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Möbius disjointness and skew products
Skew products on T× Γ\G

Proof of Theorem 2

A short abstract

Let T be the unit circle and Γ\G the 3-dimensional Heisenberg
nilmanifold. We prove that

a class of skew products on T× Γ\G are distal ;
the Möbius function is linearly disjoint from these skew
products.

This verifies the Möbius Disjointness Conjecture of Sarnak in this
context.
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Möbius disjointness and skew products
Skew products on T× Γ\G

Proof of Theorem 2

1. The Möbius disjointness and skew products
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Möbius disjointness and skew products
Skew products on T× Γ\G

Proof of Theorem 2

The Möbius Disjointness Conjecture

Let µ be the Möbius function. The behavior of µ is central in
the theory of prime numbers.
Let (X ,T ) be a flow, namely X is a compact metric space
and T : X → X a continuous map. We say that µ is linearly
disjoint from (X ,T ) if

lim
N→∞

1
N
∑
n≤N

µ(n)f (T nx) = 0

for any f ∈ C(X ) and any x ∈ X .

The Möbius Disjointness Conjecture, Sarnak 2009
The function µ is linearly disjoint from every (X ,T ) whose entropy
is 0.
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Möbius disjointness and skew products
Skew products on T× Γ\G

Proof of Theorem 2

Known examples before 2009

Examples :

(X ,T ) with X and T trivial ∼ PNT.
(X ,T ) with X = T and T a translation
∼ Vinogragov’s estimate on exponential sum over primes
⇒ Ternary Goldbach.
(X ,T ) with X nilmanifold and T a translation ∼ Green-Tao.
Others regular flows . . .

Recent examples :

A number of results, but mainly for regular flows.
Regular/irregular : next page.
See survey paper by Ferenczi/Kulaga-Przymus/Lemanczyk.
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Jianya LIU Shandong University Möbius disjointness for skew products on T× Γ\G
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Möbius disjointness and skew products
Skew products on T× Γ\G

Proof of Theorem 2

MDC for irregular flows

Note that there are irregular flows for which the Birkhoff
average

1
N
∑
n≤N

f (T nx)

may not exist some x ∈ X .
Irregular flows are not very rare. KAM theory, small
denominator problem.
MDC ⇒ For any zero-entropy flow (X ,T ), any f ∈ C(X ),
and any x ∈ X ,

lim
N→∞

1
N
∑
n≤N

µ(n)f (T nx) = 0.

MDC should hold even for irregular flows !
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Möbius disjointness and skew products
Skew products on T× Γ\G

Proof of Theorem 2

MDC for irregular flows

Note that there are irregular flows for which the Birkhoff
average

1
N
∑
n≤N

f (T nx)

may not exist some x ∈ X .
Irregular flows are not very rare. KAM theory, small
denominator problem.
MDC ⇒ For any zero-entropy flow (X ,T ), any f ∈ C(X ),
and any x ∈ X ,

lim
N→∞

1
N
∑
n≤N

µ(n)f (T nx) = 0.

MDC should hold even for irregular flows !
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Skew products on T× Γ\G

Proof of Theorem 2

Distal flows and skew products

Distal flows are typical examples of zero-entropy flows.
A flow (X ,T ) with a compatible metric d is called distal if

inf
n≥0

d(T nx ,T ny) > 0

whenever x 6= y .
Furstenberg’s structure theorem of minimal distal flows
(1963) : skew products are building blocks of distal flows.
Complicated ; transfinite induction, etc.
{zero-entropy flows} ⊃ {distal flows} ⊃ {skew products} ⊃
{irregular skew products}.
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Skew products on T× Γ\G

Proof of Theorem 2

Irregular skew products on T2

Let T2 be the 2-torus, and

T : (x , y) 7→ (x + α, y + h(x)),

where α ∈ [0, 1) and h a continuous real function of period 1.
Furstenberg (1961) : (T2,T ) is distal but irregular.
Irregularity comes from non-diophantine α.
Definition : Fix B > 0. A real α is diophantine w.r.t B, if

‖mα‖ ≥ m−B

for all large positive integers m.
MDC is expected to hold even for irregular (T2,T ), i.e. for α
non-diophantine.
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Proof of Theorem 2

Irregular skew products on T2, II

Theorem 1 (L.-Sarnak, 2015)
MDC holds for (T2,T ) for all α, if h is analytic with an additional
assumption on its Fourier coefficients.

