Dimitris Koukoulopoulos¹ joint work with James Maynard²

¹Université de Montréal ²University of Oxford

Second Symposium in Analytic Number Theory Cetraro, Italy 10 July 2019

Given $\psi: \mathbb{N} \to [0, +\infty)$ and $\alpha \in [0, 1]$, solve the inequality

$$\left| \alpha - \frac{a}{q} \right| \leqslant \frac{\psi(q)}{q} \quad \text{with} \quad a \in \mathbb{Z}, \ q \in \mathbb{N}$$
 (*)

Given $\psi : \mathbb{N} \to [0, +\infty)$ and $\alpha \in [0, 1]$, solve the inequality

$$\left|\alpha - \frac{a}{q}\right| \leqslant \frac{\psi(q)}{q} \quad \text{with} \quad a \in \mathbb{Z}, \ q \in \mathbb{N}$$
 (*)

(possibly imposing the coprimality condition gcd(a, q) = 1)

Given $\psi : \mathbb{N} \to [0, +\infty)$ and $\alpha \in [0, 1]$, solve the inequality

$$\left|\alpha - \frac{a}{q}\right| \leqslant \frac{\psi(q)}{q} \quad \text{with} \quad a \in \mathbb{Z}, \ q \in \mathbb{N}$$
 (*)

(possibly imposing the coprimality condition gcd(a, q) = 1)

Dirichlet: when $\psi(q) = 1/q$, then (*) has infinitely many solutions for all $\alpha \in [0, 1]$.

Given $\psi : \mathbb{N} \to [0, +\infty)$ and $\alpha \in [0, 1]$, solve the inequality

$$\left|\alpha - \frac{a}{q}\right| \leqslant \frac{\psi(q)}{q} \quad \text{with} \quad a \in \mathbb{Z}, \ q \in \mathbb{N}$$
 (*)

(possibly imposing the coprimality condition gcd(a, q) = 1)

Dirichlet: when $\psi(q) = 1/q$, then (*) has infinitely many solutions for all $\alpha \in [0, 1]$.

Question: can we solve (*) if ψ is more irregular?

Given $\psi: \mathbb{N} \to [0, +\infty)$ and $\alpha \in [0, 1]$, solve the inequality

$$\left|\alpha - \frac{a}{q}\right| \leqslant \frac{\psi(q)}{q} \quad \text{with} \quad a \in \mathbb{Z}, \ q \in \mathbb{N}$$
 (*)

(possibly imposing the coprimality condition gcd(a, q) = 1)

Dirichlet: when $\psi(q) = 1/q$, then (*) has infinitely many solutions for all $\alpha \in [0, 1]$.

Question: can we solve (*) if ψ is more irregular?

Caveat: There might be exceptional α 's.

Given $\psi : \mathbb{N} \to [0, +\infty)$ and $\alpha \in [0, 1]$, solve the inequality

$$\left|\alpha - \frac{a}{q}\right| \leqslant \frac{\psi(q)}{q} \quad \text{with} \quad a \in \mathbb{Z}, \ q \in \mathbb{N}$$
 (*)

(possibly imposing the coprimality condition gcd(a, q) = 1)

Dirichlet: when $\psi(q) = 1/q$, then (*) has infinitely many solutions for all $\alpha \in [0, 1]$.

Question: can we solve (*) if ψ is more irregular?

Caveat: There might be exceptional α 's.

Goal: understand when set of exceptional α 's has null measure

$$\mathcal{K}_q := igcup_{0 \leqslant a \leqslant q} \left[rac{a}{q} - rac{\psi(q)}{q}, rac{a}{q} + rac{\psi(q)}{q}
ight]$$

$$egin{aligned} \mathcal{K}_q &:= igcup_{0\leqslant a\leqslant q} \Big[rac{a}{q} - rac{\psi(q)}{q}, rac{a}{q} + rac{\psi(q)}{q}\Big] \ \mathcal{K} &:= \limsup_{q o\infty} \mathcal{K}_q \end{aligned}$$

$$egin{aligned} \mathcal{K}_q &:= igcup_{0 \leqslant a \leqslant q} \Big[rac{a}{q} - rac{\psi(q)}{q}, rac{a}{q} + rac{\psi(q)}{q}\Big] \ \mathcal{K} &:= \limsup_{q o \infty} \mathcal{K}_q \ &= \{lpha \in [0,1] : lpha \in \mathcal{K}_q ext{ for infinitely many } q\} \end{aligned}$$

Note that

$$egin{aligned} \mathcal{K}_q &:= igcup_{0 \leqslant a \leqslant q} \Big[rac{a}{q} - rac{\psi(q)}{q}, rac{a}{q} + rac{\psi(q)}{q} \Big] \ \mathcal{K} &:= \limsup_{q o \infty} \mathcal{K}_q \ &= \{ lpha \in [0,1] : lpha \in \mathcal{K}_q ext{ for infinitely many } q \} \ \ \lambda(\mathcal{K}_q) symp \psi(q) \qquad (\lambda = ext{Lebesgue measure}) \end{aligned}$$

$$\begin{split} \mathcal{K}_q &:= \bigcup_{0 \leqslant a \leqslant q} \Big[\frac{a}{q} - \frac{\psi(q)}{q}, \frac{a}{q} + \frac{\psi(q)}{q} \Big] \\ \mathcal{K} &:= \limsup_{q \to \infty} \mathcal{K}_q \\ &= \{ \alpha \in [0,1] : \alpha \in \mathcal{K}_q \text{ for infinitely many } q \} \end{split}$$

Note that

$$\lambda(\mathcal{K}_q)symp \psi(q) \qquad (\lambda= ext{Lebesgue measure})$$

ullet 'easy' direction of Borel-Cantelli : $\sum_{q} \psi(q) < \infty \quad \Rightarrow \quad \lambda(\mathcal{K}) = 0.$

$$egin{aligned} \mathcal{K}_q &:= igcup_{0 \leqslant a \leqslant q} \Big[rac{a}{q} - rac{\psi(q)}{q}, rac{a}{q} + rac{\psi(q)}{q} \Big] \ \mathcal{K} &:= \limsup_{q o \infty} \mathcal{K}_q \ &= \{ lpha \in [0,1] : lpha \in \mathcal{K}_q ext{ for infinitely many } q \} \end{aligned}$$

Note that

$$\lambda(\mathcal{K}_q) \asymp \psi(q)$$
 ($\lambda = \text{Lebesgue measure}$)

- ullet 'easy' direction of Borel-Cantelli : $\sum_{q} \psi(q) < \infty \quad \Rightarrow \quad \lambda(\mathcal{K}) = 0.$
- Khinchin (1924) proved a partial converse:

$$q\psi(q)\searrow$$
 & $\sum_{q}\psi(q)=\infty$ \Rightarrow $\lambda(\mathcal{K})=1$.

