Primes in arithmetic progressions to large moduli

James Maynard

University of Oxford

Second Symposium in Analytic Number Theory, Cetraro July 2019

Introduction

How many primes are less than x and congruent to $a(\bmod q)$?

Introduction

How many primes are less than x and congruent to $a(\bmod q)$?
Theorem (Siegel-Walfisz)
If $q \leq(\log x)^{A}$ and $\operatorname{gcd}(a, q)=1$ then

$$
\pi(x ; q, a)=(1+o(1)) \frac{\pi(x)}{\phi(q)}
$$

Theorem (GRH Bound)

Assume GRH. If $q \leq x^{1 / 2-\epsilon}$ and $\operatorname{gcd}(a, q)=1$ then

$$
\pi(x ; q, a)=(1+o(1)) \frac{\pi(x)}{\phi(q)}
$$

Conjecture (Montgomery)

$$
\begin{aligned}
& \text { If } q \leq x^{1-\epsilon} \text { and } \operatorname{gcd}(a, q)=1 \text { then } \\
& \qquad \pi(x ; q, a)=(1+o(1)) \frac{\pi(x)}{\phi(q)} .
\end{aligned}
$$

Introduction II

Often we don't need such a statement to be true for every q, just for most q.

Introduction II

Often we don't need such a statement to be true for every q, just for most q.

Theorem (Bombieri-Vinogradov)

Let $Q<x^{1 / 2-\epsilon}$. Then for any A

$$
\sum_{q \sim Q} \sup _{(a, q)=1}\left|\pi(x ; q, a)-\frac{\pi(x)}{\phi(q)}\right|<_{A} \frac{x}{(\log x)^{A}}
$$

Corollary

For most $q \leq x^{1 / 2-\epsilon}$, we have

$$
\pi(x ; q, a)=(1+o(1)) \frac{\pi(x)}{\phi(q)}
$$

for every a with $\operatorname{gcd}(a, q)=1$.

Introduction II

Often we don't need such a statement to be true for every q, just for most q.

Theorem (Bombieri-Vinogradov)

Let $Q<x^{1 / 2-\epsilon}$. Then for any A

$$
\sum_{q \sim Q} \sup _{(a, q)=1}\left|\pi(x ; q, a)-\frac{\pi(x)}{\phi(q)}\right|<_{A} \frac{x}{(\log x)^{A}}
$$

Corollary

For most $q \leq x^{1 / 2-\epsilon}$, we have

$$
\pi(x ; q, a)=(1+o(1)) \frac{\pi(x)}{\phi(q)}
$$

for every a with $\operatorname{gcd}(a, q)=1$.
From the point of view of e.g. sieve methods, this is essentially as good as the Riemann Hypothesis!

Beyond GRH

Pioneering work by Bombieri, Fouvry, Friedlander, Iwaniec went beyond the $x^{1 / 2}$ barrier in special circumstances.

Beyond GRH

Pioneering work by Bombieri, Fouvry, Friedlander, Iwaniec went beyond the $x^{1 / 2}$ barrier in special circumstances.

Theorem (BFI1)

Fix a. Then we have (uniformly in θ)

$$
\sum_{\substack{q \sim x^{\theta} \\(q, a)=1}}\left|\pi(x ; q, a)-\frac{\pi(x)}{\phi(q)}\right| \ll_{a}(\theta-1 / 2)^{2} \frac{x(\log \log x)^{O(1)}}{\log x}+\frac{x}{\log ^{3} x} .
$$

This is non-trivial when θ is very close to $1 / 2$.

Theorem (BFI2)

Fix a. Let $\lambda(q)$ be 'well-factorable'. Then we have

$$
\sum_{\substack{q \sim x^{4 / 7-\epsilon} \\(q, a)=1}} \lambda(q)\left(\pi(x ; q, a)-\frac{\pi(x)}{\phi(q)}\right) \ll_{a, A} \frac{x}{\log ^{A} x}
$$

This is often an adequate substitute for BV with exponent $4 / 7$!

Beyond GRH II

More recently, Zhang went beyond $x^{1 / 2}$ for smooth/friable moduli.
Theorem (Zhang,Polymath)

$$
\sum_{\substack{q \leq x^{1 / 2+7 / 300-\epsilon} \\ p \mid q=p \leq x^{2^{2}} \\(q, a)=1}}\left|\pi(x ; q, a)-\frac{\pi(x)}{\phi(q)}\right| \ll A \frac{x}{(\log x)^{A}}
$$

The implied constant is independent of a.

