MÖBIUS DISJOINTNESS FOR SKEW PRODUCTS ON $\mathbb{T} \times \Gamma \backslash G$

Jianya LIU
Shandong University

Cetraro
July 12, 2019

Plan

(1) Möbius disjointness and skew products

Plan

(1) Möbius disjointness and skew products
(2) Skew products on $\mathbb{T} \times \Gamma \backslash G$

Plan

(1) Möbius disjointness and skew products
(2) Skew products on $\mathbb{T} \times \Gamma \backslash G$
(3) Proof of Theorem 2

A short abstract

Let \mathbb{T} be the unit circle and $\Gamma \backslash G$ the 3-dimensional Heisenberg nilmanifold. We prove that

- a class of skew products on $\mathbb{T} \times \Gamma \backslash G$ are distal ;

This verifies the Möbius Disjointness Conjecture of Sarnak in this context.

A short abstract

Let \mathbb{T} be the unit circle and $\Gamma \backslash G$ the 3-dimensional Heisenberg nilmanifold. We prove that

- a class of skew products on $\mathbb{T} \times \Gamma \backslash G$ are distal ;
- the Möbius function is linearly disjoint from these skew products.

This verifies the Möbius Disjointness Conjecture of Sarnak in this context.

1. The Möbius disjointness and skew products

The Möbius Disjointness Conjecture

- Let μ be the Möbius function. The behavior of μ is central in the theory of prime numbers.

The Möbius Disjointness Conjecture

- Let μ be the Möbius function. The behavior of μ is central in the theory of prime numbers.
- Let (X, T) be a flow, namely X is a compact metric space and $T: X \rightarrow X$ a continuous map. We say that μ is linearly disjoint from (X, T) if

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n \leq N} \mu(n) f\left(T^{n} x\right)=0
$$

for any $f \in C(X)$ and any $x \in X$.

The Möbius Disjointness Conjecture

- Let μ be the Möbius function. The behavior of μ is central in the theory of prime numbers.
- Let (X, T) be a flow, namely X is a compact metric space and $T: X \rightarrow X$ a continuous map. We say that μ is linearly disjoint from (X, T) if

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n \leq N} \mu(n) f\left(T^{n} x\right)=0
$$

for any $f \in C(X)$ and any $x \in X$.

The Möbius Disjointness Conjecture, Sarnak 2009

The function μ is linearly disjoint from every (X, T) whose entropy is 0 .

Known examples before 2009

Examples:

- (X, T) with X and T trivial \sim PNT.

Recent examples :

Known examples before 2009

Examples:

- (X, T) with X and T trivial \sim PNT.
- (X, T) with $X=\mathbb{T}$ and T a translation
\sim Vinogragov's estimate on exponential sum over primes
\Rightarrow Ternary Goldbach.

Recent examples :

Known examples before 2009

Examples:

- (X, T) with X and T trivial \sim PNT.
- (X, T) with $X=\mathbb{T}$ and T a translation \sim Vinogragov's estimate on exponential sum over primes \Rightarrow Ternary Goldbach.
- (X, T) with X nilmanifold and T a translation \sim Green-Tao.

Recent examples :

Known examples before 2009

Examples:

- (X, T) with X and T trivial \sim PNT.
- (X, T) with $X=\mathbb{T}$ and T a translation \sim Vinogragov's estimate on exponential sum over primes
\Rightarrow Ternary Goldbach.
- (X, T) with X nilmanifold and T a translation \sim Green-Tao.
- Others regular flows...

Recent examples :

Known examples before 2009

Examples:

- (X, T) with X and T trivial \sim PNT.
- (X, T) with $X=\mathbb{T}$ and T a translation \sim Vinogragov's estimate on exponential sum over primes \Rightarrow Ternary Goldbach.
- (X, T) with X nilmanifold and T a translation \sim Green-Tao.
- Others regular flows...

Recent examples :

- A number of results, but mainly for regular flows. Regular/irregular : next page.

Known examples before 2009

Examples:

- (X, T) with X and T trivial \sim PNT.
- (X, T) with $X=\mathbb{T}$ and T a translation \sim Vinogragov's estimate on exponential sum over primes \Rightarrow Ternary Goldbach.
- (X, T) with X nilmanifold and T a translation \sim Green-Tao.
- Others regular flows...

Recent examples :

- A number of results, but mainly for regular flows. Regular/irregular : next page.
- See survey paper by Ferenczi/Kulaga-Przymus/Lemanczyk.

