Möbius disjointness for skew products on $\mathbb{T}\times \Gamma\backslash G$

Jianya LIU Shandong University

> Cetraro July 12, 2019

Jianya LIU Shandong University Möbius disjointness for skew products on $\mathbb{T} \times \Gamma \setminus G$

・ロト ・四ト ・ヨト ・ヨト

臣

Jianya LIU Shandong University Möbius disjointness for skew products on $\mathbb{T} \times \Gamma \setminus G$

・ロト ・日ト ・ヨト ・ヨト

E

Jianya LIU Shandong University Möbius disjointness for skew products on $\mathbb{T} \times \Gamma \setminus G$

イロン イヨン イヨン イヨン

E

臣

A short abstract

Let $\mathbb T$ be the unit circle and $\Gamma \backslash G$ the 3-dimensional Heisenberg nilmanifold. We prove that

- a class of skew products on $\mathbb{T} \times \Gamma \setminus G$ are distal;
- the Möbius function is linearly disjoint from these skew products.

This verifies the Möbius Disjointness Conjecture of Sarnak in this context.

A short abstract

Let $\mathbb T$ be the unit circle and $\Gamma \backslash G$ the 3-dimensional Heisenberg nilmanifold. We prove that

- a class of skew products on $\mathbb{T} \times \Gamma \backslash G$ are distal;
- the Möbius function is linearly disjoint from these skew products.

This verifies the Möbius Disjointness Conjecture of Sarnak in this context.

Skew products on $\mathbb{T} \times \Gamma \setminus G$ Proof of Theorem 2

1. The Möbius disjointness and skew products

Jianya LIU Shandong University Möbius disjointness for skew products on $\mathbb{T} \times \Gamma \setminus G$

イロン イヨン イヨン イヨン

E

The Möbius Disjointness Conjecture

- Let μ be the Möbius function. The behavior of μ is central in the theory of prime numbers.
- Let (X, T) be a flow, namely X is a compact metric space and T : X → X a continuous map. We say that µ is *linearly disjoint* from (X, T) if

$$\lim_{N\to\infty}\frac{1}{N}\sum_{n\leq N}\mu(n)f(T^nx)=0$$

for any $f \in C(X)$ and any $x \in X$.

The Möbius Disjointness Conjecture Samak 2009 The function μ is linearly disjoint from every (X, T) whose entro is 0.

Э

The Möbius Disjointness Conjecture

- Let μ be the Möbius function. The behavior of μ is central in the theory of prime numbers.
- Let (X, T) be a flow, namely X is a compact metric space and T : X → X a continuous map. We say that µ is *linearly disjoint* from (X, T) if

$$\lim_{N\to\infty}\frac{1}{N}\sum_{n\leq N}\mu(n)f(T^nx)=0$$

for any $f \in C(X)$ and any $x \in X$.

The Möbius Disjointness Conjecture, Sarnak 2009 The function μ is linearly disjoint from every (X, T) whose entropy is 0.

E

The Möbius Disjointness Conjecture

- Let μ be the Möbius function. The behavior of μ is central in the theory of prime numbers.
- Let (X, T) be a flow, namely X is a compact metric space and T : X → X a continuous map. We say that µ is *linearly disjoint* from (X, T) if

$$\lim_{N\to\infty}\frac{1}{N}\sum_{n\leq N}\mu(n)f(T^nx)=0$$

for any $f \in C(X)$ and any $x \in X$.

The Möbius Disjointness Conjecture, Sarnak 2009

The function μ is linearly disjoint from every (X, T) whose entropy is 0.

E

Known examples before 2009

Examples :

- (X, T) with X and T trivial \sim PNT.
- (X, T) with X = T and T a translation
 ∼ Vinogragov's estimate on exponential sum over primes
 ⇒ Ternary Goldbach.
- (X, T) with X nilmanifold and T a translation ~ Green-Tao.
- Others regular flows . . .

Recent examples :

- A number of results, but mainly for regular flows. Regular/irregular : next page.
- See survey paper by Ferenczi/Kulaga-Przymus/Lemanczyk

Known examples before 2009

Examples :

- (X, T) with X and T trivial ~ PNT.
- (X, T) with $X = \mathbb{T}$ and T a translation ~ Vinogragov's estimate on exponential sum over primes \Rightarrow Ternary Goldbach.
- (X, T) with X nilmanifold and T a translation ~ Green-Tao.
 Others regular flows ...

Recent examples :

- A number of results, but mainly for regular flows. Regular/irregular : next page.
- See survey paper by Ferenczi/Kulaga-Przymus/Lemanczyk.

Known examples before 2009

Examples :

- (X, T) with X and T trivial ~ PNT.
- (X, T) with $X = \mathbb{T}$ and T a translation ~ Vinogragov's estimate on exponential sum over primes \Rightarrow Ternary Goldbach.
- (X, T) with X nilmanifold and T a translation ~ Green-Tao.
- Others regular flows

Recent examples :

- A number of results, but mainly for regular flows. *Regular/irregular* : next page.
- See survey paper by Ferenczi/Kulaga-Przymus/Lemanczyk.

Known examples before 2009

Examples :

- (X, T) with X and T trivial ~ PNT.
- (X, T) with X = T and T a translation

 ∨ Vinogragov's estimate on exponential sum over primes
 ⇒ Ternary Goldbach.
- (X, T) with X nilmanifold and T a translation \sim Green-Tao.
- Others regular flows . . .