New results

Theorem (M.)

Let $\delta<1 / 42$ and $Q_{\delta}:=\left\{q \sim x^{1 / 2+\delta}: \exists d \mid q\right.$ s.t. $\left.x^{2 \delta+\epsilon}<d<x^{1 / 14-\delta}\right\}$.

$$
\sum_{\substack{q \in Q_{\delta} \\(q, a)=1}}\left|\pi(x ; q, a)-\frac{\pi(x)}{\phi(q)}\right|<_{A} \frac{x(\log \log x)^{O(1)}}{\log ^{5} x}
$$

New results

Theorem (M.)

Let $\delta<1 / 42$ and $Q_{\delta}:=\left\{q \sim x^{1 / 2+\delta}: \exists d \mid q\right.$ s.t. $\left.x^{2 \delta+\epsilon}<d<x^{1 / 14-\delta}\right\}$.

$$
\sum_{q \in Q_{\delta}}\left|\pi(x ; q, a)-\frac{\pi(x)}{\phi(q)}\right|<_{A} \frac{x(\log \log x)^{O(1)}}{\log ^{5} x}
$$

$$
(q, a)=1
$$

Corollary
Let $\delta<1 / 42$. For $(100-O(\delta)) \%$ of $q \sim x^{1 / 2+\delta}$ we have

$$
\pi(x ; q, a)=(1+o(1)) \frac{\pi(x)}{\phi(q)}
$$

Corollary

$$
\sum_{\substack{q_{1} \sim x^{1 / 21}}} \sum_{\substack{q_{2} \sim x^{10 / 21-\epsilon} \\\left(q_{1} q_{2}, a\right)=1}}\left|\pi\left(x ; q_{1} q_{2}, a\right)-\frac{\pi(x)}{\phi\left(q_{1} q_{2}\right)}\right|<_{a} \frac{x(\log \log x)^{O(1)}}{\log ^{5} x}
$$

New Results II

Theorem (M.)

Let $\lambda(q)$ be 'very well factorable'. Then we have

$$
\sum_{\substack{q \leq x^{3 / 5-\epsilon} \\(q, a)=1}} \lambda(q)\left(\pi(x ; q, a)-\frac{\pi(x)}{\phi(q)}\right) \lll a, A \frac{x}{(\log x)^{A}}
$$

The β-sieve weights are 'very well factorable' for $\beta \geq 2$.

New Results II

Theorem (M.)

Let $\lambda(q)$ be 'very well factorable'. Then we have

$$
\sum_{\substack{q \leq x^{3 / 5-\epsilon} \\(q, a)=1}} \lambda(q)\left(\pi(x ; q, a)-\frac{\pi(x)}{\phi(q)}\right) \ll_{a, A} \frac{x}{(\log x)^{A}}
$$

The β-sieve weights are 'very well factorable' for $\beta \geq 2$.

Corollary

Let $\lambda^{+}(d)$ be sieve weights for the linear sieve. Then

$$
\sum_{\substack{q \leq x^{7 / 12-\epsilon} \\(q, a)=1}} \lambda^{+}(q)\left(\pi(x ; q, a)-\frac{\pi(x)}{\phi(q)}\right) \ll \frac{x}{(\log x)^{A}}
$$

Comparison

Result	Size of \boldsymbol{q}	Type of \boldsymbol{q}	Proportion of \mathbf{q}
BFI1	$\mathbf{x}^{\mathbf{1 / 2 + 0}(1)}$	All	$(100-\delta) \%$
BFI2	$\mathbf{x}^{4 / 7-\epsilon}$	Factorable	$\delta \%$
Zhang	$\mathbf{x}^{1 / 2+7 / 300-\epsilon}$	Factorable	$\delta \%$
M1	$\mathbf{x}^{11 / 21-\epsilon}$	Partially Factorable	$(100-\delta) \%$
M2	$\mathbf{x}^{3 / 5-\epsilon}$	Factorable	$\delta \%$

Result	Coefficients	Residue class	Cancellation
BFI1	Absolute values	Fixed	$\mathbf{o}(\mathbf{1})$
BFI2	Factorable weights	Fixed	$\log ^{\mathrm{A}} \mathrm{x}$
Zhang	Absolute values	Uniform	$\log ^{\mathrm{A}} \mathrm{x}$
M1	Absolute values	Fixed	$\log ^{5-\epsilon} \mathrm{x}$
M2	Factorable weights	Fixed	$\log ^{\mathrm{A}} \mathrm{x}$

Note that $3 / 5>4 / 7>11 / 21>1 / 2+7 / 300$.

