Two sieve identities revisited

Andrew Granville
U de Montréal / UCL
Cetraro, July 2019

Part I: The combinatorial sieve, revisited

The (classical) Inclusion-Exclusion inequalities

$$
\sum_{j=0}^{J}\binom{k}{j}(-1)^{j}=\binom{k-1}{J}(-1)^{J}
$$

for all integers $k \geq 1$ and $0 \leq J \leq k$.
(When $k=0$ we interpret $\binom{-1}{\jmath}=(-1)^{J}$.)

The (classical) Inclusion-Exclusion inequalities

$$
\sum_{j=0}^{J}\binom{k}{j}(-1)^{j}=\binom{k-1}{J}(-1)^{J}
$$

for all integers $k \geq 1$ and $0 \leq J \leq k$.
(When $k=0$ we interpret $\binom{-1}{\jmath}=(-1)^{J}$.)
Therefore

$$
\sum_{j=0}^{2 J+1}\binom{k}{j}(-1)^{j} \leq(1-1)^{k} \leq \sum_{j=0}^{2 J}\binom{k}{j}(-1)^{j}
$$

Here $(1-1)^{k}=0$ if $k \geq 1$, and $(1-1)^{0}=1$.

$$
1_{(\cdot, m)=1}(n)=(1-1)^{k} \text { where } k=\omega(\operatorname{gcd}(m, n)) .
$$

$$
1_{(\cdot, m)=1}(n)=(1-1)^{k} \text { where } k=\omega(\operatorname{gcd}(m, n)) . \text { Moreover }
$$

$$
\binom{k}{j}(-1)^{j}=\sum_{\substack{d|m, d| n \\ \omega(d)=j}} \mu(d) .
$$

$1_{(\cdot, m)=1}(n)=(1-1)^{k}$ where $k=\omega(\operatorname{gcd}(m, n))$.Moreover

$$
\binom{k}{j}(-1)^{j}=\sum_{\substack{d|m, d| n \\ \omega(d)=j}} \mu(d) .
$$

Therefore the (classical) Inclusion-Exclusion inequalities,

$$
\sum_{j=0}^{2 J+1}\binom{k}{j}(-1)^{j} \leq(1-1)^{k} \leq \sum_{j=0}^{2 J}\binom{k}{j}(-1)^{j}
$$

$1_{(\cdot, m)=1}(n)=(1-1)^{k}$ where $k=\omega(\operatorname{gcd}(m, n))$.Moreover

$$
\binom{k}{j}(-1)^{j}=\sum_{\substack{d|m, d| n \\ \omega(d)=j}} \mu(d) .
$$

Therefore the (classical) Inclusion-Exclusion inequalities,

$$
\sum_{j=0}^{2 J+1}\binom{k}{j}(-1)^{j} \leq(1-1)^{k} \leq \sum_{j=0}^{2 J}\binom{k}{j}(-1)^{j}
$$

become

$$
\sum_{\substack{d \mid(m, n) \\ \omega(d) \leq 2 J+1}} \mu(d) \leq 1_{(\cdot, m)=1}(n) \leq \sum_{\substack{d \mid(m, n) \\ \omega(d) \leq 2 J}} \mu(d) .
$$

$$
\begin{gathered}
\sum_{\substack{d \mid(m, n) \\
\omega(d) \leq 2 J+1}} \mu(d) \leq 1_{(\cdot, m)=1}(n) \leq \sum_{\substack{d \mid(m, n) \\
\omega(d) \leq 2 J}} \mu(d) . \\
\text { Let } A_{d}=\#\{n \in A: d \mid n\}
\end{gathered}
$$

$$
\begin{gathered}
\sum_{\substack{d \mid(m, n) \\
\omega(d) \leq 2 J+1}} \mu(d) \leq 1_{(\cdot, m)=1}(n) \leq \sum_{\substack{d \mid(m, n) \\
\omega(d) \leq 2 J}} \mu(d) . \\
\text { Let } A_{d}=\#\{n \in A: d \mid n\}
\end{gathered}
$$

Sum the above equation over all $n \in A$ to obtain

$$
\sum_{\substack{d \mid m \\ \omega(d) \leq 2 J+1}} \mu(d) \# A_{d} \leq \#\{n \in A:(n, m)=1\} \leq \sum_{\substack{d \mid m \\ \omega(d) \leq 2 J}} \mu(d) \# A_{d}
$$

$$
\begin{gathered}
\sum_{\substack{d \mid(m, n) \\
\omega(d) \leq 2 J+1}} \mu(d) \leq 1_{(\cdot, m)=1}(n) \leq \sum_{\substack{d \mid(m, n) \\
\omega(d) \leq 2 J}} \mu(d) . \\
\text { Let } A_{d}=\#\{n \in A: d \mid n\}
\end{gathered}
$$

Sum the above equation over all $n \in A$ to obtain

$$
\sum_{\substack{d \mid m \\ \omega(d) \leq 2 J+1}} \mu(d) \# A_{d} \leq \#\{n \in A:(n, m)=1\} \leq \sum_{\substack{d \mid m \\ \omega(d) \leq 2 J}} \mu(d) \# A_{d}
$$

We now assume

$$
\# A_{d}=\frac{g(d)}{d} \# A+r_{d}(A)
$$

(e.g. with each $g(d)=1$), and $m=\prod_{p \leq y} p$.

