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A digression

Question. Does there exist a continuous 1-periodic function
f : R→ C such that

1. The image of f has non-empty interior (space-filling
curve);

2. The Fourier coefficients of f satisty

f̂ (h)� 1

|h|

for h 6= 0 ?



Bilinear forms
We will consider the problem of finding good estimates for
general bilinear forms of the type∑

m∼M

∑
n∼N

αmβnK (mn)

for some (explicit) function K , where the coefficients (αm) and
(βn) are arbitrary complex numbers.

Special bilinear form (one variable is smooth, say αm = 1):∑
m∼M

∑
n∼N

βnK (mn).

Smooth bilinear form (both variables are smooth):∑
m∼M

∑
n∼N

K (mn).
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General remarks

General bilinear form∑
m∼M

∑
n∼N

αmβnK (mn)

Our main goal is to obtain non-trivial bounds that are valid
for M and N as small as possible (“short sums”). For the
applications we have in mind, the strength of the saving is
usually not as important as the range.

We will consider cases where K is a special function that is
q-periodic for some integer q ≥ 1, and we require a saving
that is a small power of q.

The critical range is then when M and N are both close to√
q, even slightly smaller.
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Why is it difficult?

If K (mn) = K1(m)K2(n) then∑
m

∑
n

αmβnK (mn) =
(∑

m

αmK1(m)
) (∑

n

βnK2(n)
)
.

We can take αm = K1(m) and βn = K2(n), and there is no
cancellation.

So a non-trivial bound implies that K is strongly
non-multiplicative.

Moreover, if K is q-periodic and MN < q, then there is no
repetition of the values of K (mn) that can be used to exclude
multiplicativity.
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Why is it interesting?

General bilinear form∑
m∼M

∑
n∼N

αmβnK (mn)

Combinatorial identities for primes. The von Mangoldt
and Möbius functions can be decomposed in bilinear
expressions, including special or smooth bilinear forms
(Vinogradov and others).

Sieve methods. The error term in the linear sieve (where, on
average, one residue class modulo is “removed” modulo each
prime) can be represented by bilinear forms (Iwaniec).

The coefficients αm and βn are not really unknown, but it is
almost impossible to exploit their specific features.
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A recent application

Let f a fixed modular form (say of level 1). For q ≥ 1, we
want to obtain an asymptotic formula for

1

ϕ∗(q)

∑∗

χ (mod q)

|L(f × χ, 1
2
)|2,

with power-saving error term; this allows us to further
implement mollification, amplification, resonance, etc.

If f is a suitable Eisenstein series then this expression is

1

ϕ∗(q)

∑∗

χ (mod q)

|L(χ, 1
2
)|4

(M. Young, 2006, for q prime).
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Reduction to bilinear forms

Moment of twisted L-functions
1

ϕ∗(q)

∑∗

χ (mod q)

|L(f × χ, 1
2
)|2

Strategy: use the approximate functional equation and the
orthogonality of Dirichlet characters to reduce to sums∑∑

m∼M, n∼N
m≡±n (mod q)

λf (m)λf (n)√
mn

with 1 ≤ M ≤ N and MN � q2. We need to show that such
sums are � q−δ for some δ > 0.

(Blomer, Fouvry, K., Michel, Milićević, “On moments of
twisted L-functions”)
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We use different methods depending on M and N .

For instance, write m = n + qr and view∑
n

λf (n + qr)λf (n)

as a shifted convolution sum. This succeeds in wide ranges
using automorphic techniques; if q has suitable factorization, it
can succeed in general (Blomer–Milićević).
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The irreducible case

Recall
1√
MN

∑∑
m∼M, n∼N

m≡±n (mod q)

λf (m)λf (n)

For q prime, the hardest case is when the shorter variable M is
about q1/2 and N is about q3/2, so N/M is about q.

Applying the Voronoi summation formula to the n-variable,
the sums become

1√
q3M/N

∑
m∼M

∑
n∼q2/N

λf (m)λf (n) Kl2(±mn, q).
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(Hyper-)Kloosterman sums

Let k ≥ 2, q a prime number, χ = (χ1, . . . , χk) Dirichlet
characters modulo q. For a ∈ F×q , define

Klk(a,χ; q) =
1

q(k−1)/2

∑
y1···yk=a

χ1(y1) · · ·χk(yk)e
(y1 + · · ·+ yk

q

)
.

For all χ trivial, write Klk(a; q) = Klk(a, (1, . . . , 1); q). So

Kl2(a; q) = Kl2(a, (1, 1); q) =
1
√
q

∑
x∈Fq

e
(ax + x̄

q

)
.

Weil (k = 2)/Deligne (k ≥ 3) bounds: for all a ∈ F×q , we
have

|Klk(a,χ; q)| ≤ k .
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∑
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The hard case is now when M and N are close in logarithmic
scale, and MN is close to q, but could be slightly smaller.

We do not know how to exploit the oscillations of the Hecke
eigenvalues! So we view this as a value of a general bilinear
form ∑

m∼M

∑
n∼N

αmβn Kl2(±mn, q),

and try to exploit the oscillations of the Kloosterman sums.
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A general “abstract” bound

Recall

B(α,β) =
∑
m∼M

∑
n∼N

αmβnK (mn)

Applying the Cauchy-Schwarz inequality we get

|B(α,β)|2 ≤ ∆ ‖α‖2 ‖β‖2

where
∆ = max

m1∼M

∑
m2∼M

∣∣∣∑
n∼N

K (m1n)K (m2n)
∣∣∣.
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If K is a geometrically irreducible trace function modulo q and
M , N ≤ q, then the Riemann Hypothesis (and the underlying
formalism) give

∆� N + Mq1/2 log q

where the implied constant depends on the conductor c(K ),
except if K (n) = cχ(n)e(an/q).