Proof overview

The overall proof follows the same lines as previous approaches:
(1) Apply a combinatorial decomposition to $\Lambda(n)$

The overall proof follows the same lines as previous approaches:
(1) Apply a combinatorial decomposition to $\Lambda(n)$
(2) Reduce the problem to estimating exponenital sums of convolutions

Proof overview

The overall proof follows the same lines as previous approaches:
(1) Apply a combinatorial decomposition to $\Lambda(n)$
(2) Reduce the problem to estimating exponenital sums of convolutions
(3) Apply different techniques in different ranges to estimate exponential sums

- Bounds from the spectral theory of automorphic forms (Kuznetsov Trace Formula)
- Bounds from Algebraic Geometry (Weil bound/Deligne bounds)

Proof overview

The overall proof follows the same lines as previous approaches:
(1) Apply a combinatorial decomposition to $\Lambda(n)$
(2) Reduce the problem to estimating exponenital sums of convolutions
(3) Apply different techniques in different ranges to estimate exponential sums

- Bounds from the spectral theory of automorphic forms (Kuznetsov Trace Formula)
- Bounds from Algebraic Geometry (Weil bound/Deligne bounds)
(4) Ensure that (essentially) all ranges are covered.

Proof overview

The overall proof follows the same lines as previous approaches:
(1) Apply a combinatorial decomposition to $\Lambda(n)$
(2) Reduce the problem to estimating exponenital sums of convolutions
(3) Apply different techniques in different ranges to estimate exponential sums

- Bounds from the spectral theory of automorphic forms (Kuznetsov Trace Formula)
- Bounds from Algebraic Geometry (Weil bound/Deligne bounds)
(4) Ensure that (essentially) all ranges are covered.
Combine Zhang-style estimates with Kloostermania

Bad products

Let us recall the situation when $q \sim x^{1 / 2+\delta}$ where $\delta>0$ is fixed but small. Using BFI proof ideas:
(1) Heath-Brown Identity/Sieve methods reduces to considering products of few prime factors

Bad products

Let us recall the situation when $q \sim x^{1 / 2+\delta}$ where $\delta>0$ is fixed but small. Using BFI proof ideas:
(1) Heath-Brown Identity/Sieve methods reduces to considering products of few prime factors
(2) Working through the BFI argument their proof can essentially handle all such numbers except for

- Products $p_{1} p_{2} p_{3} p_{4} p_{5}$ of 5 primes with $p_{i}=x^{1 / 5+O(\delta)}$
- Products $p_{1} p_{2} p_{3} p_{4}$ of 4 primes with $p_{i}=x^{1 / 4+O(\delta)}$

Bad products

Let us recall the situation when $q \sim x^{1 / 2+\delta}$ where $\delta>0$ is fixed but small. Using BFI proof ideas:
(1) Heath-Brown Identity/Sieve methods reduces to considering products of few prime factors
(2) Working through the BFI argument their proof can essentially handle all such numbers except for

- Products $p_{1} p_{2} p_{3} p_{4} p_{5}$ of 5 primes with $p_{i}=x^{1 / 5+O(\delta)}$
- Products $p_{1} p_{2} p_{3} p_{4}$ of 4 primes with $p_{i}=x^{1 / 4+O(\delta)}$

BFI result follows on noting that these terms are only a $O(\delta)$ proportion of the terms.

We can concentrate on these 'bad products'.

Products of 5 Primes

Consider terms $p_{1} p_{2} p_{3} p_{4} p_{5}$ with $p_{i} \in\left[x^{1 / 5-\delta}, x^{1 / 5+\delta}\right]$

- Zhang-style estimates can handle all terms when the modulus is smooth, but are least efficient for products of 5 primes, so don't help.

Products of 5 Primes

Consider terms $p_{1} p_{2} p_{3} p_{4} p_{5}$ with $p_{i} \in\left[x^{1 / 5-\delta}, x^{1 / 5+\delta}\right]$

- Zhang-style estimates can handle all terms when the modulus is smooth, but are least efficient for products of 5 primes, so don't help.
- Instead we refine some of the estimates for exponential sums coming from Kuznetsov/Kloostermaina.

