Notation. The standard twist. The case of half-integral weight cusp forms *L*-functions. The general case.

Results on the standard twist of L-functions

Jerzy Kaczorowski (joint work with Alberto Perelli)

Adam Mickiewicz University, Poznań, Poland and Institute of Mathematics of the Polish Academy of Sciences

Cetraro, 2019

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

General notation.

S — the Selberg class. S^{\sharp} — the extended Selberg class. For $F\in S^{\sharp},\,\sigma>1$

$$F(s) = \sum_{n=1}^{\infty} \frac{a_F(n)}{n^s} = \sum_{n=1}^{\infty} \frac{a(n)}{n^s}$$

Functional equation

$$\Phi(s) = \omega \overline{\Phi(1-\overline{s})},$$

where

$$\Phi(s) = Q^s \prod_{j=1}^r \Gamma(\lambda_j s + \mu_j) F(s), \text{ and } r \ge 0, \ Q > 0, \\ \lambda_j > 0, \ \Re \mu_j \ge 0, \ |\omega| = 1.$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Notation. The standard twist. The case of half-integral weight cusp forms L-functions. The general case.

Invariants

Degree:

$$d_F := 2\sum_{j=1}^r \lambda_j$$

(ロ)、

Invariants

Degree:

$$d_F := 2\sum_{j=1}^r \lambda_j$$

Conductor:

$$q_F := (2\pi)^{d_F} Q^2 \prod_{j=1}^r \lambda_j^{2\lambda_j}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Invariants

$d_F := 2\sum_{j=1}^r \lambda_j$

$$q_F := (2\pi)^{d_F} Q^2 \prod_{j=1}^r \lambda_j^{2\lambda_j}$$

 ξ - and θ -invariants:

Degree:

Conductor:

$$\xi_{ extsf{F}} := 2 \sum_{j=1}^r (\mu_j - rac{1}{2}) \quad, \quad heta_{ extsf{F}} := \Im \xi_{ extsf{F}}$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Invariants

Degree:

$$d_{\mathsf{F}} := 2\sum_{j=1}^{r} \lambda_j$$

Conductor:

$$q_F := (2\pi)^{d_F} Q^2 \prod_{j=1}^r \lambda_j^{2\lambda_j}$$

 ξ - and θ -invariants:

$$\xi_F := 2\sum_{j=1}^r (\mu_j - \frac{1}{2})$$
 , $heta_F := \Im\xi_F$

The root number:

$$\omega_F := \omega \prod_{j=1}^r \lambda_j^{-2i\Im(\mu_j)}$$

The standard twist

$$S_d^{\sharp} := \{F \in S^{\sharp} : d_F = d\}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Definition

Let $F \in S_d^{\#}$, d > 0. For a real $\alpha > 0$ and $\sigma > 1$ we define the standard twist by the formula

$$F(s,\alpha) = \sum_{n=1}^{\infty} \frac{a(n)}{n^s} e(-n^{1/d}\alpha).$$
$$(e(\theta) := \exp(2\pi i\theta))$$

Notation. The standard twist. The case of half-integral weight cusp forms L-functions. The general case.

The standard twist

1. We write $n_{\alpha} = q_F d^{-d} \alpha^d$ and $a(n_{\alpha}) = \begin{cases} a(n) & \text{if } n_{\alpha} = n \in \mathbb{N} \\ 0 & \text{otherwise.} \end{cases}$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

The standard twist

1. We write

$$n_{lpha} = q_F d^{-d} \alpha^d$$

and
 $a(n_{lpha}) = \begin{cases} a(n) & \text{if } n_{lpha} = n \in \mathbb{N} \\ 0 & \text{otherwise.} \end{cases}$

2.

