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Part I: The combinatorial sieve, revisited



The (classical) Inclusion-Exclusion inequalities

J∑
j=0

(
k

j

)
(−1)j =

(
k − 1

J

)
(−1)J

for all integers k ≥ 1 and 0 ≤ J ≤ k .
(When k = 0 we interpret

(−1
J

)
= (−1)J .)

Therefore

2J+1∑
j=0

(
k

j

)
(−1)j ≤ (1− 1)k ≤

2J∑
j=0

(
k

j

)
(−1)j

Here (1− 1)k = 0 if k ≥ 1, and (1− 1)0 = 1.
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∑
d |(m,n)

ω(d)≤2J+1

µ(d) ≤ 1(·,m)=1(n) ≤
∑

d |(m,n)
ω(d)≤2J

µ(d).

Let Ad = #{n ∈ A : d |n}

Sum the above equation over all n ∈ A to obtain∑
d |m

ω(d)≤2J+1

µ(d)#Ad ≤ #{n ∈ A : (n,m) = 1} ≤
∑
d |m

ω(d)≤2J

µ(d)#Ad .

We now assume

#Ad =
g(d)

d
#A + rd(A)

(e.g. with each g(d) = 1), and m =
∏

p≤y p.
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We deduce that∑
d |m

ω(d)≤2J+1

µ(d)g(d)

d
#A− E

≤#{n ∈ A : (n,m) = 1}

≤
∑
d |m

ω(d)≤2J

µ(d)g(d)

d
#A + E

where
E =

∑
d≤D
|rd(A)|

and D = y2J+1, since each d has no more than 2J + 1 prime
factors, all ≤ y .

This means that E is typically well bounded, but we have to think
more about the main term.
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Let y be fixed and A = {n ≤ x}, and, by the CRT, remove g(p)
residues classes mod p. Then as x →∞, in the inequalities

x
∑
d |m

ω(d)≤2J+1

µ(d)g(d)

d
− E

≤#{n ≤ x : (n,m) = 1}

≤ x
∑
d |m

ω(d)≤2J

µ(d)g(d)

d
+ E

the error term E is bounded, and so the three terms are,
asymptotically, x times∑

d |m
ω(d)≤2J+1

µ(d)g(d)

d
≤
∏
p≤y

(
1− g(p)

p

)
≤

∑
d |m

ω(d)≤2J

µ(d)g(d)

d
.



Now if we write∑
d |m

ω(d)≤2J+1

µ(d)g(d)

d
≤ eH :=

∏
p≤y

(
1− g(p)

p

)
≤

∑
d |m

ω(d)≤2J

µ(d)g(d)

d
.

as L ≤ P ≤ U and show that U − L ≤ ∆P then
L,U = (1 + O(∆))P.

Now

U − L =
∑
d |m

ω(d)≤2J+1

g(d)

d
=

H2J+1

(2J + 1)!
.

This is only small when J � H ∼ κ log log y . But
E =

∑
d≤D |rd(A)| with x1−ε ≥ D = y2J+1 ≈ yC log log y . So we

get an asymptotic in the restricted range

y ≤ xc/ log log x .
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First Combinatorial Sieve result

We have proved that if x = yu then #{n ∈ A : (n,m) = 1} =

=
∏
p≤y

(
1− g(p)

p

)
#A{1 + O(1/uu)}+ O

∑
d≤D
|rd(A)|


provided y ≤ xc/ log log x .

How can we obtain a better range?
What was the cause of this restriction?

We needed y2J+1 ≤ x ; that is, u ≥ 2J + 1�
∑

p≤y
g(p)
p . In

general if we sieve we a set of primes P, all ≤ y then we need∑
p∈P

g(p)

p
� u.
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To sieve the integers up to x = yu with a set P of primes, all ≤ y
then we need ∑

p∈P

g(p)

p
� u.

Only choice is to keep the set P smallish: So then what?
We could first sieve with P1, then P2, etc
How to use inclusion-exclusion?

Write 1(·,m)=1(n) =
∏`

i=1 1(·,mi )=1(n) with squarefree
m = m1 · · ·m`.

∏̀
i=1

(1− 1)ki ≤
∑

0≤ji≤2Ji
for i=1,...,`

∏̀
i=1

(−1)ji
(
ki
ji

)
=
∏̀
i=1

(
ki − 1

2Ji

)
,

which is obviously ≥ 0.
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Lower bound inequality (Ford & Halberstam)

∏̀
i=1

(1− 1)ki ≥
∑

0≤ji≤2Ji+1
for i=1,...,`

ji=2Ji+1 for at most one i

∏̀
i=1

(−1)ji
(
ki
ji

)
.