Recent examples :

- A number of results, but mainly for regular flows. *Regular/irregular* : next page.
- See survey paper by Ferenczi/Kulaga-Przymus/Lemanczyk.

イロン スピン スピン スピン

Known examples before 2009

Examples :

- (X, T) with X and T trivial ~ PNT.
- (X, T) with X = T and T a translation

 ∨ Vinogragov's estimate on exponential sum over primes
 ⇒ Ternary Goldbach.
- (X, T) with X nilmanifold and T a translation \sim Green-Tao.
- Others regular flows . . .

Recent examples :

- A number of results, but mainly for regular flows. *Regular/irregular* : next page.
- See survey paper by Ferenczi/Kulaga-Przymus/Lemanczyk.

Known examples before 2009

Examples :

- (X, T) with X and T trivial ~ PNT.
- (X, T) with X = T and T a translation

 ∨ Vinogragov's estimate on exponential sum over primes
 ⇒ Ternary Goldbach.
- (X, T) with X nilmanifold and T a translation \sim Green-Tao.
- Others regular flows ...

Recent examples :

- A number of results, but mainly for regular flows. *Regular/irregular* : next page.
- See survey paper by Ferenczi/Kulaga-Przymus/Lemanczyk.

MDC for irregular flows

Note that there are *irregular flows* for which the Birkhoff average

$$\frac{1}{N}\sum_{n\leq N}f(T^nx)$$

may not exist some $x \in X$.

- Irregular flows are not very rare. KAM theory, *small* denominator problem.
- MDC ⇒ For any zero-entropy flow (X, T), any f ∈ C(X), and any x ∈ X,

$$\lim_{N\to\infty}\frac{1}{N}\sum_{n\leq N}\mu(n)f(T^nx)=0.$$

MDC for irregular flows

Note that there are *irregular flows* for which the Birkhoff average

$$\frac{1}{N}\sum_{n\leq N}f(T^nx)$$

may not exist some $x \in X$.

- Irregular flows are not very rare. KAM theory, small denominator problem.
- MDC ⇒ For any zero-entropy flow (X, T), any f ∈ C(X), and any x ∈ X,

$$\lim_{N\to\infty}\frac{1}{N}\sum_{n\leq N}\mu(n)f(\mathcal{T}^n x)=0.$$

MDC should hold even for irregular flows!

MDC for irregular flows

Note that there are *irregular flows* for which the Birkhoff average

$$\frac{1}{N}\sum_{n\leq N}f(T^nx)$$

may not exist some $x \in X$.

- Irregular flows are not very rare. KAM theory, small denominator problem.
- MDC ⇒ For any zero-entropy flow (X, T), any f ∈ C(X), and any x ∈ X,

$$\lim_{N\to\infty}\frac{1}{N}\sum_{n\leq N}\mu(n)f(T^nx)=0.$$

MDC should hold even for irregular flows

MDC for irregular flows

Note that there are *irregular flows* for which the Birkhoff average

$$\frac{1}{N}\sum_{n\leq N}f(T^nx)$$

may not exist some $x \in X$.

- Irregular flows are not very rare. KAM theory, small denominator problem.
- MDC ⇒ For any zero-entropy flow (X, T), any f ∈ C(X), and any x ∈ X,

$$\lim_{N\to\infty}\frac{1}{N}\sum_{n\leq N}\mu(n)f(T^nx)=0.$$

MDC should hold even for irregular flows !

Distal flows and skew products

- Distal flows are typical examples of zero-entropy flows.
- A flow (X, T) with a compatible metric d is called distal if

 $\inf_{n\geq 0} d(T^n x, T^n y) > 0$

whenever $x \neq y$.

- Furstenberg's structure theorem of minimal distal flows (1963) : skew products are building blocks of distal flows. Complicated; transfinite induction, etc.
- {zero-entropy flows} ⊃ {distal flows} ⊃ {skew products} ⊃ {irregular skew products}.

Distal flows and skew products

- Distal flows are typical examples of zero-entropy flows.
- A flow (X, T) with a compatible metric d is called distal if

$$\inf_{n\geq 0}d(T^nx,T^ny)>0$$

whenever $x \neq y$.

- Furstenberg's structure theorem of minimal distal flows (1963) : skew products are building blocks of distal flows.
 Complicated ; transfinite induction, etc.
- {zero-entropy flows} ⊃ {distal flows} ⊃ {skew products} ⊃ {irregular skew products}.

イロン イヨン イヨン イヨン

Distal flows and skew products

- Distal flows are typical examples of zero-entropy flows.
- A flow (X, T) with a compatible metric d is called distal if

$$\inf_{n\geq 0}d(T^nx,T^ny)>0$$

whenever $x \neq y$.

- Furstenberg's structure theorem of minimal distal flows (1963) : skew products are building blocks of distal flows. Complicated ; transfinite induction, etc.
- {zero-entropy flows} ⊃ {distal flows} ⊃ {skew products} ⊃ {irregular skew products}.

Distal flows and skew products

- Distal flows are typical examples of zero-entropy flows.
- A flow (X, T) with a compatible metric d is called distal if

$$\inf_{n\geq 0}d(T^nx,T^ny)>0$$

whenever $x \neq y$.

- Furstenberg's structure theorem of minimal distal flows (1963) : skew products are building blocks of distal flows. Complicated ; transfinite induction, etc.
- {zero-entropy flows} ⊃ {distal flows} ⊃ {skew products} ⊃ {irregular skew products}.

