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Introduction

How many primes are less than x and congruent to a (mod q)?

Theorem (Siegel-Walfisz)

If q ≤ (log x)A and gcd(a, q) = 1 then

π(x; q, a) = (1 + o(1))
π(x)

φ(q)
.

Theorem (GRH Bound)

Assume GRH. If q ≤ x1/2−ε and gcd(a, q) = 1 then

π(x; q, a) = (1 + o(1))
π(x)

φ(q)
.

Conjecture (Montgomery)

If q ≤ x1−ε and gcd(a, q) = 1 then

π(x; q, a) = (1 + o(1))
π(x)

φ(q)
.
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Introduction II

Often we don’t need such a statement to be true for every q, just
for most q.

Theorem (Bombieri-Vinogradov)

Let Q < x1/2−ε . Then for any A∑
q∼Q

sup
(a,q)=1

∣∣∣∣π(x; q, a) −
π(x)

φ(q)

∣∣∣∣ �A
x

(log x)A

Corollary

For most q ≤ x1/2−ε , we have

π(x; q, a) = (1 + o(1))
π(x)

φ(q)

for every a with gcd(a, q) = 1.

From the point of view of e.g. sieve methods, this is essentially as
good as the Riemann Hypothesis!
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Beyond GRH

Pioneering work by Bombieri, Fouvry, Friedlander, Iwaniec went
beyond the x1/2 barrier in special circumstances.

Theorem (BFI1)

Fix a. Then we have (uniformly in θ)∑
q∼xθ

(q,a)=1

∣∣∣∣π(x; q, a) −
π(x)

φ(q)

∣∣∣∣ �a (θ − 1/2)2 x(log log x)O(1)

log x
+

x

log3 x
.

This is non-trivial when θ is very close to 1/2.

Theorem (BFI2)

Fix a. Let λ(q) be ‘well-factorable’. Then we have∑
q∼x4/7−ε

(q,a)=1

λ(q)
(
π(x; q, a) −

π(x)

φ(q)

)
�a,A

x

logA x
.

This is often an adequate substitute for BV with exponent 4/7!
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Beyond GRH II

More recently, Zhang went beyond x1/2 for smooth/friable moduli.

Theorem (Zhang,Polymath)∑
q≤x1/2+7/300−ε

p|q⇒p≤xε
2

(q,a)=1

∣∣∣∣π(x; q, a) −
π(x)

φ(q)

∣∣∣∣ �A
x

(log x)A

The implied constant is independent of a.
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New results

Theorem (M.)

Let δ < 1/42 and Qδ := {q ∼ x1/2+δ : ∃d|q s.t. x2δ+ε < d < x1/14−δ}.∑
q∈Qδ

(q,a)=1

∣∣∣∣π(x; q, a) −
π(x)

φ(q)

∣∣∣∣ �A
x(log log x)O(1)

log5 x
.

Corollary

Let δ < 1/42. For (100 − O(δ))% of q ∼ x1/2+δ we have

π(x; q, a) = (1 + o(1))
π(x)

φ(q)

Corollary∑
q1∼x1/21

∑
q2∼x10/21−ε

(q1q2,a)=1

∣∣∣∣π(x; q1q2, a) −
π(x)

φ(q1q2)

∣∣∣∣ �a
x(log log x)O(1)

log5 x
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New Results II

Theorem (M.)

Let λ(q) be ‘very well factorable’. Then we have∑
q≤x3/5−ε

(q,a)=1

λ(q)
(
π(x; q, a) −

π(x)

φ(q)

)
�a,A

x
(log x)A

.

The β-sieve weights are ‘very well factorable’ for β ≥ 2.

Corollary

Let λ+(d) be sieve weights for the linear sieve. Then∑
q≤x7/12−ε

(q,a)=1

λ+(q)
(
π(x; q, a) −

π(x)

φ(q)

)
�

x
(log x)A

.
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Comparison

Result Size of q Type of q Proportion of q

BFI1 x1/2+o(1) All (100 − δ)%

BFI2 x4/7−ε Factorable δ%

Zhang x1/2+7/300−ε Factorable δ%

M1 x11/21−ε Partially Factorable (100 − δ)%

M2 x3/5−ε Factorable δ%

Result Coefficients Residue class Cancellation

BFI1 Absolute values Fixed o(1)

BFI2 Factorable weights Fixed logA x

Zhang Absolute values Uniform logA x

M1 Absolute values Fixed log5−ε x

M2 Factorable weights Fixed logA x
Note that 3/5 > 4/7 > 11/21 > 1/2 + 7/300.
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Proof overview

The overall proof follows the same lines as previous approaches:
1 Apply a combinatorial decomposition to Λ(n)

2 Reduce the problem to estimating exponenital sums of
convolutions

3 Apply different techniques in different ranges to estimate
exponential sums

Bounds from the spectral theory of automorphic forms
(Kuznetsov Trace Formula)
Bounds from Algebraic Geometry
(Weil bound/Deligne bounds)