Consider terms $p_{1} p_{2} p_{3} p_{4} p_{5}$ with $p_{i} \in\left[x^{1 / 5-\delta}, x^{1 / 5+\delta}\right]$

- Zhang-style estimates can handle all terms when the modulus is smooth, but are least efficient for products of 5 primes, so don't help.
- Instead we refine some of the estimates for exponential sums coming from Kuznetsov/Kloostermaina.
- Refinement of BFI can handle $p_{1} p_{2} p_{3} p_{4} p_{5}$ with $q<x^{4 / 7-\epsilon}$ when $p_{i} \approx x^{1 / 5}$ except when $p_{i} \in\left[x^{1 / 5} \log ^{-A} x, x^{1 / 5} \log ^{A} x\right]$

Consider terms $p_{1} p_{2} p_{3} p_{4} p_{5}$ with $p_{i} \in\left[x^{1 / 5-\delta}, x^{1 / 5+\delta}\right]$

- Zhang-style estimates can handle all terms when the modulus is smooth, but are least efficient for products of 5 primes, so don't help.
- Instead we refine some of the estimates for exponential sums coming from Kuznetsov/Kloostermaina.
- Refinement of BFI can handle $p_{1} p_{2} p_{3} p_{4} p_{5}$ with $q<x^{4 / 7-\epsilon}$ when $p_{i} \approx x^{1 / 5}$ except when $p_{i} \in\left[x^{1 / 5} \log ^{-A} x, x^{1 / 5} \log ^{A} x\right]$
- I still can't handle these terms, but they now contribute $O\left((\log \log x)^{O(1)} / \log ^{4} x\right)$ proportion for a wide range of q. (This is why I only save $4-\epsilon \log x$ factors.)
Algebraic Geometry doesn't help much, but we can refine Kuznetsov-based estimates to handle these terms

Products of 4 primes

Consider terms $p_{1} p_{2} p_{3} p_{4}$ with $p_{i} \in\left[x^{1 / 4-\delta}, x^{1 / 4+\delta}\right]$

- Kloostermania techniques still can't handle products of 4 primes

Products of 4 primes

Consider terms $p_{1} p_{2} p_{3} p_{4}$ with $p_{i} \in\left[x^{1 / 4-\delta}, x^{1 / 4+\delta}\right]$

- Kloostermania techniques still can't handle products of 4 primes
- Note: In this case there is a factor $p_{1} p_{4}=x^{1 / 2+O(\delta)}$ very close to $1 / 2$. This is the situation when Zhang-style arguments are most effective!

Products of 4 primes

Consider terms $p_{1} p_{2} p_{3} p_{4}$ with $p_{i} \in\left[x^{1 / 4-\delta}, x^{1 / 4+\delta}\right]$

- Kloostermania techniques still can't handle products of 4 primes
- Note: In this case there is a factor $p_{1} p_{4}=x^{1 / 2+O(\delta)}$ very close to $1 / 2$. This is the situation when Zhang-style arguments are most effective!
- Provided q has a suitable factor close to $x^{1 / 2}$, we can handle these terms using the Weil bound.
The technical parts which spectral theory estimates can't handle are precisely parts that the algebraic geometry estimates are best at *when there is a suitable factor*

Numerics

As stated these ideas combine to give a result for $q \sim x^{1 / 2+\delta}$ for some small $\delta>0$.

To get good numerics, need to refine estimates for other parts of prime decomposition

- Generalize ideas based on Deligne's work (Fouvry, Kowalski,Michel) to handle products of 3 primes when the modulus has a convenient small factor.

Numerics

As stated these ideas combine to give a result for $q \sim x^{1 / 2+\delta}$ for some small $\delta>0$.

To get good numerics, need to refine estimates for other parts of prime decomposition

- Generalize ideas based on Deligne's work (Fouvry, Kowalski,Michel) to handle products of 3 primes when the modulus has a convenient small factor.
- Generalize ideas of Fouvry for products of 7 primes when the modulus has a convenient small factor.

Numerics

As stated these ideas combine to give a result for $q \sim x^{1 / 2+\delta}$ for some small $\delta>0$.

To get good numerics, need to refine estimates for other parts of prime decomposition

- Generalize ideas based on Deligne's work (Fouvry, Kowalski,Michel) to handle products of 3 primes when the modulus has a convenient small factor.
- Generalize ideas of Fouvry for products of 7 primes when the modulus has a convenient small factor.
- Auxilliary estimate when there is a very small factor Together these improve all terms in the decomposition, with a reasonable range of q !

Overview

Figure: Outline of steps to prove primes in arithmetic progressions

Questions

Thank you for listening.