Irregular skew products on \mathbb{T}^2

• Let \mathbb{T}^2 be the 2-torus, and

$$T: (x, y) \mapsto (x + \alpha, y + h(x)),$$

where $\alpha \in [0,1)$ and h a continuous real function of period 1.

- Furstenberg (1961) : (T², T) is distal but irregular.
 Irregularity comes from non-diophantine α.
- Definition : Fix B > 0. A real α is *diophantine* w.r.t B, if

$$\|\boldsymbol{m}\boldsymbol{\alpha}\| \geq \boldsymbol{m}^{-\boldsymbol{B}}$$

for all large positive integers m.

 MDC is expected to hold even for irregular (T², T), i.e. for α non-diophantine.

Irregular skew products on \mathbb{T}^2

• Let \mathbb{T}^2 be the 2-torus, and

$$T: (x, y) \mapsto (x + \alpha, y + h(x)),$$

where $\alpha \in [0, 1)$ and h a continuous real function of period 1.

- Furstenberg (1961) : (T², T) is distal but irregular.
 Irregularity comes from non-diophantine α.
- Definition : Fix B > 0. A real α is *diophantine* w.r.t B, if

 $\|\boldsymbol{m}\alpha\| \ge \boldsymbol{m}^{-B}$

for all large positive integers m.

 MDC is expected to hold even for irregular (T², T), i.e. for α non-diophantine.

Irregular skew products on \mathbb{T}^2

• Let \mathbb{T}^2 be the 2-torus, and

$$T: (x, y) \mapsto (x + \alpha, y + h(x)),$$

where $\alpha \in [0,1)$ and h a continuous real function of period 1.

- Furstenberg (1961) : (T², T) is distal but irregular.
 Irregularity comes from non-diophantine α.
- Definition : Fix B > 0. A real α is *diophantine* w.r.t B, if

$$\|\boldsymbol{m}\boldsymbol{\alpha}\| \geq \boldsymbol{m}^{-\boldsymbol{B}}$$

for all large positive integers m.

 MDC is expected to hold even for irregular (T², T), i.e. for α non-diophantine.

Irregular skew products on \mathbb{T}^2

• Let \mathbb{T}^2 be the 2-torus, and

$$T: (x, y) \mapsto (x + \alpha, y + h(x)),$$

where $\alpha \in [0,1)$ and h a continuous real function of period 1.

- Furstenberg (1961) : (T², T) is distal but irregular.
 Irregularity comes from non-diophantine α.
- Definition : Fix B > 0. A real α is *diophantine* w.r.t B, if

$$\|\boldsymbol{m}\boldsymbol{\alpha}\| \geq \boldsymbol{m}^{-\boldsymbol{B}}$$

for all large positive integers m.

 MDC is expected to hold even for irregular (T², T), i.e. for α non-diophantine.

Irregular skew products on \mathbb{T}^2 , II

Theorem 1 (L.-Sarnak, 2015)

MDC holds for (\mathbb{T}^2, T) for all α , if *h* is analytic with an additional assumption on its Fourier coefficients.

- The point : for all α, as is not common in the KAM theory.
- Wang (2017) : Additional assumption removed.
- Huang-Wang-Ye (2019) : h relaxed to C^{∞} -smooth.
- Kanigowski-Lemanczyk-Radziwill (arXiv 2019) : h absolutely continuous.

Irregular skew products on \mathbb{T}^2 , II

Theorem 1 (L.-Sarnak, 2015)

MDC holds for (\mathbb{T}^2, T) for all α , if *h* is analytic with an additional assumption on its Fourier coefficients.

- The point : for all α , as is not common in the KAM theory.
- Wang (2017) : Additional assumption removed.
- Huang-Wang-Ye (2019) : h relaxed to C^{∞} -smooth.
- Kanigowski-Lemanczyk-Radziwill (arXiv 2019) : h absolutely continuous.

(日)

Irregular skew products on \mathbb{T}^2 , II

Theorem 1 (L.-Sarnak, 2015)

MDC holds for (\mathbb{T}^2, T) for all α , if *h* is analytic with an additional assumption on its Fourier coefficients.

- The point : for all α , as is not common in the KAM theory.
- Wang (2017) : Additional assumption removed.
- Huang-Wang-Ye (2019) : h relaxed to C^{∞} -smooth.
- Kanigowski-Lemanczyk-Radziwill (arXiv 2019) : *h* absolutely continuous.

Irregular skew products on \mathbb{T}^2 , II

Theorem 1 (L.-Sarnak, 2015)

MDC holds for (\mathbb{T}^2, T) for all α , if *h* is analytic with an additional assumption on its Fourier coefficients.

- The point : for all α , as is not common in the KAM theory.
- Wang (2017) : Additional assumption removed.
- Huang-Wang-Ye (2019) : h relaxed to C^{∞} -smooth.
- Kanigowski-Lemanczyk-Radziwill (arXiv 2019) : h absolutely continuous.

(日)

Irregular skew products on \mathbb{T}^2 , II

Theorem 1 (L.-Sarnak, 2015)

MDC holds for (\mathbb{T}^2, T) for all α , if *h* is analytic with an additional assumption on its Fourier coefficients.

- The point : for all α , as is not common in the KAM theory.
- Wang (2017) : Additional assumption removed.
- Huang-Wang-Ye (2019) : h relaxed to C^{∞} -smooth.
- Kanigowski-Lemanczyk-Radziwill (arXiv 2019) : *h* absolutely continuous.