We deduce that

$$
\begin{aligned}
& \sum_{\substack{d \mid m \\
(d) \leq 2 J+1}} \frac{\mu(d) g(d)}{d} \# A-E \\
& \leq \#\{n \in A:(n, m)=1\} \\
& \leq \sum_{\substack{d \mid m \\
\omega(d) \leq 2 J}} \frac{\mu(d) g(d)}{d} \# A+E
\end{aligned}
$$

where

$$
E=\sum_{d \leq D}\left|r_{d}(A)\right|
$$

and $D=y^{2 J+1}$, since each d has no more than $2 J+1$ prime factors, all $\leq y$.

We deduce that

$$
\begin{aligned}
& \sum_{\substack{d \mid m \\
(d) \leq 2 J+1}} \frac{\mu(d) g(d)}{d} \# A-E \\
& \leq \#\{n \in A:(n, m)=1\} \\
& \leq \sum_{\substack{d \mid m \\
\omega(d) \leq 2 J}} \frac{\mu(d) g(d)}{d} \# A+E
\end{aligned}
$$

where

$$
E=\sum_{d \leq D}\left|r_{d}(A)\right|
$$

and $D=y^{2 J+1}$, since each d has no more than $2 J+1$ prime factors, all $\leq y$.
This means that E is typically well bounded, but we have to think more about the main term.

Let y be fixed and $A=\{n \leq x\}$, and, by the CRT, remove $g(p)$ residues classes mod p. Then as $x \rightarrow \infty$, in the inequalities

$$
\begin{aligned}
& x \sum_{\substack{d \mid m \\
\omega(d) \leq 2 J+1}} \frac{\mu(d) g(d)}{d}-E \\
& \leq \#\{n \leq x:(n, m)=1\} \\
& \leq x \sum_{\substack{d \mid m \\
\omega(d) \leq 2 J}} \frac{\mu(d) g(d)}{d}+E
\end{aligned}
$$

the error term E is bounded, and so the three terms are, asymptotically, x times

$$
\sum_{\substack{d \mid m \\ \omega(d) \leq 2 J+1}} \frac{\mu(d) g(d)}{d} \leq \prod_{p \leq y}\left(1-\frac{g(p)}{p}\right) \leq \sum_{\substack{d \mid m \\ \omega(d) \leq 2 J}} \frac{\mu(d) g(d)}{d}
$$

Now if we write

$$
\sum_{\substack{d \mid m \\ \nu(d) \leq 2 J+1}} \frac{\mu(d) g(d)}{d} \leq e^{H}:=\prod_{p \leq y}\left(1-\frac{g(p)}{p}\right) \leq \sum_{\substack{d \mid m \\ \omega(d) \leq 2 J}} \frac{\mu(d) g(d)}{d} .
$$

as $L \leq P \leq U$ and show that $U-L \leq \Delta P$ then
$L, U=(1+O(\Delta)) P$.

Now if we write

$$
\sum_{\substack{d \mid m \\ \omega(d) \leq 2 J+1}} \frac{\mu(d) g(d)}{d} \leq e^{H}:=\prod_{p \leq y}\left(1-\frac{g(p)}{p}\right) \leq \sum_{\substack{d \mid m \\ \omega(d) \leq 2 J}} \frac{\mu(d) g(d)}{d} .
$$

as $L \leq P \leq U$ and show that $U-L \leq \Delta P$ then
$L, U=(1+O(\Delta)) P$. Now

$$
U-L=\sum_{\substack{d \mid m \\ \omega(d) \leq 2 J+1}} \frac{g(d)}{d}=\frac{H^{2 J+1}}{(2 J+1)!}
$$

Now if we write

$$
\sum_{\substack{d \mid m \\ \omega(d) \leq 2 J+1}} \frac{\mu(d) g(d)}{d} \leq e^{H}:=\prod_{p \leq y}\left(1-\frac{g(p)}{p}\right) \leq \sum_{\substack{d \mid m \\ \omega(d) \leq 2 J}} \frac{\mu(d) g(d)}{d} .
$$

as $L \leq P \leq U$ and show that $U-L \leq \Delta P$ then
$L, U=(1+O(\Delta)) P$. Now

$$
U-L=\sum_{\substack{d \mid m \\ \omega(d) \leq 2 J+1}} \frac{g(d)}{d}=\frac{H^{2 J+1}}{(2 J+1)!}
$$

This is only small when $J \gg H \sim \kappa \log \log y$. But $E=\sum_{d \leq D}\left|r_{d}(A)\right|$ with $x^{1-\epsilon} \geq D=y^{2 J+1} \approx y^{C \log \log y}$.