MDC for irregular flows

- Note that there are irregular flows for which the Birkhoff average

$$
\frac{1}{N} \sum_{n \leq N} f\left(T^{n} x\right)
$$

may not exist some $x \in X$.

MDC for irregular flows

- Note that there are irregular flows for which the Birkhoff average

$$
\frac{1}{N} \sum_{n \leq N} f\left(T^{n} x\right)
$$

may not exist some $x \in X$.

- Irregular flows are not very rare. KAM theory, small denominator problem.

MDC for irregular flows

- Note that there are irregular flows for which the Birkhoff average

$$
\frac{1}{N} \sum_{n \leq N} f\left(T^{n} x\right)
$$

may not exist some $x \in X$.

- Irregular flows are not very rare. KAM theory, small denominator problem.
- MDC \Rightarrow For any zero-entropy flow (X, T), any $f \in C(X)$, and any $x \in X$,

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n \leq N} \mu(n) f\left(T^{n} x\right)=0
$$

MDC for irregular flows

- Note that there are irregular flows for which the Birkhoff average

$$
\frac{1}{N} \sum_{n \leq N} f\left(T^{n} x\right)
$$

may not exist some $x \in X$.

- Irregular flows are not very rare. KAM theory, small denominator problem.
- MDC \Rightarrow For any zero-entropy flow (X, T), any $f \in C(X)$, and any $x \in X$,

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n \leq N} \mu(n) f\left(T^{n} x\right)=0
$$

- MDC should hold even for irregular flows !

Distal flows and skew products

- Distal flows are typical examples of zero-entropy flows.

Distal flows and skew products

- Distal flows are typical examples of zero-entropy flows.
- A flow (X, T) with a compatible metric d is called distal if

$$
\inf _{n \geq 0} d\left(T^{n} x, T^{n} y\right)>0
$$

whenever $x \neq y$.

Distal flows and skew products

- Distal flows are typical examples of zero-entropy flows.
- A flow (X, T) with a compatible metric d is called distal if

$$
\inf _{n \geq 0} d\left(T^{n} x, T^{n} y\right)>0
$$

whenever $x \neq y$.

- Furstenberg's structure theorem of minimal distal flows (1963) : skew products are building blocks of distal flows. Complicated ; transfinite induction, etc.

Distal flows and skew products

- Distal flows are typical examples of zero-entropy flows.
- A flow (X, T) with a compatible metric d is called distal if

$$
\inf _{n \geq 0} d\left(T^{n} x, T^{n} y\right)>0
$$

whenever $x \neq y$.

- Furstenberg's structure theorem of minimal distal flows (1963) : skew products are building blocks of distal flows. Complicated ; transfinite induction, etc.
- \{zero-entropy flows $\} \supset$ \{distal flows $\} \supset\{$ skew products $\} \supset$ \{irregular skew products\}.

Irregular skew products on \mathbb{T}^{2}

- Let \mathbb{T}^{2} be the 2-torus, and

$$
T:(x, y) \mapsto(x+\alpha, y+h(x))
$$

where $\alpha \in[0,1)$ and h a continuous real function of period 1 .

Irregular skew products on \mathbb{T}^{2}

- Let \mathbb{T}^{2} be the 2-torus, and

$$
T:(x, y) \mapsto(x+\alpha, y+h(x))
$$

where $\alpha \in[0,1)$ and h a continuous real function of period 1 .

- Furstenberg $(1961):\left(\mathbb{T}^{2}, T\right)$ is distal but irregular. Irregularity comes from non-diophantine α.
\qquad

Irregular skew products on \mathbb{T}^{2}

- Let \mathbb{T}^{2} be the 2-torus, and

$$
T:(x, y) \mapsto(x+\alpha, y+h(x))
$$

where $\alpha \in[0,1)$ and h a continuous real function of period 1 .

- Furstenberg $(1961):\left(\mathbb{T}^{2}, T\right)$ is distal but irregular.

Irregularity comes from non-diophantine α.

- Definition: Fix $B>0$. A real α is diophantine w.r.t B, if

$$
\|m \alpha\| \geq m^{-B}
$$

for all large positive integers m.

Irregular skew products on \mathbb{T}^{2}

- Let \mathbb{T}^{2} be the 2-torus, and

$$
T:(x, y) \mapsto(x+\alpha, y+h(x))
$$

where $\alpha \in[0,1)$ and h a continuous real function of period 1 .