2. Skew products on $\mathbb{T} \times \Gamma \backslash G$

・ロ・・ (日・・ヨ・・モー・)

臣

Skew products on $\mathbb{T} \times \Gamma \backslash G$

• Now let G be the 3-dimensional Heisenberg group with the cocompact discrete subgroup Γ , namely

$$G = \begin{pmatrix} 1 & \mathbb{R} & \mathbb{R} \\ 0 & 1 & \mathbb{R} \\ 0 & 0 & 1 \end{pmatrix}, \quad \Gamma = \begin{pmatrix} 1 & \mathbb{Z} & \mathbb{Z} \\ 0 & 1 & \mathbb{Z} \\ 0 & 0 & 1 \end{pmatrix}.$$

Then $\Gamma \setminus G$ is the 3-dimensional Heisenberg nilmanifold.

• Study the MDC for skew products on

 $\mathbb{T} \times \Gamma \setminus G.$

• Goes beyond \mathbb{T}^2 .

イロン スピン イヨン

Skew products on $\mathbb{T} \times \Gamma \backslash G$

• Now let G be the 3-dimensional Heisenberg group with the cocompact discrete subgroup Γ , namely

$$G = \begin{pmatrix} 1 & \mathbb{R} & \mathbb{R} \\ 0 & 1 & \mathbb{R} \\ 0 & 0 & 1 \end{pmatrix}, \quad \Gamma = \begin{pmatrix} 1 & \mathbb{Z} & \mathbb{Z} \\ 0 & 1 & \mathbb{Z} \\ 0 & 0 & 1 \end{pmatrix}.$$

Then $\Gamma \setminus G$ is the 3-dimensional Heisenberg nilmanifold.

• Study the MDC for skew products on

 $\mathbb{T} \times \Gamma \backslash G.$

• Goes beyond \mathbb{T}^2 .
Skew products on $\mathbb{T} \times \Gamma \backslash G$

• Now let G be the 3-dimensional Heisenberg group with the cocompact discrete subgroup Γ , namely

$$G = \begin{pmatrix} 1 & \mathbb{R} & \mathbb{R} \\ 0 & 1 & \mathbb{R} \\ 0 & 0 & 1 \end{pmatrix}, \quad \Gamma = \begin{pmatrix} 1 & \mathbb{Z} & \mathbb{Z} \\ 0 & 1 & \mathbb{Z} \\ 0 & 0 & 1 \end{pmatrix}.$$

Then $\Gamma \setminus G$ is the 3-dimensional Heisenberg nilmanifold.

• Study the MDC for skew products on

 $\mathbb{T} \times \Gamma \backslash G.$

• Goes beyond \mathbb{T}^2 .

Skew products on $\mathbb{T} \times \Gamma \backslash G$, II

Theorem 2 (Huang-L.-Wang, 2019 arXiv)

Let $\alpha \in [0,1)$ and let φ, ψ be C^{∞} -smooth functions with period 1. Define the skew product T on $\mathbb{T} \times \Gamma \backslash G$ by

$$T:(t, \Gamma g) \mapsto \left(t + \alpha, \Gamma g \begin{pmatrix} 1 & \varphi(t) & \psi(t) \\ 0 & 1 & \varphi(t) \\ 0 & 0 & 1 \end{pmatrix}\right)$$

Then, for any $(t, \Gamma g) \in \mathbb{T} \times \Gamma \backslash G$ and any $f \in C(\mathbb{T} \times \Gamma \backslash G)$,

$$\lim_{N\to\infty}\frac{1}{N}\sum_{n=1}^N\mu(n)f(T^n(t,\Gamma g))=0.$$

A D > A D > A D > A D >

Remarks

- Note that the skew product (T × Γ\G, T) in Theorem 2 is irregular, but Theorem 2 holds for all α.
- The flow (T × Γ\G, T) is distal; see next page Proposition 3. Thus Theorem 2 verifies the MDC in this context.

・ロト ・日ト ・ヨト ・ヨト

臣

Remarks

- Note that the skew product (T × Γ\G, T) in Theorem 2 is irregular, but Theorem 2 holds for all α.
- The flow (T × Γ\G, T) is distal; see next page Proposition 3. Thus Theorem 2 verifies the MDC in this context.

Proposition 3 (Distality of $(\mathbb{T} \times \Gamma \backslash G, S)$)

Denote by S the skew product

$$S:(t, \Gamma g) \mapsto \left(t + lpha, \Gamma g egin{pmatrix} 1 & arphi_2(t) & \psi(t) \ 0 & 1 & arphi_1(t) \ 0 & 0 & 1 \end{pmatrix}
ight)$$

Then the flow $(\mathbb{T} \times \Gamma \backslash G, S)$ is distal.

- Thus MDC should hold for $(\mathbb{T} \times \Gamma \backslash G, S)$.
- S is more general than T.
- Our method works well for (T × Γ\G, T), but not directly for (T × Γ\G, S). It seems interesting to generalize Theorem 2 to (T × Γ\G, S).

Proposition 3 (Distality of $(\mathbb{T} \times \Gamma \backslash G, S)$)

Denote by S the skew product

$$S:(t, \Gamma g) \mapsto \left(t + lpha, \Gamma g egin{pmatrix} 1 & arphi_2(t) & \psi(t) \ 0 & 1 & arphi_1(t) \ 0 & 0 & 1 \end{pmatrix}
ight)$$

Then the flow $(\mathbb{T} \times \Gamma \backslash G, S)$ is distal.

