On the Duffin-Schaeffer conjecture

Dimitris Koukoulopoulos ${ }^{1}$
joint work with James Maynard²

${ }^{1}$ Université de Montréal
${ }^{2}$ University of Oxford

Second Symposium in Analytic Number Theory Cetraro, Italy 10 July 2019

The problem

Given $\psi: \mathbb{N} \rightarrow[0,+\infty)$ and $\alpha \in[0,1]$, solve the inequality

$$
\begin{equation*}
\left|\alpha-\frac{a}{q}\right| \leqslant \frac{\psi(q)}{q} \quad \text { with } \quad a \in \mathbb{Z}, q \in \mathbb{N} \tag{*}
\end{equation*}
$$

The problem

Given $\psi: \mathbb{N} \rightarrow[0,+\infty)$ and $\alpha \in[0,1]$, solve the inequality

$$
\begin{equation*}
\left|\alpha-\frac{a}{q}\right| \leqslant \frac{\psi(q)}{q} \quad \text { with } \quad a \in \mathbb{Z}, q \in \mathbb{N} \tag{*}
\end{equation*}
$$

(possibly imposing the coprimality condition $\operatorname{gcd}(a, q)=1$)

The problem

Given $\psi: \mathbb{N} \rightarrow[0,+\infty)$ and $\alpha \in[0,1]$, solve the inequality

$$
\begin{equation*}
\left|\alpha-\frac{a}{q}\right| \leqslant \frac{\psi(q)}{q} \quad \text { with } \quad a \in \mathbb{Z}, q \in \mathbb{N} \tag{*}
\end{equation*}
$$

(possibly imposing the coprimality condition $\operatorname{gcd}(a, q)=1$)

Dirichlet: when $\psi(q)=1 / q$, then $(*)$ has infinitely many solutions for all $\alpha \in[0,1]$.

The problem

Given $\psi: \mathbb{N} \rightarrow[0,+\infty)$ and $\alpha \in[0,1]$, solve the inequality

$$
\begin{equation*}
\left|\alpha-\frac{a}{q}\right| \leqslant \frac{\psi(q)}{q} \quad \text { with } \quad a \in \mathbb{Z}, q \in \mathbb{N} \tag{*}
\end{equation*}
$$

(possibly imposing the coprimality condition $\operatorname{gcd}(a, q)=1$)

Dirichlet: when $\psi(q)=1 / q$, then $(*)$ has infinitely many solutions for all $\alpha \in[0,1]$.

Question: can we solve (*) if ψ is more irregular?

The problem

Given $\psi: \mathbb{N} \rightarrow[0,+\infty)$ and $\alpha \in[0,1]$, solve the inequality

$$
\begin{equation*}
\left|\alpha-\frac{a}{q}\right| \leqslant \frac{\psi(q)}{q} \quad \text { with } \quad a \in \mathbb{Z}, q \in \mathbb{N} \tag{*}
\end{equation*}
$$

(possibly imposing the coprimality condition $\operatorname{gcd}(a, q)=1$)

Dirichlet: when $\psi(q)=1 / q$, then $(*)$ has infinitely many solutions for all $\alpha \in[0,1]$.

Question: can we solve ($*$) if ψ is more irregular?
Caveat: There might be exceptional α 's.

The problem

Given $\psi: \mathbb{N} \rightarrow[0,+\infty)$ and $\alpha \in[0,1]$, solve the inequality

$$
\begin{equation*}
\left|\alpha-\frac{a}{q}\right| \leqslant \frac{\psi(q)}{q} \quad \text { with } \quad a \in \mathbb{Z}, q \in \mathbb{N} \tag{*}
\end{equation*}
$$

(possibly imposing the coprimality condition $\operatorname{gcd}(a, q)=1$)

Dirichlet: when $\psi(q)=1 / q$, then $(*)$ has infinitely many solutions for all $\alpha \in[0,1]$.

Question: can we solve ($*$) if ψ is more irregular?
Caveat: There might be exceptional α 's.
Goal: understand when set of exceptional α 's has null measure

Khinchin's theorem

$$
\mathcal{K}_{q}:=\bigcup_{0 \leqslant a \leqslant q}\left[\frac{a}{q}-\frac{\psi(q)}{q}, \frac{a}{q}+\frac{\psi(q)}{q}\right]
$$

Khinchin's theorem

$$
\begin{aligned}
\mathcal{K}_{q} & :=\bigcup_{0 \leqslant a \leqslant q}\left[\frac{a}{q}-\frac{\psi(q)}{q}, \frac{a}{q}+\frac{\psi(q)}{q}\right] \\
\mathcal{K} & :=\limsup _{q \rightarrow \infty} \mathcal{K}_{q}
\end{aligned}
$$

Khinchin's theorem

$$
\begin{aligned}
\mathcal{K}_{q} & :=\bigcup_{0 \leqslant a \leqslant q}\left[\frac{a}{q}-\frac{\psi(q)}{q}, \frac{a}{q}+\frac{\psi(q)}{q}\right] \\
\mathcal{K} & :=\limsup _{q \rightarrow \infty} \mathcal{K}_{q} \\
& =\left\{\alpha \in[0,1]: \alpha \in \mathcal{K}_{q} \text { for infinitely many } q\right\}
\end{aligned}
$$

Khinchin's theorem

$$
\begin{aligned}
\mathcal{K}_{q} & :=\bigcup_{0 \leqslant a \leqslant q}\left[\frac{a}{q}-\frac{\psi(q)}{q}, \frac{a}{q}+\frac{\psi(q)}{q}\right] \\
\mathcal{K} & :=\limsup _{q \rightarrow \infty} \mathcal{K}_{q} \\
& =\left\{\alpha \in[0,1]: \alpha \in \mathcal{K}_{q} \text { for infinitely many } q\right\}
\end{aligned}
$$

Note that

$$
\lambda\left(\mathcal{K}_{q}\right) \asymp \psi(q) \quad(\lambda=\text { Lebesgue measure })
$$

Khinchin's theorem

$$
\begin{aligned}
\mathcal{K}_{q} & :=\bigcup_{0 \leqslant a \leqslant q}\left[\frac{a}{q}-\frac{\psi(q)}{q}, \frac{a}{q}+\frac{\psi(q)}{q}\right] \\
\mathcal{K} & :=\limsup _{q \rightarrow \infty} \mathcal{K}_{q} \\
& =\left\{\alpha \in[0,1]: \alpha \in \mathcal{K}_{q} \text { for infinitely many } q\right\}
\end{aligned}
$$

Note that

$$
\lambda\left(\mathcal{K}_{q}\right) \asymp \psi(q) \quad(\lambda=\text { Lebesgue measure })
$$

- 'easy' direction of Borel-Cantelli : $\quad \sum_{q} \psi(q)<\infty \quad \Rightarrow \quad \lambda(\mathcal{K})=0$.

