Primes in arithmetic progressions to large moduli

James Maynard

University of Oxford

Second Symposium in Analytic Number Theory, Cetraro July 2019

How many primes are less than x and congruent to $a \pmod{q}$?

ヘロト 人間 ト 人間 ト 人間 トー

Introduction

How many primes are less than x and congruent to $a \pmod{q}$?

Theorem (Siegel-Walfisz)

If
$$q \leq (\log x)^A$$
 and $\gcd(a,q) = 1$ then
 $\pi(x;q,a) = (1+o(1))\frac{\pi(x)}{\phi(q)}.$

Theorem (GRH Bound)

Assume GRH. If
$$q \le x^{1/2-\epsilon}$$
 and $gcd(a, q) = 1$ then
 $\pi(x; q, a) = (1 + o(1)) \frac{\pi(x)}{\phi(q)}.$

Conjecture (Montgomery)

If
$$q \le x^{1-\epsilon}$$
 and $\gcd(a,q) = 1$ then $\pi(x;q,a) = (1+o(1)) rac{\pi(x)}{\phi(q)}$

ヘロト ヘ部ト ヘヨト ヘヨト

Introduction II

Often we don't need such a statement to be true for **every** q, just for **most** q.

・ロト ・四ト ・ヨト・ヨト・

Introduction II

Often we don't need such a statement to be true for **every** q, just for **most** q.

Theorem (Bombieri-Vinogradov)

Let $Q < x^{1/2-\epsilon}$. Then for any A

$$\sum_{q \sim Q} \sup_{(a,q)=1} \left| \pi(x;q,a) - \frac{\pi(x)}{\phi(q)} \right| \ll_{\mathcal{A}} \frac{x}{(\log x)^{\mathcal{A}}}$$

Corollary

For **most** $q \le x^{1/2-\epsilon}$, we have $\pi(x; q, a) = (1 + o(1)) \frac{\pi(x)}{\phi(q)}$ for every a with gcd(a, q) = 1.

Introduction II

Often we don't need such a statement to be true for **every** q, just for **most** q.

Theorem (Bombieri-Vinogradov)

Let $Q < x^{1/2-\epsilon}$. Then for any A

$$\sum_{q \sim Q} \sup_{(a,q)=1} \left| \pi(x;q,a) - \frac{\pi(x)}{\phi(q)} \right| \ll_{\mathcal{A}} \frac{x}{(\log x)^{\mathcal{A}}}$$

Corollary

For **most** $q \le x^{1/2-\epsilon}$, we have

$$\pi(x; q, a) = (1 + o(1)) \frac{\pi(x)}{\phi(q)}$$

for every a with gcd(a, q) = 1.

From the point of view of e.g. sieve methods, this is essentially as good as the Riemann Hypothesis!

Beyond GRH

Pioneering work by Bombieri, Fouvry, Friedlander, Iwaniec went **beyond** the $x^{1/2}$ barrier in special circumstances.

Beyond GRH

Pioneering work by Bombieri, Fouvry, Friedlander, Iwaniec went **beyond** the $x^{1/2}$ barrier in special circumstances.

Theorem (BFI1)

Fix a. Then we have (uniformly in θ)

$$\sum_{\substack{q \sim x^{\theta} \\ q,a) = 1}} \left| \pi(x; q, a) - \frac{\pi(x)}{\phi(q)} \right| \ll_{a} (\theta - 1/2)^{2} \frac{x(\log \log x)^{O(1)}}{\log x} + \frac{x}{\log^{3} x}.$$

This is non-trivial when θ is very close to 1/2.

Theorem (BFI2)

Fix a. Let $\lambda(q)$ be 'well-factorable'. Then we have

$$\sum_{\substack{q \sim x^{4/7-\epsilon} \\ (q,a)=1}} \lambda(q) \Big(\pi(x;q,a) - \frac{\pi(x)}{\phi(q)} \Big) \ll_{a,A} \frac{x}{\log^A x}$$

This is often an adequate substitute for BV with exponent 4/71

More recently, Zhang went beyond $x^{1/2}$ for smooth/friable moduli.