- Furstenberg $(1961):\left(\mathbb{T}^{2}, T\right)$ is distal but irregular. Irregularity comes from non-diophantine α.
- Definition: Fix $B>0$. A real α is diophantine w.r.t B, if

$$
\|m \alpha\| \geq m^{-B}
$$

for all large positive integers m.

- MDC is expected to hold even for irregular $\left(\mathbb{T}^{2}, T\right)$, i.e. for α non-diophantine.

Irregular skew products on \mathbb{T}^{2}, II

Theorem 1 (L.-Sarnak, 2015)

MDC holds for $\left(\mathbb{T}^{2}, T\right)$ for all α, if h is analytic with an additional assumption on its Fourier coefficients.

Irregular skew products on \mathbb{T}^{2}, II

Theorem 1 (L.-Sarnak, 2015)

MDC holds for $\left(\mathbb{T}^{2}, T\right)$ for all α, if h is analytic with an additional assumption on its Fourier coefficients.

- The point : for all α, as is not common in the KAM theory.
- Wang (2017) : Additional assumption removed.
- Huang-Wang-Ye (2019)

Irregular skew products on \mathbb{T}^{2}, II

Theorem 1 (L.-Sarnak, 2015)

MDC holds for $\left(\mathbb{T}^{2}, T\right)$ for all α, if h is analytic with an additional assumption on its Fourier coefficients.

- The point : for all α, as is not common in the KAM theory.
- Wang (2017) : Additional assumption removed.

Irregular skew products on \mathbb{T}^{2}, II

Theorem 1 (L.-Sarnak, 2015)

MDC holds for $\left(\mathbb{T}^{2}, T\right)$ for all α, if h is analytic with an additional assumption on its Fourier coefficients.

- The point : for all α, as is not common in the KAM theory.
- Wang (2017) : Additional assumption removed.
- Huang-Wang-Ye (2019) : h relaxed to C^{∞}-smooth.

Irregular skew products on \mathbb{T}^{2}, II

Theorem 1 (L.-Sarnak, 2015)

MDC holds for $\left(\mathbb{T}^{2}, T\right)$ for all α, if h is analytic with an additional assumption on its Fourier coefficients.

- The point : for all α, as is not common in the KAM theory.
- Wang (2017) : Additional assumption removed.
- Huang-Wang-Ye (2019) : h relaxed to C^{∞}-smooth.
- Kanigowski-Lemanczyk-Radziwill (arXiv 2019) : h absolutely continuous.

2. Skew products on $\mathbb{T} \times \Gamma \backslash G$

Skew products on $\mathbb{T} \times \Gamma \backslash G$

- Now let G be the 3-dimensional Heisenberg group with the cocompact discrete subgroup Γ, namely

$$
G=\left(\begin{array}{lll}
1 & \mathbb{R} & \mathbb{R} \\
0 & 1 & \mathbb{R} \\
0 & 0 & 1
\end{array}\right), \quad \Gamma=\left(\begin{array}{lll}
1 & \mathbb{Z} \\
0 & 1 & \mathbb{Z} \\
0 & 0 & 1
\end{array}\right) .
$$

Then $\Gamma \backslash G$ is the 3-dimensional Heisenberg nilmanifold.

Skew products on $\mathbb{T} \times \Gamma \backslash G$

- Now let G be the 3-dimensional Heisenberg group with the cocompact discrete subgroup Γ, namely

$$
G=\left(\begin{array}{lll}
1 & \mathbb{R} & \mathbb{R} \\
0 & 1 & \mathbb{R} \\
0 & 0 & 1
\end{array}\right), \quad \Gamma=\left(\begin{array}{lll}
1 & \mathbb{Z} \\
0 & 1 & \mathbb{Z} \\
0 & 0 & 1
\end{array}\right) .
$$

Then $\Gamma \backslash G$ is the 3-dimensional Heisenberg nilmanifold.

- Study the MDC for skew products on

$$
\mathbb{T} \times \Gamma \backslash G
$$

Skew products on $\mathbb{T} \times \Gamma \backslash G$

- Now let G be the 3-dimensional Heisenberg group with the cocompact discrete subgroup Γ, namely

$$
G=\left(\begin{array}{lll}
1 & \mathbb{R} & \mathbb{R} \\
0 & 1 & \mathbb{R} \\
0 & 0 & 1
\end{array}\right), \quad \Gamma=\left(\begin{array}{lll}
1 & \mathbb{Z} \\
0 & 1 & \mathbb{Z} \\
0 & 0 & 1
\end{array}\right) .
$$

Then $\Gamma \backslash G$ is the 3-dimensional Heisenberg nilmanifold.