(Fouvry, K., Michel, “Algebraic trace functions over the
primes”)
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The Riemann Hypothesis

Theorem (Deligne). Let q be prime, let K1 and K2 be
geometrically irreducible trace functions, of weight 0,
modulo q. Either K1 is proportional to K2 (with a
proportionality constant of modulus 1), or∣∣∣ ∑

x (mod q)

K1(x)K2(x)
∣∣∣ ≤ c(K1)c(K2)

√
q.

Moreover, if K1 = αK2, then∣∣∣ ∑
x (mod q)

K1(x)K2(x)− αq
∣∣∣ ≤ c(K1)c(K2)

√
q.
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Examples

Recall

|B(α,β)|2 � (N + Mq1/2 log q) ‖α‖2 ‖β‖2,

where the implied constant depends only on c(K ).

This applies for instance to:

1. K (n) = Klk(n,χ; q) if k ≥ 2, with c(K ) bounded in
terms of k only;

2. K (n) = χ(f (x))e
(g(x)

q

)
, with c(K )� deg(f ) + deg(g),

I if χ is of order d ≥ 2 and f mod q has degree ≥ 2 and is
not proportional to a d-th power;

I or g mod q is of degree ≥ 2.

3. K (n) = Klk(f (n),χ; q) if k ≥ 2 and f mod q
non-constant, with c(K )�k deg(f ).
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Quality of the bound

Recall

B(α,β)� (N1/2 + M1/2q1/4 log q) ‖α‖ ‖β‖,

where the implied constant depends only on c(K ).

Assuming that α and β are essentially bounded, the bound
becomes

B(α,β)� M1/2N + MN1/2q1/4 log q

compared to the trivial bound B(α,β)� MN .

This bound can only be non-trivial if N > q1/2. This is a
fundamental Fourier-theoretic constraint.
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Shorter ranges

Recall
Non-trivial bound for B(α,β) for general trace functions if N
or M is a bit larger than q1/2.

No general improvement of the range of effectiveness is known,
but P. Xi obtained stronger savings by an iterative argument.

For smooth bilinear forms (αm = 1 = βn) and MN < q, we
have ∑

m∼M

∑
n∼N

K (mn)� (MN)1/2q1/2−1/8+ε

for any ε > 0 if K is not proportional to an additive character.
This bound is non-trivial as long as MN > q3/4.

(Fouvry, K., Michel, “Algebraic trace functions over the
primes”)
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No general improvement of the range of effectiveness is known,
but P. Xi obtained stronger savings by an iterative argument.
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Bilinear forms with (generalized)

hyper-Kloosterman sums

Main Theorem. Let k ≥ 2, let a be coprime with q. Suppose
that for some δ > 0, we have

M , N ≥ qδ, MN ≥ q3/4+δ.

Then there exists η > 0 such that∑
m∼M

∑
n∼N

αmβn Klk(amn; q)� (MN)1/2−η ‖α‖ ‖β‖

(K., Michel, Sawin: “Bilinear forms with Kloosterman sums
and applications” and “Stratification and averaging for
exponential sums: bilinear forms with generalized Kloosterman
sums”)



Some highlights of the proof
The strategy goes back to Friedlander–Iwaniec and
Fouvry–Michel, but the implementation is much more
complicated on the algebraic-geometric side.

1. Reduction to square-root cancellation in two-variable
complete exponential sums of “sums of products” type
(analytic number theory).

2. Sheaf-theoretic interpretation of the summands,
investigation of the local structure of the resulting objects
(algebraic geometry).

3. Deligne’s Riemann Hypothesis (Weil 2) implies a
representation-theoretic interpretation of square-root
cancellation (algebra).

4. Diophantine interpretation of certain properties of étale
cohomology are used to extract basic information on the
“sum-product” sheaves (analytic number theory).
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Sums of products

The sums to handle are of the form

∑
r∈F×

q

∑
s1,s2∈F×

q

s1 6=s2

l∏
i=1

Klk(s1(r + bi))Klk(s1(r + bi+l))

×
l∏

i=1

Klk(s2(r + bi))Klk(s2(r + bi+l))

where l ≥ 1 is an integer and (b1, . . . , b2l) are parameters.

We need (at least) generic square-root cancellation. Opening
the Kloosterman sums is out of the question!
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Sum-product sheaves

Fix b = (b1, . . . , b2l). Define

L(r) =
1
√
q

∑
s∈F×

q

l∏
i=1

Klk(s(r + bi))Klk(s(r + bi+l)).

Theorem (Deligne, Katz, FKM, “Goursat–Kolchin–Ribet
criterion”)
(1) Unless the bi for 1 ≤ i ≤ l “pair” with the bi with
l + 1 ≤ i ≤ 2l , we have |L(r)| ≤ Ck,l .
(2) The “part of weight 0” of L is a trace function modulo q
of a a sum-product sheaf Fb with conductor bounded in terms
of that of K .
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Diophantine cohomology

The goal is then to prove that, generically, the sum-product
sheaf Fb is geometrically irreducible; the Riemann Hypothesis
then leads to generic square-root cancellation.

Here is one tool where analytic number theory comes back:

Theorem (Deligne, Katz, “Diophantine criterion for
irreducibility). If a sheaf F modulo q, of weight 0, satisfies

lim sup
ν→+∞

1

qν

∑
x∈Fqν

|K (x ; ν)|2 = 1,

then it is geometrically irreducible.
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Another digression

Question. Does there exist δ > 0 such that for any q prime,
any interval I modulo q of length about q1/2, we have

1

q − 1

∑
a∈F×

q

∣∣∣∑
x∈I

e
(ax + x̄

q

)∣∣∣4 � q−1/2−δ ?