Khinchin's theorem

$$
\begin{aligned}
\mathcal{K}_{q} & :=\bigcup_{0 \leqslant a \leqslant q}\left[\frac{a}{q}-\frac{\psi(q)}{q}, \frac{a}{q}+\frac{\psi(q)}{q}\right] \\
\mathcal{K} & :=\limsup _{q \rightarrow \infty} \mathcal{K}_{q} \\
& =\left\{\alpha \in[0,1]: \alpha \in \mathcal{K}_{q} \text { for infinitely many } q\right\}
\end{aligned}
$$

Note that

$$
\lambda\left(\mathcal{K}_{q}\right) \asymp \psi(q) \quad(\lambda=\text { Lebesgue measure })
$$

- 'easy' direction of Borel-Cantelli : $\quad \sum_{q} \psi(q)<\infty \quad \Rightarrow \quad \lambda(\mathcal{K})=0$.
- Khinchin (1924) proved a partial converse:

$$
q \psi(q) \searrow \quad \& \quad \sum_{q} \psi(q)=\infty \quad \Rightarrow \quad \lambda(\mathcal{K})=1 .
$$

The Duffin-Schaeffer conjecture

Study coprime solutions to $|\alpha-a / q| \leqslant \psi(q) / q$ to avoid over-counting:

The Duffin-Schaeffer conjecture

Study coprime solutions to $|\alpha-a / q| \leqslant \psi(q) / q$ to avoid over-counting:

$$
\mathcal{A}_{q}:=\bigcup_{\substack{1 \leqslant a \leqslant q \\ \operatorname{gcd}(a, q)=1}}\left[\frac{a}{q}-\frac{\psi(q)}{q}, \frac{a}{q}+\frac{\psi(q)}{q}\right], \quad \mathcal{A}=\limsup _{q \rightarrow \infty} \mathcal{A}_{q}
$$

The Duffin-Schaeffer conjecture

Study coprime solutions to $|\alpha-a / q| \leqslant \psi(q) / q$ to avoid over-counting:

$$
\mathcal{A}_{q}:=\bigcup_{\substack{1 \leqslant a \leqslant q \\ \operatorname{gcd}(a, q)=1}}\left[\frac{a}{q}-\frac{\psi(q)}{q}, \frac{a}{q}+\frac{\psi(q)}{q}\right], \quad \mathcal{A}=\limsup _{q \rightarrow \infty} \mathcal{A}_{q}
$$

- Here $\lambda\left(\mathcal{A}_{q}\right)=\psi(q) \varphi(q) / q$, so the 'easy' Borel-Cantelli lemma yields:

$$
\sum_{q} \frac{\psi(q) \varphi(q)}{q}<\infty \Rightarrow \lambda(\mathcal{A})=0
$$

The Duffin-Schaeffer conjecture

Study coprime solutions to $|\alpha-a / q| \leqslant \psi(q) / q$ to avoid over-counting:

$$
\mathcal{A}_{q}:=\bigcup_{\substack{1 \leqslant a \leqslant q \\ \operatorname{gcd}(a, q)=1}}\left[\frac{a}{q}-\frac{\psi(q)}{q}, \frac{a}{q}+\frac{\psi(q)}{q}\right], \quad \mathcal{A}=\limsup _{q \rightarrow \infty} \mathcal{A}_{q}
$$

- Here $\lambda\left(\mathcal{A}_{q}\right)=\psi(q) \varphi(q) / q$, so the 'easy' Borel-Cantelli lemma yields:

$$
\sum_{q} \frac{\psi(q) \varphi(q)}{q}<\infty \Rightarrow \lambda(\mathcal{A})=0
$$

- Duffin and Schaeffer (1941) conjecture a strong converse is also true:

$$
\sum_{q} \frac{\psi(q) \varphi(q)}{q}=\infty \quad \Rightarrow \quad \lambda(\mathcal{A})=1
$$

Results on DSC (Duffin-Schaeffer Conjecture)

Results on DSC (Duffin-Schaeffer Conjecture)

- Duffin-Schaeffer (1941): DSC is true when ψ is 'regular', i.e. when

$$
\limsup _{Q \rightarrow \infty} \frac{\sum_{q \leqslant Q} \psi(q) \varphi(q) / q}{\sum_{q \leqslant Q} \psi(q)}>0
$$

Results on DSC (Duffin-Schaeffer Conjecture)

- Duffin-Schaeffer (1941): DSC is true when ψ is 'regular', i.e. when

$$
\limsup _{Q \rightarrow \infty} \frac{\sum_{q \leqslant Q} \psi(q) \varphi(q) / q}{\sum_{q \leqslant Q} \psi(q)}>0
$$

- Erdős (1970) \& Vaaler (1978) : DSC is true when $\psi(q)=O(1 / q)$.

Results on DSC (Duffin-Schaeffer Conjecture)

- Duffin-Schaeffer (1941): DSC is true when ψ is 'regular', i.e. when

$$
\limsup _{Q \rightarrow \infty} \frac{\sum_{q \leqslant Q} \psi(q) \varphi(q) / q}{\sum_{q \leqslant Q} \psi(q)}>0
$$

- Erdős (1970) \& Vaaler (1978) : DSC is true when $\psi(q)=O(1 / q)$.
- Pollington-Vaughan (1990) : DSC is true in all dimensions >1.

Results on DSC (Duffin-Schaeffer Conjecture)

- Duffin-Schaeffer (1941): DSC is true when ψ is 'regular', i.e. when

$$
\limsup _{Q \rightarrow \infty} \frac{\sum_{q \leqslant Q} \psi(q) \varphi(q) / q}{\sum_{q \leqslant Q} \psi(q)}>0
$$

- Erdős (1970) \& Vaaler (1978) : DSC is true when $\psi(q)=O(1 / q)$.
- Pollington-Vaughan (1990) : DSC is true in all dimensions >1.
- DSC with 'extra divergence', i.e. when $\sum_{q} \frac{\psi(q) \varphi(q)}{q L(q)}=\infty$:

Results on DSC (Duffin-Schaeffer Conjecture)

- Duffin-Schaeffer (1941): DSC is true when ψ is 'regular', i.e. when

$$
\limsup _{Q \rightarrow \infty} \frac{\sum_{q \leqslant Q} \psi(q) \varphi(q) / q}{\sum_{q \leqslant Q} \psi(q)}>0
$$

- Erdős (1970) \& Vaaler (1978) : DSC is true when $\psi(q)=O(1 / q)$.
- Pollington-Vaughan (1990) : DSC is true in all dimensions >1.
- DSC with 'extra divergence', i.e. when $\sum_{q} \frac{\psi(q) \varphi(q)}{q L(q)}=\infty$: Haynes-Pollington-Velani (2012) : $L(q)=(q / \psi(q))^{\varepsilon}$.

Results on DSC (Duffin-Schaeffer Conjecture)

- Duffin-Schaeffer (1941): DSC is true when ψ is 'regular', i.e. when

$$
\limsup _{Q \rightarrow \infty} \frac{\sum_{q \leqslant Q} \psi(q) \varphi(q) / q}{\sum_{q \leqslant Q} \psi(q)}>0
$$

- Erdős (1970) \& Vaaler (1978) : DSC is true when $\psi(q)=O(1 / q)$.
- Pollington-Vaughan (1990) : DSC is true in all dimensions >1.
- DSC with 'extra divergence', i.e. when $\sum_{q} \frac{\psi(q) \varphi(q)}{q L(q)}=\infty$: Haynes-Pollington-Velani (2012) : $L(q)=(q / \psi(q))^{\varepsilon}$.
Beresnevich-Harman-Haynes-Velani (2013) : $L(q)=\exp \{c(\log \log q)(\log \log \log q)\}$.

Results on DSC (Duffin-Schaeffer Conjecture)

- Duffin-Schaeffer (1941): DSC is true when ψ is 'regular', i.e. when

$$
\limsup _{Q \rightarrow \infty} \frac{\sum_{q \leqslant Q} \psi(q) \varphi(q) / q}{\sum_{q \leqslant Q} \psi(q)}>0
$$

- Erdős (1970) \& Vaaler (1978) : DSC is true when $\psi(q)=O(1 / q)$.
- Pollington-Vaughan (1990) : DSC is true in all dimensions >1.
- DSC with 'extra divergence', i.e. when $\sum_{q} \frac{\psi(q) \varphi(q)}{q L(q)}=\infty$:

Haynes-Pollington-Velani (2012) : $L(q)=(q / \psi(q))^{\varepsilon}$.
Beresnevich-Harman-Haynes-Velani (2013) :
$L(q)=\exp \{c(\log \log q)(\log \log \log q)\}$.
Aistleitner-Lachmann-Munsch-Technau-Zafeiropoulos (2018 preprint) : $L(q)=(\log q)^{\varepsilon}$

Results on DSC (Duffin-Schaeffer Conjecture)

- Duffin-Schaeffer (1941): DSC is true when ψ is 'regular', i.e. when

$$
\limsup _{Q \rightarrow \infty} \frac{\sum_{q \leqslant Q} \psi(q) \varphi(q) / q}{\sum_{q \leqslant Q} \psi(q)}>0
$$

- Erdős (1970) \& Vaaler (1978) : DSC is true when $\psi(q)=O(1 / q)$.
- Pollington-Vaughan (1990) : DSC is true in all dimensions >1.
- DSC with 'extra divergence', i.e. when $\sum_{q} \frac{\psi(q) \varphi(q)}{q L(q)}=\infty$:

Haynes-Pollington-Velani (2012) : $L(q)=(q / \psi(q))^{\varepsilon}$.
Beresnevich-Harman-Haynes-Velani (2013) :
$L(q)=\exp \{c(\log \log q)(\log \log \log q)\}$.
Aistleitner-Lachmann-Munsch-Technau-Zafeiropoulos (2018 preprint) : $L(q)=(\log q)^{\varepsilon}$
Aistleitner (unpublished) : $L(q)=(\log \log q)^{\varepsilon}$.