Now if we write

$$
\sum_{\substack{d \mid m \\ \omega(d) \leq 2 J+1}} \frac{\mu(d) g(d)}{d} \leq e^{H}:=\prod_{p \leq y}\left(1-\frac{g(p)}{p}\right) \leq \sum_{\substack{d \mid m \\ \omega(d) \leq 2 J}} \frac{\mu(d) g(d)}{d} .
$$

as $L \leq P \leq U$ and show that $U-L \leq \Delta P$ then
$L, U=(1+O(\Delta)) P$. Now

$$
U-L=\sum_{\substack{d \mid m \\ \omega(d) \leq 2 J+1}} \frac{g(d)}{d}=\frac{H^{2 J+1}}{(2 J+1)!}
$$

This is only small when $J \gg H \sim \kappa \log \log y$. But $E=\sum_{d \leq D}\left|r_{d}(A)\right|$ with $x^{1-\epsilon} \geq D=y^{2 J+1} \approx y^{C \log \log y}$. So we get an asymptotic in the restricted range

$$
y \leq x^{c / \log \log x}
$$

First Combinatorial Sieve result

We have proved that if $x=y^{u}$ then $\#\{n \in A:(n, m)=1\}=$

$$
=\prod_{p \leq y}\left(1-\frac{g(p)}{p}\right) \# A\left\{1+O\left(1 / u^{u}\right)\right\}+O\left(\sum_{d \leq D}\left|r_{d}(A)\right|\right)
$$

provided

$$
y \leq x^{c / \log \log x}
$$

First Combinatorial Sieve result

We have proved that if $x=y^{u}$ then $\#\{n \in A:(n, m)=1\}=$

$$
=\prod_{p \leq y}\left(1-\frac{g(p)}{p}\right) \# A\left\{1+O\left(1 / u^{u}\right)\right\}+O\left(\sum_{d \leq D}\left|r_{d}(A)\right|\right)
$$

provided

$$
y \leq x^{c / \log \log x}
$$

How can we obtain a better range?

First Combinatorial Sieve result

We have proved that if $x=y^{u}$ then $\#\{n \in A:(n, m)=1\}=$

$$
=\prod_{p \leq y}\left(1-\frac{g(p)}{p}\right) \# A\left\{1+O\left(1 / u^{u}\right)\right\}+O\left(\sum_{d \leq D}\left|r_{d}(A)\right|\right)
$$

provided

$$
y \leq x^{c / \log \log x}
$$

How can we obtain a better range?
What was the cause of this restriction?

First Combinatorial Sieve result

We have proved that if $x=y^{u}$ then $\#\{n \in A:(n, m)=1\}=$

$$
=\prod_{p \leq y}\left(1-\frac{g(p)}{p}\right) \# A\left\{1+O\left(1 / u^{u}\right)\right\}+O\left(\sum_{d \leq D}\left|r_{d}(A)\right|\right)
$$

provided

$$
y \leq x^{c / \log \log x}
$$

How can we obtain a better range?
What was the cause of this restriction?
We needed $y^{2 J+1} \leq x$; that is, $u \geq 2 J+1 \gg \sum_{p \leq y} \frac{g(p)}{p}$. In general if we sieve we a set of primes \mathcal{P}, all $\leq y$ then we need

$$
\sum_{p \in \mathcal{P}} \frac{g(p)}{p} \ll u
$$

To sieve the integers up to $x=y^{u}$ with a set \mathcal{P} of primes, all $\leq y$ then we need

$$
\sum_{p \in \mathcal{P}} \frac{g(p)}{p} \ll u
$$

To sieve the integers up to $x=y^{u}$ with a set \mathcal{P} of primes, all $\leq y$ then we need

$$
\sum_{p \in \mathcal{P}} \frac{g(p)}{p} \ll u
$$

Only choice is to keep the set \mathcal{P} smallish: So then what?

To sieve the integers up to $x=y^{u}$ with a set \mathcal{P} of primes, all $\leq y$ then we need

$$
\sum_{p \in \mathcal{P}} \frac{g(p)}{p} \ll u
$$

Only choice is to keep the set \mathcal{P} smallish: So then what? We could first sieve with \mathcal{P}_{1}, then \mathcal{P}_{2}, etc
How to use inclusion-exclusion?

To sieve the integers up to $x=y^{u}$ with a set \mathcal{P} of primes, all $\leq y$ then we need

$$
\sum_{p \in \mathcal{P}} \frac{g(p)}{p} \ll u
$$

Only choice is to keep the set \mathcal{P} smallish: So then what? We could first sieve with \mathcal{P}_{1}, then \mathcal{P}_{2}, etc How to use inclusion-exclusion?
Write $1_{(\cdot, m)=1}(n)=\prod_{i=1}^{\ell} 1_{\left(\cdot, m_{i}\right)=1}(n)$ with squarefree $m=m_{1} \cdots m_{\ell}$.

$$
\prod_{i=1}^{\ell}(1-1)^{k_{i}} \leq \sum_{\substack{0 \leq j_{i} \leq 2 J_{i} \\ \text { for } i=1, \ldots, \ell}} \prod_{i=1}^{\ell}(-1)^{j_{i}}\binom{k_{i}}{j_{i}}=\prod_{i=1}^{\ell}\binom{k_{i}-1}{2 J_{i}}
$$

which is obviously ≥ 0.