The point : for all α, as is not common in the KAM theory.
Wang (2017) : Additional assumption removed.
Huang-Wang-Ye (2019) : h relaxed to C∞-smooth.
Kanigowski-Lemanczyk-Radziwill (arXiv 2019) : h absolutely
continuous.
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Proof of Theorem 2

2. Skew products on T× Γ\G
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Proof of Theorem 2

Skew products on T× Γ\G

Now let G be the 3-dimensional Heisenberg group with the
cocompact discrete subgroup Γ, namely

G =
( 1 R R

0 1 R
0 0 1

)
, Γ =

( 1 Z Z
0 1 Z
0 0 1

)
.

Then Γ\G is the 3-dimensional Heisenberg nilmanifold.
Study the MDC for skew products on

T× Γ\G .

Goes beyond T2.
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Proof of Theorem 2

Skew products on T× Γ\G , II

Theorem 2 (Huang-L.-Wang, 2019 arXiv)
Let α ∈ [0, 1) and let ϕ,ψ be C∞-smooth functions with period 1.
Define the skew product T on T× Γ\G by

T : (t, Γg) 7→

t + α, Γg

1 ϕ(t) ψ(t)
0 1 ϕ(t)
0 0 1


 .

Then, for any (t, Γg) ∈ T× Γ\G and any f ∈ C(T× Γ\G),

lim
N→∞

1
N

N∑
n=1

µ(n)f (T n(t, Γg)) = 0.
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Proof of Theorem 2

Remarks

Note that the skew product (T× Γ\G ,T ) in Theorem 2 is
irregular, but Theorem 2 holds for all α.
The flow (T× Γ\G ,T ) is distal ; see next page Proposition 3.
Thus Theorem 2 verifies the MDC in this context.
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Proof of Theorem 2

Remarks

Proposition 3 (Distality of (T× Γ\G ,S))
Denote by S the skew product

S : (t, Γg) 7→

t + α, Γg

1 ϕ2(t) ψ(t)
0 1 ϕ1(t)
0 0 1


 .

Then the flow (T× Γ\G , S) is distal.

Thus MDC should hold for (T× Γ\G , S).
S is more general than T .
Our method works well for (T× Γ\G ,T ), but not directly for
(T× Γ\G ,S). It seems interesting to generalize Theorem 2 to
(T× Γ\G ,S).
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(T× Γ\G ,S). It seems interesting to generalize Theorem 2 to
(T× Γ\G ,S).
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3. Proof of Theorem 2
An illustration
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3.1 Analysis on C(T× Γ\G)
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Let G be the 3-dimensional Heisenberg group with the
cocompact discrete subgroup Γ, and Γ\G the 3-dimensional
Heisenberg nilmanifold.
Want to construct a subset of C(T× Γ\G), which spans a
C-linear subspace that is dense in C(T× Γ\G).
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For integers m, j with 0 ≤ j ≤ m− 1, define the functions ψmj
and ψ∗mj on G by

ψmj

(
1 y z
0 1 x
0 0 1

)
= e(mz + jx)

∑
k∈Z

e−π(y+k+ j
m )2e(mkx),

and

ψ∗mj

(
1 y z
0 1 x
0 0 1

)
= ie(mz + jx)

∑
k∈Z

e−π(y+k+ j
m + 1

2 )2e
(1

2

(
y + k + j

m

)
+ mkx

)
.

We check that ψmj and ψ∗mj are Γ-invariant, that is

ψmj(γg) = ψmj(g), ψ∗mj(γg) = ψ∗mj(g)

for any g ∈ G and for any γ ∈ Γ. Thus ψmj and ψ∗mj can be
regarded as functions on the nilmanifold Γ\G .
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Let A be the subset of f ∈ C(T× Γ\G) such that

f :
(

t, Γ
(

1 y z
0 1 x
0 0 1

))
7→ e(ξ1t + ξ2x + ξ3y)ψ

(
Γ
(

1 y z
0 1 x
0 0 1

))
where ξ1, ξ2, ξ3 ∈ Z, and ψ = ψmj , ψmj , ψ

∗
mj or ψ∗mj for some

0 ≤ j ≤ m − 1.
Let B be subset of f ∈ C(T× Γ\G) satisfying

f : (t, Γg) 7→ f1(t)f2(Γg)

with f1 ∈ C(T) and f2 ∈ C0(Γ\G).