- Thus MDC should hold for $(\mathbb{T} \times \Gamma \backslash G, S)$.
- S is more general than T
- Our method works well for $(\mathbb{T} \times \Gamma \setminus G, T)$, but not directly for $(\mathbb{T} \times \Gamma \setminus G, S)$. It seems interesting to generalize Theorem 2 to $(\mathbb{T} \times \Gamma \setminus G, S)$.

Proposition 3 (Distality of $(\mathbb{T} \times \Gamma \backslash G, S)$)

Denote by S the skew product

$$S:(t, \Gamma g) \mapsto \left(t + lpha, \Gamma g egin{pmatrix} 1 & arphi_2(t) & \psi(t) \ 0 & 1 & arphi_1(t) \ 0 & 0 & 1 \end{pmatrix}
ight)$$

Then the flow $(\mathbb{T} \times \Gamma \backslash G, S)$ is distal.

- Thus MDC should hold for $(\mathbb{T} \times \Gamma \backslash G, S)$.
- S is more general than T.
- Our method works well for (T × Γ\G, T), but not directly for (T × Γ\G, S). It seems interesting to generalize Theorem 2 to (T × Γ\G, S).

Proposition 3 (Distality of $(\mathbb{T} \times \Gamma \backslash G, S)$)

Denote by S the skew product

$$S:(t, \Gamma g) \mapsto \left(t + lpha, \Gamma g egin{pmatrix} 1 & arphi_2(t) & \psi(t) \ 0 & 1 & arphi_1(t) \ 0 & 0 & 1 \end{pmatrix}
ight)$$

Then the flow $(\mathbb{T} \times \Gamma \setminus G, S)$ is distal.

- Thus MDC should hold for $(\mathbb{T} \times \Gamma \backslash G, S)$.
- S is more general than T.
- Our method works well for (T × Γ\G, T), but not directly for (T × Γ\G, S). It seems interesting to generalize Theorem 2 to (T × Γ\G, S).

3. Proof of Theorem 2 An illustration

・ロ・・ (日・・ヨ・・モー・)

E

3.1 Analysis on $C(\mathbb{T} \times \Gamma \setminus G)$

・ロ・・ (日・・ヨ・・モー・)

æ

- Let G be the 3-dimensional Heisenberg group with the cocompact discrete subgroup Γ, and Γ\G the 3-dimensional Heisenberg nilmanifold.
- Want to construct a subset of C(T × Γ\G), which spans a C-linear subspace that is dense in C(T × Γ\G).

・ロト ・四ト ・ヨト ・ヨト

臣

- Let G be the 3-dimensional Heisenberg group with the cocompact discrete subgroup Γ, and Γ\G the 3-dimensional Heisenberg nilmanifold.
- Want to construct a subset of C(T × Γ\G), which spans a C-linear subspace that is dense in C(T × Γ\G).

• For integers m, j with $0 \le j \le m-1$, define the functions ψ_{mj} and ψ_{mj}^* on G by

$$\psi_{mj}\begin{pmatrix}1 & y & z\\ 0 & 1 & x\\ 0 & 0 & 1\end{pmatrix} = e(mz+jx)\sum_{k\in\mathbb{Z}}e^{-\pi(y+k+\frac{j}{m})^2}e(mkx),$$

and

$$\psi_{mj}^* \begin{pmatrix} 1 & y & z \\ 0 & 1 & x \\ 0 & 0 & 1 \end{pmatrix}$$

= $ie(mz + jx) \sum_{k \in \mathbb{Z}} e^{-\pi(y+k+\frac{j}{m}+\frac{1}{2})^2} e\left(\frac{1}{2}\left(y+k+\frac{j}{m}\right)+mkx\right)$

• We check that ψ_{mj} and ψ^*_{mi} are Γ-invariant, that is

 $\psi_{mj}(\gamma g) = \psi_{mj}(g), \quad \psi^*_{mj}(\gamma g) = \psi^*_{mj}(g)$

for any $g \in G$ and for any $\gamma \in \Gamma$. Thus ψ_{mj} and ψ_{mj}^* can be regarded as functions on the nilmanifold $\Gamma \setminus G$.

• For integers m, j with $0 \le j \le m-1$, define the functions ψ_{mj} and ψ_{mj}^* on G by

$$\psi_{mj}\begin{pmatrix}1 & y & z\\ 0 & 1 & x\\ 0 & 0 & 1\end{pmatrix} = e(mz+jx)\sum_{k\in\mathbb{Z}}e^{-\pi(y+k+\frac{j}{m})^2}e(mkx),$$

and

$$\psi_{mj}^* \begin{pmatrix} 1 & y & z \\ 0 & 1 & x \\ 0 & 0 & 1 \end{pmatrix}$$

= $ie(mz + jx) \sum_{k \in \mathbb{Z}} e^{-\pi(y+k+\frac{j}{m}+\frac{1}{2})^2} e\left(\frac{1}{2}\left(y+k+\frac{j}{m}\right)+mkx\right)$

• We check that $\psi_{\textit{mj}}$ and $\psi^*_{\textit{mj}}$ are $\Gamma\text{-invariant, that is}$

$$\psi_{mj}(\gamma g) = \psi_{mj}(g), \quad \psi^*_{mj}(\gamma g) = \psi^*_{mj}(g)$$

for any $g \in G$ and for any $\gamma \in \Gamma$. Thus ψ_{mj} and ψ_{mj}^* can be regarded as functions on the nilmanifold $\Gamma \setminus G$.