Study coprime solutions to $|\alpha - a/q| \le \psi(q)/q$ to avoid over-counting:

Study coprime solutions to $|\alpha - a/q| \le \psi(q)/q$ to avoid over-counting:

$$\mathcal{A}_q := igcup_{\substack{1 \leqslant a \leqslant q \ \gcd(a,q)=1}} \Big[rac{a}{q} - rac{\psi(q)}{q}, rac{a}{q} + rac{\psi(q)}{q}\Big], \qquad \mathcal{A} = \limsup_{q o \infty} \mathcal{A}_q$$

Study coprime solutions to $|\alpha - a/q| \le \psi(q)/q$ to avoid over-counting:

$$\mathcal{A}_q := igcup_{\substack{1 \leqslant a \leqslant q \ \gcd(a,q)=1}} \Big[rac{a}{q} - rac{\psi(q)}{q}, rac{a}{q} + rac{\psi(q)}{q}\Big], \qquad \mathcal{A} = \limsup_{q o \infty} \mathcal{A}_q$$

• Here $\lambda(\mathcal{A}_q)=\psi(q)\varphi(q)/q$, so the 'easy' Borel-Cantelli lemma yields:

$$\sum_{q} \frac{\psi(q)\varphi(q)}{q} < \infty \quad \Rightarrow \quad \lambda(\mathcal{A}) = 0$$

Study coprime solutions to $|\alpha - a/q| \le \psi(q)/q$ to avoid over-counting:

$$\mathcal{A}_q := igcup_{\substack{1 \leqslant a \leqslant q \ \gcd(a,q)=1}} \Big[rac{a}{q} - rac{\psi(q)}{q}, rac{a}{q} + rac{\psi(q)}{q}\Big], \qquad \mathcal{A} = \limsup_{q o \infty} \mathcal{A}_q$$

• Here $\lambda(\mathcal{A}_q)=\psi(q)\varphi(q)/q$, so the 'easy' Borel-Cantelli lemma yields:

$$\sum_{q} \frac{\psi(q)\varphi(q)}{q} < \infty \quad \Rightarrow \quad \lambda(\mathcal{A}) = 0$$

• Duffin and Schaeffer (1941) conjecture a strong converse is also true:

$$\sum_{q} \frac{\psi(q)\varphi(q)}{q} = \infty \quad \Rightarrow \quad \lambda(\mathcal{A}) = 1.$$

• Duffin-Schaeffer (1941): DSC is true when ψ is 'regular', i.e. when

$$\limsup_{Q \to \infty} \frac{\sum_{q \leqslant Q} \psi(q) \varphi(q)/q}{\sum_{q \leqslant Q} \psi(q)} > 0.$$

ullet Duffin-Schaeffer (1941): DSC is true when ψ is 'regular', i.e. when

$$\limsup_{Q o\infty}rac{\sum_{q\leqslant Q}\psi(q)arphi(q)/q}{\sum_{q\leqslant Q}\psi(q)}>0.$$

• Erdős (1970) & Vaaler (1978) : DSC is true when $\psi(q) = O(1/q)$.

ullet Duffin-Schaeffer (1941): DSC is true when ψ is 'regular', i.e. when

$$\limsup_{Q o \infty} rac{\sum_{q \leqslant Q} \psi(q) arphi(q)/q}{\sum_{q \leqslant Q} \psi(q)} > 0.$$

- Erdős (1970) & Vaaler (1978) : DSC is true when $\psi(q) = O(1/q)$.
- Pollington-Vaughan (1990) : DSC is true in all dimensions > 1.

ullet Duffin-Schaeffer (1941): DSC is true when ψ is 'regular', i.e. when

$$\limsup_{Q o\infty}rac{\sum_{q\leqslant Q}\psi(q)arphi(q)/q}{\sum_{q\leqslant Q}\psi(q)}>0.$$

- Erdős (1970) & Vaaler (1978) : DSC is true when $\psi(q) = O(1/q)$.
- Pollington-Vaughan (1990) : DSC is true in all dimensions > 1.
- DSC with 'extra divergence', i.e. when $\sum_{q} \frac{\psi(q)\varphi(q)}{qL(q)} = \infty$:

ullet Duffin-Schaeffer (1941): DSC is true when ψ is 'regular', i.e. when

$$\limsup_{Q o\infty}rac{\sum_{q\leqslant Q}\psi(q)arphi(q)/q}{\sum_{q\leqslant Q}\psi(q)}>0.$$

- Erdős (1970) & Vaaler (1978) : DSC is true when $\psi(q) = O(1/q)$.
- Pollington-Vaughan (1990) : DSC is true in all dimensions > 1.
- DSC with 'extra divergence', i.e. when $\sum_{q} \frac{\psi(q)\varphi(q)}{qL(q)} = \infty$:

 Haynes-Pollington-Velani (2012) : $L(q) = (q/\psi(q))^{\varepsilon}$.

• Duffin-Schaeffer (1941): DSC is true when ψ is 'regular', i.e. when

$$\limsup_{Q o\infty}rac{\sum_{q\leqslant Q}\psi(q)arphi(q)/q}{\sum_{q\leqslant Q}\psi(q)}>0.$$

- Erdős (1970) & Vaaler (1978) : DSC is true when $\psi(q) = O(1/q)$.
- Pollington-Vaughan (1990): DSC is true in all dimensions > 1.
- DSC with 'extra divergence', i.e. when $\sum_{q} \frac{\psi(q)\varphi(q)}{qI(q)} = \infty$:

Haynes-Pollington-Velani (2012) : $L(q) = (q/\psi(q))^{\varepsilon}$.

Beresnevich-Harman-Haynes-Velani (2013):

 $L(q) = \exp\{c(\log\log q)(\log\log\log q)\}.$

ullet Duffin-Schaeffer (1941): DSC is true when ψ is 'regular', i.e. when

$$\limsup_{Q \to \infty} \frac{\sum_{q \leqslant Q} \psi(q) \varphi(q)/q}{\sum_{q \leqslant Q} \psi(q)} > 0.$$

- Erdős (1970) & Vaaler (1978) : DSC is true when $\psi(q) = O(1/q)$.
- Pollington-Vaughan (1990): DSC is true in all dimensions > 1.
- DSC with 'extra divergence', i.e. when $\sum_q \frac{\psi(q)\varphi(q)}{qL(q)} = \infty$:

Haynes-Pollington-Velani (2012) : $L(q) = (q/\psi(q))^{\varepsilon}$.

Beresnevich-Harman-Haynes-Velani (2013):

 $L(q) = \exp\{c(\log\log q)(\log\log\log q)\}.$

Aistleitner-Lachmann-Munsch-Technau-Zafeiropoulos (2018

preprint) : $L(q) = (\log q)^{\varepsilon}$

ullet Duffin-Schaeffer (1941): DSC is true when ψ is 'regular', i.e. when

$$\limsup_{Q \to \infty} \frac{\sum_{q \leqslant Q} \psi(q) \varphi(q)/q}{\sum_{q \leqslant Q} \psi(q)} > 0.$$

- Erdős (1970) & Vaaler (1978) : DSC is true when $\psi(q) = O(1/q)$.
- Pollington-Vaughan (1990): DSC is true in all dimensions > 1.
- DSC with 'extra divergence', i.e. when $\sum_q \frac{\psi(q)\varphi(q)}{qL(q)} = \infty$:

Haynes-Pollington-Velani (2012) : $L(q) = (q/\psi(q))^{\varepsilon}$.