Lower bound inequality (Ford \& Halberstam)

$$
\prod_{i=1}^{\ell}(1-1)^{k_{i}} \geq \sum_{\substack{0 \leq j_{i} \leq 2 J_{i}+1 \\ \text { for } \\=1,+, \ell \\ j_{i}=2 J_{i}+1 \text { for at most one } i}} \prod_{i=1}^{\ell}(-1)^{j_{i}}\binom{k_{i}}{j_{i}} .
$$

If all $k_{i}=0$ then only non-zero term is all $j_{i}=0$, so equals 1 . The above sum can be rewritten as

$$
\sum_{0 \leq j_{i} \leq 2 J_{i} \text { for all } i}+\sum_{h=1}^{\ell} \sum_{\substack{ \\0 \leq j_{i} \leq 2 J_{i} \text { for all } \\ j_{h}=2 J_{h}+1}}
$$

to obtain,

$$
\prod_{i=1}^{\ell}\binom{k_{i}-1}{2 J_{i}}+\sum_{h=1}^{\ell} \prod_{i=1, i \neq h}^{\ell}\binom{k_{i}-1}{2 J_{i}} \cdot(-1)\binom{k_{h}}{2 J_{h}+1}
$$

Our lower bound on $\prod_{i=1}^{\ell}(1-1)^{k_{i}}$ is

$$
\prod_{i=1}^{\ell}\binom{k_{i}-1}{2 J_{i}}+\sum_{h=1}^{\ell} \prod_{i=1, i \neq h}^{\ell}\binom{k_{i}-1}{2 J_{i}} \cdot(-1)\binom{k_{h}}{2 J_{h}+1}
$$

We may assume that each $k_{i}=0$ or $\geq 2 J_{i}+1$ (else each term equals 0) to obtain

$$
=\prod_{i=1}^{\ell}\binom{k_{i}-1}{2 J_{i}}\left(1-\sum_{h=1}^{\ell} \frac{k_{i}}{2 J_{i}+1}\right) .
$$

This equals 1 if each $k_{i}=0$, and is ≤ 0 otherwise.

When we substitute in our new inclusion-exclusion identity we obtain $\#\{n \in A:(n, m)=1\}=$

$$
=\prod_{p \leq y}\left(1-\frac{g(p)}{p}\right) \# A\{1+O(\Delta)\}+O\left(\sum_{d \leq D}\left|r_{d}(A)\right|\right)
$$

where $\Delta:=\Delta_{1}+\cdots+\Delta_{\ell}$ and

$$
\Delta_{i}:=\sum_{\substack{d \mid m_{i} \\ \omega(d)=2 J_{i}+1}} \frac{g(d)}{d} / \prod_{p \mid m_{i}}\left(1-\frac{g(p)}{p}\right) \leq e^{L_{i}} \frac{L_{i}^{2 J_{i}+1}}{\left(2 J_{i}+1\right)!}
$$

for $L_{i}:=\log \prod_{p \mid m_{i}}\left(1-\frac{g(p)}{p}\right)^{-1}$, with $D=\prod_{i} y_{i}^{2 J_{i}+1}$.

When we substitute in our new inclusion-exclusion identity we obtain $\#\{n \in A:(n, m)=1\}=$

$$
=\prod_{p \leq y}\left(1-\frac{g(p)}{p}\right) \# A\{1+O(\Delta)\}+O\left(\sum_{d \leq D}\left|r_{d}(A)\right|\right)
$$

where $\Delta:=\Delta_{1}+\cdots+\Delta_{\ell}$ and

$$
\Delta_{i}:=\sum_{\substack{d \mid m_{i} \\ \omega(d)=2 J_{i}+1}} \frac{g(d)}{d} / \prod_{p \mid m_{i}}\left(1-\frac{g(p)}{p}\right) \leq e^{L_{i}} \frac{L_{i}^{2 J_{i}+1}}{\left(2 J_{i}+1\right)!}
$$

for $L_{i}:=\log \prod_{p \mid m_{i}}\left(1-\frac{g(p)}{p}\right)^{-1}$, with $D=\prod_{i} y_{i}^{2 J_{i}+1}$.
A painful optimization problem

The Fundamental Lemma of Sieve Theory

Choices: Write $y_{i}=y^{u_{i}}$ for each i.
$2 J_{1}+1$ is the largest odd integer $\leq u-2 u /(\log u)^{2}$, with $u_{1}=1$.
$2 J_{k}$ be the largest even integer $\leq u+(k-2) / u$ and $u_{k}=\frac{1}{(\log u)^{3}}\left(1-\frac{1}{\log u}\right)^{k-2}$ for all $k \geq 2$.

Then $\#\{n \in A:(n, m)=1\}=$

$$
=\prod_{p \leq y}\left(1-\frac{g(p)}{p}\right) \# A\left(1+O(E(u))+O\left(\sum_{d \leq y^{u}}\left|r_{d}(A)\right|\right)\right.
$$

where $E(u)=\exp (-u(\log u+O(\log \log \log u)))$.