If all ki = 0 then only non-zero term is all ji = 0, so equals 1.
The above sum can be rewritten as

∑
0≤ji≤2Ji for all i

+
∑̀
h=1

∑
0≤ji≤2Ji for all i 6=h

jh=2Jh+1

to obtain,

∏̀
i=1

(
ki − 1

2Ji

)
+
∑̀
h=1

∏̀
i=1, i 6=h

(
ki − 1

2Ji

)
· (−1)

(
kh

2Jh + 1

)



Our lower bound on
∏`

i=1(1− 1)ki is

∏̀
i=1

(
ki − 1

2Ji

)
+
∑̀
h=1

∏̀
i=1, i 6=h

(
ki − 1

2Ji

)
· (−1)

(
kh

2Jh + 1

)

We may assume that each ki = 0 or ≥ 2Ji + 1 (else each term
equals 0) to obtain

=
∏̀
i=1

(
ki − 1

2Ji

)(
1−

∑̀
h=1

ki
2Ji + 1

)
.

This equals 1 if each ki = 0, and is ≤ 0 otherwise.



When we substitute in our new inclusion-exclusion identity we
obtain #{n ∈ A : (n,m) = 1} =

=
∏
p≤y

(
1− g(p)

p

)
#A{1 + O(∆)}+ O

∑
d≤D
|rd(A)|


where ∆ := ∆1 + · · ·+ ∆` and

∆i :=
∑
d |mi

ω(d)=2Ji+1

g(d)

d

/∏
p|mi

(
1− g(p)

p

)
≤ eLi

Li
2Ji+1

(2Ji + 1)!

for Li := log
∏

p|mi
(1− g(p)

p )−1, with D =
∏

i y
2Ji+1
i .

A painful optimization problem
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The Fundamental Lemma of Sieve Theory

Choices: Write yi = yui for each i .
2J1 + 1 is the largest odd integer ≤ u − 2u/(log u)2, with u1 = 1.
2Jk be the largest even integer ≤ u + (k − 2)/u and
uk = 1

(log u)3 (1− 1
log u )k−2 for all k ≥ 2.

Then #{n ∈ A : (n,m) = 1} =

=
∏
p≤y

(
1− g(p)

p

)
#A (1 + O(E (u)) + O

∑
d≤yu

|rd(A)|


where E (u) = exp(−u(log u + O(log log log u))).



And now: Something completely different

Part II: Vaughan’s identity, revisited



Vaughan’s identity

For appropriate choices of U and V we have

Λ = Λ<V + µ<U ∗ L− µ<U ∗ Λ<V ∗ 1 + µ≥U ∗ Λ≥V ∗ 1.

For example, if we wish to bound a sum
∑

n≤x Λ(n)F (n) (eg BV
Theorem, Integers as sums of three primes), with F (·)
“arithmetic”, then we decompose using the above. The reason this
is useful is that we get bilinear sums, with longish sums in two
variables, and then we can apply results that require little
arithmetic information to get decent bounds:



Bounding bilinear sums

Define f (n) :=
∑
`m=n

α`βm

where {α`} and {βm} ∈ C, for which

I The {α`} satisfy the Siegel-Walfisz criterion;

I The {α`} are only supported in the range L0 ≤ ` ≤ x/y ;

I
∑

`≤L |α`|2 ≤ aL and
∑

m≤M |βm|2 ≤ bM for all L,M ≤ x .

Then, for any B > 0 we have

∑
q≤Q

max
a: (a,q)=1

∣∣∣∣∣∣∣∣
∑
n≤x

n≡a (mod q)

f (n)− 1

φ(q)

∑
n≤x

(n,q)=1

f (n)

∣∣∣∣∣∣∣∣
� (ab)1/2Qx1/2 log x ,

with Q = x1/2

(log x)B
, x/y ≤ Q2

(log x)2 , L0 ≥ y + exp((log x)ε).



Bounding bilinear sums: Key features

To use this result to determine
∑

n≤x f (n) we need to be able to
write f (n) =

∑
i fi (n) where each

fi (n) :=
∑
`m=n

α`βm

and the {α`} and {βm} are supported only on integers

`,m ≥ exp((log x)ε),

with the {α`} satisfying Siegel-Walfisz criterion.