Beresnevich-Harman-Haynes-Velani (2013):

 $L(q) = \exp\{c(\log\log q)(\log\log\log q)\}.$

Aistleitner-Lachmann-Munsch-Technau-Zafeiropoulos (2018

preprint) : $L(q) = (\log q)^{\varepsilon}$

Aistleitner (unpublished) : $L(q) = (\log \log q)^{\varepsilon}$.

• Duffin-Schaeffer (1941): DSC is true when ψ is 'regular', i.e. when

$$\limsup_{Q o\infty}rac{\sum_{q\leqslant Q}\psi(q)arphi(q)/q}{\sum_{q\leqslant Q}\psi(q)}>0.$$

- Erdős (1970) & Vaaler (1978) : DSC is true when $\psi(q) = O(1/q)$.
- Pollington-Vaughan (1990): DSC is true in all dimensions > 1.
- DSC with 'extra divergence', i.e. when $\sum_{q} \frac{\psi(q)\varphi(q)}{\sigma I(q)} = \infty$:

Aistleitner (unpublished) : $L(q) = (\log \log q)^{\varepsilon}$.

Haynes-Pollington-Velani (2012) : $L(q) = (q/\psi(q))^{\varepsilon}$.

Beresnevich-Harman-Haynes-Velani (2013):

 $L(q) = \exp\{c(\log\log q)(\log\log\log q)\}.$

Aistleitner-Lachmann-Munsch-Technau-Zafeiropoulos (2018) preprint) : $L(q) = (\log q)^{\varepsilon}$

• Aistleitner (2014) : DSC when ψ is not 'too concentrated', so that $\sum_{2^{2^{j}} < q < 2^{2^{j+1}}} \psi(q) \varphi(q) / q = O(1/j).$

New results

Theorem (K.-Maynard (2019))

The Duffin-Schaeffer conjecture is true

New results

Theorem (K.-Maynard (2019))

The Duffin-Schaeffer conjecture is true

Corollary (Catlin's conjecture)

$$\mathcal{K} := \{ \alpha \in [0, 1] : |\alpha - a/q| \leqslant \psi(q)/q \text{ for infinitely many } 0 \leqslant a \leqslant q \}$$

$$S := \sum_{q} \varphi(q) \min_{m \geqslant 1} (\psi(qm)/qm)$$

$$S := \sum_{q} \varphi(q) \min_{m \geqslant 1} (\psi(qm)/qm)$$

We then have $\lambda(\mathcal{K}) = 1$ when $S = \infty$, whereas $\lambda(\mathcal{K}) = 0$ when $S < \infty$.

New results

Theorem (K.-Maynard (2019))

The Duffin-Schaeffer conjecture is true

Corollary (Catlin's conjecture)

$$\mathcal{K} := \{ \alpha \in [0,1] : |\alpha - a/q| \leqslant \psi(q)/q \text{ for infinitely many } 0 \leqslant a \leqslant q \}$$

$$S := \sum_{q} \varphi(q) \min_{m \geqslant 1} (\psi(qm)/qm)$$
We then have $\lambda(\mathcal{K}) = 1$ when $S = \infty$, whereas $\lambda(\mathcal{K}) = 0$ when $S < \infty$.

Using a theorem of Beresnevich-Velani we also obtain:

Corollary

$$\mathcal{A}:=\{\alpha\in[0,1]: |\alpha-a/q|\leqslant \psi(q)/q \text{ for inf. many coprime } 1\leqslant a\leqslant q\}$$
 Assuming $0\leqslant\psi\leqslant 1/2$, let $s=\inf\{\beta\geqslant 0: \sum_{q}\varphi(q)(\psi(q)/q)^{\beta}<\infty\}$.

Then

$$dim_{Hausdorff}(A) = min\{s, 1\}.$$

$$\mathsf{Set}\text{-up}:\quad \mathcal{A}_q = \bigcup_{\substack{1\leqslant a\leqslant q\\ \gcd(a,q)=1}} \Big[\frac{a-\psi(q)}{q}, \frac{a+\psi(q)}{q}\Big], \qquad \mathcal{A} = \limsup_{q\to\infty} \mathcal{A}_q,$$

$$\lambda(\mathcal{A}_q) = \varphi(q)\psi(q)/q, \qquad \sum_q \lambda(\mathcal{A}_q) = \infty.$$

$$\begin{array}{ll} \mathsf{Set}\text{-up}: & \mathcal{A}_q = \bigcup_{\substack{1 \leqslant a \leqslant q \\ \gcd(a,q) = 1}} \Big[\frac{a - \psi(q)}{q}, \frac{a + \psi(q)}{q} \Big], \qquad \mathcal{A} = \limsup_{q \to \infty} \mathcal{A}_q, \\ \\ & \lambda(\mathcal{A}_q) = \varphi(q)\psi(q)/q, \qquad \sum_{q} \lambda(\mathcal{A}_q) = \infty. \end{array}$$

Working heuristic: the sets A_q are quasi-independent events of the probability space [0,1] and should thus have limited overlap if the sum of their measures is ≤ 1 .

$$\begin{array}{ll} \mathsf{Set}\text{-up}: & \mathcal{A}_q = \bigcup_{\substack{1 \leqslant a \leqslant q \\ \gcd(a,q) = 1}} \Big[\frac{a - \psi(q)}{q}, \frac{a + \psi(q)}{q} \Big], \qquad \mathcal{A} = \limsup_{q \to \infty} \mathcal{A}_q, \\ \\ & \lambda(\mathcal{A}_q) = \varphi(q) \psi(q)/q, \qquad \sum_q \lambda(\mathcal{A}_q) = \infty. \end{array}$$

Working heuristic: the sets A_q are quasi-independent events of the probability space [0,1] and should thus have limited overlap if the sum of their measures is ≤ 1 .

$$\textbf{Goal}: \qquad \sum_{x \leqslant q \leqslant y} \lambda(\mathcal{A}_q) \asymp 1 \quad \Longrightarrow \quad \lambda(\bigcup_{x \leqslant q \leqslant y} \mathcal{A}_q) \asymp 1.$$

$$\begin{split} \text{Set-up}: \quad & \mathcal{A}_q = \bigcup_{\substack{1 \leqslant a \leqslant q \\ \gcd(a,q) = 1}} \Big[\frac{a - \psi(q)}{q}, \frac{a + \psi(q)}{q} \Big], \qquad & \mathcal{A} = \limsup_{q \to \infty} \mathcal{A}_q, \\ & \lambda(\mathcal{A}_q) = \varphi(q) \psi(q)/q, \qquad \sum_{q} \lambda(\mathcal{A}_q) = \infty. \end{split}$$

Working heuristic: the sets \mathcal{A}_q are quasi-independent events of the probability space [0,1] and should thus have limited overlap if the sum of their measures is ≤ 1 .

$$\textbf{Goal}: \qquad \sum_{x \leqslant q \leqslant y} \lambda(\mathcal{A}_q) \asymp 1 \quad \implies \quad \lambda(\bigcup_{x \leqslant q \leqslant y} \mathcal{A}_q) \asymp 1.$$

This is enough because it implies $\lambda(A) > 0$ and we know that $\lambda(A) \in \{0,1\}$ by Gallagher's 0-1 law.