Theorem (Zhang,Polymath)

$$\sum_{\substack{q \le x^{1/2+7/300-\epsilon} \\ p|q \Rightarrow p \le x^{\epsilon^2} \\ (q,a)=1}} \left| \pi(x;q,a) - \frac{\pi(x)}{\phi(q)} \right| \ll_A \frac{x}{(\log x)^A}$$

The implied constant is independent of *a*.

・ロト ・ 四ト ・ ヨト ・ ヨト

New results

Theorem (M.)

Let
$$\delta < 1/42$$
 and $Q_{\delta} := \{q \sim x^{1/2+\delta} : \exists d | q \text{ s.t. } x^{2\delta+\epsilon} < d < x^{1/14-\delta}\}.$
$$\sum_{\substack{q \in Q_{\delta} \\ (q,a)=1}} \left| \pi(x;q,a) - \frac{\pi(x)}{\phi(q)} \right| \ll_{A} \frac{x(\log \log x)^{O(1)}}{\log^{5} x}.$$

ヘロン 人間 とくほど 人間と

€ 9Q@

New results

Theorem (M.)

Let
$$\delta < 1/42$$
 and $Q_{\delta} := \{q \sim x^{1/2+\delta} : \exists d | q \text{ s.t. } x^{2\delta+\epsilon} < d < x^{1/14-\delta}\}.$
$$\sum_{\substack{q \in Q_{\delta} \\ (q,a)=1}} \left| \pi(x;q,a) - \frac{\pi(x)}{\phi(q)} \right| \ll_{A} \frac{x(\log \log x)^{O(1)}}{\log^{5} x}.$$

Corollary

Let
$$\delta < 1/42$$
. For $(100 - O(\delta))$ % of $q \sim x^{1/2+\delta}$ we have $\pi(x; q, a) = (1 + o(1)) \frac{\pi(x)}{\phi(q)}$

Corollary

$$\sum_{q_1 \sim x^{1/21}} \sum_{\substack{q_2 \sim x^{10/21-\epsilon} \\ (q_1q_2, a) = 1}} \left| \pi(x; q_1q_2, a) - \frac{\pi(x)}{\phi(q_1q_2)} \right| \ll_a \frac{x(\log\log x)^{O(1)}}{\log^5 x}$$

Theorem (M.)

q

Let $\lambda(q)$ be 'very well factorable'. Then we have

$$\sum_{\substack{\leq x^{3/5-\epsilon}\\q,a)=1}} \lambda(q) \Big(\pi(x;q,a) - \frac{\pi(x)}{\phi(q)} \Big) \ll_{a,A} \frac{x}{(\log x)^A}.$$

The β -sieve weights are 'very well factorable' for $\beta \ge 2$.

・ロト ・ 四ト ・ ヨト ・ ヨト ・

Theorem (M.)

Let $\lambda(q)$ be 'very well factorable'. Then we have

$$\sum_{\substack{\leq x^{3/5-\epsilon}\\q,a)=1}} \lambda(q) \Big(\pi(x;q,a) - \frac{\pi(x)}{\phi(q)} \Big) \ll_{a,A} \frac{x}{(\log x)^A}.$$

The β -sieve weights are 'very well factorable' for $\beta \ge 2$.