- Study the MDC for skew products on

$$
\mathbb{T} \times \Gamma \backslash G
$$

- Goes beyond \mathbb{T}^{2}.

Skew products on $\mathbb{T} \times \Gamma \backslash G$, II

Theorem 2 (Huang-L.-Wang, 2019 arXiv)

Let $\alpha \in[0,1)$ and let φ, ψ be C^{∞}-smooth functions with period 1 . Define the skew product T on $\mathbb{T} \times \Gamma \backslash G$ by

$$
T:\left(t,\lceil g) \mapsto\left(t+\alpha,\left\lceil g\left(\begin{array}{ccc}
1 & \varphi(t) & \psi(t) \\
0 & 1 & \varphi(t) \\
0 & 0 & 1
\end{array}\right)\right)\right.\right.
$$

Then, for any $(t, \Gamma g) \in \mathbb{T} \times \Gamma \backslash G$ and any $f \in C(\mathbb{T} \times \Gamma \backslash G)$,

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} \mu(n) f\left(T^{n}(t, \Gamma g)\right)=0
$$

Remarks

- Note that the skew product $(\mathbb{T} \times \Gamma \backslash G, T)$ in Theorem 2 is irregular, but Theorem 2 holds for all α.

Remarks

- Note that the skew product $(\mathbb{T} \times \Gamma \backslash G, T)$ in Theorem 2 is irregular, but Theorem 2 holds for all α.
- The flow ($\mathbb{T} \times \Gamma \backslash G, T$) is distal ; see next page Proposition 3. Thus Theorem 2 verifies the MDC in this context.

Remarks

Proposition 3 (Distality of $(\mathbb{T} \times \Gamma \backslash G, S)$)

Denote by S the skew product

$$
S:\left(t,\ulcorner g) \mapsto\left(t+\alpha,\left\ulcorner g\left(\begin{array}{ccc}
1 & \varphi_{2}(t) & \psi(t) \\
0 & 1 & \varphi_{1}(t) \\
0 & 0 & 1
\end{array}\right)\right)\right.\right.
$$

Then the flow $(\mathbb{T} \times \Gamma \backslash G, S)$ is distal.

Remarks

Proposition 3 (Distality of $(\mathbb{T} \times \Gamma \backslash G, S)$)

Denote by S the skew product

$$
S:\left(t,\ulcorner g) \mapsto\left(t+\alpha,\left\ulcorner g\left(\begin{array}{ccc}
1 & \varphi_{2}(t) & \psi(t) \\
0 & 1 & \varphi_{1}(t) \\
0 & 0 & 1
\end{array}\right)\right)\right.\right.
$$

Then the flow $(\mathbb{T} \times \Gamma \backslash G, S)$ is distal.

- Thus MDC should hold for $(\mathbb{T} \times \Gamma \backslash G, S)$.

Remarks

Proposition 3 (Distality of $(\mathbb{T} \times \Gamma \backslash G, S)$)

Denote by S the skew product

$$
S:\left(t,\ulcorner g) \mapsto\left(t+\alpha,\left\ulcorner g\left(\begin{array}{ccc}
1 & \varphi_{2}(t) & \psi(t) \\
0 & 1 & \varphi_{1}(t) \\
0 & 0 & 1
\end{array}\right)\right)\right.\right.
$$

Then the flow $(\mathbb{T} \times \Gamma \backslash G, S)$ is distal.

- Thus MDC should hold for $(\mathbb{T} \times \Gamma \backslash G, S)$.
- S is more general than T.

Remarks

Proposition 3 (Distality of $(\mathbb{T} \times \Gamma \backslash G, S)$)

Denote by S the skew product

$$
S:\left(t,\ulcorner g) \mapsto\left(t+\alpha,\left\ulcorner g\left(\begin{array}{ccc}
1 & \varphi_{2}(t) & \psi(t) \\
0 & 1 & \varphi_{1}(t) \\
0 & 0 & 1
\end{array}\right)\right)\right.\right.
$$

Then the flow $(\mathbb{T} \times \Gamma \backslash G, S)$ is distal.