Results on DSC (Duffin-Schaeffer Conjecture)

- Duffin-Schaeffer (1941): DSC is true when ψ is 'regular', i.e. when

$$
\limsup _{Q \rightarrow \infty} \frac{\sum_{q \leqslant Q} \psi(q) \varphi(q) / q}{\sum_{q \leqslant Q} \psi(q)}>0
$$

- Erdős (1970) \& Vaaler (1978) : DSC is true when $\psi(q)=O(1 / q)$.
- Pollington-Vaughan (1990) : DSC is true in all dimensions >1.
- DSC with 'extra divergence', i.e. when $\sum_{q} \frac{\psi(q) \varphi(q)}{q L(q)}=\infty$:

Haynes-Pollington-Velani (2012) : $L(q)=(q / \psi(q))^{\varepsilon}$.
Beresnevich-Harman-Haynes-Velani (2013) :
$L(q)=\exp \{c(\log \log q)(\log \log \log q)\}$.
Aistleitner-Lachmann-Munsch-Technau-Zafeiropoulos (2018 preprint) : $L(q)=(\log q)^{\varepsilon}$
Aistleitner (unpublished) : $L(q)=(\log \log q)^{\varepsilon}$.

- Aistleitner (2014) : DSC when ψ is not 'too concentrated', so that $\sum_{2^{2 j}<q \leqslant 2^{2 j+1}} \psi(q) \varphi(q) / q=O(1 / j)$.

New results

Theorem (K.-Maynard (2019))

The Duffin-Schaeffer conjecture is true

New results

Theorem (K.-Maynard (2019))

The Duffin-Schaeffer conjecture is true

Corollary (Catlin's conjecture)

$\mathcal{K}:=\{\alpha \in[0,1]:|\alpha-a / q| \leqslant \psi(q) / q$ for infinitely many $0 \leqslant a \leqslant q\}$
$S:=\sum_{q} \varphi(q) \min _{m \geqslant 1}(\psi(q m) / q m)$
We then have $\lambda(\mathcal{K})=1$ when $S=\infty$, whereas $\lambda(\mathcal{K})=0$ when $S<\infty$.

New results

Theorem (K.-Maynard (2019))

The Duffin-Schaeffer conjecture is true

Corollary (Catlin's conjecture)

$\mathcal{K}:=\{\alpha \in[0,1]:|\alpha-a / q| \leqslant \psi(q) / q$ for infinitely many $0 \leqslant a \leqslant q\}$
$S:=\sum_{q} \varphi(q) \min _{m \geqslant 1}(\psi(q m) / q m)$
We then have $\lambda(\mathcal{K})=1$ when $S=\infty$, whereas $\lambda(\mathcal{K})=0$ when $S<\infty$.

Using a theorem of Beresnevich-Velani we also obtain:

Corollary

$\mathcal{A}:=\{\alpha \in[0,1]:|\alpha-a / q| \leqslant \psi(q) / q$ for inf. many coprime $1 \leqslant a \leqslant q\}$ Assuming $0 \leqslant \psi \leqslant 1 / 2$, let $s=\inf \left\{\beta \geqslant 0: \sum_{q} \varphi(q)(\psi(q) / q)^{\beta}<\infty\right\}$. Then $\operatorname{dim}_{\text {Hausdorff }}(\mathcal{A})=\min \{s, 1\}$.

Inverting Borel-Cantelli

Set-up : $\mathcal{A}_{q}=\bigcup_{\substack{1 \leqslant a \leqslant q \\ \operatorname{gcd}(a, q)=1}}\left[\frac{a-\psi(q)}{q}, \frac{a+\psi(q)}{q}\right], \quad \mathcal{A}=\limsup _{q \rightarrow \infty} \mathcal{A}_{q}$,

$$
\lambda\left(\mathcal{A}_{q}\right)=\varphi(q) \psi(q) / q, \quad \sum_{q} \lambda\left(\mathcal{A}_{q}\right)=\infty
$$

Inverting Borel-Cantelli

$$
\begin{gathered}
\text { Set-up : } \mathcal{A}_{q}=\bigcup_{\substack{1 \leqslant a \leqslant q \\
\operatorname{gcd}(a, q)=1}}\left[\frac{a-\psi(q)}{q}, \frac{a+\psi(q)}{q}\right], \quad \mathcal{A}=\limsup _{q \rightarrow \infty} \mathcal{A}_{q} \\
\lambda\left(\mathcal{A}_{q}\right)=\varphi(q) \psi(q) / q, \quad \sum_{q} \lambda\left(\mathcal{A}_{q}\right)=\infty
\end{gathered}
$$

Working heuristic: the sets \mathcal{A}_{q} are quasi-independent events of the probability space $[0,1]$ and should thus have limited overlap if the sum of their measures is $\leqslant 1$.

Inverting Borel-Cantelli

$$
\begin{gathered}
\text { Set-up : } \mathcal{A}_{q}=\bigcup_{\substack{1 \leqslant a \leqslant q \\
\operatorname{gcd}(a, q)=1}}\left[\frac{a-\psi(q)}{q}, \frac{a+\psi(q)}{q}\right], \quad \mathcal{A}=\limsup _{q \rightarrow \infty} \mathcal{A}_{q} \\
\lambda\left(\mathcal{A}_{q}\right)=\varphi(q) \psi(q) / q, \quad \sum_{q} \lambda\left(\mathcal{A}_{q}\right)=\infty
\end{gathered}
$$

Working heuristic: the sets \mathcal{A}_{q} are quasi-independent events of the probability space $[0,1]$ and should thus have limited overlap if the sum of their measures is $\leqslant 1$.

Goal : $\quad \sum_{x \leqslant q \leqslant y} \lambda\left(\mathcal{A}_{q}\right) \asymp 1 \Longrightarrow \lambda\left(\bigcup_{x \leqslant q \leqslant y} \mathcal{A}_{q}\right) \asymp 1$.

Inverting Borel-Cantelli

$$
\begin{gathered}
\text { Set-up : } \mathcal{A}_{q}=\bigcup_{\substack{1 \leqslant a \leqslant q \\
\operatorname{gcd}(a, q)=1}}\left[\frac{a-\psi(q)}{q}, \frac{a+\psi(q)}{q}\right], \quad \mathcal{A}=\limsup _{q \rightarrow \infty} \mathcal{A}_{q} \\
\lambda\left(\mathcal{A}_{q}\right)=\varphi(q) \psi(q) / q, \quad \sum_{q} \lambda\left(\mathcal{A}_{q}\right)=\infty
\end{gathered}
$$

Working heuristic: the sets \mathcal{A}_{q} are quasi-independent events of the probability space $[0,1]$ and should thus have limited overlap if the sum of their measures is $\leqslant 1$.

Goal : $\quad \sum_{x \leqslant q \leqslant y} \lambda\left(\mathcal{A}_{q}\right) \asymp 1 \Longrightarrow \lambda\left(\bigcup_{x \leqslant q \leqslant y} \mathcal{A}_{q}\right) \asymp 1$.
This is enough because it implies $\lambda(\mathcal{A})>0$ and we know that $\lambda(\mathcal{A}) \in\{0,1\}$ by Gallagher's 0-1 law.

