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General notation.

S — the Selberg class.
S ] — the extended Selberg class.
For F ∈ S ], σ > 1

F (s) =
∞∑

n=1

aF (n)

ns =
∞∑

n=1

a(n)

ns

Functional equation
Φ(s) = ωΦ(1− s),

where
Φ(s) = Qs ∏r

j=1 Γ(λjs + µj)F (s), and r ­ 0, Q > 0,
λj > 0, <µj ­ 0, |ω| = 1.
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Invariants

Degree:

dF := 2
r∑

j=1

λj

Conductor:

qF := (2π)dFQ2
r∏

j=1

λ
2λj
j

ξ- and θ-invariants:

ξF := 2
r∑

j=1

(µj −
1
2

) , θF := =ξF

The root number:

ωF := ω
r∏

j=1

λ
−2i=(µj )
j
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The standard twist

S ]d := {F ∈ S ] : dF = d}

Definition

Let F ∈ S#
d , d > 0. For a real α > 0 and σ > 1 we define the

standard twist by the formula

F (s, α) =
∞∑

n=1

a(n)

ns e(−n1/dα).

(e(θ) := exp(2πiθ))
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The standard twist

1. We write
nα = qFd−dαd

and

a(nα) =

{
a(n) if nα = n ∈ N
0 otherwise.
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The standard twist

1. We write
nα = qFd−dαd

and

a(nα) =

{
a(n) if nα = n ∈ N
0 otherwise.

2.
Spec(F ) := {α > 0 : a(nα) 6= 0}



Notation. The standard twist. The case of half-integral weight cusp forms L-functions. The general case.

Theorem (J.K.-A.P. – 2005)

F (s, α) has meromorphic continuation to C. Moreover, F (s, α) is
entire if α 6∈ Spec(F ). Otherwise, F (s, α) has at most simple poles
at the points

sk =
d + 1
2d

− k
d
− i

θF
d
, k ­ 0

with

ress=s0F (s, α) = cF
a(nα)

n1−s0
α

(cF 6= 0).
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Some applications of the standard twist

The standard twist proved to be the central object in
the Selberg class theory.
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Some applications of the standard twist

I. S ]d = ∅ if 0 < d < 1. [E. Richert, S. Bochner, B.
Conrey-A. Ghosh, G. Molteni]
Proof: Suppose there exists F ∈ S ]d with 0 < d < 1.
Take α ∈ Spec(F ). Then F (s, α) has a pole at
s = s0. But <(s0) = 1

2 + 1
2d > 1 – a contradiction.
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Some applications of the standard twist

II. Description of the structure of S ]1 (J.K.-A.P. – 1999).
If d = 1, the standard twist is linear

F (s, α) =
∞∑

n=1

a(n)e(−αn)

ns

Thus
F (s, α + 1) = F (s, α)

Comparing residues at s = s0 we see that coefficients
a(n) are q-periodic (q - the conductor of F ). =⇒
F (s) is a linear combination of Dirichlet L-functions
(modq).
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Some applications of the standard twist

III. S ]d = ∅ for 1 < d < 2 (J.K.-A.P. – 2011).
Main idea of the proof. Suppose that F ∈ S ] has
degree 1 < d < 2, and consider

F (s, f ) =
∞∑

n=1

a(n)

ns e(−f (n, α))

where

f (ξ, α) =
N∑

j=0

αjξ
κj , α = (α0, . . . , αN) , α0 > 0

κ0 > κ1 > . . . > κN > 0 κ0 > 1/d
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Some applications of the standard twist

Two basic operations

T : F (s, f ) 7→ F (s∗, f ∗)

where f ∗ denotes (suitably defined) ‘conjugated’
exponent of a similar form as f but possibly with
different exponents and coefficients.