- Thus MDC should hold for $(\mathbb{T} \times \Gamma \backslash G, S)$.
- S is more general than T.
- Our method works well for $(\mathbb{T} \times \Gamma \backslash G, T)$, but not directly for $(\mathbb{T} \times \Gamma \backslash G, S)$. It seems interesting to generalize Theorem 2 to $(\mathbb{T} \times \Gamma \backslash G, S)$.

3. Proof of Theorem 2 An illustration

3.1 Analysis on $C(\mathbb{T} \times \Gamma \backslash G)$

- Let G be the 3-dimensional Heisenberg group with the cocompact discrete subgroup Γ, and $\Gamma \backslash G$ the 3-dimensional Heisenberg nilmanifold.
- Let G be the 3-dimensional Heisenberg group with the cocompact discrete subgroup Γ, and $\Gamma \backslash G$ the 3-dimensional Heisenberg nilmanifold.
- Want to construct a subset of $C(\mathbb{T} \times \Gamma \backslash G)$, which spans a \mathbb{C}-linear subspace that is dense in $C(\mathbb{T} \times \Gamma \backslash G)$.
- For integers m, j with $0 \leq j \leq m-1$, define the functions $\psi_{m j}$ and $\psi_{m j}^{*}$ on G by

$$
\psi_{m j}\left(\begin{array}{lll}
1 & y & z \\
0 & 1 & x \\
0 & 0 & 1
\end{array}\right)=e(m z+j x) \sum_{k \in \mathbb{Z}} e^{-\pi\left(y+k+\frac{j}{m}\right)^{2}} e(m k x)
$$

and

$$
\begin{aligned}
& \psi_{m j}^{*}\left(\begin{array}{lll}
1 & y & z \\
0 & 1 & x \\
0 & 0 & 1
\end{array}\right) \\
& =i e(m z+j x) \sum_{k \in \mathbb{Z}} e^{-\pi\left(y+k+\frac{j}{m}+\frac{1}{2}\right)^{2}} e\left(\frac{1}{2}\left(y+k+\frac{j}{m}\right)+m k x\right) .
\end{aligned}
$$

- For integers m, j with $0 \leq j \leq m-1$, define the functions $\psi_{m j}$ and $\psi_{m j}^{*}$ on G by

$$
\psi_{m j}\left(\begin{array}{lll}
1 & y & z \\
0 & 1 & x \\
0 & 0 & 1
\end{array}\right)=e(m z+j x) \sum_{k \in \mathbb{Z}} e^{-\pi\left(y+k+\frac{j}{m}\right)^{2}} e(m k x)
$$

and

$$
\begin{aligned}
& \psi_{m j}^{*}\left(\begin{array}{lll}
1 & y & z \\
0 & 1 & x \\
0 & 0 & 1
\end{array}\right) \\
& =i e(m z+j x) \sum_{k \in \mathbb{Z}} e^{-\pi\left(y+k+\frac{j}{m}+\frac{1}{2}\right)^{2}} e\left(\frac{1}{2}\left(y+k+\frac{j}{m}\right)+m k x\right) .
\end{aligned}
$$

- We check that $\psi_{m j}$ and $\psi_{m j}^{*}$ are Γ-invariant, that is

$$
\psi_{m j}(\gamma g)=\psi_{m j}(g), \quad \psi_{m j}^{*}(\gamma g)=\psi_{m j}^{*}(g)
$$

for any $g \in G$ and for any $\gamma \in \Gamma$. Thus $\psi_{m j}$ and $\psi_{m j}^{*}$ can be regarded as functions on the nilmanifold $\Gamma \backslash G$.

- Let \mathcal{A} be the subset of $f \in C(\mathbb{T} \times \Gamma \backslash G)$ such that

$$
f:\left(t, \Gamma\left(\begin{array}{lll}
1 & y & z \\
0 & 1 & x \\
0 & 0 & 1
\end{array}\right)\right) \mapsto e\left(\xi_{1} t+\xi_{2} x+\xi_{3} y\right) \psi\left(\Gamma\left(\begin{array}{lll}
1 & y & z \\
0 & 1 & x \\
0 & 0 & 1
\end{array}\right)\right)
$$

where $\xi_{1}, \xi_{2}, \xi_{3} \in \mathbb{Z}$, and $\psi=\psi_{m j}, \bar{\psi}_{m j}, \psi_{m j}^{*}$ or $\bar{\psi}_{m j}^{*}$ for some $0 \leq j \leq m-1$.