Cauchy-Schwarz

Goal : $\quad \sum_{x \leqslant q \leqslant y} \lambda\left(\mathcal{A}_{q}\right) \asymp 1 \Longrightarrow \lambda\left(\bigcup_{x \leqslant q \leqslant y} \mathcal{A}_{q}\right) \asymp 1$.

Cauchy-Schwarz

$$
\text { Goal : } \quad \sum_{x \leqslant q \leqslant y} \lambda\left(\mathcal{A}_{q}\right) \asymp 1 \quad \Longrightarrow \quad \lambda\left(\bigcup_{x \leqslant q \leqslant y} \mathcal{A}_{q}\right) \asymp 1 \text {. }
$$

Cauchy-Scwarz \rightsquigarrow enough to show $\sum_{x \leqslant q, r \leqslant y} \lambda\left(\mathcal{A}_{q} \cap \mathcal{A}_{r}\right) \ll 1$.

Cauchy-Schwarz

$$
\text { Goal : } \quad \sum_{x \leqslant q \leqslant y} \lambda\left(\mathcal{A}_{q}\right) \asymp 1 \quad \Longrightarrow \quad \lambda\left(\bigcup_{x \leqslant q \leqslant y} \mathcal{A}_{q}\right) \asymp 1 \text {. }
$$

Cauchy-Scwarz \rightsquigarrow enough to show $\sum_{x \leqslant q, r \leqslant y} \lambda\left(\mathcal{A}_{q} \cap \mathcal{A}_{r}\right) \ll 1$.

Simplifying assumptions:

Cauchy-Schwarz

$$
\text { Goal : } \quad \sum_{x \leqslant q \leqslant y} \lambda\left(\mathcal{A}_{q}\right) \asymp 1 \quad \Longrightarrow \quad \lambda\left(\bigcup_{x \leqslant q \leqslant y} \mathcal{A}_{q}\right) \asymp 1 \text {. }
$$

Cauchy-Scwarz \rightsquigarrow enough to show $\sum_{x \leqslant q, r \leqslant y} \lambda\left(\mathcal{A}_{q} \cap \mathcal{A}_{r}\right) \ll 1$.

Simplifying assumptions:

- $\operatorname{supp}(\psi) \subset\{$ square-free integers $\} ;$

Cauchy-Schwarz

$$
\text { Goal : } \quad \sum_{x \leqslant q \leqslant y} \lambda\left(\mathcal{A}_{q}\right) \asymp 1 \quad \Longrightarrow \quad \lambda\left(\bigcup_{x \leqslant q \leqslant y} \mathcal{A}_{q}\right) \asymp 1 \text {. }
$$

Cauchy-Scwarz \rightsquigarrow enough to show $\sum_{x \leqslant q, r \leqslant y} \lambda\left(\mathcal{A}_{q} \cap \mathcal{A}_{r}\right) \ll 1$.

Simplifying assumptions:

- $\operatorname{supp}(\psi) \subset\{$ square-free integers $\} ;$
- $\psi(q) \in\left\{0, q^{-c}\right\}$ for some $c \in(0,1] \quad(c=1$ is Erdős-Vaaler);

Cauchy-Schwarz

Goal : $\quad \sum_{x \leqslant q \leqslant y} \lambda\left(\mathcal{A}_{q}\right) \asymp 1 \Longrightarrow \lambda\left(\bigcup_{x \leqslant q \leqslant y} \mathcal{A}_{q}\right) \asymp 1$.
Cauchy-Scwarz \rightsquigarrow enough to show $\sum_{x \leqslant q, r \leqslant y} \lambda\left(\mathcal{A}_{q} \cap \mathcal{A}_{r}\right) \ll 1$.

Simplifying assumptions:

- $\operatorname{supp}(\psi) \subset\{$ square-free integers $\} ;$
- $\psi(q) \in\left\{0, q^{-c}\right\}$ for some $c \in(0,1] \quad(c=1$ is Erdős-Vaaler);
- there is a sparse infinite set of x s.t. $\sum_{x \leqslant q \leqslant 2 x} \psi(q) \varphi(q) / q \asymp 1$

Cauchy-Schwarz

Goal : $\quad \sum_{x \leqslant q \leqslant y} \lambda\left(\mathcal{A}_{q}\right) \asymp 1 \Longrightarrow \lambda\left(\bigcup_{x \leqslant q \leqslant y} \mathcal{A}_{q}\right) \asymp 1$.
Cauchy-Scwarz \rightsquigarrow enough to show $\sum_{x \leqslant q, r \leqslant y} \lambda\left(\mathcal{A}_{q} \cap \mathcal{A}_{r}\right) \ll 1$.

Simplifying assumptions:

- $\operatorname{supp}(\psi) \subset\{$ square-free integers $\} ;$
- $\psi(q) \in\left\{0, q^{-c}\right\}$ for some $c \in(0,1] \quad(c=1$ is Erdős-Vaaler);
- there is a sparse infinite set of x s.t. $\sum_{x \leqslant q \leqslant 2 x} \psi(q) \varphi(q) / q \asymp 1$
$\rightsquigarrow \quad \sum_{q \in \mathcal{S}} \varphi(q) / q \asymp x^{c}, \quad$ where $\mathcal{S}:=[x, 2 x] \cap \operatorname{supp}(\psi)$

Cauchy-Schwarz

Goal : $\quad \sum_{x \leqslant q \leqslant y} \lambda\left(\mathcal{A}_{q}\right) \asymp 1 \Longrightarrow \lambda\left(\bigcup_{x \leqslant q \leqslant y} \mathcal{A}_{q}\right) \asymp 1$.
Cauchy-Scwarz \rightsquigarrow enough to show $\sum_{x \leqslant q, r \leqslant y} \lambda\left(\mathcal{A}_{q} \cap \mathcal{A}_{r}\right) \ll 1$.

Simplifying assumptions:

- $\operatorname{supp}(\psi) \subset\{$ square-free integers $\} ;$
- $\psi(q) \in\left\{0, q^{-c}\right\}$ for some $c \in(0,1] \quad(c=1$ is Erdős-Vaaler);
- there is a sparse infinite set of x s.t. $\sum_{x \leqslant q \leqslant 2 x} \psi(q) \varphi(q) / q \asymp 1$ $\rightsquigarrow \quad \sum_{q \in \mathcal{S}} \varphi(q) / q \asymp x^{c}, \quad$ where $\mathcal{S}:=[x, 2 x] \cap \operatorname{supp}(\psi)$

Pollington-Vaughan: for $q, r \in \mathcal{S}$, we have

$$
\frac{\lambda\left(\mathcal{A}_{q} \cap \mathcal{A}_{r}\right)}{\lambda\left(\mathcal{A}_{q}\right) \lambda\left(\mathcal{A}_{r}\right)} \ll 1+\mathbf{1}_{\operatorname{gcd}(q, r) \leqslant x^{1-c}} \prod_{\substack{p \mid \operatorname{lom}[q, r] \\ \operatorname{gcc}(q, r)}}\left(1+\frac{1}{p}\right) .
$$

Revised goal: if $\quad \sum_{q \in \mathcal{S}} \frac{\varphi(q)}{q} \asymp x^{c}, \quad \mathcal{S} \subset\{x \leqslant q \leqslant 2 x: q$ square-free $\}$,
show that

$$
\frac{\varphi(q)}{q} \cdot \frac{\varphi(r)}{r} \prod_{\substack{p \mid \operatorname{cm}(q, r] \\ \operatorname{codq}, r) \\ p>x^{1-c / \operatorname{cod}(a, r)}}}\left(1+\frac{1}{p}\right) \ll x^{2 c}
$$