• Let \mathcal{A} be the subset of $f \in C(\mathbb{T} \times \Gamma \backslash G)$ such that

$$f:\left(t, \Gamma\left(\begin{smallmatrix}1&y&z\\0&1&x\\0&0&1\end{smallmatrix}\right)\right)\mapsto e(\xi_1t+\xi_2x+\xi_3y)\psi\left(\Gamma\left(\begin{smallmatrix}1&y&z\\0&1&x\\0&0&1\end{smallmatrix}\right)\right)$$

where $\xi_1, \xi_2, \xi_3 \in \mathbb{Z}$, and $\psi = \psi_{mj}, \overline{\psi}_{mj}, \psi^*_{mj}$ or $\overline{\psi}^*_{mj}$ for some $0 \le j \le m - 1$.

• Let \mathcal{B} be subset of $f \in C(\mathbb{T} \times \Gamma \backslash G)$ satisfying

 $f:(t, \Gamma g)\mapsto f_1(t)f_2(\Gamma g)$

with $f_1 \in C(\mathbb{T})$ and $f_2 \in C_0(\Gamma \setminus G)$.

Proposition 4 (Structure of $C(\mathbb{T} \times \Gamma \setminus G)$)

The \mathbb{C} -linear subspace spanned by $\mathcal{A} \cup \mathcal{B}$ is dense in $C(\mathbb{T} \times \Gamma \setminus G)$.

E

• Let \mathcal{A} be the subset of $f \in C(\mathbb{T} \times \Gamma \backslash G)$ such that

$$f:\left(t, \Gamma\left(\begin{smallmatrix}1&y&z\\0&1&x\\0&0&1\end{smallmatrix}\right)\right)\mapsto e(\xi_1t+\xi_2x+\xi_3y)\psi\left(\Gamma\left(\begin{smallmatrix}1&y&z\\0&1&x\\0&0&1\end{smallmatrix}\right)\right)$$

where $\xi_1, \xi_2, \xi_3 \in \mathbb{Z}$, and $\psi = \psi_{mj}, \overline{\psi}_{mj}, \psi^*_{mj}$ or $\overline{\psi}^*_{mj}$ for some $0 \le j \le m - 1$.

• Let \mathcal{B} be subset of $f \in C(\mathbb{T} \times \Gamma \backslash G)$ satisfying

 $f:(t, \Gamma g)\mapsto f_1(t)f_2(\Gamma g)$

with $f_1 \in C(\mathbb{T})$ and $f_2 \in C_0(\Gamma \setminus G)$.

Proposition 4 (Structure of $C(\mathbb{T} \times \Gamma \setminus G)$)

The \mathbb{C} -linear subspace spanned by $\mathcal{A} \cup \mathcal{B}$ is dense in $C(\mathbb{T} \times \Gamma \backslash G)$.

• Let \mathcal{A} be the subset of $f \in C(\mathbb{T} \times \Gamma \backslash G)$ such that

$$f:\left(t, \Gamma\left(\begin{smallmatrix}1&y&z\\0&1&x\\0&0&1\end{smallmatrix}\right)\right)\mapsto e(\xi_1t+\xi_2x+\xi_3y)\psi\left(\Gamma\left(\begin{smallmatrix}1&y&z\\0&1&x\\0&0&1\end{smallmatrix}\right)\right)$$

where $\xi_1, \xi_2, \xi_3 \in \mathbb{Z}$, and $\psi = \psi_{mj}, \overline{\psi}_{mj}, \psi^*_{mj}$ or $\overline{\psi}^*_{mj}$ for some $0 \le j \le m - 1$.

• Let \mathcal{B} be subset of $f \in C(\mathbb{T} \times \Gamma \backslash G)$ satisfying

 $f:(t, \Gamma g)\mapsto f_1(t)f_2(\Gamma g)$

with $f_1 \in C(\mathbb{T})$ and $f_2 \in C_0(\Gamma \setminus G)$.

Proposition 4 (Structure of $C(\mathbb{T} \times \Gamma \setminus G)$)

The \mathbb{C} -linear subspace spanned by $\mathcal{A} \cup \mathcal{B}$ is dense in $C(\mathbb{T} \times \Gamma \setminus G)$.

臣

3.2 Theorem 2 for rational α

<ロ> <同> <同> < 回> < 回> < 三> < 三> 三 三

The case $f \in A$, I

By a straightforward calculation,

$$T^n:(t_0, \Gamma g_0)\mapsto (t_0+nlpha, \Gamma g_n),$$

where, on writing

$$g_0 = \begin{pmatrix} 1 & y_0 & z_0 \\ 0 & 1 & x_0 \\ 0 & 0 & 1 \end{pmatrix}, \quad g_n = \begin{pmatrix} 1 & y_n & z_n \\ 0 & 1 & x_n \\ 0 & 0 & 1 \end{pmatrix},$$

we have

$$\begin{cases} x_n = x_0 + S_1(n; t_0), \\ y_n = y_0 + S_1(n; t_0), \\ z_n = z_0 + \frac{1}{2}(S_1(n; t_0))^2 - \frac{1}{2}S_3(n; t_0) + S_2(n; t_0) + y_0S_1(n; t_0), \end{cases}$$

and

$$S_1(n;t) = \sum_{l=0}^{n-1} \varphi(\alpha l + t), \quad S_2(n;t) \dots \psi, \quad S_3(n;t) \dots \varphi^2.$$

E.