And now: Something completely different

Part II: Vaughan's identity, revisited

Vaughan's identity

For appropriate choices of U and V we have

$$
\Lambda=\Lambda_{<v}+\mu_{<U} * L-\mu_{<U} * \Lambda_{<V} * 1+\mu_{\geq U} * \Lambda_{\geq V} * 1 .
$$

For example, if we wish to bound a sum $\sum_{n \leq x} \Lambda(n) F(n)$ (eg BV Theorem, Integers as sums of three primes), with $F(\cdot)$ "arithmetic", then we decompose using the above. The reason this is useful is that we get bilinear sums, with longish sums in two variables, and then we can apply results that require little arithmetic information to get decent bounds:

Bounding bilinear sums

$$
\text { Define } \quad f(n):=\sum_{\ell m=n} \alpha_{\ell} \beta_{m}
$$

where $\left\{\alpha_{\ell}\right\}$ and $\left\{\beta_{m}\right\} \in \mathbb{C}$, for which

- The $\left\{\alpha_{\ell}\right\}$ satisfy the Siegel-Walfisz criterion;
- The $\left\{\alpha_{\ell}\right\}$ are only supported in the range $L_{0} \leq \ell \leq x / y$;
- $\sum_{\ell \leq L}\left|\alpha_{\ell}\right|^{2} \leq a L$ and $\sum_{m \leq M}\left|\beta_{m}\right|^{2} \leq b M$ for all $L, M \leq x$.

Then, for any $B>0$ we have

$$
\begin{gathered}
\sum_{q \leq Q} \max _{a:(a, q)=1}\left|\sum_{n \equiv a} f(n)-\frac{1}{\phi \leq x} \sum_{\substack{n \leq x \\
(n, q)=1}} f(n)\right| \\
\ll(a b)^{1 / 2} Q x^{1 / 2} \log x,
\end{gathered}
$$

with $Q=\frac{x^{1 / 2}}{(\log x)^{B}}, x / y \leq \frac{Q^{2}}{(\log x)^{2}}, L_{0} \geq y+\exp \left((\log x)^{\epsilon}\right)$.

Bounding bilinear sums: Key features

To use this result to determine $\sum_{n \leq x} f(n)$ we need to be able to write $f(n)=\sum_{i} f_{i}(n)$ where each

$$
f_{i}(n):=\sum_{\ell m=n} \alpha_{\ell} \beta_{m}
$$

and the $\left\{\alpha_{\ell}\right\}$ and $\left\{\beta_{m}\right\}$ are supported only on integers

$$
\ell, m \geq \exp \left((\log x)^{\epsilon}\right)
$$

with the $\left\{\alpha_{\ell}\right\}$ satisfying Siegel-Walfisz criterion.

Bounding bilinear sums: Key features

To use this result to determine $\sum_{n \leq x} f(n)$ we need to be able to write $f(n)=\sum_{i} f_{i}(n)$ where each

$$
f_{i}(n):=\sum_{\ell m=n} \alpha_{\ell} \beta_{m}
$$

and the $\left\{\alpha_{\ell}\right\}$ and $\left\{\beta_{m}\right\}$ are supported only on integers

$$
\ell, m \geq \exp \left((\log x)^{\epsilon}\right)
$$

with the $\left\{\alpha_{\ell}\right\}$ satisfying Siegel-Walfisz criterion.
Therefore Vaughan's identity has been the standard tool:

$$
\Lambda=\Lambda_{<v}+\mu_{<U} * L-\mu_{<U} * \Lambda_{<v} * 1+\mu_{\geq U} * \Lambda_{\geq v} * 1
$$

The last term contains the key difficulty in proving B-V Theorem.

Replacing Vaughan's identity

Friedlander and Iwaniec: Used Ramaré's identity and a little small sieving:

Replacing Vaughan's identity

Friedlander and Iwaniec: Used Ramaré's identity and a little small sieving: If $z:=\sqrt{x}<n \leq x$ and n is squarefree then

$$
1_{\mathbb{P}}(n)=1-\sum_{\substack{\ell m=n \\ \ell \text { prime } \leq z}} \frac{1}{1+\omega_{z}(m)}
$$

where \mathbb{P} is the set of primes $>z$, and $\omega_{z}(m)=\sum_{p \mid m, p \leq z} 1$.

Replacing Vaughan's identity

Friedlander and Iwaniec: Used Ramaré's identity and a little small sieving: If $z:=\sqrt{x}<n \leq x$ and n is squarefree then

$$
1_{\mathbb{P}}(n)=1-\sum_{\substack{\ell m=n \\ \ell \text { prime } \leq z}} \frac{1}{1+\omega_{z}(m)}
$$

where \mathbb{P} is the set of primes $>z$, and $\omega_{z}(m)=\sum_{p \mid m, p \leq z} 1$. Surprising observation: Let $1_{y}(n)$ denote integers free of prime factors $\leq y$.

Replacing Vaughan's identity

Friedlander and Iwaniec: Used Ramaré's identity and a little small sieving: If $z:=\sqrt{x}<n \leq x$ and n is squarefree then

$$
1_{\mathbb{P}}(n)=1-\sum_{\substack{\ell m=n \\ \ell \text { prime } \leq z}} \frac{1}{1+\omega_{z}(m)}
$$

where \mathbb{P} is the set of primes $>z$, and $\omega_{z}(m)=\sum_{p \mid m, p \leq z} 1$. Surprising observation: Let $1_{y}(n)$ denote integers free of prime factors $\leq y$. Start with

$$
\log n=\sum_{\ell m=n} \Lambda(\ell)
$$

multiply through by $1_{y}(n)=1_{y}(\ell) 1_{y}(m)$, and re-organize, to get

Replacing Vaughan's identity

Friedlander and Iwaniec: Used Ramaré's identity and a little small sieving: If $z:=\sqrt{x}<n \leq x$ and n is squarefree then