 $\operatorname{Spec}(F) := \{\alpha > \mathsf{0} : a(n_{\alpha}) \neq \mathsf{0}\}$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Theorem (J.K.-A.P. – 2005)

 $F(s, \alpha)$ has meromorphic continuation to \mathbb{C} . Moreover, $F(s, \alpha)$ is entire if $\alpha \notin Spec(F)$. Otherwise, $F(s, \alpha)$ has at most simple poles at the points

$$s_k = rac{d+1}{2d} - rac{k}{d} - irac{ heta_F}{d}, \quad k \ge 0$$

with

$$\operatorname{res}_{\boldsymbol{s}=\boldsymbol{s}_{0}}\boldsymbol{F}(\boldsymbol{s},\alpha)=c_{F}\frac{\overline{\boldsymbol{a}(\boldsymbol{n}_{\alpha})}}{\boldsymbol{n}_{\alpha}^{1-\boldsymbol{s}_{0}}}\quad(c_{F}\neq\boldsymbol{0}).$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

The standard twist proved to be the central object in the Selberg class theory.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

I. $S_d^{\sharp} = \emptyset$ if 0 < d < 1. [E. Richert, S. Bochner, B. Conrey-A. Ghosh, G. Molteni] Proof: Suppose there exists $F \in S_d^{\sharp}$ with 0 < d < 1. Take $\alpha \in Spec(F)$. Then $F(s, \alpha)$ has a pole at $s = s_0$. But $\Re(s_0) = \frac{1}{2} + \frac{1}{2d} > 1 - a$ contradiction.

ション ふゆ く 山 マ チャット しょうくしゃ

II. Description of the structure of S_1^{\sharp} (J.K.-A.P. – 1999). If d = 1, the standard twist is linear

$$F(s,\alpha) = \sum_{n=1}^{\infty} \frac{a(n)e(-\alpha n)}{n^s}$$

Thus

$$F(s, \alpha + 1) = F(s, \alpha)$$

Comparing residues at $s = s_0$ we see that coefficients a(n) are q-periodic (q - the conductor of F). \implies F(s) is a linear combination of Dirichlet L-functions (mod q).

III.
$$S_d^{\sharp} = \emptyset$$
 for $1 < d < 2$ (J.K.-A.P. – 2011).
Main idea of the proof. Suppose that $F \in S^{\sharp}$ has degree $1 < d < 2$, and consider

$$F(s,f) = \sum_{n=1}^{\infty} \frac{a(n)}{n^s} e(-f(n,\alpha))$$

where

$$f(\xi,\alpha) = \sum_{j=0}^{N} \alpha_j \xi^{\kappa_j} \quad , \quad \alpha = (\alpha_0, \dots, \alpha_N) \quad , \quad \alpha_0 > 0$$

$$\kappa_0 > \kappa_1 > \ldots > \kappa_N > 0 \qquad \kappa_0 > 1/d$$

(ロ)、

Two basic operations

$$T:F(s,f)\mapsto F(s^*,f^*)$$

where f^* denotes (suitably defined) 'conjugated' exponent of a similar form as f but possibly with different exponents and coefficients.

$$S: F(s, f) \mapsto F(s, \xi + f)$$

Consider the group $\mathfrak{S} = \langle S, T \rangle$ which acts on twists F(s, f).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへ⊙

We take $\alpha_0 \in Spec(F)$ and the exponent $f_0(\xi) = \alpha_0 \xi^{1/d}$, so that $F(s, f_0)$ is the standard twist of F. Then it is proved that there exists

$$g = STS^{m_N}S \dots S^{m_1}TS^{m_1}TS \in \mathfrak{S}$$

such that

$$g(F(s, f_0)) = F(s^*, f^*)$$

with

$$\Re(s_0^*)>1$$

Now, $F(s, f_0)$ has a pole at $s = s_0 \implies F(s, f^*)$ has a pole at $s = s_0^*$ - a contradiction.