The case $f \in A$, II

• Recall for $f \in \mathcal{A}$,

$$f\left(t, \Gamma\left(\begin{smallmatrix}1&y&z\\0&1&x\\0&0&1\end{smallmatrix}\right)\right) = e(t+x+y+z)\sum_{k\in\mathbb{Z}}e^{-\pi(y+k)^2}e(kx).$$

Compute

$$f(T^{n}(t_{0}, \Gamma g_{0}))$$

$$= f\left(t_{0} + n\alpha, \Gamma\left(\begin{array}{cc}1 & y_{n} & z_{n}\\ 0 & 1 & x_{n}\\ 0 & 0 & 1\end{array}\right)\right)$$

$$= e(t_{0} + n\alpha + x_{n} + y_{n} + z_{n})\sum_{k\in\mathbb{Z}}e^{-\pi(y_{n}+k)^{2}}e(kx_{n}).$$

・ロト ・日ト ・ヨト ・ヨト

æ

The case $f \in A$, II

• Recall for $f \in \mathcal{A}$,

$$f\left(t, \Gamma\left(\begin{smallmatrix}1&y&z\\0&1&x\\0&0&1\end{smallmatrix}\right)\right) = e(t+x+y+z)\sum_{k\in\mathbb{Z}}e^{-\pi(y+k)^2}e(kx).$$

Compute

$$f(T^{n}(t_{0}, \Gamma g_{0}))$$

$$= f\left(t_{0} + n\alpha, \Gamma\left(\begin{array}{cc}1 & y_{n} & z_{n}\\ 0 & 1 & x_{n}\\ 0 & 0 & 1\end{array}\right)\right)$$

$$= e(t_{0} + n\alpha + x_{n} + y_{n} + z_{n})\sum_{k\in\mathbb{Z}}e^{-\pi(y_{n}+k)^{2}}e(kx_{n}).$$

イロト イヨト イヨト イヨト

E

Rational α reduces to Hua

For rational α = a/q, one rearranges n into arithmetic progressions modulo q :

$$\sum_{n\leq N} \mu(n) f(T^n(t_0, \Gamma g_0)) \ll \Big| \sum_{m\in\mathbb{Z}} \widehat{w}(m) \sum_{b=0}^{q-1} \sum_{\substack{n\leq N\\n\equiv b \bmod q}} \mu(n) e(P(n; b)) \Big|.$$

Reduces to Hua.

 Hua (1938) : Let f(x) ∈ ℝ[x]. Let 0 ≤ a < q. Then, for arbitrary A > 0,

$$\sum_{\substack{n \leq N \\ \equiv a \bmod q}} \mu(n) e(f(n)) \ll \frac{N}{\log^A N}$$

where the implied constant depend on A, q and d, but is independent of the coefficients of f.

п

Rational α reduces to Hua

For rational α = a/q, one rearranges n into arithmetic progressions modulo q :

$$\sum_{n\leq N} \mu(n) f(T^n(t_0, \Gamma g_0)) \ll \Big| \sum_{m\in\mathbb{Z}} \widehat{w}(m) \sum_{b=0}^{q-1} \sum_{\substack{n\leq N\\n\equiv b \bmod q}} \mu(n) e(P(n; b)) \Big|.$$

Reduces to Hua.

• Hua (1938) : Let $f(x) \in \mathbb{R}[x]$. Let $0 \le a < q$. Then, for arbitrary A > 0,

$$\sum_{\substack{n \leq N \\ \equiv a \bmod q}} \mu(n) e(f(n)) \ll \frac{N}{\log^A N},$$

where the implied constant depend on A, q and d, but is independent of the coefficients of f.

・ロ・・ (日・・ヨ・・ヨ・・)

æ

• Let (X, T) be a flow. For a compatible metric d, define

$$\overline{d}_n(x,y) = \frac{1}{n} \sum_{j=0}^{n-1} d(T^j x, T^j y)$$

for $x, y \in X$, and let

$$B_{\overline{d}_n}(x,\varepsilon) = \{y \in X : \overline{d}_n(x,y) < \varepsilon\}.$$

- Let M(X, T) be the set of all T-invariant Borel probability measures on X. For ρ ∈ M(X, T), write
 - $s_n(X, T, d, \rho, \varepsilon) = \min \bigg\{ m \in \mathbb{N} : \exists x_1, \dots, x_m \in X \text{ s.t. } \rho \bigg(\bigcup_{i=1}^m B_{\overline{d}_n}(x_j, \varepsilon) \bigg) > 1 \varepsilon \bigg\}.$

・ロト ・四ト ・ヨト ・ヨト

• Let (X, T) be a flow. For a compatible metric d, define

$$\overline{d}_n(x,y) = \frac{1}{n} \sum_{j=0}^{n-1} d(T^j x, T^j y)$$

for $x, y \in X$, and let

$$B_{\overline{d}_n}(x,\varepsilon) = \{y \in X : \overline{d}_n(x,y) < \varepsilon\}.$$

 Let M(X, T) be the set of all T-invariant Borel probability measures on X. For ρ ∈ M(X, T), write

$$s_n(X, T, d, \rho, \varepsilon)$$

= min $\left\{ m \in \mathbb{N} : \exists x_1, \dots, x_m \in X \text{ s.t. } \rho \left(\bigcup_{j=1}^m B_{\overline{d}_n}(x_j, \varepsilon) \right) > 1 - \varepsilon \right\}$

(I) < ((i) <

• The measure complexity of (X, T, ρ) is sub-polynomial if

$$\liminf_{n\to\infty}\frac{s_n(X,T,d,\rho,\varepsilon)}{n^{\tau}}=0$$

for any $\tau > 0$.