Cauchy-Schwarz

$$\textbf{Goal}: \qquad \sum_{x \leqslant q \leqslant y} \lambda(\mathcal{A}_q) \asymp 1 \quad \implies \quad \lambda(\bigcup_{x \leqslant q \leqslant y} \mathcal{A}_q) \asymp 1.$$

Cauchy-Schwarz

$$\textbf{Goal}: \qquad \sum_{x \leqslant q \leqslant y} \lambda(\mathcal{A}_q) \asymp 1 \quad \implies \quad \lambda(\bigcup_{x \leqslant q \leqslant y} \mathcal{A}_q) \asymp 1.$$

Cauchy-Scwarz \leadsto enough to show $\sum_{x \leq q, r \leq v} \lambda(\mathcal{A}_q \cap \mathcal{A}_r) \ll 1$.

$$\textbf{Goal}: \qquad \sum_{x \leqslant q \leqslant y} \lambda(\mathcal{A}_q) \asymp 1 \quad \implies \quad \lambda(\bigcup_{x \leqslant q \leqslant y} \mathcal{A}_q) \asymp 1.$$

Cauchy-Scwarz \leadsto enough to show $\sum_{x \leqslant q,r \leqslant y} \lambda(\mathcal{A}_q \cap \mathcal{A}_r) \ll 1$.

$$\textbf{Goal}: \qquad \sum_{x \leqslant q \leqslant y} \lambda(\mathcal{A}_q) \asymp 1 \quad \implies \quad \lambda(\bigcup_{x \leqslant q \leqslant y} \mathcal{A}_q) \asymp 1.$$

Cauchy-Scwarz \leadsto enough to show $\sum_{x \leqslant q,r \leqslant v} \lambda(\mathcal{A}_q \cap \mathcal{A}_r) \ll 1$.

Simplifying assumptions:

• $supp(\psi) \subset \{square\text{-free integers}\};$

Goal:
$$\sum_{x \leqslant q \leqslant y} \lambda(\mathcal{A}_q) \approx 1 \implies \lambda(\bigcup_{x \leqslant q \leqslant y} \mathcal{A}_q) \approx 1.$$

Cauchy-Scwarz \leadsto enough to show $\sum_{x \leqslant q,r \leqslant v} \lambda(\mathcal{A}_q \cap \mathcal{A}_r) \ll 1$.

- $supp(\psi) \subset \{square\text{-free integers}\};$
- $\psi(q) \in \{0, q^{-c}\}$ for some $c \in (0, 1]$ (c = 1 is Erdős-Vaaler);

Goal:
$$\sum_{x \leqslant q \leqslant y} \lambda(\mathcal{A}_q) \approx 1 \implies \lambda(\bigcup_{x \leqslant q \leqslant y} \mathcal{A}_q) \approx 1.$$

Cauchy-Scwarz \leadsto enough to show $\sum_{x \leqslant q,r \leqslant v} \lambda(\mathcal{A}_q \cap \mathcal{A}_r) \ll 1$.

- $supp(\psi) \subset \{square\text{-free integers}\};$
- $\psi(q) \in \{0, q^{-c}\}$ for some $c \in (0, 1]$ (c = 1 is Erdős-Vaaler);
- there is a *sparse* infinite set of x s.t. $\sum_{x \leq q \leq 2x} \psi(q) \varphi(q) / q \approx 1$

$$\textbf{Goal}: \qquad \sum_{x \leqslant q \leqslant y} \lambda(\mathcal{A}_q) \asymp 1 \quad \implies \quad \lambda(\bigcup_{x \leqslant q \leqslant y} \mathcal{A}_q) \asymp 1.$$

Cauchy-Scwarz \leadsto enough to show $\sum_{x \leq q,r \leq v} \lambda(\mathcal{A}_q \cap \mathcal{A}_r) \ll 1$.

- $supp(\psi) \subset \{square\text{-free integers}\};$
- $\psi(q) \in \{0, q^{-c}\}$ for some $c \in (0, 1]$ (c = 1 is Erdős-Vaaler);
- there is a *sparse* infinite set of x s.t. $\sum_{x \leqslant q \leqslant 2x} \psi(q) \varphi(q) / q \approx 1$

$$\rightarrow$$
 $\sum_{q \in \mathcal{S}} \varphi(q)/q \asymp x^c$, where $\mathcal{S} := [x, 2x] \cap \text{supp}(\psi)$

$$\textbf{Goal}: \qquad \sum_{x \leqslant q \leqslant y} \lambda(\mathcal{A}_q) \asymp 1 \quad \implies \quad \lambda(\bigcup_{x \leqslant q \leqslant y} \mathcal{A}_q) \asymp 1.$$

Cauchy-Scwarz \leadsto enough to show $\sum_{x \leq q, r \leq v} \lambda(\mathcal{A}_q \cap \mathcal{A}_r) \ll 1$.

Simplifying assumptions:

- $supp(\psi) \subset \{square\text{-free integers}\};$
- $\psi(q) \in \{0, q^{-c}\}$ for some $c \in (0, 1]$ (c = 1 is Erdős-Vaaler);
- there is a *sparse* infinite set of x s.t. $\sum_{x\leqslant q\leqslant 2x}\psi(q)\varphi(q)/q\asymp 1$

$$ightarrow \sum_{q \in \mathcal{S}} arphi(q)/q symp x^c, \quad ext{where} \quad \mathcal{S} := [x,2x] \cap ext{supp}(\psi)$$

Pollington-Vaughan: for $q, r \in \mathcal{S}$, we have

$$\frac{\lambda(\mathcal{A}_q \cap \mathcal{A}_r)}{\lambda(\mathcal{A}_q)\lambda(\mathcal{A}_r)} \ll 1 + \mathbf{1}_{\gcd(q,r) \leqslant x^{1-c}} \prod_{\substack{p \mid \frac{\operatorname{lcm}[q,r]}{\gcd(q,r)} \\ p > x^{1-c} / \gcd(q,r)}} \left(1 + \frac{1}{p}\right).$$

Revised goal: if $\sum_{q \in S} \frac{\varphi(q)}{q} \asymp x^c$, $S \subset \{x \leqslant q \leqslant 2x : q \text{ square-free}\}$,

show that
$$\sum_{\substack{q,r \in \mathcal{S} \\ \gcd(q,r) \leqslant x^{1-c}}} \frac{\varphi(q)}{q} \cdot \frac{\varphi(r)}{r} \prod_{\substack{p \mid \frac{\operatorname{lcm}[q,r]}{\gcd(q,r)} \\ p > x^{1-c}/\gcd(q,r)}} \left(1 + \frac{1}{p}\right) \ll x^{2c}.$$

show that
$$\sum \frac{\varphi(q)}{q} \cdot \frac{\varphi(r)}{r} \qquad \prod \left(1 + \frac{1}{p}\right) \ll x^{2c}$$
.