IV. Let $F(s) = \sum_{n=1}^{\infty} a(n)n^{-s}$ has meromorphic continuation to \mathbb{C} with at most one singularity, a pole at s = 1. Moreover, let

$$\Phi(s) = \omega \overline{\Phi(1-\overline{s})} \qquad (|\omega| = 1)$$

$$\Phi(s) = \left(\frac{\sqrt{5}}{2\pi}\right)^s \Gamma(s+\mu)F(s) \qquad (\Re(\mu) \ge 0)$$

$$a(n) \ll n^{\varepsilon}$$

$$\log F(s) = \sum_{n=2}^{\infty} \frac{b(n)\Lambda(n)}{n^s} \qquad (b(n) \ll n^{\theta}, \theta < 1/2).$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Theorem (J.K.-A.P. – 2018)

There exists $k \in \mathbb{N}$, $\chi(\text{mod}5)$ such that

$$\Re(\mu) = rac{k-1}{2}$$
 $\chi(-1) = (-1)^k$

and either

$$F(s) = \zeta(s)L(s,\chi)$$
 (if $F(s)$ is polar)

or

$$F(s) = L(s + \mu, f)$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

for certain newform $f \in S_k(\Gamma_0(5), \chi)$.

The general problem:

Problem: Describe finer properties of the standard twist. In particular:

- (1) does it satisfy functional equation relating s to 1-s?
- (2) What is the polar structure of $F(s, \alpha)$ when $\alpha \in Spec(F)$?
- (3) Give precise convexity bounds for the Lindelöff $\mu\text{-function}$

$$\mu(s,\alpha) = \inf\{\lambda | F(\sigma + it) = O(|t|^{\lambda}) \text{ as } t \to \infty\}.$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

(4) Determine location of the zeros (trivial, nontrivial).(5) Other.

Let f be a cusp form of half-integral weight $\kappa = k/2$ and level N, where k > 0 is an odd integer and 4|N, and $L_f(s)$ be the associated Hecke L-function. Then $L_f(s)$ is entire and satisfies the functional equation

$$\Lambda_f(s) = \omega \Lambda_{f^*}(\kappa - s)$$

where

$$\Lambda_f(s) = \left(rac{\sqrt{N}}{2\pi}
ight)^s \Gamma(s) L_f(s)$$

 $|\omega| = 1$ and f^* is related to f by the slash operator. Note that $L_{f^*}(s)$ is also entire and has properties similar to $L_f(s)$.

Extra notation

$$c_{l}^{*}(\nu^{2}) = \begin{cases} -e^{i\pi\mu}a^{*}(\nu^{2}) & \text{if } \nu \ge 1\\ e^{i\pi(\frac{1}{2}+l-\mu)}a^{*}(\nu^{2}) & \text{if } -\nu_{\alpha} < \nu < -1\\ e^{-i\pi\mu}a^{*}(\nu^{2}) & \text{if } \nu < -\nu_{\alpha} \end{cases}$$

$$u_{\alpha} = \sqrt{n_{\alpha}} = \frac{1}{2}\sqrt{N}\alpha \quad , \quad \nu = \sqrt{n} \quad (n \ge 1)$$

$$F_{I}^{+}(s,\nu) = \sum_{\nu > -\nu_{\alpha}} \frac{c^{*}(\nu^{2})}{|\nu|^{\frac{1}{2}+I}|\nu + \nu_{\alpha}|^{2s - \frac{1}{2}-I}}$$

$$F_{l}^{-}(s,\nu) = \sum_{\nu < -\nu_{\alpha}} \frac{c^{*}(\nu^{2})}{|\nu|^{\frac{1}{2}+l}|\nu + \nu_{\alpha}|^{2s-\frac{1}{2}-l}}$$
$$F_{l}^{*}(s,\alpha) = e^{-i\pi s}F_{l}^{+}(s) + e^{i\pi s}F_{l}^{-}(s)$$

*/ 21

SAC

Theorem ((J.K.-A.P. – 2018))

(1) The functions $F_l^*(s, \alpha)$ are entire.