- Let \mathcal{A} be the subset of $f \in C(\mathbb{T} \times \Gamma \backslash G)$ such that

$$
f:\left(t, \Gamma\left(\begin{array}{lll}
1 & y & z \\
0 & 1 & x \\
0 & 0 & 1
\end{array}\right)\right) \mapsto e\left(\xi_{1} t+\xi_{2} x+\xi_{3} y\right) \psi\left(\Gamma\left(\begin{array}{lll}
1 & y & z \\
0 & 1 & x \\
0 & 0 & 1
\end{array}\right)\right)
$$

where $\xi_{1}, \xi_{2}, \xi_{3} \in \mathbb{Z}$, and $\psi=\psi_{m j}, \bar{\psi}_{m j}, \psi_{m j}^{*}$ or $\bar{\psi}_{m j}^{*}$ for some $0 \leq j \leq m-1$.

- Let \mathcal{B} be subset of $f \in C(\mathbb{T} \times \Gamma \backslash G)$ satisfying

$$
f:(t, \Gamma g) \mapsto f_{1}(t) f_{2}(\Gamma g)
$$

with $f_{1} \in C(\mathbb{T})$ and $f_{2} \in C_{0}(\Gamma \backslash G)$.

- Let \mathcal{A} be the subset of $f \in C(\mathbb{T} \times \Gamma \backslash G)$ such that

$$
f:\left(t, \Gamma\left(\begin{array}{lll}
1 & y & z \\
0 & 1 & x \\
0 & 0 & 1
\end{array}\right)\right) \mapsto e\left(\xi_{1} t+\xi_{2} x+\xi_{3} y\right) \psi\left(\Gamma\left(\begin{array}{lll}
1 & y & z \\
0 & 1 & x \\
0 & 0 & 1
\end{array}\right)\right)
$$

where $\xi_{1}, \xi_{2}, \xi_{3} \in \mathbb{Z}$, and $\psi=\psi_{m j}, \bar{\psi}_{m j}, \psi_{m j}^{*}$ or $\bar{\psi}_{m j}^{*}$ for some $0 \leq j \leq m-1$.

- Let \mathcal{B} be subset of $f \in C(\mathbb{T} \times \Gamma \backslash G)$ satisfying

$$
f:(t, \Gamma g) \mapsto f_{1}(t) f_{2}(\Gamma g)
$$

with $f_{1} \in C(\mathbb{T})$ and $f_{2} \in C_{0}(\Gamma \backslash G)$.

Proposition 4 (Structure of $C(\mathbb{T} \times \Gamma \backslash G)$)

The \mathbb{C}-linear subspace spanned by $\mathcal{A} \cup \mathcal{B}$ is dense in $C(\mathbb{T} \times \Gamma \backslash G)$.

3.2 Theorem 2 For RATIONAL α

The case $f \in \mathcal{A}$, I

By a straightforward calculation,

$$
T^{n}:\left(t_{0}, \Gamma g_{0}\right) \mapsto\left(t_{0}+n \alpha, \Gamma g_{n}\right),
$$

where, on writing

$$
g_{0}=\left(\begin{array}{ccc}
1 & y_{0} & z_{0} \\
0 & 1 & x_{0} \\
0 & 0 & 1
\end{array}\right), \quad g_{n}=\left(\begin{array}{ccc}
1 & y_{n} & z_{n} \\
0 & 1 & x_{n} \\
0 & 0 & 1
\end{array}\right),
$$

we have

$$
\left\{\begin{array}{l}
x_{n}=x_{0}+S_{1}\left(n ; t_{0}\right) \\
y_{n}=y_{0}+S_{1}\left(n ; t_{0}\right), \\
z_{n}=z_{0}+\frac{1}{2}\left(S_{1}\left(n ; t_{0}\right)\right)^{2}-\frac{1}{2} S_{3}\left(n ; t_{0}\right)+S_{2}\left(n ; t_{0}\right)+y_{0} S_{1}\left(n ; t_{0}\right),
\end{array}\right.
$$

and

$$
S_{1}(n ; t)=\sum_{l=0}^{n-1} \varphi(\alpha l+t), \quad S_{2}(n ; t) \ldots \psi, \quad S_{3}(n ; t) \ldots \varphi^{2}
$$

The case $f \in \mathcal{A}$, II

- Recall for $f \in \mathcal{A}$,

$$
f\left(t, \Gamma\left(\begin{array}{lll}
1 & y & z \\
0 & 1 & x \\
0 & 0 & 1
\end{array}\right)\right)=e(t+x+y+z) \sum_{k \in \mathbb{Z}} e^{-\pi(y+k)^{2}} e(k x)
$$