Revised goal: if $\sum_{q \in S} \frac{\varphi(q)}{q} \asymp x^c$, $S \subset \{x \leqslant q \leqslant 2x : q \text{ square-free}\}$,

show that
$$\sum_{\substack{q,r \in \mathcal{S} \\ \gcd(q,r) \leqslant x^{1-c}}} \frac{\varphi(q)}{q} \cdot \frac{\varphi(r)}{r} \qquad \prod_{\substack{p \mid \frac{\operatorname{lcm}[q,r]}{\gcd(q,r)}}} \left(1 + \frac{1}{p}\right) \ll x^{2c}.$$

 $n > x^{1-c} / \gcd(a,r)$

Divide range according to largest t such that

$$L_t(q,r) := \sum_{oldsymbol{p} \mid qr, \; oldsymbol{p}
mid ext{gcd}(q,r)} rac{1}{oldsymbol{p}} \geqslant 100.$$

Revised goal: if $\sum_{q \in S} \frac{\varphi(q)}{q} \asymp x^c$, $S \subset \{x \leqslant q \leqslant 2x : q \text{ square-free}\}$,

show that
$$\sum_{\substack{q,r \in \mathcal{S} \\ \gcd(q,r) \leqslant x^{1-c}}} \frac{\varphi(q)}{q} \cdot \frac{\varphi(r)}{r} \prod_{\substack{p \mid \frac{lom[q,r]}{\gcd(q,r)} \\ p > x^{1-c}/\gcd(q,r)}} \left(1 + \frac{1}{p}\right) \ll x^{2c}.$$

Divide range according to largest t such that

$$L_t(q,r) := \sum_{\substack{p \mid qr, \ p \nmid \gcd(q,r)}} \frac{1}{p} \geqslant 100.$$

Re-revised goal: assuming that $\sum_{q \in S} \varphi(q)/q \approx x^c$, show that

$$\sum_{q,r \in \mathcal{S}, \ L_t(q,r) \geqslant 100} \ \frac{\varphi(q)}{q} \cdot \frac{\varphi(r)}{r} \ll \frac{x^{2c}}{t}.$$

$$\sum_{q \in \mathcal{S}} \frac{\varphi(q)}{q} \asymp x^{c} \quad \stackrel{?}{\Longrightarrow} \quad \sum_{\substack{q,r \in \mathcal{S} \\ \gcd(q,r) \geqslant x^{1-c}/t \\ L_{t}(q,r) \geqslant 100}} \frac{\varphi(q)}{q} \cdot \frac{\varphi(r)}{r} \ll \frac{x^{2c}}{t}$$

where
$$L_t(q,r) = \sum_{p \mid qr, \, p \nmid \gcd(q,r)} \frac{1_{p>t}}{p}$$
.

$$\sum_{q \in \mathcal{S}} \frac{\varphi(q)}{q} \asymp x^{c} \quad \stackrel{?}{\Longrightarrow} \quad \sum_{\substack{q,r \in \mathcal{S} \\ \gcd(q,r) \geqslant x^{1-c}/t \\ L_{t}(q,r) \geqslant 100}} \frac{\varphi(q)}{q} \cdot \frac{\varphi(r)}{r} \ll \frac{x^{2c}}{t}$$

where
$$L_t(q,r) = \sum_{p \mid qr, \, p \nmid \gcd(q,r)} \frac{1_{p>t}}{p}$$
.

(1) $gcd(q, r) \ge x^{1-c}/t$ is a **structural condition**. The heart of the proof is understanding how often it occurs.

$$\sum_{q \in \mathcal{S}} \frac{\varphi(q)}{q} \asymp x^{c} \quad \stackrel{?}{\Longrightarrow} \quad \sum_{\substack{q,r \in \mathcal{S} \\ \gcd(q,r) \geqslant x^{1-c}/t \\ L_{t}(q,r) \geqslant 100}} \frac{\varphi(q)}{q} \cdot \frac{\varphi(r)}{r} \ll \frac{x^{2c}}{t}$$

where
$$L_t(q,r) = \sum_{p \mid qr, \, p \nmid \gcd(q,r)} \frac{1_{p>t}}{p}$$
.

- (1) $gcd(q, r) \ge x^{1-c}/t$ is a **structural condition**. The heart of the proof is understanding how often it occurs.
- (2) $L_t(q, r) \ge 100$ is an **anatomical condition** and is easily analyzed:

$$\#\{x \leqslant q, r \leqslant 2x : L_t(q, r) \geqslant 100\} \ll x^2 e^{-t}$$

$$\sum_{q \in \mathcal{S}} \frac{\varphi(q)}{q} \asymp x^{c} \quad \stackrel{?}{\Longrightarrow} \quad \sum_{\substack{q,r \in \mathcal{S} \\ \gcd(q,r) \geqslant x^{1-c}/t \\ L_{t}(q,r) \geqslant 100}} \frac{\varphi(q)}{q} \cdot \frac{\varphi(r)}{r} \ll \frac{x^{2c}}{t}$$

where
$$L_t(q,r) = \sum_{p \mid qr, \, p \nmid \gcd(q,r)} rac{\mathbf{1}_{p>t}}{p}.$$

- (1) $gcd(q, r) \ge x^{1-c}/t$ is a **structural condition**. The heart of the proof is understanding how often it occurs.
- (2) $L_t(q, r) \ge 100$ is an **anatomical condition** and is easily analyzed:

$$\#\{x \leqslant q, r \leqslant 2x : L_t(q, r) \geqslant 100\} \ll x^2 e^{-t}$$

When c = 1, condition (1) is vacuous and we can complete the proof:

$$\sum_{\substack{q,r \in \mathcal{S} \\ L_t(q,r) \geqslant 100}} \frac{\varphi(q)}{q} \cdot \frac{\varphi(r)}{r} \ll \frac{x^2}{e^t} \leqslant \frac{x^2}{t}$$

$$\sum_{q \in \mathcal{S}} \frac{\varphi(q)}{q} \asymp x^{c} \quad \stackrel{?}{\Longrightarrow} \quad \sum_{\substack{q,r \in \mathcal{S} \\ \gcd(q,r) \geqslant x^{1-c}/t \\ L_{t}(q,r) \geqslant 100}} \frac{\varphi(q)}{q} \cdot \frac{\varphi(r)}{r} \ll \frac{x^{2c}}{t}$$

where
$$L_t(q,r) = \sum_{p \mid qr, \, p \nmid \gcd(q,r)} \frac{1_{p>t}}{p}$$
.

