Multiplicative chaos in number theory

Adam J Harper

July 2019

Plan of the talk:

- First thoughts about multiplicative chaos and its number theory counterparts
- Four number theory/analysis examples
- How does multiplicative chaos behave?
- Results/open questions in the examples

Multiplicative chaos is a class of probabilistic objects first studied by Kahane in 1985.

Idea: form a random measure (i.e. a random weighting) by integrating test functions against the exponential of some collection of random variables $(X(h))_{h \in \mathcal{H}}$.

For g a test function, we can look at

$$
\int g(h) e^{\gamma X(h)} d h
$$

where $\gamma>0$ is a real parameter.

One needs to make assumptions on $X(h)$ in order for the random measure to be interesting. It turns out one gets something very interesting if the $X(h)$ are:

- Gaussian random variables;
- with mean zero $\mathbb{E} X(h)=0$, and the same (or similar) finite non-zero variance $\mathbb{E} X(h)^{2}$ for all h; (This condition implies that the average mass $\mathbb{E} e^{\gamma X(h)}=e^{\left(\gamma^{2} / 2\right) \mathbb{E} X(h)^{2}}$ assigned to each point h is roughly the same.)
- and the covariance $\mathbb{E} X(h) X\left(h^{\prime}\right)$ (i.e. the dependence between $X(h)$ and $\left.X\left(h^{\prime}\right)\right)$ decays logarithmically as $\left|h-h^{\prime}\right|$ increases.

Connection with number theory

Suppose we have a family of functions $F_{j}(s)$, for $j \in \mathcal{J}, s \in \mathbb{C}$, that each have:

- an Euler product structure (either exact or approximate);
- some orthogonality/independence between the contribution from different primes, when we vary over $j \in \mathcal{J}$.
Claim: If we look at

$$
\int g(h)\left|F_{j}(1 / 2+i h)\right|^{\gamma} d h
$$

as $j \in \mathcal{J}$ varies (giving our "randomness"), this (possibly) has lots of the same structure as multiplicative chaos.

Why?

- If $F_{j}(s)$ has an (approximate) Euler product structure, then $\log \left|F_{j}(s)\right|=\Re \log F_{j}(s)$ is (approximately) a sum over primes.
- If the contributions from different primes are orthogonal/independent as j varies, we can expect $\log \left|F_{j}(s)\right|$ to behave like a sum of independent contributions.
- (In many situations) this means that $\log \left|F_{j}(1 / 2+i h)\right|$ will behave roughly like Gaussians with mean zero and comparable variances.
- The logarithmic covariance structure emerges because there is a multiscale structure in an Euler product: $p^{i h}=e^{i h \log p}$ varies on an h-scale roughly $1 / \log p$, so contributions from small primes remain correlated over large h intervals, contributions from larger primes decorrelate more quickly.

Example 1: random Euler products

Let $(f(p))_{p \text { prime }}$ be independent random variables, each distributed uniformly on $\{|z|=1\}$. Define

$$
F(s):=\prod_{p \leq x}\left(1-\frac{f(p)}{p^{s}}\right)^{-1}
$$

where x is a large parameter.
Then we can study the behaviour of

$$
\int_{-1 / 2}^{1 / 2} g(h)|F(1 / 2+i h)|^{\gamma} d h
$$

as the random $f(p)$ vary.

Example 2: shifts of the Riemann zeta function
We can study the behaviour of

$$
\int_{-1 / 2}^{1 / 2} g(h)|\zeta(1 / 2+i t+i h)|^{\gamma} d h
$$

as $T \leq t \leq 2 T$ varies.
Notice that $\zeta(1 / 2+i t+i h)$ is not given by an Euler product, but for many purposes we expect it to behave like an Euler product.

Example 3: random multiplicative functions

Let $(f(p))_{p \text { prime }}$ be independent random variables as before. We define a Steinhaus random multiplicative function by setting

$$
f(n):=\prod_{p^{a} \| n} f(p)^{a} \quad \forall n \in \mathbb{N} .
$$

Then there are many interesting questions about the behaviour of $\sum_{n \leq x} f(n)$. If one is interested in $\mathbb{E}\left|\sum_{n \leq x} f(n)\right|^{2 q}$, it turns out (roughly speaking) that for $0 \leq q \ll \frac{\log x}{\log \log x}$ we have
$\mathbb{E}\left|\sum_{n \leq x} f(n)\right|^{2 q} \approx e^{O\left(q^{2}\right)} x^{q} \mathbb{E}\left(\frac{1}{\log x} \int_{-1 / 2}^{1 / 2}\left|F\left(1 / 2+\frac{q}{\log x}+i h\right)\right|^{2} d h\right)^{q}$.