The case $f \in \mathcal{A}$, II

- Recall for $f \in \mathcal{A}$,

$$
f\left(t, \Gamma\left(\begin{array}{lll}
1 & y & z \\
0 & 1 & x \\
0 & 0 & 1
\end{array}\right)\right)=e(t+x+y+z) \sum_{k \in \mathbb{Z}} e^{-\pi(y+k)^{2}} e(k x)
$$

- Compute

$$
\begin{aligned}
& f\left(T^{n}\left(t_{0}, \Gamma g_{0}\right)\right) \\
& =f\left(t_{0}+n \alpha, \Gamma\left(\begin{array}{ccc}
1 & y_{n} & z_{n} \\
0 & 1 & x_{n} \\
0 & 0 & 1
\end{array}\right)\right) \\
& =e\left(t_{0}+n \alpha+x_{n}+y_{n}+z_{n}\right) \sum_{k \in \mathbb{Z}} e^{-\pi\left(y_{n}+k\right)^{2}} e\left(k x_{n}\right) .
\end{aligned}
$$

Rational α reduces to Hua

- For rational $\alpha=a / q$, one rearranges n into arithmetic progressions modulo q :

$$
\sum_{n \leq N} \mu(n) f\left(T^{n}\left(t_{0},\left\ulcorner g_{0}\right)\right) \ll\left|\sum_{m \in \mathbb{Z}} \widehat{w}(m) \sum_{b=0}^{q-1} \sum_{\substack{n \leq N \\ n \equiv b \bmod q}} \mu(n) e(P(n ; b))\right|\right.
$$

Reduces to Hua.

Rational α reduces to Hua

- For rational $\alpha=a / q$, one rearranges n into arithmetic progressions modulo q :

$$
\sum_{n \leq N} \mu(n) f\left(T^{n}\left(t_{0},\left\ulcorner g_{0}\right)\right) \ll\left|\sum_{m \in \mathbb{Z}} \widehat{w}(m) \sum_{b=0}^{q-1} \sum_{\substack{n \leq N \\ n \equiv b \bmod q}} \mu(n) e(P(n ; b))\right|\right.
$$

Reduces to Hua.

- Hua (1938) : Let $f(x) \in \mathbb{R}[x]$. Let $0 \leq a<q$. Then, for arbitrary $A>0$,

$$
\sum_{\substack{n \leq N \\ n \equiv a \bmod q}} \mu(n) e(f(n)) \ll \frac{N}{\log ^{A} N}
$$

where the implied constant depend on A, q and d, but is independent of the coefficients of f.

3.2 Measure complexity

Measure complexity

- Let (X, T) be a flow. For a compatible metric d, define

$$
\bar{d}_{n}(x, y)=\frac{1}{n} \sum_{j=0}^{n-1} d\left(T^{j} x, T^{j} y\right)
$$

for $x, y \in X$, and let

$$
B_{\bar{d}_{n}}(x, \varepsilon)=\left\{y \in X: \bar{d}_{n}(x, y)<\varepsilon\right\} .
$$

Measure complexity

- Let (X, T) be a flow. For a compatible metric d, define

$$
\bar{d}_{n}(x, y)=\frac{1}{n} \sum_{j=0}^{n-1} d\left(T^{j} x, T^{j} y\right)
$$

for $x, y \in X$, and let

$$
B_{\bar{d}_{n}}(x, \varepsilon)=\left\{y \in X: \bar{d}_{n}(x, y)<\varepsilon\right\} .
$$

- Let $M(X, T)$ be the set of all T-invariant Borel probability measures on X. For $\rho \in M(X, T)$, write
$s_{n}(X, T, d, \rho, \varepsilon)$
$=\min \left\{m \in \mathbb{N}: \exists x_{1}, \ldots, x_{m} \in X\right.$ s.t. $\left.\rho\left(\bigcup_{j=1}^{m} B_{\bar{d}_{n}}\left(x_{j}, \varepsilon\right)\right)>1-\varepsilon\right\}$.

Measure complexity

- The measure complexity of (X, T, ρ) is sub-polynomial if

$$
\liminf _{n \rightarrow \infty} \frac{s_{n}(X, T, d, \rho, \varepsilon)}{n^{\tau}}=0
$$

for any $\tau>0$.