- (1) $gcd(q, r) \ge x^{1-c}/t$ is a **structural condition**. The heart of the proof is understanding how often it occurs.
- (2) $L_t(q, r) \ge 100$ is an **anatomical condition** and is easily analyzed:

$$\#\{x \leqslant q, r \leqslant 2x : L_t(q, r) \geqslant 100\} \ll x^2 e^{-t}$$

When c = 1, condition (1) is vacuous and we can complete the proof:

$$\sum_{\substack{q,r \in \mathcal{S} \\ t(q,r) \geqslant 100}} \frac{\varphi(q)}{q} \cdot \frac{\varphi(r)}{r} \ll \frac{x^2}{e^t} \leqslant \frac{x^2}{t} \qquad \text{(Erdős-Vaaler)}$$

$$\sum_{\substack{x\leqslant q\leqslant 2x\\\gcd(q,r)\geqslant x^{1-c}/t}}1\leqslant \sum_{\substack{d\mid r\\d\geqslant x^{1-c}/t}}\sum_{\substack{x\leqslant q\leqslant 2x\\d\mid q}}1$$

$$\sum_{\substack{x \leqslant q \leqslant 2x \\ \gcd(q,r) \geqslant x^{1-c}/t}} 1 \leqslant \sum_{\substack{d \mid r \\ d \geqslant x^{1-c}/t}} \sum_{\substack{x \leqslant q \leqslant 2x \\ d \mid q}} 1$$

$$\ll \sum_{\substack{d \mid r \\ d \geqslant x^{1-c}/t}} \frac{x}{d}$$

$$\sum_{\substack{x \leqslant q \leqslant 2x \\ \gcd(q,r) \geqslant x^{1-c}/t}} 1 \leqslant \sum_{\substack{d \mid r \\ d \geqslant x^{1-c}/t}} \sum_{\substack{x \leqslant q \leqslant 2x \\ d \mid q}} 1$$

$$\ll \sum_{\substack{d \mid r \\ d \geqslant x^{1-c}/t}} \frac{x}{d}$$

$$\ll tx^{c} \cdot \#\{d \mid r\}$$

$$\sum_{\substack{x \leqslant q \leqslant 2x \\ \gcd(q,r) \geqslant x^{1-c}/t}} 1 \leqslant \sum_{\substack{d \mid r \\ d \geqslant x^{1-c}/t}} \sum_{\substack{x \leqslant q \leqslant 2x \\ d \mid q}} 1$$

$$\ll \sum_{\substack{d \mid r \\ d \geqslant x^{1-c}/t}} \frac{x}{d}$$

$$\ll tx^{c} \cdot \#\{d \mid r\}$$

$$\sum_{\substack{q,r \in \mathcal{S} \\ \gcd(q,r) \geqslant x^{1-c}/t}} \frac{\varphi(q)}{q} \cdot \frac{\varphi(r)}{r} \ll tx^{2c+o(1)} = t^2 \cdot x^{o(1)} \cdot \frac{x^{2c}}{t}$$

 $L_t(q,r)\geqslant 100$

$$\sum_{\substack{x \leqslant q \leqslant 2x \\ \gcd(q,r) \geqslant x^{1-c}/t}} 1 \leqslant \sum_{\substack{d \mid r \\ d \geqslant x^{1-c}/t}} \sum_{\substack{x \leqslant q \leqslant 2x \\ d \mid q}} 1$$

$$\ll \sum_{\substack{d \mid r \\ d \geqslant x^{1-c}/t}} \frac{x}{d}$$

$$\ll tx^{c} \cdot \#\{d \mid r\}$$

$$\sum_{\substack{q,r \in \mathcal{S} \\ \gcd(q,r) \geqslant x^{1-c}/t \\ L_t(q,r) \geqslant 100}} \frac{\varphi(q)}{q} \cdot \frac{\varphi(r)}{r} \ll tx^{2c+o(1)} = t^2 \cdot x^{o(1)} \cdot \frac{x^{2c}}{t}$$

• Hope to remove factor t^2 by exploiting the anatomical condition $L_t(q,r) \geqslant 100$.

$$\sum_{\substack{x \leqslant q \leqslant 2x \\ \gcd(q,r) \geqslant x^{1-c}/t}} 1 \leqslant \sum_{\substack{d \mid r \\ d \geqslant x^{1-c}/t}} \sum_{\substack{x \leqslant q \leqslant 2x \\ d \mid q}} 1$$

$$\ll \sum_{\substack{d \mid r \\ d \geqslant x^{1-c}/t}} \frac{x}{d}$$

$$\ll tx^{c} \cdot \#\{d \mid r\}$$

$$\sum_{\substack{q,r \in \mathcal{S} \\ \gcd(q,r) \geqslant x^{1-c}/t \\ L_t(q,r) \geqslant 100}} \frac{\varphi(q)}{q} \cdot \frac{\varphi(r)}{r} \ll t x^{2c+o(1)} = t^2 \cdot x^{o(1)} \cdot \frac{x^{2c}}{t}$$

- Hope to remove factor t^2 by exploiting the anatomical condition $L_t(q,r) \geqslant 100$.
- But: how to remove the factor $x^{o(1)}$?

Recall: $S \subset [x,2x]$ and $\sum_{q \in S} \varphi(q)/q \approx x^c$.

Recall: $S \subset [x,2x]$ and $\sum_{q \in S} \varphi(q)/q \approx x^c$.

For simplicity, ignore the arithmetic weights $\varphi(q)/q$.

Recall: $S \subset [x,2x]$ and $\sum_{q \in S} \varphi(q)/q \approx x^c$.

For simplicity, ignore the arithmetic weights $\varphi(q)/q$. This leads to:

Question

Let $S \subset [x,2x]$ satisfy $|S| \times x^c$ and be such that there are $\ge |S|^2/t$ pairs $(q,r) \in S^2$ with $\gcd(q,r) \ge x^{1-c}/t$. Must it be the case that there is an integer $d \ge x^{1-c}/t$ that divides $\gg |S|t^{-O(1)}$ elements of S?

Recall: $S \subset [x,2x]$ and $\sum_{q \in S} \varphi(q)/q \approx x^c$.

For simplicity, ignore the arithmetic weights $\varphi(q)/q$. This leads to:

Question

Let $S \subset [x,2x]$ satisfy $|S| \times x^c$ and be such that there are $\ge |S|^2/t$ pairs $(q,r) \in S^2$ with $\gcd(q,r) \ge x^{1-c}/t$. Must it be the case that there is an integer $d \ge x^{1-c}/t$ that divides $\gg |S|t^{-O(1)}$ elements of S?

If yes, we are done: we may replace the factor $x^{o(1)}$ with $t^{O(1)}$. We may then kill this new factor using the anatomical condition $L_t(q, r) \ge 100$.

- $G = (\mathcal{V}, \mathcal{W}, \mathcal{E})$ bipartite graph;
- $V, W \subset S$;
- $\mathcal{E} \subset \{(v, w) \in \mathcal{V} \times \mathcal{W} : \gcd(v, w) \geqslant x^{1-c}/t, \ L_t(v, w) \geqslant 100\};$
- vertex v weighted with $\mu(v) = \varphi(v)/v$;
- edge (v, w) weighted with $\mu(v)\mu(w)$.

- $G = (\mathcal{V}, \mathcal{W}, \mathcal{E})$ bipartite graph;
- $\mathcal{V}, \mathcal{W} \subset \mathcal{S}$;
- $\mathcal{E} \subset \{(v, w) \in \mathcal{V} \times \mathcal{W} : \gcd(v, w) \geqslant x^{1-c}/t, \ L_t(v, w) \geqslant 100\};$
- vertex v weighted with $\mu(v) = \varphi(v)/v$;
- edge (v, w) weighted with $\mu(v)\mu(w)$.