S : F (s, f ) 7→ F (s, ξ + f )

Consider the group S =< S ,T > which acts on
twists F (s, f ).
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Some applications of the standard twist

We take α0 ∈ Spec(F ) and the exponent
f0(ξ) = α0ξ

1/d , so that F (s, f0) is the standard twist
of F . Then it is proved that there exists

g = STSmNS . . . Sm1TSm1TS ∈ S

such that
g(F (s, f0)) = F (s∗, f ∗)

with
<(s∗0 ) > 1

Now, F (s, f0) has a pole at s = s0 =⇒ F (s, f ∗) has
a pole at s = s∗0 - a contradiction.
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Some applications of the standard twist

IV. Let F (s) =
∑∞

n=1 a(n)n−s has meromorphic
continuation to C with at most one singularity, a pole
at s = 1. Moreover, let

Φ(s) = ωΦ(1− s) (|ω| = 1)

Φ(s) =

(√
5

2π

)s

Γ(s + µ)F (s) (<(µ) ­ 0)

a(n)� nε

log F (s) =
∞∑

n=2

b(n)Λ(n)

ns (b(n)� nθ, θ < 1/2).
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Some applications of the standard twist

Theorem (J.K.-A.P. – 2018)

There exists k ∈ N, χ(mod5) such that

<(µ) =
k − 1
2

χ(−1) = (−1)k

and either

F (s) = ζ(s)L(s, χ) (if F (s) is polar)

or
F (s) = L(s + µ, f )

for certain newform f ∈ Sk(Γ0(5), χ).
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The general problem:

Problem: Describe finer properties of the standard twist. In
particular:
(1) does it satisfy functional equation relating s to
1− s?
(2) What is the polar structure of F (s, α) when
α ∈ Spec(F )?
(3) Give precise convexity bounds for the Lindelöff
µ-function

µ(s, α) = inf{λ|F (σ + it) = O(|t|λ) as t →∞}.

(4) Determine location of the zeros (trivial,
nontrivial).
(5) Other.
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The case of half-integral weight cusp forms L-functions.

Let f be a cusp form of half-integral weight κ = k/2
and level N, where k > 0 is an odd integer and 4|N,
and Lf (s) be the associated Hecke L-function. Then
Lf (s) is entire and satisfies the functional equation

Λf (s) = ωΛf ∗(κ− s)

where

Λf (s) =

(√
N

2π

)s

Γ(s)Lf (s)

|ω| = 1 and f ∗ is related to f by the slash operator.
Note that Lf ∗(s) is also entire and has properties
similar to Lf (s).
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The case of half-integral weight cusp forms L-functions.

Extra notation

c∗l (ν2) =


−e iπµa∗(ν2) if ν ­ 1
e iπ( 1

2+l−µ)a∗(ν2) if −να < ν < −1
e−iπµa∗(ν2) if ν < −να

να =
√
nα =

1
2

√
Nα , ν =

√
n (n ­ 1)

F+
l (s, ν) =

∑
ν>−να

c∗(ν2)

|ν|
1
2+l |ν + να|2s− 1

2−l

F−l (s, ν) =
∑

ν<−να

c∗(ν2)

|ν|
1
2+l |ν + να|2s− 1

2−l

F ∗l (s, α) = e−iπsF+
l (s) + e iπsF−l (s)
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The case of half-integral weight cusp forms L-functions.

Theorem ((J.K.-A.P. – 2018))

(1) The functions F ∗l (s, α) are entire.

(2) We have

F (s, α) =
ω

i
√
2π

(√
N

4π

)1−2s h∗∑
l=0

alΓ(2(1− s)− 1
2
− l)F ∗l (1− s, α)

((h∗ = max(0, [κ]− 1))
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The case of half-integral weight cusp forms L-functions.

Corollary

For α ∈ Spec(F ), the standard twist F (s, α) has a finite number of
poles. They could be at the points

s = sl =
3
4
− l

2
(l = 0, . . . , h∗)
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The case of half-integral weight cusp forms L-functions.

Remark. A closer analysis of the proof reveals that these
statements are consequences of the very special form
of the functional equation of the L-functions
associated to the half-integer cusp forms. This is due
to the fact that the argument is based on the explicit
expression of the Mellin-Barnes integral

1
2πi

∫
(c)

Γ(ξ − w)Γ(w)η−w dw = Γ(ξ)(1 + η)−ξ,

where 0 < c < <(ξ) and | arg(η)| < π. The method
works for some other γ-factors but fails in general. In
particular, the above statements are FALSE even for
the L-functions of the Hecke cusp forms,
notwithstanding the similarity of functional equations.
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The general case.

Let F ∈ S ]d , d > 0.

Spec(F ) =

{(
m
q

)1/d
: m ∈ N with a(m) 6= 0

}

sl =
d + 1
2d

− l
d

(l = 0, 1, 2, . . .)