$$
1_{\mathbb{P}}(n)=1-\sum_{\substack{\ell m=n \\ \ell \text { prime } \leq z}} \frac{1}{1+\omega_{z}(m)}
$$

where \mathbb{P} is the set of primes $>z$, and $\omega_{z}(m)=\sum_{p \mid m, p \leq z} 1$. Surprising observation: Let $1_{y}(n)$ denote integers free of prime factors $\leq y$. Start with

$$
\log n=\sum_{\ell m=n} \Lambda(\ell)
$$

multiply through by $1_{y}(n)=1_{y}(\ell) 1_{y}(m)$, and re-organize, to get

$$
\Lambda(n) 1_{y}(n)=\log n \cdot 1_{y}(n)-\sum_{\substack{\ell m=n \\ \ell, m>1}} \Lambda(\ell) 1_{y}(\ell) \cdot 1_{y}(m)
$$

$$
\Lambda(n) 1_{y}(n)=\log n \cdot 1_{y}(n)-\sum_{\substack{\ell m=n \\ \ell, m>1}} \Lambda(\ell) 1_{y}(\ell) \cdot 1_{y}(m)
$$

Let $y \geq \exp \left((\log x)^{\epsilon}\right)$, so if $1_{y}(\ell) 1_{y}(m) \neq 0$ then $\ell, m \geq \exp \left((\log x)^{\epsilon}\right)$:
Second term: Can apply theorem for bounding bilinear sums!
First term: For y smallish can use the combinatorial sieve in each arithmetic progression.

$$
\Lambda(n) 1_{y}(n)=\log n \cdot 1_{y}(n)-\sum_{\substack{\ell m=n \\ \ell, m>1}} \Lambda(\ell) 1_{y}(\ell) \cdot 1_{y}(m)
$$

Let $y \geq \exp \left((\log x)^{\epsilon}\right)$, so if $1_{y}(\ell) 1_{y}(m) \neq 0$ then $\ell, m \geq \exp \left((\log x)^{\epsilon}\right)$:
Second term: Can apply theorem for bounding bilinear sums!
First term: For y smallish can use the combinatorial sieve in each arithmetic progression.

New Bombieri-Vinogradov Theorem
If $x^{1 / 2} /(\log x)^{B} \leq Q \leq x^{1 / 2}$ then

$$
\sum_{q \leq Q} \max _{(a, q)=1}\left|\pi(x ; q, a)-\frac{\pi(x)}{\phi(q)}\right| \ll Q(x \log \log x)^{1 / 2}
$$

(This improves previous best that had a few extra powers of log.)

Applications

$$
\Lambda(n) 1_{y}(n)=\log n \cdot 1_{y}(n)-\sum_{\substack{\ell m=n \\ \ell, m>1}} \Lambda(\ell) 1_{y}(\ell) \cdot 1_{y}(m)
$$

- Bombieri-Vinogradov (and Yitang Zhang's) Theorem

Applications

$$
\Lambda(n) 1_{y}(n)=\log n \cdot 1_{y}(n)-\sum_{\substack{\ell m=n \\ \ell, m>1}} \Lambda(\ell) 1_{y}(\ell) \cdot 1_{y}(m)
$$

- Bombieri-Vinogradov (and Yitang Zhang's) Theorem
- Siegel-Walfisz without proving $L(1, \chi) \neq 0$.

Applications

$$
\Lambda(n) 1_{y}(n)=\log n \cdot 1_{y}(n)-\sum_{\substack{\ell m=n \\ \ell, m>1}} \Lambda(\ell) 1_{y}(\ell) \cdot 1_{y}(m)
$$

- Bombieri-Vinogradov (and Yitang Zhang's) Theorem
- Siegel-Walfisz without proving $L(1, \chi) \neq 0$.
- Ternary Goldbach (and other additive questions with primes)

Applications

$$
\Lambda(n) 1_{y}(n)=\log n \cdot 1_{y}(n)-\sum_{\substack{\ell m=n \\ \ell, m>1}} \Lambda(\ell) 1_{y}(\ell) \cdot 1_{y}(m)
$$

- Bombieri-Vinogradov (and Yitang Zhang's) Theorem
- Siegel-Walfisz without proving $L(1, \chi) \neq 0$.
- Ternary Goldbach (and other additive questions with primes)
- Heath-Brown/Patterson's distribution of cubic Gauss sums

Applications

$$
\Lambda(n) 1_{y}(n)=\log n \cdot 1_{y}(n)-\sum_{\substack{\ell m=n \\ \ell, m>1}} \Lambda(\ell) 1_{y}(\ell) \cdot 1_{y}(m)
$$

- Bombieri-Vinogradov (and Yitang Zhang's) Theorem
- Siegel-Walfisz without proving $L(1, \chi) \neq 0$.
- Ternary Goldbach (and other additive questions with primes)
- Heath-Brown/Patterson's distribution of cubic Gauss sums
- Interesting suggestions

In more generality

let $f(\cdot)$ be multiplicative with $F(s)=\sum_{n \geq 1} f(n) / n^{s}$ and

$$
-\frac{F^{\prime}}{F}(s)=\sum_{n \geq 1} \Lambda_{f}(n) n^{s}
$$

so that $-F^{\prime}=F \cdot\left(-F^{\prime} / F\right)$, and comparing coefficients, we obtain

$$
f(n) \log n=\sum_{\ell m=n} \Lambda_{f}(\ell) f(m)
$$

We can rewrite this

$$
\Lambda_{f}(n)=f(n) \log n-\sum_{\substack{\ell m=n \\ m>1}} \Lambda_{f}(\ell) f(m)
$$