Goal: start with $G^{\text{start}} = (\mathcal{V}^{\text{start}}, \mathcal{W}^{\text{start}}, \mathcal{E}^{\text{start}})$ where $\mathcal{V}^{\text{start}} = \mathcal{W}^{\text{start}} = \mathcal{S}$ and $\mathcal{E}^{\text{start}} = \{(v, w) \in \mathcal{S}^2 : \gcd(v, w) \geqslant x^{1-c}/t, \ L_t(v, w) \geqslant 100\}.$

- $G = (V, W, \mathcal{E})$ bipartite graph;
- $V, W \subset S$;
- $\mathcal{E} \subset \{(v, w) \in \mathcal{V} \times \mathcal{W} : \gcd(v, w) \geqslant x^{1-c}/t, \ L_t(v, w) \geqslant 100\};$
- vertex v weighted with $\mu(v) = \varphi(v)/v$;
- edge (v, w) weighted with $\mu(v)\mu(w)$.

Goal: start with $G^{\text{start}} = (\mathcal{V}^{\text{start}}, \mathcal{W}^{\text{start}}, \mathcal{E}^{\text{start}})$ where $\mathcal{V}^{\text{start}} = \mathcal{W}^{\text{start}} = \mathcal{S}$ and $\mathcal{E}^{\text{start}} = \{(v, w) \in \mathcal{S}^2 : \gcd(v, w) \geqslant x^{1-c}/t, \ L_t(v, w) \geqslant 100\}.$

Arrive at $G^{\text{end}} = (\mathcal{V}^{\text{end}}, \mathcal{W}^{\text{end}}, \mathcal{E}^{\text{end}})$ where there are $a, b \in \mathbb{N}$ s.t.

- all vertices in V^{end} are multiples of a;
- all vertices in \mathcal{W}^{end} are multiples of b;
- all edges in \mathcal{E}^{end} have gcd(v, w) = gcd(a, b).

- $G = (\mathcal{V}, \mathcal{W}, \mathcal{E})$ bipartite graph;
- $\mathcal{V}, \mathcal{W} \subset \mathcal{S}$;
- $\mathcal{E} \subset \{(v, w) \in \mathcal{V} \times \mathcal{W} : \gcd(v, w) \geqslant x^{1-c}/t, \ L_t(v, w) \geqslant 100\};$
- vertex v weighted with $\mu(v) = \varphi(v)/v$;
- edge (v, w) weighted with $\mu(v)\mu(w)$.

Goal: start with $G^{\text{start}} = (\mathcal{V}^{\text{start}}, \mathcal{W}^{\text{start}}, \mathcal{E}^{\text{start}})$ where $\mathcal{V}^{\text{start}} = \mathcal{W}^{\text{start}} = \mathcal{S}$ and $\mathcal{E}^{\text{start}} = \{(v, w) \in \mathcal{S}^2 : \gcd(v, w) \geqslant x^{1-c}/t, \ L_t(v, w) \geqslant 100\}.$

Arrive at $G^{\text{end}} = (\mathcal{V}^{\text{end}}, \mathcal{W}^{\text{end}}, \mathcal{E}^{\text{end}})$ where there are $a, b \in \mathbb{N}$ s.t.

- all vertices in V^{end} are multiples of a;
- all vertices in \mathcal{W}^{end} are multiples of b;
- all edges in \mathcal{E}^{end} have gcd(v, w) = gcd(a, b).

Important requirement: the size of $\mathcal{E}^{\text{start}}$ must be somehow controlled by the size of \mathcal{E}^{end} .

Variations of density-increment arguments

First attempt: consider weighted edge density

$$\delta(\mathbf{G}) = \frac{\mu(\mathcal{E})}{\mu(\mathcal{V})\mu(\mathcal{W})}.$$

Variations of density-increment arguments

First attempt: consider weighted edge density

$$\delta(G) = \frac{\mu(\mathcal{E})}{\mu(\mathcal{V})\mu(\mathcal{W})}.$$

Classical density-increment arguments due to Roth, Szemerédi, etc.

Variations of density-increment arguments

First attempt: consider weighted edge density

$$\delta(G) = \frac{\mu(\mathcal{E})}{\mu(\mathcal{V})\mu(\mathcal{W})}.$$

Classical density-increment arguments due to Roth, Szemerédi, etc.

Hard to use here: δ loses control of the size of the vertex sets and thus it is very hard to exploit the anatomical condition $L_t(v, w) \ge 100$.

We have $gcd(a, b) = gcd(v, w) \ge x^{1-c}/t$ and

$$\mu(\mathcal{V}^{\text{end}})\mu(\mathcal{W}^{\text{end}}) \ll \frac{x}{a} \cdot \frac{x}{b} \leqslant t^2 x^{2c} \cdot \frac{\gcd(a,b)^2}{ab}$$

We have $gcd(a, b) = gcd(v, w) \ge x^{1-c}/t$ and

$$\mu(\mathcal{V}^{\mathsf{end}})\mu(\mathcal{W}^{\mathsf{end}}) \ll \frac{x}{a} \cdot \frac{x}{b} \leqslant t^2 x^{2c} \cdot \frac{\gcd(a,b)^2}{ab}$$

So we could try to increase

$$ilde{q}(G) := rac{a_G b_G}{\gcd(a_G, b_G)^2} \cdot \mu(\mathcal{V}) \cdot \mu(\mathcal{W}),$$

where a_G divides everything in V and b_G everything in W.

We have $gcd(a, b) = gcd(v, w) \ge x^{1-c}/t$ and

$$\mu(\mathcal{V}^{\mathsf{end}})\mu(\mathcal{W}^{\mathsf{end}}) \ll \frac{x}{a} \cdot \frac{x}{b} \leqslant t^2 x^{2c} \cdot \frac{\gcd(a,b)^2}{ab}$$

So we could try to increase

$$ilde{q}(extbf{ extit{G}}) := rac{ extbf{ extit{a}}_G extbf{ extit{b}}_G}{ ext{gcd}(extbf{ extit{a}}_G, extbf{ extit{b}}_G)^2} \cdot \mu(\mathcal{V}) \cdot \mu(\mathcal{W}),$$

where a_G divides everything in V and b_G everything in W.

$$ightarrow \mu(\mathcal{E}^{\mathsf{start}}) = rac{ ilde{q}(G^{\mathsf{start}})}{\delta(G^{\mathsf{start}})} \leqslant rac{ ilde{q}(G^{\mathsf{end}})}{\delta(G^{\mathsf{start}})} \ll rac{t^2}{\delta(G^{\mathsf{start}})}$$

We have $gcd(a, b) = gcd(v, w) \geqslant x^{1-c}/t$ and

$$\mu(\mathcal{V}^{\mathsf{end}})\mu(\mathcal{W}^{\mathsf{end}}) \ll \frac{x}{a} \cdot \frac{x}{b} \leqslant t^2 x^{2c} \cdot \frac{\gcd(a,b)^2}{ab}$$

So we could try to increase

$$ilde{q}(G) := rac{a_G b_G}{\gcd(a_G, b_G)^2} \cdot \mu(\mathcal{V}) \cdot \mu(\mathcal{W}),$$

where a_G divides everything in V and b_G everything in W.

$$\rightarrow \mu(\mathcal{E}^{\mathsf{start}}) = \frac{\tilde{q}(G^{\mathsf{start}})}{\delta(G^{\mathsf{start}})} \leqslant \frac{\tilde{q}(G^{\mathsf{end}})}{\delta(G^{\mathsf{start}})} \ll \frac{t^2}{\delta(G^{\mathsf{start}})}$$

Can assume $\delta(G^{\text{start}}) \gg 1/t$; factor t^3 can be killed using anatomy.