γ(s) = Qs
r∏

j=1

Γ(λjs + µj)

For simplicity we assume that F (s) is entire and
normalized:

θF := =(
r∑

j=1

µj) = 0
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The general case.

Definition

SF (s) = 2r
r∏

j=1

sin(π(λjs + µj)) =
N∑

j=−N

aje iπdωj s

−1
2

= ω−N < . . . < ωN =
1
2

hF (s) =
ω

(2π)r Q
1−2s

r∏
j=1

(Γ(λj(1− s) + µj)Γ(1− λjs − µj))

Remark. Both functions SF (s) and hF (s) are invariants.
Moreover,

F (s) = hF (s)SF (s)F (1− s)



Notation. The standard twist. The case of half-integral weight cusp forms L-functions. The general case.

The general case.

Definition
For l ­ 0 we define

F l (s, α)

=
N∑

j=−N

aje iπdωj (1−s)
∑[

n­1

a(n)

ns

(
1 + e iπ( 1

2−ωj )
(
nα
n

)1/d
)d(1−s−sl )

,

where [ indicates that if j = −N then the term n = nα is omitted.
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The general case.

Theorem

For every l ­ 0 and α > 0, the function F l (s, α) is entire and not
identically vanishing. Moreover, uniformly for σ in any bounded
interval, as |t| → ∞ we have

F l (s, α)� e
π
2 d |t||t|c(σ)

with a certain c(σ) ­ 0 independent of l and α, satisfying c(σ) = 0
for σ > 1.
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The general case.

Definition (Structural coefficients of F (s))

For |arg(−s)| < π − δ we have

hF (s) ∼ ωF√
2π

(
q1/d

2πd

)d( 1
2−s) ∞∑

l=0

dlΓ(d(sl − s))

The invariants dl are called the structural coefficients of F (s).
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The general case.

Theorem (J.K.-A.P. – 2019)

For any integer k ­ 0 and s in the strip sk+1 < σ < sk we have

F (s, α) =
ωF√
2π

(
q1/d

2πd

)d( 1
2−s) k∑

l=0

dlΓ(d(1− s)− sl )F l (1− s, α)

+Hk(s, α),

where the function Hk(s, α) is holomorphic in the above strip and
meromorphic over C. Moreover, there exists θ = θ(d) > 0 such
that for any σ ∈ [sk+1, sk ] ∩ (−∞, 0) we have

Hk(s, α)� |t|−θ as |t| → ∞.
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The general case.

Theorem (J.K.-A.P. – 2019)

For α ∈ Spec(F ) we have

Ress=slF (s, α) =
dl

d
ωF√
2π

e−i π2 (ξF+dsl )

(
q1/d

2πd

) d
2−dsl a(nα)

n1−sl
α

.

In particular, the set of poles of F (s, α) is independent of α and
equals {sl : dl 6= 0}.
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The general case.

Definition
We say that F (s, α) satisfies a strict functional equation if there
exists an integer h such that Hk(s, α) ≡ 0 for every k ­ h and
α > 0.

Remark. Obviously the strict functional equation of F (s, α)
has the following form

F (s, α) =
ωF√
2π

(
q1/d

2πd

)d( 1
2−s) h∑

l=0

dlΓ(d(1−s)−sl )F l (1−s, α).



Notation. The standard twist. The case of half-integral weight cusp forms L-functions. The general case.

The general case.

Definition
Let N ­ 1 and nj ­ 0, j = 1, . . . ,N, be integers. We say that
n1, . . . , nN form a compatible system if
(1) ni 6≡ nj(mod2N) for every i 6= j
(2) ni 6≡ 1− nj(mod2N) for every i , j .
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The general case.

Theorem (J.K.-A.P. – 2019)

The following statements are equivalent.
(i) F (s, α) satisfies a strict functional equation.
(ii) For every α ∈ Spec(F ) all the poles of F (s, α) are at there
points sl where 0 ¬ l ¬ h, dl 6= 0.
(iii) F (s) has a γ-factor of the form

γ(s) = Qs
N∏

j=1

Γ

(
d
2N

s +
2nj − d − 1

4N

)
,

where Q > 0, N ­ 1 and the integers nj satisfy nj ­ (d + 1)/2 and
form a compatible system.
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Grazie per l’attenzione!
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