Proposition 4 (Structure of C(T× Γ\G))
The C-linear subspace spanned by A ∪ B is dense in C(T× Γ\G).
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3.2 Theorem 2 for rational α
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The case f ∈ A, I
By a straightforward calculation,

T n : (t0, Γg0) 7→ (t0 + nα, Γgn),
where, on writing

g0 =
(

1 y0 z0
0 1 x0
0 0 1

)
, gn =

(
1 yn zn
0 1 xn
0 0 1

)
,

we have
xn = x0 + S1(n; t0),
yn = y0 + S1(n; t0),
zn = z0 + 1

2 (S1(n; t0))2 − 1
2 S3(n; t0) + S2(n; t0) + y0S1(n; t0),

and

S1(n; t) =
n−1∑
l=0

ϕ(αl + t), S2(n; t) . . . ψ, S3(n; t) . . . ϕ2.
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The case f ∈ A, II

Recall for f ∈ A,

f
(

t, Γ
(

1 y z
0 1 x
0 0 1

))
= e(t + x + y + z)

∑
k∈Z

e−π(y+k)2e(kx).

Compute

f (T n(t0, Γg0))

= f
(

t0 + nα, Γ
(

1 yn zn
0 1 xn
0 0 1

))
= e(t0 + nα + xn + yn + zn)

∑
k∈Z

e−π(yn+k)2e(kxn).
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Rational α reduces to Hua

For rational α = a/q, one rearranges n into arithmetic
progressions modulo q :

∑
n≤N

µ(n)f (T n(t0, Γg0))�
∣∣∣∣ ∑

m∈Z
ŵ(m)

q−1∑
b=0

∑
n≤N

n≡b mod q

µ(n)e(P(n; b))
∣∣∣∣.

Reduces to Hua.
Hua (1938) : Let f (x) ∈ R[x ]. Let 0 ≤ a < q. Then, for
arbitrary A > 0, ∑

n≤N
n≡a mod q

µ(n)e(f (n))� N
logA N

,

where the implied constant depend on A, q and d , but is
independent of the coefficients of f .
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3.2 Measure complexity
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Möbius disjointness and skew products
Skew products on T× Γ\G

Proof of Theorem 2

Measure complexity

Let (X ,T ) be a flow. For a compatible metric d , define

dn(x , y) = 1
n

n−1∑
j=0

d(T jx ,T jy)

for x , y ∈ X , and let

Bdn
(x , ε) = {y ∈ X : dn(x , y) < ε}.

Let M(X ,T ) be the set of all T -invariant Borel probability
measures on X . For ρ ∈ M(X ,T ), write

sn(X ,T , d , ρ, ε)

= min
{

m ∈ N : ∃x1, . . . , xm ∈ X s.t. ρ
( m⋃

j=1
Bdn

(xj , ε)
)
> 1− ε

}
.
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Measure complexity

The measure complexity of (X ,T , ρ) is sub-polynomial if

lim inf
n→∞

sn(X ,T , d , ρ, ε)
nτ = 0

for any τ > 0.
Huang-Wang-Ye (2019) : If the measure complexity of
(X ,T , ρ) is sub-polynomial for any ρ ∈ M(X ,T ), then MDC
holds for (X ,T ).
Number theory behind HWY : Matomäki-Radziwill-Tao,
averaged form of Chowla. Chowla ⇒ MDC. The measure
complexity defined above can be viewed as an averaged form
of entropy.
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3.3 Theorem 2 for irrational α
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Theorem 2 for irrational α

Proposition 4
For irrational α, the measure complexity of (T× Γ\G ,T , ρ) is
sub-polynomial for any ρ ∈ M(T× Γ\G ,T ).
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The continued fraction expansion :

α = [0; a1, a2, . . . , ak , . . .] = 1
a1 + 1

a2+ 1
a3+...

This expansion is infinite since α is irrational. The k-th
convergent of α is

lk
qk

= [0; a1, a2, . . . , ak ].

Let Q = {qk : k ≥ 1}. For B > 2, define

Q[ = {qk ∈ Q : qk+1 ≤ qB
k } ∪ {1},

Q] = {qk ∈ Q : qk+1 > qB
k > 1}.

The main difficulty comes from Q], which includes the
irregular case.
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Complicated argument →

Write nk = qB−1
k . Then T× Γ\G can be covered by ε−1q7

k balls of
radius 20ε under the metric dnk . It follows that

snk (T× Γ\G ,T , d , 20ε) ≤ ε−1q7
k .
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Q] infinite

Since Q] is infinite, we can let qk tend to infinity along Q], getting

lim inf
n→∞

sn(T× Γ\G ,T , d , 20ε)
nτ

≤ lim inf
k→∞

qk∈Q]

snk (T× Γ\G ,T , d , 20ε)
nτk

≤ lim inf
k→∞

qk∈Q]

ε−1q7
k

q8+τ
k

= 0.

Since ε can be arbitrarily small, this means that the measure
complexity of (T×Γ\G ,T , ρ) is weaker that nτ when Q] is infinite.
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Thank you !
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