢1 X ¢2)



Notation for L-functions on GL(3)

GL(3) Maass Form
Finally, for a Maass form ¢ on GL(3) with Langlands parameter

a= (a1, an,a3) = (v+2v,v—Vv =2v—V), (v,v €C)
define the completed L-function L*(w, ¢) associated to ¢ by

1*(w,$) == 7= 5T <W+20‘1> r <WJ;O‘2> r <WJ;O‘3> L(w, d)

= 1"(1-w,$).




Notation for L-functions on GL(3)

GL(3) Maass Form
Finally, for a Maass form ¢ on GL(3) with Langlands parameter

a= (a1, an,a3) = (v+2v,v—Vv =2v—V), (v,v €C)
define the completed L-function L*(w, ¢) associated to ¢ by

1*(w,$) == 7= 5T <W+20‘1> r <W+20‘2> r <W+20‘3> L(w, d)

= 1"(1-w,$).

.

Adjoint L-function

The adjoint L-function of a Maass form ¢ on GL(n) is defined by

L(w,Ad ¢) := L(w, ¢ x ¢)/{(w).




Langlands Eisenstein series for the 4=24-2 partition

Langlands Eisenstein series for the 4=2+2 partion

® = (41, ¢2).

Epo(g,s) = Z d(vg) - "Ygﬁ;
v € (PNM\I




Langlands Eisenstein series for the 4=24-2 partition

Langlands Eisenstein series for the 4=2+2 partion

® = (41, ¢2).

Epo(g,s) = Z d(vg) - "Yg’i
v € (PNM\I

The minimal parabolic Eisenstein series Ep, , ¢+

KEY IDEA: Replace ® = (¢1, ¢2) by ®* = (E;, E5) where Ef, E}
are minimal parabolic Eisenstein series for SL(2,7Z) with the same
Langlands parameters as ¢1, ¢>. Then compute the first Fourier
coefficient of Ep,, o+



The minimal parabolic Eisenstein series Ep, , ¢+

yiy2y3 iy
y = ( s n >
1
The replacements for ¢1, ¢

Eik(y) = E;I\Ain((ylyz}G yiy2 )7 V) = C*(l + 2V)EPMin<(y3 1)7 V)

=("(1+2v) Z y3%+v

~e\Ux(Z) SL(2,Z)

9

E5(y) = Eh, (1), V) = L+ 2)Ery, (1), V)

= C*(l + 2\//) Y1
~e\Ua(Z) SL(2,Z)

Important: E[, E5 are normalized to have first Fourier coeff. = 1.




The minimal parabolic Eisenstein series Ep, , ¢+

Then Ep, , o (g, (51,52)) has Langlands parameters

a:(51+v,51—

The first Fourier coefficient of Ep, , ¢+

AEP272,®* ((17 1, 1)75) =¢" (1+2v)¢” (1 + 2v’) . (C*(l +2v)

C(142s1 —v— V)L 4251 +v— V(L + 25 — v+ V)

—i
CH(1+2s1 + v+ V(L + 2v’)>

— (C*(l 25— v— V)¢

=l
(14251 — v+ V) (1428 + v+ v’))

/ /
v,—s; + Vv, —s1 — V).

(14251 +v—V)

1

=|L*(1 4281, Ef x E3) 7"




The first Fourier coefficient of Ep,, o

Proposition (Shahidi-Woodbury-G)
The first coefficient of Ep, , », where ¢1, ¢2 are Maass forms of
norm 1 on GL(2) with spectral parameters %—i— v, % + v/, is given by

(L(I,Ad $1)7 L(1,Ad ¢p)2 T (; + V) r (; n v/)

-1
L (1+ 281, ¢ % ¢2)>

up to a constant factor.




The first Fourier coefficient of Ep, . ¢

1
S = (1+Sl,—§+52,53)7 (){:(51+V751—V752,—251—52)

Proposition

The first coefficient of Ep,,; ¢(g,s), where ¢ is a Maass form of
norm 1 on GL(2) with spectral parameter % + v, is given by

<L(1,Ad $)2 T(1/2+ v) (1 + 251 + 25)L (1 + 51 — 52, )

-1
- L*(1 4 351 + s, qb))

up to a constant factor.



The first Fourier coefficient of Ep, | o

s = (1/2—|-51, —3/2 — 351)

a=(ss+2v+Vv sy —v+Vv s —v—-2V -35)

Proposition

The first coefficient of Ep,, o(g,s), where ¢ is a Maass form of
norm 1 on GL(3) with Langlands parameter
(2v + v/, —v + v/, —v —2V'), is given by

/ /
(L(l,Ad¢)5 r(1+23v>r<1+23v)r<1+3\;+3v>

-1
- L*(1+ 45, qS))

up to a constant factor.




THE END !!



From GL(n) to Chevalley groups

Chevalley groups G are specific realizations of Lie groups that have
a friendly integral structure.

They can be viewed as algebraic subgroups of GL(M) such that

@ T=maximal torus consists of all diagonal matrices

@ N consists of all unipotent upper triangular matrices
@ B consists of all upper triangular matrices
°

K consists of all orthogonal matrices.

Examples: SL(n), PGL(n).



From GL(n) to Chevalley groups

Chevalley groups G are specific realizations of Lie groups that have
a friendly integral structure.

They can be viewed as algebraic subgroups of GL(M) such that

@ T=maximal torus consists of all diagonal matrices

@ N consists of all unipotent upper triangular matrices
@ B consists of all upper triangular matrices
°

K consists of all orthogonal matrices.

Examples: SL(n), PGL(n).

Chevalley groups are associated to root systems A C R", r=rank

@ T acts by adjoint action on g.
e Diagonalized by root vectors X,: Ad(t) X, = t* - Xa,

@ where t — t% is notation for a character of T and o € A.