Corollary

Let $\lambda^+(d)$ be sieve weights for the linear sieve. Then

$$\sum_{\substack{q \leq x^{7/12-\epsilon} \\ (q,a)=1}} \lambda^+(q) \Big(\pi(x;q,a) - \frac{\pi(x)}{\phi(q)} \Big) \ll \frac{x}{(\log x)^A}.$$

Comparison

Result	Size of q	Type of q	Proportion of q
BFI1	x ^{1/2+o(1)}	All	$(100 - \delta)\%$
BFI2	$\mathbf{x}^{\mathbf{4/7}-\epsilon}$	Factorable	$\delta\%$
Zhang	$\mathbf{x}^{1/2+7/300-\epsilon}$	Factorable	$\delta\%$
M1	$\mathbf{x}^{\mathbf{11/21}-\epsilon}$	Partially Factorable	$(100 - \delta)\%$
M2	$\mathbf{x}^{\mathbf{3/5}-\epsilon}$	Factorable	δ%

Result	Coefficients	Residue class	Cancellation
BFI1	Absolute values	Fixed	o(1)
BFI2	Factorable weights	Fixed	log ^A x
Zhang	Absolute values	Uniform	log ^A x
M1	Absolute values	Fixed	log ^{5−} x
M2	Factorable weights	Fixed	log ^A x

Note that 3/5 > 4/7 > 11/21 > 1/2 + 7/300.

James Maynard

The overall proof follows the same lines as previous approaches:

• Apply a combinatorial decomposition to $\Lambda(n)$

Proof overview

The overall proof follows the same lines as previous approaches:

- Apply a combinatorial decomposition to $\Lambda(n)$
- Reduce the problem to estimating exponenital sums of convolutions

Proof overview

The overall proof follows the same lines as previous approaches:

- Apply a combinatorial decomposition to $\Lambda(n)$
- Reduce the problem to estimating exponenital sums of convolutions
- Apply different techniques in different ranges to estimate exponential sums
 - Bounds from the spectral theory of automorphic forms (Kuznetsov Trace Formula)
 - Bounds from Algebraic Geometry (Weil bound/Deligne bounds)

Proof overview

The overall proof follows the same lines as previous approaches:

- Apply a combinatorial decomposition to $\Lambda(n)$
- Reduce the problem to estimating exponenital sums of convolutions
- Apply different techniques in different ranges to estimate exponential sums
 - Bounds from the spectral theory of automorphic forms (Kuznetsov Trace Formula)
 - Bounds from Algebraic Geometry (Weil bound/Deligne bounds)
- Ensure that (essentially) all ranges are covered.

The overall proof follows the same lines as previous approaches:

- Apply a combinatorial decomposition to $\Lambda(n)$
- Reduce the problem to estimating exponenital sums of convolutions
- Apply different techniques in different ranges to estimate exponential sums
 - Bounds from the spectral theory of automorphic forms (Kuznetsov Trace Formula)
 - Bounds from Algebraic Geometry (Weil bound/Deligne bounds)
- Ensure that (essentially) all ranges are covered.

Combine Zhang-style estimates with Kloostermania

Let us recall the situation when $q \sim x^{1/2+\delta}$ where $\delta > 0$ is fixed but small. Using BFI proof ideas:

 Heath-Brown Identity/Sieve methods reduces to considering products of few prime factors

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Let us recall the situation when $q \sim x^{1/2+\delta}$ where $\delta > 0$ is fixed but small. Using BFI proof ideas:

- Heath-Brown Identity/Sieve methods reduces to considering products of few prime factors
- Working through the BFI argument their proof can essentially handle all such numbers except for
 - Products $p_1p_2p_3p_4p_5$ of 5 primes with $p_i = x^{1/5+O(\delta)}$
 - Products $p_1p_2p_3p_4$ of 4 primes with $p_i = x^{1/4+O(\delta)}$

Let us recall the situation when $q \sim x^{1/2+\delta}$ where $\delta > 0$ is fixed but small. Using BFI proof ideas:

- Heath-Brown Identity/Sieve methods reduces to considering products of few prime factors
- Working through the BFI argument their proof can essentially handle all such numbers except for
 - Products $p_1p_2p_3p_4p_5$ of 5 primes with $p_i = x^{1/5+O(\delta)}$
 - Products $p_1p_2p_3p_4$ of 4 primes with $p_i = x^{1/4+O(\delta)}$

BFI result follows on noting that these terms are only a $O(\delta)$ proportion of the terms.