4 Ensure that (essentially) all ranges are covered.

*Combine Zhang-style estimates with Kloostermania*

James Maynard Primes in arithmetic progressions to large moduli



Proof overview

The overall proof follows the same lines as previous approaches:
1 Apply a combinatorial decomposition to Λ(n)

2 Reduce the problem to estimating exponenital sums of
convolutions

3 Apply different techniques in different ranges to estimate
exponential sums

Bounds from the spectral theory of automorphic forms
(Kuznetsov Trace Formula)
Bounds from Algebraic Geometry
(Weil bound/Deligne bounds)

4 Ensure that (essentially) all ranges are covered.

*Combine Zhang-style estimates with Kloostermania*

James Maynard Primes in arithmetic progressions to large moduli



Proof overview

The overall proof follows the same lines as previous approaches:
1 Apply a combinatorial decomposition to Λ(n)

2 Reduce the problem to estimating exponenital sums of
convolutions

3 Apply different techniques in different ranges to estimate
exponential sums

Bounds from the spectral theory of automorphic forms
(Kuznetsov Trace Formula)
Bounds from Algebraic Geometry
(Weil bound/Deligne bounds)

4 Ensure that (essentially) all ranges are covered.

*Combine Zhang-style estimates with Kloostermania*

James Maynard Primes in arithmetic progressions to large moduli



Proof overview

The overall proof follows the same lines as previous approaches:
1 Apply a combinatorial decomposition to Λ(n)

2 Reduce the problem to estimating exponenital sums of
convolutions

3 Apply different techniques in different ranges to estimate
exponential sums

Bounds from the spectral theory of automorphic forms
(Kuznetsov Trace Formula)
Bounds from Algebraic Geometry
(Weil bound/Deligne bounds)

4 Ensure that (essentially) all ranges are covered.

*Combine Zhang-style estimates with Kloostermania*

James Maynard Primes in arithmetic progressions to large moduli



Proof overview

The overall proof follows the same lines as previous approaches:
1 Apply a combinatorial decomposition to Λ(n)

2 Reduce the problem to estimating exponenital sums of
convolutions

3 Apply different techniques in different ranges to estimate
exponential sums

Bounds from the spectral theory of automorphic forms
(Kuznetsov Trace Formula)
Bounds from Algebraic Geometry
(Weil bound/Deligne bounds)

4 Ensure that (essentially) all ranges are covered.

*Combine Zhang-style estimates with Kloostermania*

James Maynard Primes in arithmetic progressions to large moduli



Bad products

Let us recall the situation when q ∼ x1/2+δ where δ > 0 is fixed but
small. Using BFI proof ideas:

1 Heath-Brown Identity/Sieve methods reduces to considering
products of few prime factors

2 Working through the BFI argument their proof can essentially
handle all such numbers except for

Products p1p2p3p4p5 of 5 primes with pi = x1/5+O(δ)

Products p1p2p3p4 of 4 primes with pi = x1/4+O(δ)

BFI result follows on noting that these terms are only a O(δ)
proportion of the terms.

We can concentrate on these ‘bad products’.
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Products of 5 Primes

Consider terms p1p2p3p4p5 with pi ∈ [x1/5−δ, x1/5+δ]

Zhang-style estimates can handle all terms when the modulus
is smooth, but are least efficient for products of 5 primes, so
don’t help.

Instead we refine some of the estimates for exponential sums
coming from Kuznetsov/Kloostermaina.

Refinement of BFI can handle p1p2p3p4p5 with q < x4/7−ε

when pi ≈ x1/5 except when pi ∈ [x1/5 log−A x, x1/5 logA x]

I still can’t handle these terms, but they now contribute
O((log log x)O(1)/ log4 x) proportion for a wide range of q.
(This is why I only save 4 − ε log x factors.)

Algebraic Geometry doesn’t help much, but we can refine
Kuznetsov-based estimates to handle these terms
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Products of 4 primes

Consider terms p1p2p3p4 with pi ∈ [x1/4−δ, x1/4+δ]

Kloostermania techniques still can’t handle products of 4
primes

Note: In this case there is a factor p1p4 = x1/2+O(δ) very close
to 1/2. This is the situation when Zhang-style arguments are
most effective!

Provided q has a suitable factor close to x1/2, we can handle
these terms using the Weil bound.

The technical parts which spectral theory estimates can’t
handle are precisely parts that the algebraic geometry
estimates are best at *when there is a suitable factor*
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Numerics

As stated these ideas combine to give a result for q ∼ x1/2+δ for
some small δ > 0.

To get good numerics, need to refine estimates for other parts of
prime decomposition

Generalize ideas based on Deligne’s work (Fouvry,
Kowalski,Michel) to handle products of 3 primes when the
modulus has a convenient small factor.

Generalize ideas of Fouvry for products of 7 primes when the
modulus has a convenient small factor.

Auxilliary estimate when there is a very small factor

Together these improve all terms in the decomposition, with a
reasonable range of q!
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Figure: Outline of steps to prove primes in arithmetic progressions
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Questions

Thank you for listening.
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