Revised goal: if $\quad \sum_{q \in \mathcal{S}} \frac{\varphi(q)}{q} \asymp x^{c}, \quad \mathcal{S} \subset\{x \leqslant q \leqslant 2 x: q$ square-free $\}$,
show that

$$
\sum_{\substack{q, r \in \mathcal{S} \\ \operatorname{gcd}(q, r) \leqslant x^{1-c}}} \frac{\varphi(q)}{q} \cdot \frac{\varphi(r)}{r} \prod_{\substack{p \mid \operatorname{lom[q,r]} \\ p>x^{1-c} /(q, r) \\ \operatorname{gcd}(q, r)}}\left(1+\frac{1}{p}\right) \ll x^{2 c} .
$$

Divide range according to largest t such that

$$
L_{t}(q, r):=\sum_{\substack{p \mid q r, p \nmid \operatorname{gcd}(q, r) \\ p>t}} \frac{1}{p} \geqslant 100 .
$$

Revised goal: if $\quad \sum_{q \in \mathcal{S}} \frac{\varphi(q)}{q} \asymp x^{c}, \quad \mathcal{S} \subset\{x \leqslant q \leqslant 2 x: q$ square-free $\}$,
show that $\sum_{\substack{q, r \in \mathcal{S} \\ \operatorname{gcd}(q, r) \leqslant x^{1-c}}} \frac{\varphi(q)}{q} \cdot \frac{\varphi(r)}{r} \prod_{\substack{p \left\lvert\, \frac{l(c m q(q, r)}{\operatorname{scc} q(q)} \\ p>x^{1-c} / \operatorname{gcd}(q, r)\right.}}\left(1+\frac{1}{p}\right) \ll x^{2 c}$.
Divide range according to largest t such that

$$
L_{t}(q, r):=\sum_{\substack{p \mid q r, p \nmid g \operatorname{gcd}(q, r) \\ p>t}} \frac{1}{p} \geqslant 100 .
$$

Re-revised goal: assuming that $\sum_{q \in \mathcal{S}} \varphi(q) / q \asymp x^{c}$, show that

$$
\sum_{\substack{q, r \in \mathcal{S}, L_{t}(q, r) \geqslant 100 \\ x^{1-c} / t \leqslant \operatorname{gcc}(q, r) \leqslant x^{1-c}}} \frac{\varphi(q)}{q} \cdot \frac{\varphi(r)}{r} \ll \frac{x^{2 c}}{t} .
$$

Two conditions

$$
\sum_{q \in \mathcal{S}} \frac{\varphi(q)}{q} \asymp x^{c} \stackrel{?}{\Longrightarrow} \sum_{\substack{q, r \in \mathcal{S} \\ \operatorname{gcd}(q, r) \geqslant x^{1-c} / t \\ L_{t}(q, r) \geqslant 100}} \frac{\varphi(q)}{q} \cdot \frac{\varphi(r)}{r} \ll \frac{x^{2 c}}{t}
$$

where $L_{t}(q, r)=\sum_{p \mid q r, p \nmid \operatorname{gcd}(q, r)} \frac{1_{p>t}}{p}$.

Two conditions

$$
\sum_{q \in \mathcal{S}} \frac{\varphi(q)}{q} \asymp x^{c} \stackrel{?}{\Longrightarrow} \sum_{\substack{q, r \in \mathcal{S} \\ \operatorname{gcd}(q, r) \geqslant x^{1-c} / t \\ L_{t}(q, r) \geqslant 100}} \frac{\varphi(q)}{q} \cdot \frac{\varphi(r)}{r} \ll \frac{x^{2 c}}{t}
$$

where $L_{t}(q, r)=\sum_{p \mid q r, p \nmid \operatorname{gcd}(q, r)} \frac{1_{p>t}}{p}$.
(1) $\operatorname{gcd}(q, r) \geqslant x^{1-c} / t$ is a structural condition. The heart of the proof is understanding how often it occurs.

Two conditions

$$
\sum_{q \in \mathcal{S}} \frac{\varphi(q)}{q} \asymp x^{c} \stackrel{?}{\Longrightarrow} \sum_{\substack{q, r \in \mathcal{S} \\ \operatorname{gcd}(q, r) \geqslant x^{1-c} / t \\ L_{t}(q, r) \geqslant 100}} \frac{\varphi(q)}{q} \cdot \frac{\varphi(r)}{r} \ll \frac{x^{2 c}}{t}
$$

where $L_{t}(q, r)=\sum_{p \mid q r, p \operatorname{lgcd}(q, r)} \frac{1_{p>t}}{p}$.
(1) $\operatorname{gcd}(q, r) \geqslant x^{1-c} / t$ is a structural condition. The heart of the proof is understanding how often it occurs.
(2) $L_{t}(q, r) \geqslant 100$ is an anatomical condition and is easily analyzed:

$$
\#\left\{x \leqslant q, r \leqslant 2 x: L_{t}(q, r) \geqslant 100\right\} \ll x^{2} e^{-t}
$$

Two conditions

$$
\sum_{q \in \mathcal{S}} \frac{\varphi(q)}{q} \asymp x^{c} \stackrel{?}{\Longrightarrow} \sum_{\substack{q, r \in \mathcal{S} \\ \operatorname{gcd}(q, r) \geqslant x^{1-c} / t \\ L_{t}(q, r) \geqslant 100}} \frac{\varphi(q)}{q} \cdot \frac{\varphi(r)}{r} \ll \frac{x^{2 c}}{t}
$$

where $L_{t}(q, r)=\sum_{p|q r, p| g c d(q, r)} \frac{1_{p>t}}{p}$.
(1) $\operatorname{gcd}(q, r) \geqslant x^{1-c} / t$ is a structural condition. The heart of the proof is understanding how often it occurs.
(2) $L_{t}(q, r) \geqslant 100$ is an anatomical condition and is easily analyzed:

$$
\#\left\{x \leqslant q, r \leqslant 2 x: L_{t}(q, r) \geqslant 100\right\} \ll x^{2} e^{-t}
$$

When $c=1$, condition (1) is vacuous and we can complete the proof:

$$
\sum_{\substack{q, r \in \mathcal{S} \\ L_{t}(q, r) \geqslant 100}} \frac{\varphi(q)}{q} \cdot \frac{\varphi(r)}{r} \ll \frac{x^{2}}{e^{t}} \leqslant \frac{x^{2}}{t}
$$

Two conditions

$$
\sum_{q \in \mathcal{S}} \frac{\varphi(q)}{q} \asymp x^{c} \stackrel{?}{\Longrightarrow} \sum_{\substack{q, r \in \mathcal{S} \\ \operatorname{gcd}(q, r) \geqslant x^{1-c} / t \\ L_{t}(q, r) \geqslant 100}} \frac{\varphi(q)}{q} \cdot \frac{\varphi(r)}{r} \ll \frac{x^{2 c}}{t}
$$

where $L_{t}(q, r)=\sum_{p|q r, p| g c d(q, r)} \frac{1_{p>t}}{p}$.
(1) $\operatorname{gcd}(q, r) \geqslant x^{1-c} / t$ is a structural condition. The heart of the proof is understanding how often it occurs.
(2) $L_{t}(q, r) \geqslant 100$ is an anatomical condition and is easily analyzed:

$$
\#\left\{x \leqslant q, r \leqslant 2 x: L_{t}(q, r) \geqslant 100\right\} \ll x^{2} e^{-t}
$$

When $c=1$, condition (1) is vacuous and we can complete the proof:

$$
\sum_{\substack{q, r \in \mathcal{S} \\ L_{t}(q, r) \geqslant 100}} \frac{\varphi(q)}{q} \cdot \frac{\varphi(r)}{r} \ll \frac{x^{2}}{e^{t}} \leqslant \frac{x^{2}}{t} \quad \text { (Erdős-Vaaler) }
$$

Analysis of the structural condition $\operatorname{gcd}(q, r) \geqslant x^{1-c} / t$

Analysis of the structural condition $\operatorname{gcd}(q, r) \geqslant x^{1-c} / t$

$$
\sum_{\substack{x \leqslant q \leqslant 2 x \\ \operatorname{cd}(q, r) \geqslant x^{1-c} / t}} \sum_{\substack{d \mid r \\ d \leqslant x^{1-c} / t}} 1
$$