(2) We have

$$F(s,\alpha) = \frac{\omega}{i\sqrt{2\pi}} \left(\frac{\sqrt{N}}{4\pi}\right)^{1-2s} \sum_{l=0}^{h^*} a_l \Gamma(2(1-s) - \frac{1}{2} - l) F_l^*(1-s,\alpha)$$
$$((h^* = \max(0, [\kappa] - 1)))$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

The case of half-integral weight cusp forms *L*-functions.

Corollary

For $\alpha \in Spec(F)$, the standard twist $F(s, \alpha)$ has a finite number of poles. They could be at the points

$$s = s_l = \frac{3}{4} - \frac{l}{2}$$
 $(l = 0, ..., h^*)$

Remark. A closer analysis of the proof reveals that these statements are consequences of the very special form of the functional equation of the *L*-functions associated to the half-integer cusp forms. This is due to the fact that the argument is based on the explicit expression of the Mellin-Barnes integral

$$\frac{1}{2\pi i}\int_{(c)} \Gamma(\xi-w)\Gamma(w)\eta^{-w}\,\mathrm{d}w = \Gamma(\xi)(1+\eta)^{-\xi},$$

where $0 < c < \Re(\xi)$ and $|\arg(\eta)| < \pi$. The method works for some other γ -factors but fails in general. In particular, the above statements are FALSE even for the *L*-functions of the Hecke cusp forms, notwithstanding the similarity of functional equations.

Let
$$F \in S_d^{\sharp}$$
, $d > 0$.
 $Spec(F) = \left\{ \left(\frac{m}{q}\right)^{1/d} : m \in \mathbb{N} \text{ with } a(m) \neq 0 \right\}$
 $s_l = \frac{d+1}{2d} - \frac{l}{d} \qquad (l = 0, 1, 2, ...)$
 $\gamma(s) = Q^s \prod_{j=1}^r \Gamma(\lambda_j s + \mu_j)$

For simplicity we assume that F(s) is entire and normalized:

$$\theta_F := \Im(\sum_{j=1}^{\prime} \mu_j) = 0$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Definition

$$S_F(s) = 2^r \prod_{j=1}^r \sin(\pi(\lambda_j s + \mu_j)) = \sum_{j=-N}^N a_j e^{i\pi d\omega_j s}$$
$$-\frac{1}{2} = \omega_{-N} < \dots < \omega_N = \frac{1}{2}$$
$$h_F(s) = \frac{\omega}{(2\pi)^r} Q^{1-2s} \prod_{j=1}^r \left(\Gamma(\lambda_j (1-s) + \overline{\mu_j}) \Gamma(1-\lambda_j s - \mu_j) \right)$$

Remark. Both functions $S_F(s)$ and $h_F(s)$ are invariants. Moreover,

$$F(s) = h_F(s)S_F(s)\overline{F}(1-s)$$

Definition

For $l \ge 0$ we define

$$\overline{F}_{l}(s,\alpha) = \sum_{j=-N}^{N} a_{j} e^{i\pi d\omega_{j}(1-s)} \sum_{n \ge 1}^{\flat} \frac{a(n)}{n^{s}} \left(1 + e^{i\pi(\frac{1}{2}-\omega_{j})} \left(\frac{n_{\alpha}}{n}\right)^{1/d}\right)^{d(1-s-s_{l})}$$

where \flat indicates that if j = -N then the term $n = n_{\alpha}$ is omitted.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Theorem

For every $l \ge 0$ and $\alpha > 0$, the function $\overline{F}_l(s, \alpha)$ is entire and not identically vanishing. Moreover, uniformly for σ in any bounded interval, as $|t| \to \infty$ we have

$$\overline{F}_{l}(s,\alpha) \ll e^{\frac{\pi}{2}d|t|}|t|^{c(\sigma)}$$

with a certain $c(\sigma) \ge 0$ independent of l and α , satisfying $c(\sigma) = 0$ for $\sigma > 1$.