Measure complexity

- The measure complexity of (X, T, ρ) is sub-polynomial if

$$
\liminf _{n \rightarrow \infty} \frac{s_{n}(X, T, d, \rho, \varepsilon)}{n^{\tau}}=0
$$

for any $\tau>0$.

- Huang-Wang-Ye (2019) : If the measure complexity of (X, T, ρ) is sub-polynomial for any $\rho \in M(X, T)$, then MDC holds for (X, T).

Measure complexity

- The measure complexity of (X, T, ρ) is sub-polynomial if

$$
\liminf _{n \rightarrow \infty} \frac{s_{n}(X, T, d, \rho, \varepsilon)}{n^{\tau}}=0
$$

for any $\tau>0$.

- Huang-Wang-Ye (2019) : If the measure complexity of (X, T, ρ) is sub-polynomial for any $\rho \in M(X, T)$, then MDC holds for (X, T).
- Number theory behind HWY : Matomäki-Radziwill-Tao, averaged form of Chowla. Chowla \Rightarrow MDC. The measure complexity defined above can be viewed as an averaged form of entropy.

3.3 Theorem 2 For inRational α

Theorem 2 for irrational α

Proposition 4

For irrational α, the measure complexity of $(\mathbb{T} \times \Gamma \backslash G, T, \rho)$ is sub-polynomial for any $\rho \in M(\mathbb{T} \times \Gamma \backslash G, T)$.

- The continued fraction expansion :

$$
\alpha=\left[0 ; a_{1}, a_{2}, \ldots, a_{k}, \ldots\right]=\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{a_{3}+\ldots}}}
$$

This expansion is infinite since α is irrational. The k-th convergent of α is

$$
\frac{I_{k}}{q_{k}}=\left[0 ; a_{1}, a_{2}, \ldots, a_{k}\right]
$$

- The continued fraction expansion :

$$
\alpha=\left[0 ; a_{1}, a_{2}, \ldots, a_{k}, \ldots\right]=\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{a_{3}+\ldots}}}
$$

This expansion is infinite since α is irrational. The k-th convergent of α is

$$
\frac{I_{k}}{q_{k}}=\left[0 ; a_{1}, a_{2}, \ldots, a_{k}\right] .
$$

- Let $\mathcal{Q}=\left\{q_{k}: k \geq 1\right\}$. For $B>2$, define

$$
\begin{aligned}
\mathcal{Q}^{b} & =\left\{q_{k} \in \mathcal{Q}: q_{k+1} \leq q_{k}^{B}\right\} \cup\{1\}, \\
\mathcal{Q}^{\sharp} & =\left\{q_{k} \in \mathcal{Q}: q_{k+1}>q_{k}^{B}>1\right\} .
\end{aligned}
$$

The main difficulty comes from \mathcal{Q}^{\sharp}, which includes the irregular case.

Complicated argument \rightarrow

Write $n_{k}=q_{k}^{B-1}$. Then $\mathbb{T} \times \Gamma \backslash G$ can be covered by $\varepsilon^{-1} q_{k}^{7}$ balls of radius 20ε under the metric $\bar{d}_{n_{k}}$. It follows that

$$
s_{n_{k}}(\mathbb{T} \times \Gamma \backslash G, T, d, 20 \varepsilon) \leq \varepsilon^{-1} q_{k}^{7} .
$$

\mathcal{Q}^{\sharp} infinite

Since \mathcal{Q}^{\sharp} is infinite, we can let q_{k} tend to infinity along \mathcal{Q}^{\sharp}, getting

$$
\begin{aligned}
& \liminf _{n \rightarrow \infty} \frac{s_{n}(\mathbb{T} \times \Gamma \backslash G, T, d, 20 \varepsilon)}{n^{\tau}} \\
& \leq \liminf _{\substack{k \rightarrow \infty \\
q_{k} \in Q^{\sharp}}} \frac{s_{n_{k}}(\mathbb{T} \times \Gamma \backslash G, T, d, 20 \varepsilon)}{n_{k}^{\tau}} \\
& \leq \liminf _{\substack{k \rightarrow \infty \\
q_{k} \in Q^{\sharp}}} \frac{\varepsilon^{-1} q_{k}^{7}}{q_{k}^{8+\tau}} \\
& =0 .
\end{aligned}
$$

Since ε can be arbitrarily small, this means that the measure complexity of $(\mathbb{T} \times \Gamma \backslash G, T, \rho)$ is weaker that n^{τ} when \mathcal{Q}^{\sharp} is infinite.

Thank you!