Analysis of the structural condition $\operatorname{gcd}(q, r) \geqslant x^{1-c} / t$

$$
\begin{aligned}
& \sum_{\substack{x \leqslant q \leqslant 2 x \\
\operatorname{cd}(q, r) \geqslant x^{1-c} / t}} 1 \leqslant \sum_{d \mid r} \sum_{x \leqslant x^{1-c} / t} 1 \\
&<\sum_{\substack{d|r \\
d| q}} \frac{x}{d} \\
& d \geqslant x^{1-c} / t
\end{aligned}
$$

Analysis of the structural condition $\operatorname{gcd}(q, r) \geqslant x^{1-c} / t$

$$
\begin{aligned}
& \sum_{\substack{x \leqslant q \leqslant 2 x \\
\operatorname{dd}(q, r) \geqslant x^{1-c} / t}} 1 \leqslant \sum_{d \mid r} \sum_{\substack{d \leqslant q \leqslant 2 x}} 1 \\
&<\sum_{d \mid r}^{d-c / t} \frac{x}{d \mid q} \\
& d \geqslant x^{1-c} / t \\
& \ll t x^{c} \cdot \#\{d \mid r\}
\end{aligned}
$$

Analysis of the structural condition $\operatorname{gcd}(q, r) \geqslant x^{1-c} / t$

$$
\begin{array}{cc}
\sum_{\substack{x \leqslant q \leqslant 2 x \\
g c d(q, r) \geqslant x^{1-c} / t}} \leqslant \sum_{\substack{d \mid r}} \sum_{\substack{x \leqslant q \leqslant 2 x}} 1 \\
& <\sum_{\substack{d \mid r \\
d \geqslant x^{1-c} / t}} \frac{x}{d} \\
& \ll t x^{c} \cdot \#\{d \mid r\} \\
\leadsto \sum_{\substack{1-c / t}} \leqslant \frac{\varphi(q)}{q} \cdot \frac{\varphi(r)}{r}<t x^{2 c+o(1)}=t^{2} \cdot x^{o(1)} \cdot \frac{x^{2 c}}{t}
\end{array}
$$

Analysis of the structural condition $\operatorname{gcd}(q, r) \geqslant x^{1-c} / t$

$$
\begin{aligned}
& \sum_{\substack{x \leqslant q \leqslant 2 x \\
\operatorname{gcd}(q, r) \geqslant x^{1-c} / t}} 1 \leqslant \sum_{\substack{d \mid r \\
d \geqslant x^{1-c} / t}} \sum_{\substack{x \leqslant q \leqslant 2 x \\
d \mid q}} 1 \\
& \ll \sum_{\substack{d \mid r \\
d \geqslant x^{1-c} / t}} \frac{x}{d} \\
& \ll t x^{c} \cdot \#\{d \mid r\} \\
& \rightsquigarrow \quad \sum_{\substack{q, r \in \mathcal{S} \\
\operatorname{gcd}(q, r) \geqslant x^{1-c} / t \\
L_{t}(q, r) \geqslant 100}} \frac{\varphi(q)}{q} \cdot \frac{\varphi(r)}{r} \ll t x^{2 c+o(1)}=t^{2} \cdot x^{o(1)} \cdot \frac{x^{2 c}}{t}
\end{aligned}
$$

- Hope to remove factor t^{2} by exploiting the anatomical condition $L_{t}(q, r) \geqslant 100$.

Analysis of the structural condition $\operatorname{gcd}(q, r) \geqslant x^{1-c} / t$

$$
\begin{aligned}
& \sum_{\substack{x \leqslant q \leqslant 2 x \\
\operatorname{gcd}(q, r) \geqslant x^{1-c} / t}} 1 \leqslant \sum_{\substack{d \mid r \\
d \geqslant x^{1-c} / t}} \sum_{\substack{x \leqslant q \leqslant 2 x \\
d \mid q}} 1 \\
& \ll \sum_{\substack{d \mid r \\
d \geqslant x^{1-c} / t}} \frac{x}{d} \\
&<t x^{c} \cdot \#\{d \mid r\} \\
& \rightsquigarrow \quad \sum_{\substack{q, r \in \mathcal{S} \\
\operatorname{gcd}(q, r) \geqslant x^{1-c} / t \\
L_{t}(q, r) \geqslant 100}} \frac{\varphi(q)}{q} \cdot \frac{\varphi(r)}{r} \ll t x^{2 c+o(1)}=t^{2} \cdot x^{o(1)} \cdot \frac{x^{2 c}}{t}
\end{aligned}
$$

- Hope to remove factor t^{2} by exploiting the anatomical condition $L_{t}(q, r) \geqslant 100$.
- But: how to remove the factor $x^{o(1)}$?

A guiding model problem

Recall: $\mathcal{S} \subset[x, 2 x]$ and $\sum_{q \in \mathcal{S}} \varphi(q) / q \asymp x^{c}$.

A guiding model problem

Recall: $\mathcal{S} \subset[x, 2 x]$ and $\sum_{q \in \mathcal{S}} \varphi(q) / q \asymp x^{c}$.
For simplicity, ignore the arithmetic weights $\varphi(q) / q$.

A guiding model problem

Recall: $\mathcal{S} \subset[x, 2 x]$ and $\sum_{q \in \mathcal{S}} \varphi(q) / q \asymp x^{c}$.
For simplicity, ignore the arithmetic weights $\varphi(q) / q$. This leads to:

Question

Let $\mathcal{S} \subset[x, 2 x]$ satisfy $|\mathcal{S}| \asymp x^{c}$ and be such that there are $\geqslant|\mathcal{S}|^{2} / t$ pairs $(q, r) \in \mathcal{S}^{2}$ with $\operatorname{gcd}(q, r) \geqslant x^{1-c} / t$. Must it be the case that there is an integer $d \geqslant x^{1-c} / t$ that divides $\gg|\mathcal{S}| t^{-O(1)}$ elements of \mathcal{S} ?

A guiding model problem

Recall: $\mathcal{S} \subset[x, 2 x]$ and $\sum_{q \in \mathcal{S}} \varphi(q) / q \asymp x^{c}$.
For simplicity, ignore the arithmetic weights $\varphi(q) / q$. This leads to:

Question

Let $\mathcal{S} \subset[x, 2 x]$ satisfy $|\mathcal{S}| \asymp x^{c}$ and be such that there are $\geqslant|\mathcal{S}|^{2} / t$ pairs $(q, r) \in \mathcal{S}^{2}$ with $\operatorname{gcd}(q, r) \geqslant x^{1-c} / t$. Must it be the case that there is an integer $d \geqslant x^{1-c} / t$ that divides $\gg|\mathcal{S}| t^{-O(1)}$ elements of \mathcal{S} ?

If yes, we are done: we may replace the factor $x^{o(1)}$ with $t^{O(1)}$. We may then kill this new factor using the anatomical condition $L_{t}(q, r) \geqslant 100$.

Compressing GCD graphs

- $G=(\mathcal{V}, \mathcal{W}, \mathcal{E})$ bipartite graph;
- $\mathcal{V}, \mathcal{W} \subset \mathcal{S}$;
- $\mathcal{E} \subset\left\{(v, w) \in \mathcal{V} \times \mathcal{W}: \operatorname{gcd}(v, w) \geqslant x^{1-c} / t, L_{t}(v, w) \geqslant 100\right\} ;$
- vertex v weighted with $\mu(v)=\varphi(v) / v$;
- edge (v, w) weighted with $\mu(v) \mu(w)$.

Compressing GCD graphs

- $G=(\mathcal{V}, \mathcal{W}, \mathcal{E})$ bipartite graph;
- $\mathcal{V}, \mathcal{W} \subset \mathcal{S}$;
- $\mathcal{E} \subset\left\{(v, w) \in \mathcal{V} \times \mathcal{W}: \operatorname{gcd}(v, w) \geqslant x^{1-c} / t, L_{t}(v, w) \geqslant 100\right\} ;$
- vertex v weighted with $\mu(v)=\varphi(v) / v$;
- edge (v, w) weighted with $\mu(v) \mu(w)$.

