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'a_a <" with  a€Z geN ()

q

(possibly imposing the coprimality condition gcd(a, g) = 1)

Dirichlet: when ¢(q) = 1/q, then (x) has infinitely many solutions for
all o € [0, 1].

Question: can we solve (x) if ¢ is more irregular?

Caveat: There might be exceptional o’s.

Goal: understand when set of exceptional o’s has null measure
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= {a €[0,1] : a € K4 for infinitely many q}
Note that
MKCq) < ¥(q) (A = Lebesgue measure)

e ‘easy’ direction of Borel-Cantelli : Z¢(q) <oo = MK)=0.
q

¢ Khinchin (1924) proved a partial converse:

Q@ & D (@ =0 = MNK)=1.
q
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e Here A(Aq) = ¥(q)¥(q)/q, so the ‘easy’ Borel-Cantelli lemma yields:
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q

¢ Duffin and Schaeffer (1941) conjecture a strong converse is also true:

ZMZOO = AA) =1.
~ q
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New results

Theorem (K.-Maynard (2019))
The Duffin-Schaeffer conjecture is true

Corollary (Catlin’s conjecture)

K:={a€[0,1]:|a—a/q| <(q)/q for infinitely many 0 < a < q}

S = "4 #(q) ming1 (¥ (gm)/qm)
We then have \(K) = 1 when S = oo, whereas \(K) = 0 when S < cc.

Using a theorem of Beresnevich-Velani we also obtain:

A:={a€[0,1]:|a—a/q| < (q)/q for inf. many coprime 1 < a < g}

Assuming 0 < ¢ < 1/2, lets =inf{5 > 0: >, (q)(¥(q)/q)? < oo}
Then

dimHausdorff(A) = min{s, 1 }
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Inverting Borel-Cantelli

Setup: Ag= |J [a—w(q)7a+w(q)},

1<a<q q q

MAq) = 0(@)0(@)/q, D A(Aq) = co.
q

A = limsup Aq,

g—o0

Working heuristic: the sets A4 are quasi-independent events of the
probability space [0, 1] and should thus have limited overlap if the sum
of their measures is < 1.

Goal : D AMAY =1 = A | A9=1.

X<qsy X<qsy

This is enough because it implies A(A) > 0 and we know that
A(A) € {0, 1} by Gallagher’s 0-1 law.
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Goal : D AMAY =1 = A | A9=1.
x<q<y x<q<y
Cauchy-Scwarz ~ enoughtoshow Y MAgnA,) < 1.
x<q,r<y
Simplifying assumptions:

e supp(v) C {square-free integers};

e (q) € {0, °} forsomece (0,1] (c=1is Erdés-Vaaler);

e there is a sparse infinite set of x s.t. >°, .o, ¥(q)p(q)/q = 1

~ Y gesP(q)/q = x¢, where S := [x,2x] N supp(¢)

Pollington-Vaughan: for q,r € S, we have

AAg N Ay) 1
W < 1 + 1gcd(q,r)<x1fc H (1 4 p)

lcm[q,r]
| god(a.)

p>x'=¢/ged(q.r)
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< 1—c
god(@.r)<x p>x'¢/gcd(q,r)

Divide range according to largest t such that

Li(q,r) := > 1 > 100.

plar, ptgcd(q,r)
p>t

Re-revised goal: assuming that 3_ .5 »(q)/q =< x°, show that

3 p(q) o(r) _ x*°

r t
q,reS, L(q,r)>100 q

x'=¢/t<ged(g,r)<x'~°
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proof is understanding how often it occurs.

(2) Li(q,r) =100 is an anatomical condition and is easily analyzed:

#{x < q,r<2x:Liq,r) =100} < x?e”!