We have $gcd(a, b) = gcd(v, w) \geqslant x^{1-c}/t$ and

$$\mu(\mathcal{V}^{\mathsf{end}})\mu(\mathcal{W}^{\mathsf{end}}) \ll \frac{x}{a} \cdot \frac{x}{b} \leqslant t^2 x^{2c} \cdot \frac{\gcd(a,b)^2}{ab}$$

So we could try to increase

$$\widetilde{q}(G) := rac{a_G b_G}{\gcd(a_G, b_G)^2} \cdot \mu(\mathcal{V}) \cdot \mu(\mathcal{W}),$$

where a_G divides everything in V and b_G everything in W.

$$ightarrow \mu(\mathcal{E}^{\mathsf{start}}) = rac{ ilde{q}(G^{\mathsf{start}})}{\delta(G^{\mathsf{start}})} \leqslant rac{ ilde{q}(G^{\mathsf{end}})}{\delta(G^{\mathsf{start}})} \ll rac{t^2}{\delta(G^{\mathsf{start}})}$$

Can assume $\delta(G^{\text{start}}) \gg 1/t$; factor t^3 can be killed using anatomy.

Problem: hard to increase \tilde{q} .

Third attempt: consider a hybrid.

The quality of the GCD graph G is defined by

$$q(G) := \delta(G)^{10} \cdot rac{a_G b_G}{\mathsf{qcd}(a_G, b_G)^2} \cdot \mu(\mathcal{V}) \cdot \mu(\mathcal{W}).$$

Third attempt: consider a hybrid.

The quality of the GCD graph G is defined by

$$q(G) := \delta(G)^{10} \cdot rac{a_G b_G}{\operatorname{gcd}(a_G, b_G)^2} \cdot \mu(\mathcal{V}) \cdot \mu(\mathcal{W}).$$

Quality increment can be made to work AND we have control on vertex sets

 $\textit{V}_{\textit{p}} = \{\textit{v} \in \mathcal{V} : \textit{p} | \textit{v}\}, \quad \mathcal{V}^{\textit{c}}_{\textit{p}} = \{\textit{v} \in \mathcal{V} : \textit{p} \nmid \textit{v}\} \quad \text{(square-free integers)}$

 $\textit{V}_{\textit{p}} = \{\textit{v} \in \mathcal{V} : \textit{p} | \textit{v}\}, \quad \mathcal{V}^{\textit{c}}_{\textit{p}} = \{\textit{v} \in \mathcal{V} : \textit{p} \nmid \textit{v}\} \quad \text{(square-free integers)}$

Goal: focus on one of the four graphs induced by the pairs of vertex sets $(\mathcal{V}_p, \mathcal{W}_p)$, $(\mathcal{V}_p, \mathcal{W}_p^c)$, $(\mathcal{V}_p^c, \mathcal{W}_p)$, $(\mathcal{V}_p^c, \mathcal{W}_p^c)$.

$$\textit{V}_{\textit{p}} = \{\textit{v} \in \mathcal{V} : \textit{p} | \textit{v}\}, \quad \mathcal{V}^{\textit{c}}_{\textit{p}} = \{\textit{v} \in \mathcal{V} : \textit{p} \nmid \textit{v}\} \quad \text{(square-free integers)}$$

Goal: focus on one of the four graphs induced by the pairs of vertex sets $(\mathcal{V}_p,\mathcal{W}_p)$, $(\mathcal{V}_p,\mathcal{W}_p^c)$, $(\mathcal{V}_p^c,\mathcal{W}_p)$, $(\mathcal{V}_p^c,\mathcal{W}_p^c)$.

In $(\mathcal{V}_{p}^{c}, \mathcal{W}_{p})$ and in $(\mathcal{V}_{p}, \mathcal{W}_{p}^{c})$ we gain factor p in quality.

$$\textit{V}_{\textit{p}} = \{\textit{v} \in \mathcal{V} : \textit{p} | \textit{v}\}, \quad \mathcal{V}^{\textit{c}}_{\textit{p}} = \{\textit{v} \in \mathcal{V} : \textit{p} \nmid \textit{v}\} \quad \text{(square-free integers)}$$

Goal: focus on one of the four graphs induced by the pairs of vertex sets $(\mathcal{V}_p, \mathcal{W}_p)$, $(\mathcal{V}_p, \mathcal{W}_p^c)$, $(\mathcal{V}_p^c, \mathcal{W}_p)$, $(\mathcal{V}_p^c, \mathcal{W}_p^c)$.

In $(\mathcal{V}_{p}^{c}, \mathcal{W}_{p})$ and in $(\mathcal{V}_{p}, \mathcal{W}_{p}^{c})$ we gain factor p in quality.

Hard case when $|\mathcal{V}_p|, |\mathcal{W}_p| \sim 1 - O(1/p)$, or when $|\mathcal{V}_p^c|, |\mathcal{W}_p^c| = 1 - O(1/p)$.

$$\textit{V}_{\textit{p}} = \{\textit{v} \in \mathcal{V} : \textit{p} | \textit{v}\}, \quad \textit{V}^{\textit{c}}_{\textit{p}} = \{\textit{v} \in \mathcal{V} : \textit{p} \nmid \textit{v}\} \quad \text{(square-free integers)}$$

Goal: focus on one of the four graphs induced by the pairs of vertex sets $(\mathcal{V}_p, \mathcal{W}_p)$, $(\mathcal{V}_p, \mathcal{W}_p^c)$, $(\mathcal{V}_p^c, \mathcal{W}_p)$, $(\mathcal{V}_p^c, \mathcal{W}_p^c)$.

In $(\mathcal{V}_{p}^{c}, \mathcal{W}_{p})$ and in $(\mathcal{V}_{p}, \mathcal{W}_{p}^{c})$ we gain factor p in quality.

Hard case when $|\mathcal{V}_p|, |\mathcal{W}_p| \sim 1 - O(1/p)$, or when $|\mathcal{V}_p^c|, |\mathcal{W}_p^c| = 1 - O(1/p)$.

Weight $\mu(v) = \varphi(v)/v$ is of crucial importance to deal with this hard case. Gain factor 1 + 1/p in quality.

Thank you!

*Preprint available at dms.umontreal.ca/~koukoulo/documents/publications/DS.pdf after the talk