Remarks about Example 3

- One needs a non-trivial, but not too difficult, conditioning argument to establish this connection between $\mathbb{E}\left|\sum_{n \leq x} f(n)\right|^{2 q}$ and the Euler product integral.
- We see here that the exponent $\gamma=2$ has some special significance.

Example 4: moments of character sums

Let r be a large prime and $x \leq r$. We can study the behaviour of

$$
\frac{1}{r-2} \sum_{\chi \neq \chi_{0} \bmod r}\left|\sum_{n \leq x} \chi(n)\right|^{2 q},
$$

where the sum is over all the non-principal Dirichlet characters $\bmod r$.

Key properties of multiplicative chaos

- As γ increases, $\mathbb{E} e^{\gamma X(h)}=e^{\left(\gamma^{2} / 2\right) \mathbb{E} X(h)^{2}}$ increases, and $\int g(h) e^{\gamma X(h)} d h$ is dominated more and more by very large values of $X(h)$.
- There is a critical value γ_{c} of γ at which, with very high probability, one no longer finds any values of h for which $X(h)$ is large enough to overcome $\mathbb{E} e^{\gamma X(h)}$.
- When $\gamma<\gamma_{c}$, one see non-trivial behaviour after rescaling $\int g(h) e^{\gamma X(h)} d h$ by $e^{\left(\gamma^{2} / 2\right) \mathbb{E} X(h)^{2}}$.
- When $\gamma=\gamma_{c}$, one sees non-trivial behaviour after rescaling by

$$
\frac{e^{\left(\gamma^{2} / 2\right) \mathbb{E} X(h)^{2}}}{\sqrt{\mathbb{E} X(h)^{2}}}
$$

Key properties of multiplicative chaos (continued)

- In the examples considered above, it turns out that the critical exponent $\gamma_{c}=2$, and $\sqrt{\mathbb{E} X(h)^{2}} \asymp \sqrt{\log \log x}$. So this quantity will come up a lot!
- One word about the proofs: restrict everything to the case where $X(h)$ and its "subsums" are all below a certain barrier, for all h. Such an event can be found that occurs with very high probability, but decreases the size of various averages in the proofs (by factors like $\sqrt{\mathbb{E} X(h)^{2}}$).

Theorem 1 (H., 2017, 2018)
If $f(n)$ is a Steinhaus random multiplicative function, then uniformly for all large x and real $0 \leq q \leq 1$ we have

$$
\mathbb{E}\left|\sum_{n \leq x} f(n)\right|^{2 q} \asymp\left(\frac{x}{1+(1-q) \sqrt{\log \log x}}\right)^{q}
$$

For $1 \leq q \leq \frac{c \log x}{\log \log x}$, we have

$$
\mathbb{E}\left|\sum_{n \leq x} f(n)\right|^{2 q}=e^{-q^{2} \log q-q^{2} \log \log (2 q)+O\left(q^{2}\right)} x^{q} \log (q-1)^{2} x .
$$

In particular, $\mathbb{E}\left|\sum_{n \leq x} f(n)\right| \asymp \frac{\sqrt{x}}{(\log \log x)^{1 / 4}}$. "Better than squareroot cancellation"

Related work/open problems:

One can look instead at

$$
\mathbb{E}\left|\sum_{n \leq x} \frac{f(n)}{\sqrt{n}}\right|^{2 q}=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T}\left|\sum_{n \leq x} \frac{1}{n^{1 / 2+i t}}\right|^{2 q} d t
$$

which are sometimes called the pseudomoments of the zeta function. They have been studied by Conrey and Gamburd (2006); Bondarenko-Heap-Seip (2015);
Bondarenko-Brevig-Saksman-Seip-Zhao (2018); Heap (2018); Brevig-Heap (2019). Correspond to $\gamma=2$

More generally, one can look at $\mathbb{E}\left|\sum_{n \leq x} f(n) d_{\alpha}(n)\right|^{2 q}$ or
$\mathbb{E}\left|\sum_{n \leq x} \frac{f(n) d_{\alpha}(n)}{\sqrt{n}}\right|^{2 q}$, where $d_{\alpha}(n)$ is the α divisor function.
Correspond to $\gamma=\alpha$