We can concentrate on these 'bad products'.

 Zhang-style estimates can handle all terms when the modulus is smooth, but are least efficient for products of 5 primes, so don't help.

- Zhang-style estimates can handle all terms when the modulus is smooth, but are least efficient for products of 5 primes, so don't help.
- Instead we refine some of the estimates for exponential sums coming from Kuznetsov/Kloostermaina.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

- Zhang-style estimates can handle all terms when the modulus is smooth, but are least efficient for products of 5 primes, so don't help.
- Instead we refine some of the estimates for exponential sums coming from Kuznetsov/Kloostermaina.
- Refinement of BFI can handle $p_1p_2p_3p_4p_5$ with $q < x^{4/7-\epsilon}$ when $p_i \approx x^{1/5}$ except when $p_i \in [x^{1/5} \log^{-A} x, x^{1/5} \log^A x]$

- Zhang-style estimates can handle all terms when the modulus is smooth, but are least efficient for products of 5 primes, so don't help.
- Instead we refine some of the estimates for exponential sums coming from Kuznetsov/Kloostermaina.
- Refinement of BFI can handle $p_1p_2p_3p_4p_5$ with $q < x^{4/7-\epsilon}$ when $p_i \approx x^{1/5}$ except when $p_i \in [x^{1/5} \log^{-A} x, x^{1/5} \log^A x]$
- I still can't handle these terms, but they now contribute $O((\log \log x)^{O(1)} / \log^4 x)$ proportion for a wide range of *q*. (This is why I only save $4 \epsilon \log x$ factors.)

Algebraic Geometry doesn't help much, but we can refine Kuznetsov-based estimates to handle these terms

Products of 4 primes

Consider terms $p_1p_2p_3p_4$ with $p_i \in [x^{1/4-\delta}, x^{1/4+\delta}]$

 Kloostermania techniques still can't handle products of 4 primes

- Kloostermania techniques still can't handle products of 4 primes
- Note: In this case there is a factor p₁p₄ = x^{1/2+O(δ)} very close to 1/2. This is the situation when Zhang-style arguments are most effective!

- Kloostermania techniques still can't handle products of 4 primes
- Note: In this case there is a factor p₁p₄ = x^{1/2+O(δ)} very close to 1/2. This is the situation when Zhang-style arguments are most effective!
- Provided q has a suitable factor close to $x^{1/2}$, we can handle these terms using the Weil bound.

The technical parts which spectral theory estimates can't handle are precisely parts that the algebraic geometry estimates are best at *when there is a suitable factor*

As stated these ideas combine to give a result for $q \sim x^{1/2+\delta}$ for some small $\delta > 0$.

To get good numerics, need to refine estimates for other parts of prime decomposition

 Generalize ideas based on Deligne's work (Fouvry, Kowalski,Michel) to handle products of 3 primes when the modulus has a convenient small factor.

As stated these ideas combine to give a result for $q \sim x^{1/2+\delta}$ for some small $\delta > 0$.

To get good numerics, need to refine estimates for other parts of prime decomposition

- Generalize ideas based on Deligne's work (Fouvry, Kowalski,Michel) to handle products of 3 primes when the modulus has a convenient small factor.
- Generalize ideas of Fouvry for products of 7 primes when the modulus has a convenient small factor.

As stated these ideas combine to give a result for $q \sim x^{1/2+\delta}$ for some small $\delta > 0$.

To get good numerics, need to refine estimates for other parts of prime decomposition

- Generalize ideas based on Deligne's work (Fouvry, Kowalski,Michel) to handle products of 3 primes when the modulus has a convenient small factor.
- Generalize ideas of Fouvry for products of 7 primes when the modulus has a convenient small factor.
- Auxilliary estimate when there is a very small factor

Together these improve all terms in the decomposition, with a reasonable range of q!

Overview

Figure: Outline of steps to prove primes in arithmetic progressions

Thank you for listening.

ヘロト ヘヨト ヘヨト ヘヨト

æ