Goal: start with $G^{\text {start }}=\left(\mathcal{V}^{\text {start }}, \mathcal{W}^{\text {start }}, \mathcal{E}^{\text {start }}\right)$ where $\mathcal{V}^{\text {start }}=\mathcal{W}^{\text {start }}=\mathcal{S}$ and $\mathcal{E}^{\text {start }}=\left\{(v, w) \in \mathcal{S}^{2}: \operatorname{gcd}(v, w) \geqslant x^{1-c} / t, L_{t}(v, w) \geqslant 100\right\}$.

Compressing GCD graphs

- $G=(\mathcal{V}, \mathcal{W}, \mathcal{E})$ bipartite graph;
- $\mathcal{V}, \mathcal{W} \subset \mathcal{S}$;
- $\mathcal{E} \subset\left\{(v, w) \in \mathcal{V} \times \mathcal{W}: \operatorname{gcd}(v, w) \geqslant x^{1-c} / t, L_{t}(v, w) \geqslant 100\right\} ;$
- vertex v weighted with $\mu(v)=\varphi(v) / v$;
- edge (v, w) weighted with $\mu(v) \mu(w)$.

Goal: start with $G^{\text {start }}=\left(\mathcal{V}^{\text {start }}, \mathcal{W}^{\text {start }}, \mathcal{E}^{\text {start }}\right)$ where $\mathcal{V}^{\text {start }}=\mathcal{W}^{\text {start }}=\mathcal{S}$ and $\mathcal{E}^{\text {start }}=\left\{(v, w) \in \mathcal{S}^{2}: \operatorname{gcd}(v, w) \geqslant x^{1-c} / t, L_{t}(v, w) \geqslant 100\right\}$.

Arrive at $G^{\text {end }}=\left(\mathcal{V}^{\text {end }}, \mathcal{W}^{\text {end }}, \mathcal{E}^{\text {end }}\right)$ where there are $a, b \in \mathbb{N}$ s.t.

- all vertices in $\mathcal{V}^{\text {end }}$ are multiples of a;
- all vertices in $\mathcal{W}^{\text {end }}$ are multiples of b;
- all edges in $\mathcal{E}^{\text {end }}$ have $\operatorname{gcd}(v, w)=\operatorname{gcd}(a, b)$.

Compressing GCD graphs

- $G=(\mathcal{V}, \mathcal{W}, \mathcal{E})$ bipartite graph;
- $\mathcal{V}, \mathcal{W} \subset \mathcal{S}$;
- $\mathcal{E} \subset\left\{(v, w) \in \mathcal{V} \times \mathcal{W}: \operatorname{gcd}(v, w) \geqslant x^{1-c} / t, L_{t}(v, w) \geqslant 100\right\} ;$
- vertex v weighted with $\mu(v)=\varphi(v) / v$;
- edge (v, w) weighted with $\mu(v) \mu(w)$.

Goal: start with $G^{\text {start }}=\left(\mathcal{V}^{\text {start }}, \mathcal{W}^{\text {start }}, \mathcal{E}^{\text {start }}\right)$ where $\mathcal{V}^{\text {start }}=\mathcal{W}^{\text {start }}=\mathcal{S}$ and $\mathcal{E}^{\text {start }}=\left\{(v, w) \in \mathcal{S}^{2}: \operatorname{gcd}(v, w) \geqslant x^{1-c} / t, L_{t}(v, w) \geqslant 100\right\}$.

Arrive at $G^{\text {end }}=\left(\mathcal{V}^{\text {end }}, \mathcal{W}^{\text {end }}, \mathcal{E}^{\text {end }}\right)$ where there are $a, b \in \mathbb{N}$ s.t.

- all vertices in $\mathcal{V}^{\text {end }}$ are multiples of a;
- all vertices in $\mathcal{W}^{\text {end }}$ are multiples of b;
- all edges in $\mathcal{E}^{\text {end }}$ have $\operatorname{gcd}(v, w)=\operatorname{gcd}(a, b)$.

Important requirement: the size of $\mathcal{E}^{\text {start }}$ must be somehow controlled by the size of $\mathcal{E}^{\text {end }}$.

Variations of density-increment arguments

First attempt: consider weighted edge density

$$
\delta(G)=\frac{\mu(\mathcal{E})}{\mu(\mathcal{V}) \mu(\mathcal{W})}
$$

Variations of density-increment arguments

First attempt: consider weighted edge density

$$
\delta(G)=\frac{\mu(\mathcal{E})}{\mu(\mathcal{V}) \mu(\mathcal{W})} .
$$

Classical density-increment arguments due to Roth, Szemerédi, etc.

Variations of density-increment arguments

First attempt: consider weighted edge density

$$
\delta(\mathcal{G})=\frac{\mu(\mathcal{E})}{\mu(\mathcal{V}) \mu(\mathcal{W})} .
$$

Classical density-increment arguments due to Roth, Szemerédi, etc.
Hard to use here: δ loses control of the size of the vertex sets and thus it is very hard to exploit the anatomical condition $L_{t}(v, w) \geqslant 100$.

Second attempt: reverse engineer, starting from 'end graph'.

Second attempt: reverse engineer, starting from 'end graph'.
We have $\operatorname{gcd}(a, b)=\operatorname{gcd}(v, w) \geqslant x^{1-c} / t$ and

$$
\mu\left(\mathcal{V}^{\text {end }}\right) \mu\left(\mathcal{W}^{\text {end }}\right) \ll \frac{x}{a} \cdot \frac{x}{b} \leqslant t^{2} x^{2 c} \cdot \frac{\operatorname{gcd}(a, b)^{2}}{a b}
$$

Second attempt: reverse engineer, starting from 'end graph'.
We have $\operatorname{gcd}(a, b)=\operatorname{gcd}(v, w) \geqslant x^{1-c} / t$ and

$$
\mu\left(\mathcal{V}^{\text {end }}\right) \mu\left(\mathcal{W}^{\text {end }}\right) \ll \frac{x}{a} \cdot \frac{x}{b} \leqslant t^{2} x^{2 c} \cdot \frac{\operatorname{gcd}(a, b)^{2}}{a b}
$$

So we could try to increase

$$
\tilde{q}(G):=\frac{a_{G} b_{G}}{\operatorname{gcd}\left(a_{G}, b_{G}\right)^{2}} \cdot \mu(\mathcal{V}) \cdot \mu(\mathcal{W})
$$

where a_{G} divides everything in \mathcal{V} and b_{G} everything in \mathcal{W}.

Second attempt: reverse engineer, starting from 'end graph'.
We have $\operatorname{gcd}(a, b)=\operatorname{gcd}(v, w) \geqslant x^{1-c} / t$ and

$$
\mu\left(\mathcal{V}^{\text {end }}\right) \mu\left(\mathcal{W}^{\text {end }}\right) \ll \frac{x}{a} \cdot \frac{x}{b} \leqslant t^{2} x^{2 c} \cdot \frac{\operatorname{gcd}(a, b)^{2}}{a b}
$$

So we could try to increase

$$
\tilde{q}(G):=\frac{a_{G} b_{G}}{\operatorname{gcd}\left(a_{G}, b_{G}\right)^{2}} \cdot \mu(\mathcal{V}) \cdot \mu(\mathcal{W})
$$

where a_{G} divides everything in \mathcal{V} and b_{G} everything in \mathcal{W}.

$$
\rightsquigarrow \quad \mu\left(\mathcal{E}^{\text {start }}\right)=\frac{\tilde{q}\left(G^{\text {start }}\right)}{\delta\left(G^{\text {start }}\right)} \leqslant \frac{\tilde{q}\left(G^{\text {end }}\right)}{\delta\left(G^{\text {start }}\right)} \ll \frac{t^{2}}{\delta\left(G^{\text {start }}\right)}
$$