Therefore Vaughan’s identity has been the standard tool:

Λ = Λ<V + µ<U ∗ L− µ<U ∗ Λ<V ∗ 1 + µ≥U ∗ Λ≥V ∗ 1,

The last term contains the key difficulty in proving B-V Theorem.
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Replacing Vaughan’s identity
Friedlander and Iwaniec: Used Ramaré’s identity and a little small
sieving:

If z :=
√
x < n ≤ x and n is squarefree then

1P(n) = 1−
∑
`m=n

` prime≤z

1

1 + ωz(m)
;

where P is the set of primes > z , and ωz(m) =
∑

p|m, p≤z 1.

Surprising observation: Let 1y (n) denote integers free of prime
factors ≤ y . Start with

log n =
∑
`m=n

Λ(`),

multiply through by 1y (n) = 1y (`)1y (m), and re-organize, to get

Λ(n)1y (n) = log n · 1y (n)−
∑
`m=n
`,m>1

Λ(`)1y (`) · 1y (m).
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Λ(n)1y (n) = log n · 1y (n)−
∑
`m=n
`,m>1

Λ(`)1y (`) · 1y (m).
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Λ(n)1y (n) = log n · 1y (n)−
∑
`m=n
`,m>1

Λ(`)1y (`) · 1y (m).

Let y ≥ exp((log x)ε), so if 1y (`)1y (m) 6= 0 then
`,m ≥ exp((log x)ε):
Second term: Can apply theorem for bounding bilinear sums!
First term: For y smallish can use the combinatorial sieve in each
arithmetic progression.

New Bombieri-Vinogradov Theorem
If x1/2/(log x)B ≤ Q ≤ x1/2 then∑

q≤Q
max

(a,q)=1

∣∣∣∣π(x ; q, a)− π(x)

φ(q)

∣∣∣∣� Q (x log log x)1/2.

(This improves previous best that had a few extra powers of log.)
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Applications

Λ(n)1y (n) = log n · 1y (n)−
∑
`m=n
`,m>1

Λ(`)1y (`) · 1y (m).

I Bombieri-Vinogradov (and Yitang Zhang’s) Theorem

I Siegel-Walfisz without proving L(1, χ) 6= 0.

I Ternary Goldbach (and other additive questions with primes)

I Heath-Brown/Patterson’s distribution of cubic Gauss sums

I Interesting suggestions
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In more generality

let f (·) be multiplicative with F (s) =
∑

n≥1 f (n)/ns and

−F ′

F
(s) =

∑
n≥1

Λf (n)ns

so that −F ′ = F · (−F ′/F ), and comparing coefficients, we obtain

f (n) log n =
∑
`m=n

Λf (`)f (m).

We can rewrite this

Λf (n) = f (n) log n −
∑
`m=n
m>1

Λf (`)f (m).

Now suppose that f (·) is only supported on prime powers that are
> y ≥ exp((log x)ε).



Λf (n) = f (n) log n −
∑
`m=n
m>1

Λf (`)f (m).

Now suppose f (·) is “y -crunchy”; that is, it is only supported on
prime powers that are > y ≥ exp((log x)ε).
We can apply our lemma for Type II sums to the last sum provided
one of Λf and f satisfies a Siegel-Walfisz criterion.
Theorem: Suppose f is y -crunchy. f satisfies the BV Theorem if
and only if Λf satisfies the BV Theorem.
This complements a recent paper by Fernando Shao and A.G.:
If f is y -smooth then f satisfies the BV Theorem, where
y < x/(log x)A, A = A(x)→∞.
Both show that the key to BV is the large primes’ behaviour



Λf (n) = f (n) log n −
∑
`m=n
m>1

Λf (`)f (m).

Now suppose f (·) is “y -crunchy”; that is, it is only supported on
prime powers that are > y ≥ exp((log x)ε).

We can apply our lemma for Type II sums to the last sum provided
one of Λf and f satisfies a Siegel-Walfisz criterion.
Theorem: Suppose f is y -crunchy. f satisfies the BV Theorem if
and only if Λf satisfies the BV Theorem.
This complements a recent paper by Fernando Shao and A.G.:
If f is y -smooth then f satisfies the BV Theorem, where
y < x/(log x)A, A = A(x)→∞.
Both show that the key to BV is the large primes’ behaviour



Λf (n) = f (n) log n −
∑
`m=n
m>1

Λf (`)f (m).

Now suppose f (·) is “y -crunchy”; that is, it is only supported on
prime powers that are > y ≥ exp((log x)ε).
We can apply our lemma for Type II sums to the last sum provided
one of Λf and f satisfies a Siegel-Walfisz criterion.
Theorem: Suppose f is y -crunchy. f satisfies the BV Theorem if
and only if Λf satisfies the BV Theorem.