うして ふゆう ふほう ふほう うらつ

Definition (Structural coefficients of F(s))

For $|\arg(-s)| < \pi - \delta$ we have

$$h_F(s)\sim rac{\omega_F}{\sqrt{2\pi}}\left(rac{q^{1/d}}{2\pi d}
ight)^{d(rac{1}{2}-s)}\sum_{l=0}^\infty d_l \Gamma(d(s_l-s))$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

The invariants d_l are called the *structural coefficients* of F(s).

Theorem (J.K.-A.P. – 2019)

For any integer $k \ge 0$ and s in the strip $s_{k+1} < \sigma < s_k$ we have

$$F(s,\alpha) = \frac{\omega_F}{\sqrt{2\pi}} \left(\frac{q^{1/d}}{2\pi d}\right)^{d(\frac{1}{2}-s)} \sum_{l=0}^k d_l \Gamma(d(1-s)-s_l) \overline{F}_l(1-s,\alpha) + H_k(s,\alpha),$$

where the function $H_k(s, \alpha)$ is holomorphic in the above strip and meromorphic over \mathbb{C} . Moreover, there exists $\theta = \theta(d) > 0$ such that for any $\sigma \in [s_{k+1}, s_k] \cap (-\infty, 0)$ we have

$$H_k(s, \alpha) \ll |t|^{-\theta}$$
 as $|t| \to \infty$.

Theorem (J.K.-A.P. – 2019)

For $\alpha \in Spec(F)$ we have

$$\operatorname{Res}_{\boldsymbol{s}=\boldsymbol{s}_{\boldsymbol{l}}} F(\boldsymbol{s}, \alpha) = \frac{d_{\boldsymbol{l}}}{d} \frac{\omega_{\boldsymbol{F}}}{\sqrt{2\pi}} e^{-i\frac{\pi}{2}(\xi_{\boldsymbol{F}}+d\boldsymbol{s}_{\boldsymbol{l}})} \left(\frac{q^{1/d}}{2\pi d}\right)^{\frac{1}{2}-d\boldsymbol{s}_{\boldsymbol{l}}} \frac{\overline{a(n_{\alpha})}}{n_{\alpha}^{1-s_{\boldsymbol{l}}}}.$$

In particular, the set of poles of $F(s, \alpha)$ is independent of α and equals $\{s_l : d_l \neq 0\}$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

Definition

We say that $F(s, \alpha)$ satisfies a strict functional equation if there exists an integer h such that $H_k(s, \alpha) \equiv 0$ for every $k \ge h$ and $\alpha > 0$.

Remark. Obviously the strict functional equation of $F(s, \alpha)$ has the following form

$$F(s,\alpha) = \frac{\omega_F}{\sqrt{2\pi}} \left(\frac{q^{1/d}}{2\pi d}\right)^{d(\frac{1}{2}-s)} \sum_{l=0}^h d_l \Gamma(d(1-s)-s_l)\overline{F}_l(1-s,\alpha).$$

ション ふゆ アメリア メリア しょうくしゃ

Definition

Let $N \ge 1$ and $n_j \ge 0$, j = 1, ..., N, be integers. We say that $n_1, ..., n_N$ form a *compatible system* if (1) $n_i \not\equiv n_j (\text{mod}2N)$ for every $i \neq j$ (2) $n_i \not\equiv 1 - n_j (\text{mod}2N)$ for every i, j.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Theorem (J.K.-A.P. – 2019)

The following statements are equivalent. (i) $F(s, \alpha)$ satisfies a strict functional equation. (ii) For every $\alpha \in Spec(F)$ all the poles of $F(s, \alpha)$ are at there points s_l where $0 \leq l \leq h$, $d_l \neq 0$. (iii) F(s) has a γ -factor of the form

$$\gamma(s) = Q^s \prod_{j=1}^N \Gamma\left(\frac{d}{2N}s + \frac{2n_j - d - 1}{4N}\right),$$

where Q > 0, $N \ge 1$ and the integers n_j satisfy $n_j \ge (d + 1)/2$ and form a compatible system.

Notation. The standard twist. The case of half-integral weight cusp forms *L*-functions. The general case.

Grazie per l'attenzione!

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?