Open problem (so far...): what is the order of magnitude of $\mathbb{E}\left|\sum_{n \leq x} \frac{f(n)}{\sqrt{n}}\right|^{2 q}$ for $0<q \leq 1 / 2$?
We might suspect it should be $\log ^{q^{2}} x$ (as for a unitary L-function).
Bailey and Keating (2018): look at the analogue of $\mathbb{E}\left(\int_{-1 / 2}^{1 / 2}|F(1 / 2+i h)|^{\gamma} d h\right)^{q}$ random unitary matrices, obtain asymptotics when $q \in \mathbb{N}, \gamma \in 2 \mathbb{N}$.

Saksman and Webb (2016): prove convergence of the random measure coming from Euler products to a "genuine" multiplicative chaos measure (for $\gamma \leq 2$).

It is possible to "derandomise" some of these arguments.
Derandomising the passage from $\mathbb{E}\left|\sum_{n \leq x} f(n)\right|^{2 q}$ to an integral average, one can show:

Theorem 2 (H.)
Let r be a large prime. Then uniformly for any $1 \leq x \leq r$ and $0 \leq q \leq 1$, if we set $L:=\min \{x, r / x\}$ we have

$$
\frac{1}{r-2} \sum_{\chi \neq \chi_{0} \bmod r}\left|\sum_{n \leq x} \chi(n)\right|^{2 q} \ll\left(\frac{x}{1+(1-q) \sqrt{\log \log 10 L}}\right)^{q} .
$$

Because of the "duality" between $\sum_{n \leq x} \chi(n)$ and $\sum_{n \leq r / x} \chi(n)$ (coming from Poisson summation), this bound involving L is the natural analogue of Theorem 1.

Open problem (probably hard): obtain a corresponding lower bound.

By a different combinatorial method, La Bretèche, Munsch and Tenenbaum recently proved that for $1 \leq x<r / 2$,

$$
\frac{1}{r-2} \sum_{\chi \neq \chi_{0} \bmod r}\left|\sum_{n \leq x} \chi(n)\right| \gg \frac{\sqrt{x}}{\log ^{c+o(1)} x}, \quad c \approx 0.04304
$$

If one could obtain a lower bound that matched Theorem 2 (for $x \leq r^{1 / 2+o(1)}$), this would (essentially) imply a positive proportion non-vanishing result for Dirichlet theta functions $\theta(1 ; \chi)$.

Derandomising the analysis of the integral average, one can show:
Theorem 3 (H., 2019)
Uniformly for all large T and all $0 \leq q \leq 1$, we have
$\frac{1}{T} \int_{T}^{2 T}\left(\int_{-1 / 2}^{1 / 2}|\zeta(1 / 2+i t+i h)|^{2} d h\right)^{q} \ll\left(\frac{\log T}{1+(1-q) \sqrt{\log \log T}}\right)^{q}$.

Open problem (probably doable): obtain a matching lower bound.

Arguin, Ouimet and Radziwilt (2019): estimates for $\int_{-1 / 2}^{1 / 2}|\zeta(1 / 2+i t+i h)|^{\gamma} d h$ up to factors $\log ^{\epsilon} T$, for almost all $T \leq t \leq 2 T$.
$\int_{-1 / 2}^{1 / 2}|\zeta(1 / 2+i t+i h)|^{2} d h$ is usually dominated by h for which $\log |\zeta(1 / 2+i t+i h)| \approx \log \log T-\Theta(\sqrt{\log \log T})$. These values are atypical, but they don't correspond to the very largest values of $\log |\zeta(1 / 2+i t+i h)|$ that one expects on an interval of length 1.

By biasing the integral to only include (roughly speaking) very large values, one can prove (roughly): $\max _{|h| \leq 1 / 2} \log |\zeta(1 / 2+i t+i h)|$ is

$$
\leq \log \log T-(3 / 4) \log \log \log T+(3 / 2) \log \log \log \log T
$$

for "almost all" $T \leq t \leq 2 T$. This matches the first two terms in a conjecture of Fyodorov-Hiary-Keating (2012, 2014).

Arguin, Bourgade, Radziwitł and Soundararajan: in forthcoming work, give an independent (different) proof of this upper bound.