When ¢ = 1, condition (1) is vacuous and we can complete the proof:

2 2
Z ©(q) . o(r) < ’LT < X (Erd6s-Vaaler)
q r e t
q,res
Li(q,r)>100
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Analysis of the structural condition gcd(q, r) > x'=¢/t

2 s ) 2

x<g<2x dlr  x<q<2x
ged(q,r)=x'—¢/t d>x'-¢/t dlq

X
< 2 g
d|r
d=>x1-¢/t

<L txC - #{d|r}

2c
. ) e(q) SD(rf) < p2otol) — 2 . yo(1) . XT

q,res q

ged(g,r)=x"=¢/t
L¢«(q,r)=100

e Hope to remove factor t? by exploiting the anatomical condition
Li(qg,r) > 100.

e But: how to remove the factor x°(1)?
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Recall: S C [x,2x] and > .5 ¥(q)/q =< Xx°.

For simplicity, ignore the arithmetic weights ©(q)/qg. This leads to:

Let S C [x,2x] satisfy |S| < x¢ and be such that there are > |S|?/t
pairs (q,r) € S? with gcd(q, r) > x'=¢/t. Must it be the case that there
is an integer d > x'~¢/t that divides > |S|t—°(") elements of S ?

If yes, we are done: we may replace the factor x°(") with t9('), We may
then Kill this new factor using the anatomical condition L¢(q, r) > 100.
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e G=(V,W,¢&) bipartite graph;

V, W CS,;

Ec{(v,w) eV xW:gcd(v,w) > x""¢/t. Li(v,w) > 100};
vertex v weighted with u(v) = ¢(v)/v;
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Compressing GCD graphs

e G=(V,W,¢&) bipartite graph;

VW CS,

Ec{(v,w)eVxW:gcd(v,w) > x""¢/t, Li(v,w) > 100};
vertex v weighted with u(v) = ¢(v)/v;

edge (v, w) weighted with p(v)u(w).

Goal: start with Gsta't = (pstart yystart gstarty where pstart — yystart — g
and £ = {(v,w) € 82 : ged(v, w) > x'=¢/t, Ly(v,w) > 100}.

Arrive at Ge"d = (pend yyend gendy where there are a,b € N s.t.
e all vertices in V" are multiples of a;
e all vertices in We"d are multiples of b;
o all edges in £°™ have gcd(v, w) = gcd(a, b).

Important requirement: the size of £33 must be somehow controlled
by the size of £,
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Variations of density-increment arguments

First attempt: consider weighted edge density

()
oG) = Loowy

Classical density-increment arguments due to Roth, Szemerédi, etc.

Hard to use here: ¢ loses control of the size of the vertex sets and thus
it is very hard to exploit the anatomical condition Ls(v, w) > 100.
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Second attempt: reverse engineer, starting from ‘end graph’.
We have gcd(a, b) = ged(v, w) > x'=¢/t and

< 2x2C. ged(a, b)®

end end { . {
pVTEIOVTE) < - g b

So we could try to increase

3(G) = m u(V) - (W),

where ag divides everything in V and bg everything in W.

a( Gstart) E]( Gend ) t2
~ p(ESE) = 5(Gstart) < 5(Gstart) < 5(Gstart)

Can assume 6(G®®"") > 1/t; factor 3 can be killed using anatomy.

Problem: hard to increase g.
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Third attempt: consider a hybrid.
The quality of the GCD graph G is defined by

agbg

q(G) :=6(G)"°- gcd(ag, ba)? .

p(V) - p(W).

Quality increment can be made to work AND we have control on vertex
sets
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A very rough sketch of the quality-increment argument
Vo={veV:plv}, Vg={veV:pfv} (square-freeintegers)

O
ORG

Goal: focus on one of the four graphs induced by the pairs of vertex
sets (Vp, Wp), Vo, W5), (V§, Wp), (V§, W5).

In (V5, Wp) and in (Vp, W§) we gain factor p in quality.

Hard case when [Vp|, [Wp| ~ 1 — O(1/p), or when
Vol Wgl =1-0(1/p).

Weight 1(v) = ¢(v)/v is of crucial importance to deal with this hard
case. Gain factor 1 + 1/p in quality.



Thank you!

*Preprint available at dms . umontreal.ca/~koukoulo/
documents/publications/DS.pdf after the talk
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