- Huang-Wang-Ye (2019) : If the measure complexity of (X, T, ρ) is sub-polynomial for any ρ ∈ M(X, T), then MDC holds for (X, T).
- Number theory behind HWY : Matomäki-Radziwill-Tao, averaged form of Chowla. Chowla ⇒ MDC. The measure complexity defined above can be viewed as an averaged form of entropy.

• The measure complexity of (X, T, ρ) is sub-polynomial if

$$\liminf_{n\to\infty}\frac{s_n(X,T,d,\rho,\varepsilon)}{n^{\tau}}=0$$

for any $\tau > 0$.

- Huang-Wang-Ye (2019) : If the measure complexity of (X, T, ρ) is sub-polynomial for any ρ ∈ M(X, T), then MDC holds for (X, T).
- Number theory behind HWY : Matomäki-Radziwill-Tao, averaged form of Chowla. Chowla ⇒ MDC. The measure complexity defined above can be viewed as an averaged form of entropy.

• The measure complexity of (X, T, ρ) is sub-polynomial if

$$\liminf_{n\to\infty}\frac{s_n(X,T,d,\rho,\varepsilon)}{n^{\tau}}=0$$

for any $\tau > 0$.

- Huang-Wang-Ye (2019) : If the measure complexity of (X, T, ρ) is sub-polynomial for any ρ ∈ M(X, T), then MDC holds for (X, T).
- Number theory behind HWY : Matomäki-Radziwill-Tao, averaged form of Chowla. Chowla ⇒ MDC. The measure complexity defined above can be viewed as an averaged form of entropy.

3.3 Theorem 2 for irrational α

<ロ> <同> <同> < 回> < 回> < 三> < 三> 三 三

Theorem 2 for irrational α

Proposition 4

For irrational α , the measure complexity of $(\mathbb{T} \times \Gamma \setminus G, T, \rho)$ is sub-polynomial for any $\rho \in M(\mathbb{T} \times \Gamma \setminus G, T)$.

• The continued fraction expansion :

$$\alpha = [0; a_1, a_2, \dots, a_k, \dots] = \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \dots}}}$$

This expansion is infinite since α is irrational. The *k*-th convergent of α is

$$\frac{l_k}{q_k} = [0; a_1, a_2, \ldots, a_k].$$

• Let $\mathcal{Q} = \{q_k : k \ge 1\}$. For B > 2, define

$$egin{array}{rcl} \mathcal{Q}^{lat} &=& \{ q_k \in \mathcal{Q}: \; q_{k+1} \leq q_k^B \} \cup \{1\}, \ \mathcal{Q}^{\sharp} &=& \{ q_k \in \mathcal{Q}: \; q_{k+1} > q_k^B > 1 \}. \end{array}$$

The main difficulty comes from Q^{\sharp} , which includes the irregular case.

• The continued fraction expansion :

$$\alpha = [0; a_1, a_2, \dots, a_k, \dots] = \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \dots}}}$$

This expansion is infinite since α is irrational. The *k*-th convergent of α is

$$\frac{l_k}{q_k} = [0; a_1, a_2, \ldots, a_k].$$

• Let $\mathcal{Q} = \{q_k : k \ge 1\}$. For B > 2, define

$$egin{array}{rcl} \mathcal{Q}^{lat} &=& \{ q_k \in \mathcal{Q}: \; q_{k+1} \leq q_k^B \} \cup \{1\}, \ \mathcal{Q}^{\sharp} &=& \{ q_k \in \mathcal{Q}: \; q_{k+1} > q_k^B > 1 \}. \end{array}$$

The main difficulty comes from \mathcal{Q}^{\sharp} , which includes the irregular case.

Complicated argument \rightarrow

Write $n_k = q_k^{B-1}$. Then $\mathbb{T} \times \Gamma \setminus G$ can be covered by $\varepsilon^{-1} q_k^7$ balls of radius 20ε under the metric \overline{d}_{n_k} . It follows that

$$s_{n_k}(\mathbb{T} imes \Gamma ackslash G, T, d, 20arepsilon) \leq arepsilon^{-1} q_k^7.$$

Since Q^{\sharp} is infinite, we can let q_k tend to infinity along Q^{\sharp} , getting

$$\begin{split} \liminf_{n \to \infty} \frac{s_n(\mathbb{T} \times \Gamma \setminus G, T, d, 20\varepsilon)}{n^{\tau}} \\ &\leq \liminf_{\substack{k \to \infty \\ q_k \in Q^{\sharp}}} \frac{s_{n_k}(\mathbb{T} \times \Gamma \setminus G, T, d, 20\varepsilon)}{n_k^{\tau}} \\ &\leq \liminf_{\substack{k \to \infty \\ q_k \in Q^{\sharp}}} \frac{\varepsilon^{-1} q_k^7}{q_k^{8+\tau}} \\ &= 0. \end{split}$$

Since ε can be arbitrarily small, this means that the measure complexity of $(\mathbb{T} \times \Gamma \setminus G, T, \rho)$ is weaker that n^{τ} when \mathcal{Q}^{\sharp} is infinite.

・ロン ・回 と ・ ヨ と ・ ヨ と

臣

Thank you!

Jianya LIU Shandong University Möbius disjointness for skew products on $\mathbb{T} \times \Gamma \setminus G$

イロン イヨン イヨン イヨン

æ