Root systems

Example of SL(n), rank r = n —1:

The adjoint action of T is:
@ trivial on diagonal matrices
@ diagonal on the span of the elementary matrices E;;, i # j.

If t = diag(ty,...,ty), the corresponding root satisfies t* = t;/t;.




Root systems

Example of SL(n), rank r = n —1:

The adjoint action of T is:
@ trivial on diagonal matrices
@ diagonal on the span of the elementary matrices E;;, i # j.

If t = diag(ty,...,ty), the corresponding root satisfies t* = t;/t;.

Positive roots « (i.e., X, € n) are nonnegative integral
combinations of simple roots ¥ = {a1,...,a,}.

The root system comes endowed with an inner product (-,-) from
its ambient vector space R". The coroot oV = (Ofa)a.

For simply-laced root systems (i.e., SL(n), SO(2n), Es, E7, Eg) we
may scale so that a" = .

Via (+,-), there exists a basis of fundamental weights ws, ..., w,

and a pairing (-, -) such that

. V = ’ !
(wi, o) { 0 4]




General Eisenstein series

Start with a parabolic P = LU C G.
@ L is the product of its center and smaller Chevalley groups.

o Cuspidal automorphic representations of these smaller groups
lift to L.

They can be further twisted by characters of the center, which
can be described by certain w;, to get 7z (more details in
examples).

If ¢ is a vector for 7, multiply by character of the center to
get vector ¢z € 7.

Form global Eisenstein series

7EP(Q\G(Q)

This converges absolutely for large S and has a meromorphic
continuation.




General formula for generic coefficient

@ At each place v < 00, ¢ has Langlands/Satake parameters i, .
e E(g,¢,5) has Langlands/Satake parameters
Ay = Zsiwi + .
@ Recall the normalized Whittaker function. It has p-adic
analogs, hence a global normalized Whittaker function Wj.



General formula for generic coefficient

@ At each place v < 00, ¢ has Langlands/Satake parameters i, .

e E(g,¢,5) has Langlands/Satake parameters
Ay = ZS,’?D,‘ + Ly

@ Recall the normalized Whittaker function. It has p-adic
analogs, hence a global normalized Whittaker function Wj.

Formula for generic coefficient

[ Evgo.5)x@an=3-T[ T] &((va")+1) " wa

N(Q\N(4) vEeoachu

where $ is the Fourier coefficient of the inducing cusp form on the
Levi and Ay are the roots in the unipotent radical.

Main point: Precise control of the constant normalization allows
for new applications.



Example: (2,1,1) parabolic P C SL(4)

Label the simple roots o, i =1,2,3: t% = t;/ti41.
It is natural to identify

o1 = (1,-1,0,0), w1 = (1,0,0,0),

az = (0,1,-1,0), @ = (1,1,0,0),
as = (0,0,1, 1), w3 = (1,1,1,0).



Example: (2,1,1) parabolic P C SL(4)

Label the simple roots o, i =1,2,3: t% = t;/ti41.
It is natural to identify

a1 = (1, —1,0,0), w1 = (1707070)7
Qp = (0, 1, —].,O), w2 = (]-7 17070)7
a3 = (0, 0,1, —1), w3 = (]-7 1, 170)

@ The Lie algebra of the Levi L contains Xiq,.
@ The Lie algebra of U contains X, for all
a€ Ay ={ag, a1 +az, a0 + a3, a1 + az + a3, as}.

@ The fundamental weights wy, w3 are orthogonal to «;, and
extend to characters of L which are trivial on its SL(2) block.



Fourier coefficient for (2,1,1) parabolic

e Let (v, —1y) as before denote the local Langlands/Satake
parameters for 7, assumed to be spherical at all places v < oo.

@ The induced Eisenstein series has local parameters
Ay = Swo + s3ws + vyaq, for v < oo.

@ The 5 inner products (\,,a"), for a« € Ay, are s, + v, s3,
and s, + s3 £ v,.



Fourier coefficient for (2,1,1) parabolic

e Let (v, —1y) as before denote the local Langlands/Satake
parameters for 7, assumed to be spherical at all places v < oo.

@ The induced Eisenstein series has local parameters
Ay = Swo + s3ws + vyaq, for v < oo.

@ The 5 inner products (\,,a"), for a« € Ay, are s, + v, s3,
and s, + s3 £ v,.

Conclusion: the L-factors give:

(L2417 (524 53+ 1,7)¢(s3 + 1))71.




Example: Eg

The E7 parabolic

@ U is a 57-dimensional Heisenberg group.

e u=u; @ up, where dim(u;) = 56 and dim(uy) = 1.

@ The adjoint actions of the Levi L on u; are the standard
representation of Ez C Sp(56), and the trivial representation.

@ Hence the L-factors are L*(s +1,7,56)71 - ¢*(2s +1)7L.




Example: Eg
The E7 parabolic

@ U is a 57-dimensional Heisenberg group.

e u=u; @ up, where dim(u;) = 56 and dim(uy) = 1.

@ The adjoint actions of the Levi L on u; are the standard
representation of Ez C Sp(56), and the trivial representation.

@ Hence the L-factors are L*(s +1,7,56)71 - ¢*(2s +1)7L.

The Spin(7,7) parabolic parabolic

@ U is a 78-dimensional 2-step nilpotent group.
@ u=u; & up, where dim(uy) = 64 and dim(up) = 14.

@ The adjoint actions of the Levi L on u; are the spin
representation and standard representation.

@ Hence the L-factors are
L*(s + 1,7, Spin)~1L*(2s + 1,7, Stan) L.




HAPPY BIRTHDAY BILL!!