This complements a recent paper by Fernando Shao and A.G.:
If f is y -smooth then f satisfies the BV Theorem, where
y < x/(log x)A, A = A(x)→∞.
Both show that the key to BV is the large primes’ behaviour



Λf (n) = f (n) log n −
∑
`m=n
m>1

Λf (`)f (m).

Now suppose f (·) is “y -crunchy”; that is, it is only supported on
prime powers that are > y ≥ exp((log x)ε).
We can apply our lemma for Type II sums to the last sum provided
one of Λf and f satisfies a Siegel-Walfisz criterion.
Theorem: Suppose f is y -crunchy. f satisfies the BV Theorem if
and only if Λf satisfies the BV Theorem.
This complements a recent paper by Fernando Shao and A.G.:
If f is y -smooth then f satisfies the BV Theorem, where
y < x/(log x)A, A = A(x)→∞.

Both show that the key to BV is the large primes’ behaviour



Λf (n) = f (n) log n −
∑
`m=n
m>1

Λf (`)f (m).

Now suppose f (·) is “y -crunchy”; that is, it is only supported on
prime powers that are > y ≥ exp((log x)ε).
We can apply our lemma for Type II sums to the last sum provided
one of Λf and f satisfies a Siegel-Walfisz criterion.
Theorem: Suppose f is y -crunchy. f satisfies the BV Theorem if
and only if Λf satisfies the BV Theorem.
This complements a recent paper by Fernando Shao and A.G.:
If f is y -smooth then f satisfies the BV Theorem, where
y < x/(log x)A, A = A(x)→∞.
Both show that the key to BV is the large primes’ behaviour



Removing the support condition

Let f (·) be a multiplicative function and fy (·) = f (·)1y (·). Our
Theorem above states that
fy satisfies the BV Theorem if and only if Λfy satisfies the BV
Theorem.
It is easy to see that
Λfy satisfies the BV Theorem if and only if Λf satisfies the BV
Theorem.

We would like to know that
fy satisfies the BV Theorem if and only if f satisfies the BV
Theorem
This essentially means sieving the values of f (·) by its values on
the primes ≤ y
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General BV

Suppose that f and g are 1-bounded functions that are supported
only on prime powers > y . For n > 1 we have

(f ∗ g)(n)− f (1)g(n)− g(1)f (n) =
∑
`m=n
`,m>y

f (`)g(m).

If f satisfies the Siegel-Walfisz criterion then, Using our bilinear
forms condition, we see that

h(n) := (f ∗ g)(n)− f (1)g(n)− g(1)f (n)

satisfies the BV Theorem. If, also, f (1) = g(1) = 0 then f ∗ g
satisfies the BV Theorem. If
If, also, g(1) = 0 but f (1) 6= 0 then f ∗ g satisfies the BV Theorem
if and only if f does.
If f satisfies the BV Theorem then (f ∗ g)(n)− f (1)g(n) satisfies
the BV Theorem.



The Fundamental Lemma for complex-valued sequences?

If f (n) ≥ 0 for all n ≥ 1 then∑
d |(m,n)

ω(d)≤2J+1

µ(d)f (n) ≤ 1(·,m)=1(n)f (n) ≤
∑

d |(m,n)
ω(d)≤2J

µ(d)f (n).

Summing over all n ≤ x gives∑
d |m

ω(d)≤2J+1

µ(d)Σd ≤
∑
n≤x

(n,m)=1

f (n) ≤
∑
d |m

ω(d)≤2J

µ(d)Σd .

where Σd =
∑

n≤x : d |n f (n), and we can often proceed as in the
combinatorial sieve.

By clever use of F& I’s formulation of the Fundamental Lemma,
Koukoulopoulos showed how to succeed when f (n) = nit .

How to proceed in more generality? Even for real f which can be negative
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Koukoulopoulos: If each |f (n)| ≤ 1 then∣∣∣∣∣∣∣∣
∑
d |m

ω(d)≤2J

µ(d)Σd −
∑
n∈A

(n,m)=1

f (n)

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
∑
n∈A

f (n)

 ∑
d |(m,n)
ω(d)≤2J

µ(d)− 1(·,m)=1(n)


∣∣∣∣∣∣∣∣

≤

∣∣∣∣∣∣∣∣
∑
n∈A

 ∑
d |(m,n)
ω(d)≤2J

µ(d)− 1(·,m)=1(n)


∣∣∣∣∣∣∣∣

≤
∑
n∈A

∑
d |(m,n)
ω(d)≤2J

µ(d)−#{n ∈ A : (n,m) = 1}.

This is the error term that we began this talk in bounding
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