Now suppose that $f(\cdot)$ is only supported on prime powers that are $>y \geq \exp \left((\log x)^{\epsilon}\right)$.

$$
\Lambda_{f}(n)=f(n) \log n-\sum_{\substack{\ell m=n \\ m>1}} \Lambda_{f}(\ell) f(m)
$$

$$
\Lambda_{f}(n)=f(n) \log n-\sum_{\substack{\ell m=n \\ m>1}} \Lambda_{f}(\ell) f(m)
$$

Now suppose $f(\cdot)$ is " y-crunchy"; that is, it is only supported on prime powers that are $>y \geq \exp \left((\log x)^{\epsilon}\right)$.

$$
\Lambda_{f}(n)=f(n) \log n-\sum_{\substack{\ell m=n \\ m>1}} \Lambda_{f}(\ell) f(m)
$$

Now suppose $f(\cdot)$ is " y-crunchy"; that is, it is only supported on prime powers that are $>y \geq \exp \left((\log x)^{\epsilon}\right)$.
We can apply our lemma for Type II sums to the last sum provided one of Λ_{f} and f satisfies a Siegel-Walfisz criterion.
Theorem: Suppose f is y-crunchy. f satisfies the BV Theorem if and only if Λ_{f} satisfies the BV Theorem.

$$
\Lambda_{f}(n)=f(n) \log n-\sum_{\substack{\ell m=n \\ m>1}} \Lambda_{f}(\ell) f(m)
$$

Now suppose $f(\cdot)$ is " y-crunchy"; that is, it is only supported on prime powers that are $>y \geq \exp \left((\log x)^{\epsilon}\right)$.
We can apply our lemma for Type II sums to the last sum provided one of Λ_{f} and f satisfies a Siegel-Walfisz criterion.
Theorem: Suppose f is y-crunchy. f satisfies the BV Theorem if and only if Λ_{f} satisfies the BV Theorem.
This complements a recent paper by Fernando Shao and A.G.: If f is y-smooth then f satisfies the BV Theorem, where $y<x /(\log x)^{A}, A=A(x) \rightarrow \infty$.

$$
\Lambda_{f}(n)=f(n) \log n-\sum_{\substack{\ell m=n \\ m>1}} \Lambda_{f}(\ell) f(m)
$$

Now suppose $f(\cdot)$ is " y-crunchy"; that is, it is only supported on prime powers that are $>y \geq \exp \left((\log x)^{\epsilon}\right)$.
We can apply our lemma for Type II sums to the last sum provided one of Λ_{f} and f satisfies a Siegel-Walfisz criterion.
Theorem: Suppose f is y-crunchy. f satisfies the BV Theorem if and only if Λ_{f} satisfies the BV Theorem.
This complements a recent paper by Fernando Shao and A.G.: If f is y-smooth then f satisfies the BV Theorem, where $y<x /(\log x)^{A}, A=A(x) \rightarrow \infty$.
Both show that the key to BV is the large primes' behaviour

Removing the support condition

Let $f(\cdot)$ be a multiplicative function and $f_{y}(\cdot)=f(\cdot) 1_{y}(\cdot)$. Our Theorem above states that
f_{y} satisfies the BV Theorem if and only if $\Lambda_{f_{y}}$ satisfies the BV
Theorem.
It is easy to see that
$\Lambda_{f_{y}}$ satisfies the BV Theorem if and only if Λ_{f} satisfies the BV Theorem.

Removing the support condition

Let $f(\cdot)$ be a multiplicative function and $f_{y}(\cdot)=f(\cdot) 1_{y}(\cdot)$. Our Theorem above states that
f_{y} satisfies the BV Theorem if and only if $\Lambda_{f_{y}}$ satisfies the BV
Theorem.
It is easy to see that
$\Lambda_{f_{y}}$ satisfies the BV Theorem if and only if Λ_{f} satisfies the BV Theorem.
We would like to know that
f_{y} satisfies the BV Theorem if and only if f satisfies the BV
Theorem
This essentially means sieving the values of $f(\cdot)$ by its values on the primes $\leq y$

General BV

Suppose that f and g are 1-bounded functions that are supported only on prime powers $>y$. For $n>1$ we have

$$
(f * g)(n)-f(1) g(n)-g(1) f(n)=\sum_{\substack{\ell m=n \\ \ell, m>y}} f(\ell) g(m)
$$

If f satisfies the Siegel-Walfisz criterion then, Using our bilinear forms condition, we see that

$$
h(n):=(f * g)(n)-f(1) g(n)-g(1) f(n)
$$

satisfies the BV Theorem. If, also, $f(1)=g(1)=0$ then $f * g$ satisfies the BV Theorem. If
If, also, $g(1)=0$ but $f(1) \neq 0$ then $f * g$ satisfies the BV Theorem if and only if f does.
If f satisfies the BV Theorem then $(f * g)(n)-f(1) g(n)$ satisfies the BV Theorem.

The Fundamental Lemma for complex-valued sequences?