Second attempt: reverse engineer, starting from 'end graph'.
We have $\operatorname{gcd}(a, b)=\operatorname{gcd}(v, w) \geqslant x^{1-c} / t$ and

$$
\mu\left(\mathcal{V}^{\text {end }}\right) \mu\left(\mathcal{W}^{\text {end }}\right) \ll \frac{x}{a} \cdot \frac{x}{b} \leqslant t^{2} x^{2 c} \cdot \frac{\operatorname{gcd}(a, b)^{2}}{a b}
$$

So we could try to increase

$$
\tilde{q}(G):=\frac{a_{G} b_{G}}{\operatorname{gcd}\left(a_{G}, b_{G}\right)^{2}} \cdot \mu(\mathcal{V}) \cdot \mu(\mathcal{W})
$$

where a_{G} divides everything in \mathcal{V} and b_{G} everything in \mathcal{W}.

$$
\rightsquigarrow \quad \mu\left(\mathcal{E}^{\text {start }}\right)=\frac{\tilde{q}\left(G^{\text {start }}\right)}{\delta\left(G^{\text {start }}\right)} \leqslant \frac{\tilde{q}\left(G^{\text {end }}\right)}{\delta\left(G^{\text {start }}\right)} \ll \frac{t^{2}}{\delta\left(G^{\text {start }}\right)}
$$

Can assume $\delta\left(G^{\text {start }}\right) \gg 1 / t ;$ factor t^{3} can be killed using anatomy.

Second attempt: reverse engineer, starting from 'end graph'.
We have $\operatorname{gcd}(a, b)=\operatorname{gcd}(v, w) \geqslant x^{1-c} / t$ and

$$
\mu\left(\mathcal{V}^{\text {end }}\right) \mu\left(\mathcal{W}^{\text {end }}\right) \ll \frac{x}{a} \cdot \frac{x}{b} \leqslant t^{2} x^{2 c} \cdot \frac{\operatorname{gcd}(a, b)^{2}}{a b}
$$

So we could try to increase

$$
\tilde{q}(G):=\frac{a_{G} b_{G}}{\operatorname{gcd}\left(a_{G}, b_{G}\right)^{2}} \cdot \mu(\mathcal{V}) \cdot \mu(\mathcal{W})
$$

where a_{G} divides everything in \mathcal{V} and b_{G} everything in \mathcal{W}.

$$
\rightsquigarrow \quad \mu\left(\mathcal{E}^{\text {start }}\right)=\frac{\tilde{q}\left(G^{\text {start }}\right)}{\delta\left(G^{\text {start }}\right)} \leqslant \frac{\tilde{q}\left(G^{\text {end }}\right)}{\delta\left(G^{\text {start }}\right)} \ll \frac{t^{2}}{\delta\left(G^{\text {start }}\right)}
$$

Can assume $\delta\left(G^{\text {start }}\right) \gg 1 / t$; factor t^{3} can be killed using anatomy. Problem: hard to increase \tilde{q}.

Third attempt: consider a hybrid.

Third attempt: consider a hybrid.
The quality of the GCD graph G is defined by

$$
q(G):=\delta(G)^{10} \cdot \frac{a_{G} b_{G}}{\operatorname{gcd}\left(a_{G}, b_{G}\right)^{2}} \cdot \mu(\mathcal{V}) \cdot \mu(\mathcal{W})
$$

Third attempt: consider a hybrid.
The quality of the GCD graph G is defined by

$$
q(G):=\delta(G)^{10} \cdot \frac{a_{G} b_{G}}{\operatorname{gcd}\left(a_{G}, b_{G}\right)^{2}} \cdot \mu(\mathcal{V}) \cdot \mu(\mathcal{W})
$$

Quality increment can be made to work AND we have control on vertex sets

A very rough sketch of the quality-increment argument $V_{p}=\{v \in \mathcal{V}: p \mid v\}, \quad \mathcal{V}_{p}^{c}=\{v \in \mathcal{V}: p \nmid v\} \quad$ (square-free integers)

A very rough sketch of the quality-increment argument $V_{p}=\{v \in \mathcal{V}: p \mid v\}, \quad \mathcal{V}_{p}^{c}=\{v \in \mathcal{V}: p \nmid v\} \quad$ (square-free integers)

Goal: focus on one of the four graphs induced by the pairs of vertex sets $\left(\mathcal{V}_{p}, \mathcal{W}_{p}\right),\left(\mathcal{V}_{p}, \mathcal{W}_{p}^{c}\right),\left(\mathcal{V}_{p}^{c}, \mathcal{W}_{p}\right),\left(\mathcal{V}_{p}^{c}, \mathcal{W}_{p}^{c}\right)$.

A very rough sketch of the quality-increment argument $V_{p}=\{v \in \mathcal{V}: p \mid v\}, \quad \mathcal{V}_{p}^{c}=\{v \in \mathcal{V}: p \nmid v\} \quad$ (square-free integers)

Goal: focus on one of the four graphs induced by the pairs of vertex sets $\left(\mathcal{V}_{p}, \mathcal{W}_{p}\right),\left(\mathcal{V}_{p}, \mathcal{W}_{p}^{c}\right),\left(\mathcal{V}_{p}^{c}, \mathcal{W}_{p}\right),\left(\mathcal{V}_{p}^{c}, \mathcal{W}_{p}^{c}\right)$.
In $\left(\mathcal{V}_{p}^{c}, \mathcal{W}_{p}\right)$ and in $\left(\mathcal{V}_{p}, \mathcal{W}_{p}^{c}\right)$ we gain factor p in quality.

A very rough sketch of the quality-increment argument $V_{p}=\{v \in \mathcal{V}: p \mid v\}, \quad \mathcal{V}_{p}^{c}=\{v \in \mathcal{V}: p \nmid v\} \quad$ (square-free integers)

Goal: focus on one of the four graphs induced by the pairs of vertex sets $\left(\mathcal{V}_{p}, \mathcal{W}_{p}\right),\left(\mathcal{V}_{p}, \mathcal{W}_{p}^{c}\right),\left(\mathcal{V}_{p}^{c}, \mathcal{W}_{p}\right),\left(\mathcal{V}_{p}^{c}, \mathcal{W}_{p}^{c}\right)$.
In $\left(\mathcal{V}_{p}^{c}, \mathcal{W}_{p}\right)$ and in $\left(\mathcal{V}_{p}, \mathcal{W}_{p}^{c}\right)$ we gain factor p in quality. Hard case when $\left|\mathcal{V}_{p}\right|,\left|\mathcal{W}_{p}\right| \sim 1-O(1 / p)$, or when $\left|\mathcal{V}_{p}^{C}\right|,\left|\mathcal{W}_{p}^{C}\right|=1-O(1 / p)$.

A very rough sketch of the quality-increment argument $V_{p}=\{v \in \mathcal{V}: p \mid v\}, \quad \mathcal{V}_{p}^{c}=\{v \in \mathcal{V}: p \nmid v\} \quad$ (square-free integers)

Goal: focus on one of the four graphs induced by the pairs of vertex sets $\left(\mathcal{V}_{p}, \mathcal{W}_{p}\right),\left(\mathcal{V}_{p}, \mathcal{W}_{p}^{c}\right),\left(\mathcal{V}_{p}^{c}, \mathcal{W}_{p}\right),\left(\mathcal{V}_{p}^{c}, \mathcal{W}_{p}^{c}\right)$.
In $\left(\mathcal{V}_{p}^{c}, \mathcal{W}_{p}\right)$ and in $\left(\mathcal{V}_{p}, \mathcal{W}_{p}^{c}\right)$ we gain factor p in quality. Hard case when $\left|\mathcal{V}_{p}\right|,\left|\mathcal{W}_{p}\right| \sim 1-O(1 / p)$, or when $\left|\mathcal{V}_{p}^{C}\right|,\left|\mathcal{W}_{p}^{C}\right|=1-O(1 / p)$.
Weight $\mu(v)=\varphi(v) / v$ is of crucial importance to deal with this hard case. Gain factor $1+1 / p$ in quality.

Thank you!

*Preprint available at dms.umontreal.ca/~koukoulo/ documents/publications/DS.pdf after the talk