If $f(n) \geq 0$ for all $n \geq 1$ then

$$
\sum_{\substack{d \mid(m, n) \\ \omega(d) \leq 2 J+1}} \mu(d) f(n) \leq 1_{(\cdot, m)=1}(n) f(n) \leq \sum_{\substack{d \mid(m, n) \\ \omega(d) \leq 2 J}} \mu(d) f(n) .
$$

Summing over all $n \leq x$ gives

$$
\sum_{\substack{d \mid m \\(d) \leq 2 J+1}} \mu(d) \Sigma_{d} \leq \sum_{\substack{n \leq x \\(n, m)=1}} f(n) \leq \sum_{\substack{d \mid m \\ \omega(d) \leq 2 J}} \mu(d) \Sigma_{d}
$$

where $\Sigma_{d}=\sum_{n \leq x: d \mid n} f(n)$, and we can often proceed as in the combinatorial sieve.

The Fundamental Lemma for complex-valued sequences?

If $f(n) \geq 0$ for all $n \geq 1$ then

$$
\sum_{\substack{d \mid(m, n) \\ \omega(d) \leq 2 J+1}} \mu(d) f(n) \leq 1_{(\cdot, m)=1}(n) f(n) \leq \sum_{\substack{d \mid(m, n) \\ \omega(d) \leq 2 J}} \mu(d) f(n)
$$

Summing over all $n \leq x$ gives

$$
\sum_{\substack{d \mid m \\ \omega(d) \leq 2 J+1}} \mu(d) \Sigma_{d} \leq \sum_{\substack{n \leq x \\(n, m)=1}} f(n) \leq \sum_{\substack{d \mid m \\ \omega(d) \leq 2 J}} \mu(d) \Sigma_{d}
$$

where $\Sigma_{d}=\sum_{n \leq x: d \mid n} f(n)$, and we can often proceed as in the combinatorial sieve.
By clever use of F\& I's formulation of the Fundamental Lemma, Koukoulopoulos showed how to succeed when $f(n)=n^{i t}$.

The Fundamental Lemma for complex-valued sequences?

If $f(n) \geq 0$ for all $n \geq 1$ then

$$
\sum_{\substack{d \mid(m, n) \\ \omega(d) \leq 2 J+1}} \mu(d) f(n) \leq 1_{(\cdot, m)=1}(n) f(n) \leq \sum_{\substack{d \mid(m, n) \\ \omega(d) \leq 2 J}} \mu(d) f(n)
$$

Summing over all $n \leq x$ gives

$$
\sum_{\substack{d \mid m \\ \omega(d) \leq 2 J+1}} \mu(d) \Sigma_{d} \leq \sum_{\substack{n \leq x \\(n, m)=1}} f(n) \leq \sum_{\substack{d \mid m \\ \omega(d) \leq 2 J}} \mu(d) \Sigma_{d}
$$

where $\Sigma_{d}=\sum_{n \leq x: d \mid n} f(n)$, and we can often proceed as in the combinatorial sieve.
By clever use of F\& I's formulation of the Fundamental Lemma, Koukoulopoulos showed how to succeed when $f(n)=n^{i t}$.
How to proceed in more generality? Even for real f which can be negative

Koukoulopoulos: If each $|f(n)| \leq 1$ then

$$
\begin{aligned}
& \left|\sum_{\substack{d \mid m \\
\omega(d) \leq 2 J}} \mu(d) \Sigma_{d}-\sum_{\substack{n \in A \\
(n, m)=1}} f(n)\right| \\
& =\left|\sum_{n \in A} f(n)\left(\sum_{\substack{d \mid(m, n) \\
\omega(d) \leq 2 J}} \mu(d)-1_{(\cdot, m)=1}(n)\right)\right| \\
& \leq \mid \sum_{n \in A}\left(\sum_{\substack{d \mid(m, n) \\
\omega(d) \leq 2 J}} \mu(d)-1_{(\cdot, m)=1}(n) \mid\right. \\
& \leq \sum_{n \in A} \sum_{\substack{d \mid(m, n) \\
\omega(d) \leq 2 J}} \mu(d)-\#\{n \in A:(n, m)=1\} .
\end{aligned}
$$

Koukoulopoulos: If each $|f(n)| \leq 1$ then

$$
\begin{aligned}
& \left|\sum_{\substack{d \mid m \\
\omega(d) \leq 2 J}} \mu(d) \Sigma_{d}-\sum_{\substack{n \in A \\
(n, m)=1}} f(n)\right| \\
& =\left|\sum_{n \in A} f(n)\left(\sum_{\substack{d \mid(m, n) \\
\omega(d) \leq 2 J}} \mu(d)-1_{(\cdot, m)=1}(n)\right)\right| \\
& \leq\left|\sum_{n \in A}\left(\sum_{\substack{d \mid(m, n) \\
\omega(d) \leq 2 J}} \mu(d)-1_{(\cdot, m)=1}(n)\right)\right| \\
& \leq \sum_{n \in A} \sum_{\substack{d \mid(m, n) \\
\omega(d) \leq 2 J}} \mu(d)-\#\{n \in A:(n, m)=1\} .
\end{aligned}
$$

This is the error term that we began this talk in bounding
red blue orange purple violet magenta cyan brown black darkgray gray

